Properties

Label 117.4.a.a
Level $117$
Weight $4$
Character orbit 117.a
Self dual yes
Analytic conductor $6.903$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 117.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(6.90322347067\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - 8 q^{4} + 12 q^{5} + 2 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q - 8 q^{4} + 12 q^{5} + 2 q^{7} + 36 q^{11} + 13 q^{13} + 64 q^{16} + 78 q^{17} + 74 q^{19} - 96 q^{20} + 96 q^{23} + 19 q^{25} - 16 q^{28} - 18 q^{29} - 214 q^{31} + 24 q^{35} - 286 q^{37} + 384 q^{41} + 524 q^{43} - 288 q^{44} - 300 q^{47} - 339 q^{49} - 104 q^{52} - 558 q^{53} + 432 q^{55} - 576 q^{59} + 74 q^{61} - 512 q^{64} + 156 q^{65} + 38 q^{67} - 624 q^{68} + 456 q^{71} - 682 q^{73} - 592 q^{76} + 72 q^{77} + 704 q^{79} + 768 q^{80} + 888 q^{83} + 936 q^{85} + 1020 q^{89} + 26 q^{91} - 768 q^{92} + 888 q^{95} + 110 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 −8.00000 12.0000 0 2.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \(-1\)
\(13\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 117.4.a.a 1
3.b odd 2 1 39.4.a.a 1
4.b odd 2 1 1872.4.a.m 1
12.b even 2 1 624.4.a.g 1
13.b even 2 1 1521.4.a.f 1
15.d odd 2 1 975.4.a.e 1
21.c even 2 1 1911.4.a.f 1
24.f even 2 1 2496.4.a.f 1
24.h odd 2 1 2496.4.a.o 1
39.d odd 2 1 507.4.a.c 1
39.f even 4 2 507.4.b.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.4.a.a 1 3.b odd 2 1
117.4.a.a 1 1.a even 1 1 trivial
507.4.a.c 1 39.d odd 2 1
507.4.b.b 2 39.f even 4 2
624.4.a.g 1 12.b even 2 1
975.4.a.e 1 15.d odd 2 1
1521.4.a.f 1 13.b even 2 1
1872.4.a.m 1 4.b odd 2 1
1911.4.a.f 1 21.c even 2 1
2496.4.a.f 1 24.f even 2 1
2496.4.a.o 1 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(117))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 12 \) Copy content Toggle raw display
$7$ \( T - 2 \) Copy content Toggle raw display
$11$ \( T - 36 \) Copy content Toggle raw display
$13$ \( T - 13 \) Copy content Toggle raw display
$17$ \( T - 78 \) Copy content Toggle raw display
$19$ \( T - 74 \) Copy content Toggle raw display
$23$ \( T - 96 \) Copy content Toggle raw display
$29$ \( T + 18 \) Copy content Toggle raw display
$31$ \( T + 214 \) Copy content Toggle raw display
$37$ \( T + 286 \) Copy content Toggle raw display
$41$ \( T - 384 \) Copy content Toggle raw display
$43$ \( T - 524 \) Copy content Toggle raw display
$47$ \( T + 300 \) Copy content Toggle raw display
$53$ \( T + 558 \) Copy content Toggle raw display
$59$ \( T + 576 \) Copy content Toggle raw display
$61$ \( T - 74 \) Copy content Toggle raw display
$67$ \( T - 38 \) Copy content Toggle raw display
$71$ \( T - 456 \) Copy content Toggle raw display
$73$ \( T + 682 \) Copy content Toggle raw display
$79$ \( T - 704 \) Copy content Toggle raw display
$83$ \( T - 888 \) Copy content Toggle raw display
$89$ \( T - 1020 \) Copy content Toggle raw display
$97$ \( T - 110 \) Copy content Toggle raw display
show more
show less