Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [117,3,Mod(31,117)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(117, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([4, 9]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("117.31");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 117 = 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 117.y (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.18801909302\) |
Analytic rank: | \(0\) |
Dimension: | \(104\) |
Relative dimension: | \(26\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
31.1 | −3.62659 | − | 0.971741i | −2.94231 | − | 0.585489i | 8.74375 | + | 5.04820i | −1.52926 | − | 5.70728i | 10.1016 | + | 4.98249i | 2.26965 | − | 8.47046i | −16.1850 | − | 16.1850i | 8.31441 | + | 3.44538i | 22.1840i | ||
31.2 | −3.62452 | − | 0.971189i | 1.24318 | − | 2.73029i | 8.72987 | + | 5.04019i | 0.305966 | + | 1.14188i | −7.15758 | + | 8.68865i | −3.11346 | + | 11.6196i | −16.1333 | − | 16.1333i | −5.90899 | − | 6.78851i | − | 4.43593i | |
31.3 | −3.32897 | − | 0.891995i | −0.797857 | + | 2.89196i | 6.82228 | + | 3.93885i | 2.07873 | + | 7.75792i | 5.23566 | − | 8.91556i | 1.39866 | − | 5.21987i | −9.44985 | − | 9.44985i | −7.72685 | − | 4.61474i | − | 27.6801i | |
31.4 | −3.18343 | − | 0.852998i | 2.65511 | + | 1.39656i | 5.94252 | + | 3.43092i | −1.23046 | − | 4.59214i | −7.26110 | − | 6.71066i | 0.411953 | − | 1.53743i | −6.66931 | − | 6.66931i | 5.09923 | + | 7.41605i | 15.6684i | ||
31.5 | −2.62588 | − | 0.703603i | −1.51101 | + | 2.59169i | 2.93610 | + | 1.69516i | −0.871516 | − | 3.25254i | 5.79125 | − | 5.74232i | −3.16613 | + | 11.8161i | 1.17198 | + | 1.17198i | −4.43370 | − | 7.83213i | 9.15399i | ||
31.6 | −2.48463 | − | 0.665755i | −1.77959 | − | 2.41518i | 2.26606 | + | 1.30831i | 1.74973 | + | 6.53009i | 2.81370 | + | 7.18559i | 0.485382 | − | 1.81147i | 2.51620 | + | 2.51620i | −2.66615 | + | 8.59602i | − | 17.3897i | |
31.7 | −2.32589 | − | 0.623221i | 2.30915 | − | 1.91516i | 1.55728 | + | 0.899094i | 0.326628 | + | 1.21899i | −6.56440 | + | 3.01534i | 2.50428 | − | 9.34611i | 3.74897 | + | 3.74897i | 1.66434 | − | 8.84477i | − | 3.03881i | |
31.8 | −1.66139 | − | 0.445168i | −0.924780 | − | 2.85391i | −0.902057 | − | 0.520803i | −1.70724 | − | 6.37150i | 0.265953 | + | 5.15314i | −0.446010 | + | 1.66453i | 6.13171 | + | 6.13171i | −7.28956 | + | 5.27847i | 11.3456i | ||
31.9 | −1.60696 | − | 0.430585i | 1.68465 | + | 2.48233i | −1.06717 | − | 0.616132i | 0.359970 | + | 1.34342i | −1.63832 | − | 4.71440i | −0.198185 | + | 0.739637i | 6.15513 | + | 6.15513i | −3.32390 | + | 8.36371i | − | 2.31383i | |
31.10 | −1.33961 | − | 0.358947i | −2.93992 | + | 0.597373i | −1.79839 | − | 1.03830i | −0.613360 | − | 2.28909i | 4.15277 | + | 0.255030i | 0.0472052 | − | 0.176172i | 5.95909 | + | 5.95909i | 8.28629 | − | 3.51246i | 3.28665i | ||
31.11 | −1.06825 | − | 0.286237i | 2.91836 | − | 0.695104i | −2.40487 | − | 1.38845i | 1.81354 | + | 6.76822i | −3.31650 | − | 0.0927971i | −3.04303 | + | 11.3567i | 5.29964 | + | 5.29964i | 8.03366 | − | 4.05713i | − | 7.74925i | |
31.12 | −0.514097 | − | 0.137752i | −2.55437 | + | 1.57328i | −3.21878 | − | 1.85836i | 1.42653 | + | 5.32387i | 1.52991 | − | 0.456949i | 2.51662 | − | 9.39214i | 2.90415 | + | 2.90415i | 4.04958 | − | 8.03747i | − | 2.93349i | |
31.13 | 0.149774 | + | 0.0401318i | 0.0310137 | + | 2.99984i | −3.44328 | − | 1.98798i | −1.98994 | − | 7.42657i | −0.115744 | + | 0.450542i | 1.37301 | − | 5.12415i | −0.874500 | − | 0.874500i | −8.99808 | + | 0.186072i | − | 1.19217i | |
31.14 | 0.181674 | + | 0.0486794i | 2.99854 | + | 0.0936789i | −3.43347 | − | 1.98231i | −1.04393 | − | 3.89601i | 0.540196 | + | 0.162986i | 1.72376 | − | 6.43316i | −1.05925 | − | 1.05925i | 8.98245 | + | 0.561799i | − | 0.758622i | |
31.15 | 0.531767 | + | 0.142486i | −2.42608 | − | 1.76470i | −3.20163 | − | 1.84846i | 1.12819 | + | 4.21046i | −1.03866 | − | 1.28409i | −2.13692 | + | 7.97511i | −2.99626 | − | 2.99626i | 2.77170 | + | 8.56257i | 2.39973i | ||
31.16 | 0.583000 | + | 0.156214i | 1.09433 | − | 2.79329i | −3.14862 | − | 1.81785i | −0.592695 | − | 2.21197i | 1.07434 | − | 1.45754i | −0.518405 | + | 1.93471i | −3.25881 | − | 3.25881i | −6.60490 | − | 6.11353i | − | 1.38217i | |
31.17 | 1.07169 | + | 0.287157i | −0.645473 | + | 2.92974i | −2.39805 | − | 1.38451i | 0.951873 | + | 3.55244i | −1.53304 | + | 2.95441i | −2.20661 | + | 8.23517i | −5.31050 | − | 5.31050i | −8.16673 | − | 3.78213i | 4.08044i | ||
31.18 | 1.55517 | + | 0.416705i | 2.60419 | + | 1.48937i | −1.21920 | − | 0.703908i | 2.23994 | + | 8.35955i | 3.42932 | + | 3.40139i | 2.18521 | − | 8.15533i | −6.15658 | − | 6.15658i | 4.56358 | + | 7.75718i | 13.9339i | ||
31.19 | 1.88597 | + | 0.505345i | −2.06210 | − | 2.17894i | −0.162580 | − | 0.0938654i | −0.0385330 | − | 0.143807i | −2.78794 | − | 5.15148i | 3.35702 | − | 12.5286i | −5.78170 | − | 5.78170i | −0.495516 | + | 8.98635i | − | 0.290689i | |
31.20 | 1.91711 | + | 0.513688i | −2.98190 | + | 0.329042i | −0.0526611 | − | 0.0304039i | −2.49739 | − | 9.32037i | −5.88566 | − | 0.900957i | −1.04281 | + | 3.89184i | −5.69903 | − | 5.69903i | 8.78346 | − | 1.96234i | − | 19.1511i | |
See next 80 embeddings (of 104 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
13.d | odd | 4 | 1 | inner |
117.y | odd | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 117.3.y.a | ✓ | 104 |
3.b | odd | 2 | 1 | 351.3.bb.a | 104 | ||
9.c | even | 3 | 1 | inner | 117.3.y.a | ✓ | 104 |
9.d | odd | 6 | 1 | 351.3.bb.a | 104 | ||
13.d | odd | 4 | 1 | inner | 117.3.y.a | ✓ | 104 |
39.f | even | 4 | 1 | 351.3.bb.a | 104 | ||
117.y | odd | 12 | 1 | inner | 117.3.y.a | ✓ | 104 |
117.z | even | 12 | 1 | 351.3.bb.a | 104 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
117.3.y.a | ✓ | 104 | 1.a | even | 1 | 1 | trivial |
117.3.y.a | ✓ | 104 | 9.c | even | 3 | 1 | inner |
117.3.y.a | ✓ | 104 | 13.d | odd | 4 | 1 | inner |
117.3.y.a | ✓ | 104 | 117.y | odd | 12 | 1 | inner |
351.3.bb.a | 104 | 3.b | odd | 2 | 1 | ||
351.3.bb.a | 104 | 9.d | odd | 6 | 1 | ||
351.3.bb.a | 104 | 39.f | even | 4 | 1 | ||
351.3.bb.a | 104 | 117.z | even | 12 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(117, [\chi])\).