Properties

Label 117.3.v.a
Level $117$
Weight $3$
Character orbit 117.v
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(95,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.95");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.v (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 52 q - 6 q^{2} - q^{3} + 94 q^{4} - 12 q^{6} - 3 q^{7} - 78 q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 52 q - 6 q^{2} - q^{3} + 94 q^{4} - 12 q^{6} - 3 q^{7} - 78 q^{8} + q^{9} + 2 q^{10} - 6 q^{11} + 13 q^{12} - 6 q^{13} - 6 q^{14} + 27 q^{15} + 150 q^{16} + 12 q^{18} + 15 q^{19} - 3 q^{20} - 69 q^{21} - 34 q^{22} + 69 q^{23} - 78 q^{24} - 92 q^{25} - 12 q^{26} + 14 q^{27} - 18 q^{28} - 84 q^{30} + 48 q^{31} - 318 q^{32} - 99 q^{33} - 12 q^{34} + 78 q^{35} + 26 q^{36} + 27 q^{37} - 36 q^{38} + 37 q^{39} - 44 q^{40} + 33 q^{41} - 153 q^{42} - 31 q^{43} - 120 q^{44} + 87 q^{45} - 6 q^{46} + 153 q^{47} - 19 q^{48} + 73 q^{49} + 216 q^{50} - 63 q^{51} - 100 q^{52} - 339 q^{54} + 23 q^{55} - 174 q^{56} + 171 q^{57} - 6 q^{59} + 207 q^{60} - 6 q^{61} - 201 q^{62} + 189 q^{63} + 270 q^{64} - 66 q^{65} + 48 q^{66} - 108 q^{67} - 216 q^{68} - 201 q^{69} - 159 q^{70} + 432 q^{71} - 294 q^{72} - 81 q^{74} - 2 q^{75} + 141 q^{76} + 138 q^{77} + 456 q^{78} + 9 q^{79} + 84 q^{80} + 505 q^{81} - 85 q^{82} + 135 q^{83} - 201 q^{84} + 306 q^{86} + 348 q^{87} - 290 q^{88} + 441 q^{89} + 543 q^{90} - 138 q^{91} + 864 q^{92} + 474 q^{93} - 181 q^{94} - 747 q^{96} - 60 q^{97} - 147 q^{98} - 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
95.1 −3.87550 −1.67424 2.48936i 11.0195 −2.28307 + 3.95440i 6.48854 + 9.64752i −6.88777 3.97666i −27.2042 −3.39381 + 8.33559i 8.84806 15.3253i
95.2 −3.87182 2.99841 + 0.0975126i 10.9910 4.14167 7.17357i −11.6093 0.377552i 1.81522 + 1.04802i −27.0680 8.98098 + 0.584767i −16.0358 + 27.7748i
95.3 −3.41734 −0.243983 + 2.99006i 7.67823 −2.84214 + 4.92273i 0.833772 10.2181i 9.04095 + 5.21980i −12.5698 −8.88094 1.45905i 9.71257 16.8227i
95.4 −3.06335 −2.85400 + 0.924494i 5.38411 1.85161 3.20708i 8.74280 2.83205i 2.91844 + 1.68496i −4.24001 7.29062 5.27701i −5.67212 + 9.82439i
95.5 −2.75155 2.71969 + 1.26620i 3.57103 −3.47982 + 6.02723i −7.48337 3.48402i −8.25359 4.76521i 1.18034 5.79347 + 6.88736i 9.57490 16.5842i
95.6 −2.74734 1.48534 2.60648i 3.54790 −1.55246 + 2.68894i −4.08075 + 7.16091i 9.10198 + 5.25503i 1.24207 −4.58751 7.74305i 4.26515 7.38745i
95.7 −2.43163 0.199346 + 2.99337i 1.91280 3.20934 5.55874i −0.484736 7.27875i −6.20094 3.58011i 5.07529 −8.92052 + 1.19343i −7.80391 + 13.5168i
95.8 −2.20869 −0.799724 2.89144i 0.878318 3.11152 5.38931i 1.76634 + 6.38631i −2.77300 1.60099i 6.89483 −7.72088 + 4.62471i −6.87238 + 11.9033i
95.9 −1.89224 −2.97271 + 0.403710i −0.419442 −2.45061 + 4.24459i 5.62507 0.763915i −5.47305 3.15987i 8.36263 8.67404 2.40023i 4.63714 8.03176i
95.10 −1.24178 2.92556 + 0.664154i −2.45799 0.320482 0.555091i −3.63289 0.824730i 4.77079 + 2.75441i 8.01938 8.11780 + 3.88604i −0.397967 + 0.689299i
95.11 −0.647795 −2.17539 2.06583i −3.58036 −1.12097 + 1.94158i 1.40921 + 1.33823i 6.66709 + 3.84925i 4.91052 0.464681 + 8.98800i 0.726158 1.25774i
95.12 −0.479501 0.165651 + 2.99542i −3.77008 −0.131616 + 0.227965i −0.0794300 1.43631i 0.478346 + 0.276173i 3.72576 −8.94512 + 0.992391i 0.0631100 0.109310i
95.13 −0.276632 2.49716 1.66258i −3.92347 2.47988 4.29528i −0.690795 + 0.459924i −5.93519 3.42668i 2.19189 3.47164 8.30348i −0.686015 + 1.18821i
95.14 0.000488132 0 1.05456 2.80854i −4.00000 −4.59055 + 7.95106i 0.000514765 0.00137094i −4.99500 2.88386i −0.00390505 −6.77580 5.92356i −0.00224079 + 0.00388116i
95.15 0.240822 −2.46946 + 1.70345i −3.94200 4.12967 7.15280i −0.594701 + 0.410228i 9.43694 + 5.44842i −1.91261 3.19651 8.41322i 0.994515 1.72255i
95.16 1.17583 −2.06653 + 2.17473i −2.61741 −0.331589 + 0.574329i −2.42990 + 2.55712i −10.7993 6.23496i −7.78098 −0.458901 8.98829i −0.389894 + 0.675315i
95.17 1.18838 1.78897 + 2.40823i −2.58776 −3.27957 + 5.68038i 2.12597 + 2.86189i 2.09412 + 1.20904i −7.82874 −2.59915 + 8.61652i −3.89736 + 6.75042i
95.18 1.34192 −2.64219 1.42085i −2.19924 0.383399 0.664067i −3.54562 1.90667i −4.75014 2.74250i −8.31891 4.96237 + 7.50832i 0.514492 0.891127i
95.19 1.85429 −0.157122 2.99588i −0.561614 2.88924 5.00431i −0.291350 5.55523i −2.01841 1.16533i −8.45855 −8.95063 + 0.941440i 5.35749 9.27944i
95.20 2.03688 2.68285 1.34250i 0.148870 0.0620677 0.107504i 5.46464 2.73451i 7.73476 + 4.46566i −7.84428 5.39539 7.20346i 0.126424 0.218973i
See all 52 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 95.26
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
117.v odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 117.3.v.a yes 52
3.b odd 2 1 351.3.v.a 52
9.c even 3 1 351.3.m.a 52
9.d odd 6 1 117.3.m.a 52
13.e even 6 1 117.3.m.a 52
39.h odd 6 1 351.3.m.a 52
117.l even 6 1 351.3.v.a 52
117.v odd 6 1 inner 117.3.v.a yes 52
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
117.3.m.a 52 9.d odd 6 1
117.3.m.a 52 13.e even 6 1
117.3.v.a yes 52 1.a even 1 1 trivial
117.3.v.a yes 52 117.v odd 6 1 inner
351.3.m.a 52 9.c even 3 1
351.3.m.a 52 39.h odd 6 1
351.3.v.a 52 3.b odd 2 1
351.3.v.a 52 117.l even 6 1

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(117, [\chi])\).