Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [117,3,Mod(95,117)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(117, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([5, 1]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("117.95");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 117 = 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 117.v (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.18801909302\) |
Analytic rank: | \(0\) |
Dimension: | \(52\) |
Relative dimension: | \(26\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
95.1 | −3.87550 | −1.67424 | − | 2.48936i | 11.0195 | −2.28307 | + | 3.95440i | 6.48854 | + | 9.64752i | −6.88777 | − | 3.97666i | −27.2042 | −3.39381 | + | 8.33559i | 8.84806 | − | 15.3253i | ||||||
95.2 | −3.87182 | 2.99841 | + | 0.0975126i | 10.9910 | 4.14167 | − | 7.17357i | −11.6093 | − | 0.377552i | 1.81522 | + | 1.04802i | −27.0680 | 8.98098 | + | 0.584767i | −16.0358 | + | 27.7748i | ||||||
95.3 | −3.41734 | −0.243983 | + | 2.99006i | 7.67823 | −2.84214 | + | 4.92273i | 0.833772 | − | 10.2181i | 9.04095 | + | 5.21980i | −12.5698 | −8.88094 | − | 1.45905i | 9.71257 | − | 16.8227i | ||||||
95.4 | −3.06335 | −2.85400 | + | 0.924494i | 5.38411 | 1.85161 | − | 3.20708i | 8.74280 | − | 2.83205i | 2.91844 | + | 1.68496i | −4.24001 | 7.29062 | − | 5.27701i | −5.67212 | + | 9.82439i | ||||||
95.5 | −2.75155 | 2.71969 | + | 1.26620i | 3.57103 | −3.47982 | + | 6.02723i | −7.48337 | − | 3.48402i | −8.25359 | − | 4.76521i | 1.18034 | 5.79347 | + | 6.88736i | 9.57490 | − | 16.5842i | ||||||
95.6 | −2.74734 | 1.48534 | − | 2.60648i | 3.54790 | −1.55246 | + | 2.68894i | −4.08075 | + | 7.16091i | 9.10198 | + | 5.25503i | 1.24207 | −4.58751 | − | 7.74305i | 4.26515 | − | 7.38745i | ||||||
95.7 | −2.43163 | 0.199346 | + | 2.99337i | 1.91280 | 3.20934 | − | 5.55874i | −0.484736 | − | 7.27875i | −6.20094 | − | 3.58011i | 5.07529 | −8.92052 | + | 1.19343i | −7.80391 | + | 13.5168i | ||||||
95.8 | −2.20869 | −0.799724 | − | 2.89144i | 0.878318 | 3.11152 | − | 5.38931i | 1.76634 | + | 6.38631i | −2.77300 | − | 1.60099i | 6.89483 | −7.72088 | + | 4.62471i | −6.87238 | + | 11.9033i | ||||||
95.9 | −1.89224 | −2.97271 | + | 0.403710i | −0.419442 | −2.45061 | + | 4.24459i | 5.62507 | − | 0.763915i | −5.47305 | − | 3.15987i | 8.36263 | 8.67404 | − | 2.40023i | 4.63714 | − | 8.03176i | ||||||
95.10 | −1.24178 | 2.92556 | + | 0.664154i | −2.45799 | 0.320482 | − | 0.555091i | −3.63289 | − | 0.824730i | 4.77079 | + | 2.75441i | 8.01938 | 8.11780 | + | 3.88604i | −0.397967 | + | 0.689299i | ||||||
95.11 | −0.647795 | −2.17539 | − | 2.06583i | −3.58036 | −1.12097 | + | 1.94158i | 1.40921 | + | 1.33823i | 6.66709 | + | 3.84925i | 4.91052 | 0.464681 | + | 8.98800i | 0.726158 | − | 1.25774i | ||||||
95.12 | −0.479501 | 0.165651 | + | 2.99542i | −3.77008 | −0.131616 | + | 0.227965i | −0.0794300 | − | 1.43631i | 0.478346 | + | 0.276173i | 3.72576 | −8.94512 | + | 0.992391i | 0.0631100 | − | 0.109310i | ||||||
95.13 | −0.276632 | 2.49716 | − | 1.66258i | −3.92347 | 2.47988 | − | 4.29528i | −0.690795 | + | 0.459924i | −5.93519 | − | 3.42668i | 2.19189 | 3.47164 | − | 8.30348i | −0.686015 | + | 1.18821i | ||||||
95.14 | 0.000488132 | 0 | 1.05456 | − | 2.80854i | −4.00000 | −4.59055 | + | 7.95106i | 0.000514765 | − | 0.00137094i | −4.99500 | − | 2.88386i | −0.00390505 | −6.77580 | − | 5.92356i | −0.00224079 | + | 0.00388116i | |||||
95.15 | 0.240822 | −2.46946 | + | 1.70345i | −3.94200 | 4.12967 | − | 7.15280i | −0.594701 | + | 0.410228i | 9.43694 | + | 5.44842i | −1.91261 | 3.19651 | − | 8.41322i | 0.994515 | − | 1.72255i | ||||||
95.16 | 1.17583 | −2.06653 | + | 2.17473i | −2.61741 | −0.331589 | + | 0.574329i | −2.42990 | + | 2.55712i | −10.7993 | − | 6.23496i | −7.78098 | −0.458901 | − | 8.98829i | −0.389894 | + | 0.675315i | ||||||
95.17 | 1.18838 | 1.78897 | + | 2.40823i | −2.58776 | −3.27957 | + | 5.68038i | 2.12597 | + | 2.86189i | 2.09412 | + | 1.20904i | −7.82874 | −2.59915 | + | 8.61652i | −3.89736 | + | 6.75042i | ||||||
95.18 | 1.34192 | −2.64219 | − | 1.42085i | −2.19924 | 0.383399 | − | 0.664067i | −3.54562 | − | 1.90667i | −4.75014 | − | 2.74250i | −8.31891 | 4.96237 | + | 7.50832i | 0.514492 | − | 0.891127i | ||||||
95.19 | 1.85429 | −0.157122 | − | 2.99588i | −0.561614 | 2.88924 | − | 5.00431i | −0.291350 | − | 5.55523i | −2.01841 | − | 1.16533i | −8.45855 | −8.95063 | + | 0.941440i | 5.35749 | − | 9.27944i | ||||||
95.20 | 2.03688 | 2.68285 | − | 1.34250i | 0.148870 | 0.0620677 | − | 0.107504i | 5.46464 | − | 2.73451i | 7.73476 | + | 4.46566i | −7.84428 | 5.39539 | − | 7.20346i | 0.126424 | − | 0.218973i | ||||||
See all 52 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
117.v | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 117.3.v.a | yes | 52 |
3.b | odd | 2 | 1 | 351.3.v.a | 52 | ||
9.c | even | 3 | 1 | 351.3.m.a | 52 | ||
9.d | odd | 6 | 1 | 117.3.m.a | ✓ | 52 | |
13.e | even | 6 | 1 | 117.3.m.a | ✓ | 52 | |
39.h | odd | 6 | 1 | 351.3.m.a | 52 | ||
117.l | even | 6 | 1 | 351.3.v.a | 52 | ||
117.v | odd | 6 | 1 | inner | 117.3.v.a | yes | 52 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
117.3.m.a | ✓ | 52 | 9.d | odd | 6 | 1 | |
117.3.m.a | ✓ | 52 | 13.e | even | 6 | 1 | |
117.3.v.a | yes | 52 | 1.a | even | 1 | 1 | trivial |
117.3.v.a | yes | 52 | 117.v | odd | 6 | 1 | inner |
351.3.m.a | 52 | 9.c | even | 3 | 1 | ||
351.3.m.a | 52 | 39.h | odd | 6 | 1 | ||
351.3.v.a | 52 | 3.b | odd | 2 | 1 | ||
351.3.v.a | 52 | 117.l | even | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(117, [\chi])\).