Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [117,3,Mod(68,117)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(117, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([5, 2]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("117.68");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 117 = 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 117.u (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.18801909302\) |
Analytic rank: | \(0\) |
Dimension: | \(52\) |
Relative dimension: | \(26\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
68.1 | −3.34685 | − | 1.93231i | −2.94217 | + | 0.586194i | 5.46761 | + | 9.47019i | 0.468040 | + | 0.270223i | 10.9797 | + | 3.72327i | 0.553915 | − | 26.8020i | 8.31275 | − | 3.44937i | −1.04431 | − | 1.80879i | |||
68.2 | −3.06533 | − | 1.76977i | 2.49553 | + | 1.66503i | 4.26415 | + | 7.38572i | −6.00755 | − | 3.46846i | −4.70290 | − | 9.52037i | 4.78124 | − | 16.0281i | 3.45535 | + | 8.31027i | 12.2767 | + | 21.2639i | |||
68.3 | −2.83378 | − | 1.63609i | 0.158993 | − | 2.99578i | 3.35355 | + | 5.80853i | −3.48512 | − | 2.01214i | −5.35191 | + | 8.22928i | −2.80059 | − | 8.85812i | −8.94944 | − | 0.952618i | 6.58406 | + | 11.4039i | |||
68.4 | −2.67828 | − | 1.54631i | 1.65993 | + | 2.49893i | 2.78213 | + | 4.81880i | 6.70477 | + | 3.87100i | −0.581647 | − | 9.25959i | −12.6481 | − | 4.83767i | −3.48928 | + | 8.29608i | −11.9715 | − | 20.7353i | |||
68.5 | −2.39019 | − | 1.37998i | −1.29328 | − | 2.70692i | 1.80866 | + | 3.13270i | 7.95372 | + | 4.59208i | −0.644309 | + | 8.25474i | 5.43975 | 1.05616i | −5.65486 | + | 7.00161i | −12.6739 | − | 21.9519i | ||||
68.6 | −2.23352 | − | 1.28952i | −0.951185 | + | 2.84521i | 1.32573 | + | 2.29623i | −0.817198 | − | 0.471810i | 5.79345 | − | 5.12826i | 5.04701 | 3.47795i | −7.19049 | − | 5.41265i | 1.21682 | + | 2.10759i | ||||
68.7 | −2.11714 | − | 1.22233i | 2.89505 | − | 0.786578i | 0.988182 | + | 1.71158i | 2.73246 | + | 1.57759i | −7.09067 | − | 1.87341i | 7.65083 | 4.94710i | 7.76259 | − | 4.55436i | −3.85666 | − | 6.67994i | ||||
68.8 | −1.61282 | − | 0.931162i | −2.77624 | + | 1.13689i | −0.265873 | − | 0.460506i | 0.895843 | + | 0.517215i | 5.53620 | + | 0.751532i | −5.11682 | 8.43958i | 6.41497 | − | 6.31253i | −0.963222 | − | 1.66835i | ||||
68.9 | −1.46109 | − | 0.843560i | 2.47307 | − | 1.69821i | −0.576814 | − | 0.999071i | −3.08450 | − | 1.78084i | −5.04592 | + | 0.395052i | −12.7968 | 8.69479i | 3.23216 | − | 8.39959i | 3.00448 | + | 5.20392i | ||||
68.10 | −1.44683 | − | 0.835327i | −2.64561 | − | 1.41449i | −0.604458 | − | 1.04695i | −8.08978 | − | 4.67064i | 2.64618 | + | 4.25647i | 8.35713 | 8.70230i | 4.99845 | + | 7.48435i | 7.80302 | + | 13.5152i | ||||
68.11 | −0.545922 | − | 0.315188i | 0.359457 | + | 2.97839i | −1.80131 | − | 3.11997i | 1.96357 | + | 1.13367i | 0.742517 | − | 1.73926i | 8.19462 | 4.79251i | −8.74158 | + | 2.14120i | −0.714636 | − | 1.23779i | ||||
68.12 | −0.422456 | − | 0.243905i | 1.49896 | + | 2.59867i | −1.88102 | − | 3.25802i | −6.04718 | − | 3.49134i | 0.000583198 | − | 1.46343i | −7.27212 | 3.78640i | −4.50621 | + | 7.79064i | 1.70311 | + | 2.94987i | ||||
68.13 | −0.376626 | − | 0.217445i | −2.32751 | − | 1.89280i | −1.90544 | − | 3.30031i | 3.11857 | + | 1.80051i | 0.465021 | + | 1.21898i | −7.89006 | 3.39687i | 1.83461 | + | 8.81103i | −0.783024 | − | 1.35624i | ||||
68.14 | −0.325651 | − | 0.188014i | 0.894719 | − | 2.86347i | −1.92930 | − | 3.34165i | 0.994641 | + | 0.574256i | −0.829740 | + | 0.764272i | 5.14423 | 2.95506i | −7.39896 | − | 5.12401i | −0.215937 | − | 0.374014i | ||||
68.15 | 0.265125 | + | 0.153070i | 2.88266 | + | 0.830829i | −1.95314 | − | 3.38294i | 5.23834 | + | 3.02436i | 0.637090 | + | 0.661523i | −0.615739 | − | 2.42043i | 7.61944 | + | 4.79000i | 0.925877 | + | 1.60367i | |||
68.16 | 0.979822 | + | 0.565700i | 2.79207 | − | 1.09742i | −1.35997 | − | 2.35553i | −7.06649 | − | 4.07984i | 3.35654 | + | 0.504204i | 7.94204 | − | 7.60294i | 6.59135 | − | 6.12814i | −4.61594 | − | 7.99504i | |||
68.17 | 1.00088 | + | 0.577857i | −2.23346 | + | 2.00292i | −1.33216 | − | 2.30737i | −3.81803 | − | 2.20434i | −3.39282 | + | 0.714055i | −4.15692 | − | 7.70206i | 0.976660 | − | 8.94685i | −2.54759 | − | 4.41256i | |||
68.18 | 1.10869 | + | 0.640101i | −2.99875 | − | 0.0866492i | −1.18054 | − | 2.04476i | 2.95232 | + | 1.70452i | −3.26921 | − | 2.01557i | 11.8984 | − | 8.14347i | 8.98498 | + | 0.519678i | 2.18213 | + | 3.77956i | |||
68.19 | 1.61177 | + | 0.930557i | −1.33950 | − | 2.68435i | −0.268128 | − | 0.464411i | −4.76252 | − | 2.74964i | 0.338963 | − | 5.57304i | −5.67067 | − | 8.44249i | −5.41146 | + | 7.19139i | −5.11740 | − | 8.86359i | |||
68.20 | 1.64494 | + | 0.949706i | 1.42058 | − | 2.64234i | −0.196117 | − | 0.339685i | 5.82785 | + | 3.36471i | 4.84621 | − | 2.99736i | −4.34657 | − | 8.34266i | −4.96393 | − | 7.50729i | 6.39097 | + | 11.0695i | |||
See all 52 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
117.u | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 117.3.u.a | yes | 52 |
3.b | odd | 2 | 1 | 351.3.u.a | 52 | ||
9.c | even | 3 | 1 | 351.3.k.a | 52 | ||
9.d | odd | 6 | 1 | 117.3.k.a | ✓ | 52 | |
13.c | even | 3 | 1 | 117.3.k.a | ✓ | 52 | |
39.i | odd | 6 | 1 | 351.3.k.a | 52 | ||
117.f | even | 3 | 1 | 351.3.u.a | 52 | ||
117.u | odd | 6 | 1 | inner | 117.3.u.a | yes | 52 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
117.3.k.a | ✓ | 52 | 9.d | odd | 6 | 1 | |
117.3.k.a | ✓ | 52 | 13.c | even | 3 | 1 | |
117.3.u.a | yes | 52 | 1.a | even | 1 | 1 | trivial |
117.3.u.a | yes | 52 | 117.u | odd | 6 | 1 | inner |
351.3.k.a | 52 | 9.c | even | 3 | 1 | ||
351.3.k.a | 52 | 39.i | odd | 6 | 1 | ||
351.3.u.a | 52 | 3.b | odd | 2 | 1 | ||
351.3.u.a | 52 | 117.f | even | 3 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(117, [\chi])\).