Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [117,3,Mod(14,117)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(117, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([5, 0]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("117.14");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 117 = 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 117.s (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.18801909302\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Relative dimension: | \(24\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
14.1 | −3.22484 | + | 1.86186i | 0.496158 | − | 2.95869i | 4.93306 | − | 8.54431i | 0.733765 | + | 0.423639i | 3.90864 | + | 10.4651i | −2.32019 | − | 4.01868i | 21.8438i | −8.50766 | − | 2.93595i | −3.15503 | ||||
14.2 | −3.11753 | + | 1.79991i | 2.11830 | + | 2.12434i | 4.47935 | − | 7.75845i | −2.22107 | − | 1.28233i | −10.4275 | − | 2.80995i | 5.05104 | + | 8.74866i | 17.8504i | −0.0256148 | + | 8.99996i | 9.23234 | ||||
14.3 | −3.00319 | + | 1.73389i | −1.65318 | + | 2.50339i | 4.01277 | − | 6.95032i | 2.01759 | + | 1.16486i | 0.624209 | − | 10.3846i | −5.32532 | − | 9.22372i | 13.9597i | −3.53397 | − | 8.27714i | −8.07896 | ||||
14.4 | −2.60452 | + | 1.50372i | −2.96002 | − | 0.488115i | 2.52236 | − | 4.36886i | −5.98512 | − | 3.45551i | 8.44344 | − | 3.17975i | 1.16593 | + | 2.01946i | 3.14196i | 8.52349 | + | 2.88967i | 20.7845 | ||||
14.5 | −2.28108 | + | 1.31698i | 2.99804 | + | 0.108415i | 1.46888 | − | 2.54417i | 7.21734 | + | 4.16693i | −6.98154 | + | 3.70106i | −2.13432 | − | 3.69674i | − | 2.79791i | 8.97649 | + | 0.650063i | −21.9511 | |||
14.6 | −2.06366 | + | 1.19146i | 1.77538 | − | 2.41827i | 0.839131 | − | 1.45342i | −1.90645 | − | 1.10069i | −0.782523 | + | 7.10577i | 5.12019 | + | 8.86842i | − | 5.53249i | −2.69605 | − | 8.58669i | 5.24570 | |||
14.7 | −1.87167 | + | 1.08061i | −1.94021 | + | 2.28814i | 0.335440 | − | 0.580998i | 6.24677 | + | 3.60658i | 1.15884 | − | 6.37926i | 6.55090 | + | 11.3465i | − | 7.19497i | −1.47121 | − | 8.87894i | −15.5892 | |||
14.8 | −1.77151 | + | 1.02278i | 2.99100 | − | 0.232264i | 0.0921684 | − | 0.159640i | −6.10945 | − | 3.52729i | −5.06103 | + | 3.47060i | −4.97929 | − | 8.62438i | − | 7.80519i | 8.89211 | − | 1.38940i | 14.4306 | |||
14.9 | −1.30007 | + | 0.750594i | −0.0792791 | + | 2.99895i | −0.873217 | + | 1.51246i | −6.06839 | − | 3.50359i | −2.14793 | − | 3.95834i | 0.489533 | + | 0.847896i | − | 8.62648i | −8.98743 | − | 0.475509i | 10.5191 | |||
14.10 | −0.752157 | + | 0.434258i | −2.94987 | + | 0.546119i | −1.62284 | + | 2.81084i | 0.439114 | + | 0.253523i | 1.98161 | − | 1.69177i | −3.60069 | − | 6.23658i | − | 6.29299i | 8.40351 | − | 3.22197i | −0.440377 | |||
14.11 | −0.446054 | + | 0.257529i | 1.28237 | + | 2.71211i | −1.86736 | + | 3.23436i | 3.26144 | + | 1.88299i | −1.27045 | − | 0.879499i | −1.26265 | − | 2.18697i | − | 3.98383i | −5.71106 | + | 6.95585i | −1.93971 | |||
14.12 | 0.289796 | − | 0.167314i | 2.95040 | + | 0.543258i | −1.94401 | + | 3.36713i | −1.25705 | − | 0.725758i | 0.945909 | − | 0.336209i | 3.58721 | + | 6.21323i | 2.63955i | 8.40974 | + | 3.20566i | −0.485717 | ||||
14.13 | 0.386021 | − | 0.222869i | −1.42956 | − | 2.63749i | −1.90066 | + | 3.29204i | −6.36049 | − | 3.67223i | −1.13966 | − | 0.699521i | 5.87473 | + | 10.1753i | 3.47735i | −4.91270 | + | 7.54092i | −3.27371 | ||||
14.14 | 0.449733 | − | 0.259653i | 0.689185 | − | 2.91976i | −1.86516 | + | 3.23055i | −4.45907 | − | 2.57445i | −0.448177 | − | 1.49206i | −6.04441 | − | 10.4692i | 4.01441i | −8.05005 | − | 4.02452i | −2.67386 | ||||
14.15 | 0.658120 | − | 0.379966i | 1.82350 | − | 2.38219i | −1.71125 | + | 2.96398i | 7.70917 | + | 4.45089i | 0.294929 | − | 2.26064i | −0.0636420 | − | 0.110231i | 5.64060i | −2.34970 | − | 8.68786i | 6.76475 | ||||
14.16 | 1.10079 | − | 0.635542i | −2.90552 | − | 0.746967i | −1.19217 | + | 2.06490i | 4.29328 | + | 2.47873i | −3.67310 | + | 1.02433i | 2.07751 | + | 3.59836i | 8.11504i | 7.88408 | + | 4.34065i | 6.30135 | ||||
14.17 | 1.12806 | − | 0.651287i | −2.09532 | + | 2.14701i | −1.15165 | + | 1.99472i | −4.65732 | − | 2.68891i | −0.965333 | + | 3.78661i | −2.66094 | − | 4.60889i | 8.21052i | −0.219277 | − | 8.99733i | −7.00500 | ||||
14.18 | 1.86662 | − | 1.07769i | −0.693574 | + | 2.91872i | 0.322836 | − | 0.559168i | 1.08497 | + | 0.626410i | 1.85085 | + | 6.19560i | 3.26882 | + | 5.66177i | 7.22986i | −8.03791 | − | 4.04870i | 2.70031 | ||||
14.19 | 2.23217 | − | 1.28874i | 2.24130 | + | 1.99413i | 1.32172 | − | 2.28929i | 2.98624 | + | 1.72410i | 7.57289 | + | 1.56279i | −6.28185 | − | 10.8805i | 3.49651i | 1.04685 | + | 8.93891i | 8.88772 | ||||
14.20 | 2.31527 | − | 1.33672i | 2.75356 | − | 1.19077i | 1.57366 | − | 2.72565i | −2.65644 | − | 1.53369i | 4.78351 | − | 6.43769i | 0.203159 | + | 0.351882i | 2.27962i | 6.16415 | − | 6.55769i | −8.20049 | ||||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.d | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 117.3.s.a | ✓ | 48 |
3.b | odd | 2 | 1 | 351.3.s.a | 48 | ||
9.c | even | 3 | 1 | 351.3.s.a | 48 | ||
9.c | even | 3 | 1 | 1053.3.c.b | 48 | ||
9.d | odd | 6 | 1 | inner | 117.3.s.a | ✓ | 48 |
9.d | odd | 6 | 1 | 1053.3.c.b | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
117.3.s.a | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
117.3.s.a | ✓ | 48 | 9.d | odd | 6 | 1 | inner |
351.3.s.a | 48 | 3.b | odd | 2 | 1 | ||
351.3.s.a | 48 | 9.c | even | 3 | 1 | ||
1053.3.c.b | 48 | 9.c | even | 3 | 1 | ||
1053.3.c.b | 48 | 9.d | odd | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(117, [\chi])\).