Properties

Label 117.3.n.a.38.8
Level $117$
Weight $3$
Character 117.38
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(38,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.38");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 38.8
Character \(\chi\) \(=\) 117.38
Dual form 117.3.n.a.77.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.04133 + 1.80365i) q^{2} +(-2.79053 + 1.10134i) q^{3} +(-0.168757 - 0.292296i) q^{4} +(-2.59043 - 4.48676i) q^{5} +(0.919442 - 6.17999i) q^{6} +(-1.68126 - 0.970675i) q^{7} -7.62775 q^{8} +(6.57409 - 6.14666i) q^{9} +10.7900 q^{10} +(5.82235 - 10.0846i) q^{11} +(0.792839 + 0.629800i) q^{12} +(-0.650727 + 12.9837i) q^{13} +(3.50151 - 2.02160i) q^{14} +(12.1701 + 9.66746i) q^{15} +(8.61807 - 14.9269i) q^{16} -23.0350i q^{17} +(4.24056 + 18.2580i) q^{18} -15.9539i q^{19} +(-0.874306 + 1.51434i) q^{20} +(5.76065 + 0.857053i) q^{21} +(12.1260 + 21.0029i) q^{22} +(-19.8531 + 11.4622i) q^{23} +(21.2854 - 8.40077i) q^{24} +(-0.920650 + 1.59461i) q^{25} +(-22.7404 - 14.6941i) q^{26} +(-11.5756 + 24.3927i) q^{27} +0.655233i q^{28} +(-38.5384 - 22.2501i) q^{29} +(-30.1098 + 11.8835i) q^{30} +(-29.2383 + 16.8807i) q^{31} +(2.69310 + 4.66458i) q^{32} +(-5.14081 + 34.5537i) q^{33} +(41.5470 + 23.9872i) q^{34} +10.0579i q^{35} +(-2.90607 - 0.884287i) q^{36} -36.7677i q^{37} +(28.7752 + 16.6134i) q^{38} +(-12.4836 - 36.9481i) q^{39} +(19.7591 + 34.2238i) q^{40} +(1.66104 + 2.87701i) q^{41} +(-7.54458 + 9.49768i) q^{42} +(4.62927 - 8.01814i) q^{43} -3.93025 q^{44} +(-44.6083 - 13.5738i) q^{45} -47.7438i q^{46} +(-35.1299 + 60.8468i) q^{47} +(-7.60929 + 51.1455i) q^{48} +(-22.6156 - 39.1713i) q^{49} +(-1.91741 - 3.32105i) q^{50} +(25.3694 + 64.2798i) q^{51} +(3.90490 - 2.00089i) q^{52} -36.5504i q^{53} +(-31.9418 - 46.2793i) q^{54} -60.3295 q^{55} +(12.8242 + 7.40407i) q^{56} +(17.5707 + 44.5199i) q^{57} +(80.2627 - 46.3397i) q^{58} +(42.5128 + 73.6344i) q^{59} +(0.771965 - 5.18873i) q^{60} +(16.2346 - 28.1192i) q^{61} -70.3140i q^{62} +(-17.0192 + 3.95282i) q^{63} +57.7269 q^{64} +(59.9404 - 30.7137i) q^{65} +(-56.9694 - 45.2542i) q^{66} +(21.7493 - 12.5570i) q^{67} +(-6.73303 + 3.88732i) q^{68} +(42.7767 - 53.8505i) q^{69} +(-18.1408 - 10.4736i) q^{70} +16.8087 q^{71} +(-50.1455 + 46.8851i) q^{72} +82.1471i q^{73} +(66.3160 + 38.2875i) q^{74} +(0.812884 - 5.46376i) q^{75} +(-4.66327 + 2.69234i) q^{76} +(-19.5777 + 11.3032i) q^{77} +(79.6408 + 15.9593i) q^{78} +(6.27189 - 10.8632i) q^{79} -89.2980 q^{80} +(5.43725 - 80.8173i) q^{81} -6.91882 q^{82} +(62.7678 - 108.717i) q^{83} +(-0.721637 - 1.82845i) q^{84} +(-103.352 + 59.6706i) q^{85} +(9.64125 + 16.6991i) q^{86} +(132.047 + 19.6457i) q^{87} +(-44.4114 + 76.9228i) q^{88} -13.3476 q^{89} +(70.9345 - 66.3225i) q^{90} +(13.6970 - 21.1973i) q^{91} +(6.70068 + 3.86864i) q^{92} +(62.9988 - 79.3075i) q^{93} +(-73.1641 - 126.724i) q^{94} +(-71.5814 + 41.3275i) q^{95} +(-12.6525 - 10.0506i) q^{96} +(-142.130 - 82.0586i) q^{97} +94.2016 q^{98} +(-23.7099 - 102.085i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 4 q^{3} - 50 q^{4} + 4 q^{9} + 8 q^{10} - 38 q^{12} - 6 q^{13} - 6 q^{14} - 90 q^{16} + 14 q^{22} + 138 q^{23} - 92 q^{25} - 76 q^{27} + 48 q^{29} + 186 q^{30} - 154 q^{36} + 324 q^{38} - 2 q^{39}+ \cdots + 504 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.04133 + 1.80365i −0.520667 + 0.901823i 0.479044 + 0.877791i \(0.340984\pi\)
−0.999711 + 0.0240315i \(0.992350\pi\)
\(3\) −2.79053 + 1.10134i −0.930176 + 0.367114i
\(4\) −0.168757 0.292296i −0.0421893 0.0730739i
\(5\) −2.59043 4.48676i −0.518086 0.897351i −0.999779 0.0210112i \(-0.993311\pi\)
0.481693 0.876340i \(-0.340022\pi\)
\(6\) 0.919442 6.17999i 0.153240 1.03000i
\(7\) −1.68126 0.970675i −0.240180 0.138668i 0.375080 0.926993i \(-0.377615\pi\)
−0.615259 + 0.788325i \(0.710949\pi\)
\(8\) −7.62775 −0.953469
\(9\) 6.57409 6.14666i 0.730454 0.682962i
\(10\) 10.7900 1.07900
\(11\) 5.82235 10.0846i 0.529304 0.916782i −0.470112 0.882607i \(-0.655786\pi\)
0.999416 0.0341747i \(-0.0108803\pi\)
\(12\) 0.792839 + 0.629800i 0.0660699 + 0.0524833i
\(13\) −0.650727 + 12.9837i −0.0500560 + 0.998746i
\(14\) 3.50151 2.02160i 0.250108 0.144400i
\(15\) 12.1701 + 9.66746i 0.811341 + 0.644498i
\(16\) 8.61807 14.9269i 0.538629 0.932933i
\(17\) 23.0350i 1.35500i −0.735523 0.677500i \(-0.763063\pi\)
0.735523 0.677500i \(-0.236937\pi\)
\(18\) 4.24056 + 18.2580i 0.235587 + 1.01434i
\(19\) 15.9539i 0.839680i −0.907598 0.419840i \(-0.862086\pi\)
0.907598 0.419840i \(-0.137914\pi\)
\(20\) −0.874306 + 1.51434i −0.0437153 + 0.0757172i
\(21\) 5.76065 + 0.857053i 0.274316 + 0.0408121i
\(22\) 12.1260 + 21.0029i 0.551183 + 0.954677i
\(23\) −19.8531 + 11.4622i −0.863176 + 0.498355i −0.865075 0.501643i \(-0.832729\pi\)
0.00189847 + 0.999998i \(0.499396\pi\)
\(24\) 21.2854 8.40077i 0.886894 0.350032i
\(25\) −0.920650 + 1.59461i −0.0368260 + 0.0637845i
\(26\) −22.7404 14.6941i −0.874630 0.565156i
\(27\) −11.5756 + 24.3927i −0.428726 + 0.903435i
\(28\) 0.655233i 0.0234012i
\(29\) −38.5384 22.2501i −1.32891 0.767246i −0.343778 0.939051i \(-0.611707\pi\)
−0.985131 + 0.171805i \(0.945040\pi\)
\(30\) −30.1098 + 11.8835i −1.00366 + 0.396117i
\(31\) −29.2383 + 16.8807i −0.943170 + 0.544540i −0.890953 0.454096i \(-0.849962\pi\)
−0.0522177 + 0.998636i \(0.516629\pi\)
\(32\) 2.69310 + 4.66458i 0.0841593 + 0.145768i
\(33\) −5.14081 + 34.5537i −0.155782 + 1.04708i
\(34\) 41.5470 + 23.9872i 1.22197 + 0.705505i
\(35\) 10.0579i 0.287368i
\(36\) −2.90607 0.884287i −0.0807240 0.0245635i
\(37\) 36.7677i 0.993723i −0.867830 0.496861i \(-0.834486\pi\)
0.867830 0.496861i \(-0.165514\pi\)
\(38\) 28.7752 + 16.6134i 0.757243 + 0.437194i
\(39\) −12.4836 36.9481i −0.320093 0.947386i
\(40\) 19.7591 + 34.2238i 0.493979 + 0.855596i
\(41\) 1.66104 + 2.87701i 0.0405133 + 0.0701711i 0.885571 0.464504i \(-0.153767\pi\)
−0.845058 + 0.534675i \(0.820434\pi\)
\(42\) −7.54458 + 9.49768i −0.179633 + 0.226135i
\(43\) 4.62927 8.01814i 0.107658 0.186468i −0.807163 0.590328i \(-0.798998\pi\)
0.914821 + 0.403860i \(0.132332\pi\)
\(44\) −3.93025 −0.0893238
\(45\) −44.6083 13.5738i −0.991294 0.301641i
\(46\) 47.7438i 1.03791i
\(47\) −35.1299 + 60.8468i −0.747445 + 1.29461i 0.201598 + 0.979468i \(0.435386\pi\)
−0.949044 + 0.315145i \(0.897947\pi\)
\(48\) −7.60929 + 51.1455i −0.158527 + 1.06553i
\(49\) −22.6156 39.1713i −0.461542 0.799415i
\(50\) −1.91741 3.32105i −0.0383482 0.0664210i
\(51\) 25.3694 + 64.2798i 0.497440 + 1.26039i
\(52\) 3.90490 2.00089i 0.0750942 0.0384786i
\(53\) 36.5504i 0.689630i −0.938671 0.344815i \(-0.887942\pi\)
0.938671 0.344815i \(-0.112058\pi\)
\(54\) −31.9418 46.2793i −0.591514 0.857024i
\(55\) −60.3295 −1.09690
\(56\) 12.8242 + 7.40407i 0.229004 + 0.132216i
\(57\) 17.5707 + 44.5199i 0.308259 + 0.781050i
\(58\) 80.2627 46.3397i 1.38384 0.798960i
\(59\) 42.5128 + 73.6344i 0.720557 + 1.24804i 0.960777 + 0.277322i \(0.0894470\pi\)
−0.240220 + 0.970718i \(0.577220\pi\)
\(60\) 0.771965 5.18873i 0.0128661 0.0864788i
\(61\) 16.2346 28.1192i 0.266141 0.460970i −0.701721 0.712452i \(-0.747585\pi\)
0.967862 + 0.251482i \(0.0809179\pi\)
\(62\) 70.3140i 1.13410i
\(63\) −17.0192 + 3.95282i −0.270145 + 0.0627431i
\(64\) 57.7269 0.901983
\(65\) 59.9404 30.7137i 0.922159 0.472519i
\(66\) −56.9694 45.2542i −0.863173 0.685670i
\(67\) 21.7493 12.5570i 0.324617 0.187418i −0.328832 0.944388i \(-0.606655\pi\)
0.653448 + 0.756971i \(0.273322\pi\)
\(68\) −6.73303 + 3.88732i −0.0990152 + 0.0571665i
\(69\) 42.7767 53.8505i 0.619952 0.780442i
\(70\) −18.1408 10.4736i −0.259155 0.149623i
\(71\) 16.8087 0.236742 0.118371 0.992969i \(-0.462233\pi\)
0.118371 + 0.992969i \(0.462233\pi\)
\(72\) −50.1455 + 46.8851i −0.696465 + 0.651183i
\(73\) 82.1471i 1.12530i 0.826694 + 0.562651i \(0.190219\pi\)
−0.826694 + 0.562651i \(0.809781\pi\)
\(74\) 66.3160 + 38.2875i 0.896162 + 0.517399i
\(75\) 0.812884 5.46376i 0.0108384 0.0728501i
\(76\) −4.66327 + 2.69234i −0.0613588 + 0.0354255i
\(77\) −19.5777 + 11.3032i −0.254256 + 0.146795i
\(78\) 79.6408 + 15.9593i 1.02104 + 0.204606i
\(79\) 6.27189 10.8632i 0.0793910 0.137509i −0.823596 0.567176i \(-0.808036\pi\)
0.902987 + 0.429667i \(0.141369\pi\)
\(80\) −89.2980 −1.11623
\(81\) 5.43725 80.8173i 0.0671265 0.997744i
\(82\) −6.91882 −0.0843758
\(83\) 62.7678 108.717i 0.756238 1.30984i −0.188518 0.982070i \(-0.560368\pi\)
0.944756 0.327773i \(-0.106298\pi\)
\(84\) −0.721637 1.82845i −0.00859091 0.0217672i
\(85\) −103.352 + 59.6706i −1.21591 + 0.702006i
\(86\) 9.64125 + 16.6991i 0.112108 + 0.194176i
\(87\) 132.047 + 19.6457i 1.51779 + 0.225812i
\(88\) −44.4114 + 76.9228i −0.504675 + 0.874123i
\(89\) −13.3476 −0.149973 −0.0749864 0.997185i \(-0.523891\pi\)
−0.0749864 + 0.997185i \(0.523891\pi\)
\(90\) 70.9345 66.3225i 0.788161 0.736917i
\(91\) 13.6970 21.1973i 0.150517 0.232938i
\(92\) 6.70068 + 3.86864i 0.0728335 + 0.0420505i
\(93\) 62.9988 79.3075i 0.677406 0.852769i
\(94\) −73.1641 126.724i −0.778341 1.34813i
\(95\) −71.5814 + 41.3275i −0.753488 + 0.435027i
\(96\) −12.6525 10.0506i −0.131797 0.104694i
\(97\) −142.130 82.0586i −1.46526 0.845965i −0.466009 0.884780i \(-0.654308\pi\)
−0.999246 + 0.0388148i \(0.987642\pi\)
\(98\) 94.2016 0.961241
\(99\) −23.7099 102.085i −0.239494 1.03116i
\(100\) 0.621465 0.00621465
\(101\) 89.4806 + 51.6617i 0.885947 + 0.511502i 0.872615 0.488409i \(-0.162423\pi\)
0.0133324 + 0.999911i \(0.495756\pi\)
\(102\) −142.356 21.1793i −1.39565 0.207641i
\(103\) 50.2550 + 87.0442i 0.487913 + 0.845090i 0.999903 0.0139014i \(-0.00442509\pi\)
−0.511991 + 0.858991i \(0.671092\pi\)
\(104\) 4.96359 99.0364i 0.0477268 0.952273i
\(105\) −11.0772 28.0667i −0.105497 0.267302i
\(106\) 65.9239 + 38.0612i 0.621924 + 0.359068i
\(107\) 67.7199i 0.632896i 0.948610 + 0.316448i \(0.102490\pi\)
−0.948610 + 0.316448i \(0.897510\pi\)
\(108\) 9.08336 0.732949i 0.0841052 0.00678656i
\(109\) 46.9949i 0.431146i 0.976488 + 0.215573i \(0.0691619\pi\)
−0.976488 + 0.215573i \(0.930838\pi\)
\(110\) 62.8232 108.813i 0.571120 0.989209i
\(111\) 40.4939 + 102.601i 0.364810 + 0.924337i
\(112\) −28.9784 + 16.7307i −0.258736 + 0.149381i
\(113\) −98.1089 + 56.6432i −0.868220 + 0.501267i −0.866756 0.498732i \(-0.833799\pi\)
−0.00146367 + 0.999999i \(0.500466\pi\)
\(114\) −98.5951 14.6687i −0.864869 0.128673i
\(115\) 102.856 + 59.3839i 0.894399 + 0.516381i
\(116\) 15.0195i 0.129478i
\(117\) 75.5284 + 89.3558i 0.645542 + 0.763725i
\(118\) −177.080 −1.50068
\(119\) −22.3595 + 38.7278i −0.187895 + 0.325444i
\(120\) −92.8306 73.7410i −0.773589 0.614508i
\(121\) −7.29941 12.6430i −0.0603257 0.104487i
\(122\) 33.8114 + 58.5630i 0.277142 + 0.480025i
\(123\) −7.80377 6.19901i −0.0634453 0.0503984i
\(124\) 9.86833 + 5.69748i 0.0795833 + 0.0459475i
\(125\) −119.982 −0.959856
\(126\) 10.5932 34.8127i 0.0840727 0.276291i
\(127\) −10.8278 −0.0852584 −0.0426292 0.999091i \(-0.513573\pi\)
−0.0426292 + 0.999091i \(0.513573\pi\)
\(128\) −70.8854 + 122.777i −0.553792 + 0.959197i
\(129\) −4.08740 + 27.4732i −0.0316852 + 0.212971i
\(130\) −7.02136 + 140.094i −0.0540105 + 1.07765i
\(131\) −99.4918 + 57.4416i −0.759479 + 0.438486i −0.829109 0.559087i \(-0.811152\pi\)
0.0696294 + 0.997573i \(0.477818\pi\)
\(132\) 10.9675 4.32855i 0.0830868 0.0327920i
\(133\) −15.4861 + 26.8227i −0.116437 + 0.201674i
\(134\) 52.3041i 0.390329i
\(135\) 139.430 11.2508i 1.03281 0.0833393i
\(136\) 175.705i 1.29195i
\(137\) 83.3478 144.363i 0.608378 1.05374i −0.383129 0.923695i \(-0.625154\pi\)
0.991508 0.130048i \(-0.0415130\pi\)
\(138\) 52.5823 + 133.230i 0.381031 + 0.965438i
\(139\) −86.4287 149.699i −0.621789 1.07697i −0.989152 0.146893i \(-0.953073\pi\)
0.367363 0.930078i \(-0.380261\pi\)
\(140\) 2.93987 1.69734i 0.0209991 0.0121238i
\(141\) 31.0178 208.485i 0.219985 1.47862i
\(142\) −17.5035 + 30.3169i −0.123264 + 0.213499i
\(143\) 127.147 + 82.1579i 0.889138 + 0.574531i
\(144\) −35.0948 151.103i −0.243714 1.04933i
\(145\) 230.550i 1.59000i
\(146\) −148.164 85.5426i −1.01482 0.585908i
\(147\) 106.250 + 84.4012i 0.722792 + 0.574158i
\(148\) −10.7471 + 6.20482i −0.0726152 + 0.0419244i
\(149\) −9.64608 16.7075i −0.0647388 0.112131i 0.831839 0.555017i \(-0.187288\pi\)
−0.896578 + 0.442886i \(0.853955\pi\)
\(150\) 9.00820 + 7.15576i 0.0600547 + 0.0477051i
\(151\) 116.373 + 67.1882i 0.770685 + 0.444955i 0.833119 0.553094i \(-0.186553\pi\)
−0.0624342 + 0.998049i \(0.519886\pi\)
\(152\) 121.693i 0.800609i
\(153\) −141.588 151.434i −0.925413 0.989765i
\(154\) 47.0817i 0.305726i
\(155\) 151.479 + 87.4567i 0.977287 + 0.564237i
\(156\) −8.69306 + 9.88416i −0.0557247 + 0.0633600i
\(157\) −91.7089 158.844i −0.584133 1.01175i −0.994983 0.100045i \(-0.968101\pi\)
0.410850 0.911703i \(-0.365232\pi\)
\(158\) 13.0623 + 22.6245i 0.0826726 + 0.143193i
\(159\) 40.2545 + 101.995i 0.253173 + 0.641477i
\(160\) 13.9526 24.1665i 0.0872035 0.151041i
\(161\) 44.5042 0.276423
\(162\) 140.104 + 93.9647i 0.864838 + 0.580029i
\(163\) 220.136i 1.35053i −0.737576 0.675264i \(-0.764030\pi\)
0.737576 0.675264i \(-0.235970\pi\)
\(164\) 0.560626 0.971033i 0.00341845 0.00592093i
\(165\) 168.351 66.4435i 1.02031 0.402688i
\(166\) 130.725 + 226.422i 0.787497 + 1.36399i
\(167\) 99.2266 + 171.865i 0.594171 + 1.02913i 0.993663 + 0.112398i \(0.0358531\pi\)
−0.399492 + 0.916737i \(0.630814\pi\)
\(168\) −43.9408 6.53739i −0.261552 0.0389130i
\(169\) −168.153 16.8977i −0.994989 0.0999864i
\(170\) 248.548i 1.46205i
\(171\) −98.0633 104.883i −0.573470 0.613348i
\(172\) −3.12489 −0.0181680
\(173\) 126.719 + 73.1612i 0.732479 + 0.422897i 0.819328 0.573325i \(-0.194347\pi\)
−0.0868495 + 0.996221i \(0.527680\pi\)
\(174\) −172.939 + 217.709i −0.993905 + 1.25120i
\(175\) 3.09570 1.78730i 0.0176897 0.0102132i
\(176\) −100.355 173.820i −0.570198 0.987611i
\(177\) −199.730 158.658i −1.12842 0.896371i
\(178\) 13.8993 24.0743i 0.0780860 0.135249i
\(179\) 300.882i 1.68090i −0.541887 0.840451i \(-0.682290\pi\)
0.541887 0.840451i \(-0.317710\pi\)
\(180\) 3.56038 + 15.3295i 0.0197799 + 0.0851638i
\(181\) 72.4358 0.400198 0.200099 0.979776i \(-0.435874\pi\)
0.200099 + 0.979776i \(0.435874\pi\)
\(182\) 23.9693 + 46.7780i 0.131699 + 0.257022i
\(183\) −14.3343 + 96.3473i −0.0783294 + 0.526488i
\(184\) 151.434 87.4305i 0.823011 0.475166i
\(185\) −164.968 + 95.2442i −0.891718 + 0.514834i
\(186\) 77.4398 + 196.213i 0.416343 + 1.05491i
\(187\) −232.299 134.118i −1.24224 0.717207i
\(188\) 23.7137 0.126137
\(189\) 43.1390 29.7744i 0.228249 0.157536i
\(190\) 172.143i 0.906017i
\(191\) −5.56688 3.21404i −0.0291459 0.0168274i 0.485356 0.874316i \(-0.338690\pi\)
−0.514502 + 0.857489i \(0.672023\pi\)
\(192\) −161.088 + 63.5771i −0.839003 + 0.331131i
\(193\) 292.029 168.603i 1.51310 0.873591i 0.513222 0.858256i \(-0.328452\pi\)
0.999882 0.0153357i \(-0.00488170\pi\)
\(194\) 296.009 170.901i 1.52582 0.880933i
\(195\) −133.439 + 151.722i −0.684302 + 0.778063i
\(196\) −7.63308 + 13.2209i −0.0389443 + 0.0674535i
\(197\) −68.8698 −0.349593 −0.174796 0.984605i \(-0.555927\pi\)
−0.174796 + 0.984605i \(0.555927\pi\)
\(198\) 208.815 + 63.5403i 1.05462 + 0.320911i
\(199\) 32.1256 0.161435 0.0807175 0.996737i \(-0.474279\pi\)
0.0807175 + 0.996737i \(0.474279\pi\)
\(200\) 7.02249 12.1633i 0.0351124 0.0608165i
\(201\) −46.8625 + 58.9940i −0.233147 + 0.293503i
\(202\) −186.359 + 107.594i −0.922568 + 0.532645i
\(203\) 43.1953 + 74.8165i 0.212785 + 0.368554i
\(204\) 14.5074 18.2631i 0.0711149 0.0895248i
\(205\) 8.60564 14.9054i 0.0419787 0.0727093i
\(206\) −209.329 −1.01616
\(207\) −60.0617 + 197.383i −0.290153 + 0.953542i
\(208\) 188.199 + 121.608i 0.904802 + 0.584653i
\(209\) −160.889 92.8893i −0.769804 0.444446i
\(210\) 62.1575 + 9.24762i 0.295988 + 0.0440363i
\(211\) −122.283 211.800i −0.579540 1.00379i −0.995532 0.0944247i \(-0.969899\pi\)
0.415992 0.909368i \(-0.363434\pi\)
\(212\) −10.6835 + 6.16814i −0.0503940 + 0.0290950i
\(213\) −46.9051 + 18.5121i −0.220212 + 0.0869114i
\(214\) −122.143 70.5191i −0.570760 0.329528i
\(215\) −47.9672 −0.223103
\(216\) 88.2957 186.062i 0.408777 0.861397i
\(217\) 65.5428 0.302041
\(218\) −84.7621 48.9374i −0.388817 0.224484i
\(219\) −90.4721 229.234i −0.413115 1.04673i
\(220\) 10.1810 + 17.6341i 0.0462774 + 0.0801548i
\(221\) 299.080 + 14.9895i 1.35330 + 0.0678258i
\(222\) −227.224 33.8058i −1.02353 0.152278i
\(223\) −206.126 119.007i −0.924332 0.533663i −0.0393174 0.999227i \(-0.512518\pi\)
−0.885014 + 0.465563i \(0.845852\pi\)
\(224\) 10.4565i 0.0466808i
\(225\) 3.74910 + 16.1420i 0.0166627 + 0.0717424i
\(226\) 235.938i 1.04397i
\(227\) −146.916 + 254.466i −0.647206 + 1.12099i 0.336581 + 0.941654i \(0.390729\pi\)
−0.983787 + 0.179339i \(0.942604\pi\)
\(228\) 10.0478 12.6489i 0.0440692 0.0554776i
\(229\) 360.919 208.377i 1.57606 0.909941i 0.580663 0.814144i \(-0.302793\pi\)
0.995401 0.0957972i \(-0.0305400\pi\)
\(230\) −214.215 + 123.677i −0.931369 + 0.537726i
\(231\) 42.1835 53.1037i 0.182613 0.229886i
\(232\) 293.961 + 169.719i 1.26707 + 0.731545i
\(233\) 45.8581i 0.196816i 0.995146 + 0.0984079i \(0.0313750\pi\)
−0.995146 + 0.0984079i \(0.968625\pi\)
\(234\) −239.817 + 43.1771i −1.02486 + 0.184518i
\(235\) 364.006 1.54896
\(236\) 14.3487 24.8526i 0.0607995 0.105308i
\(237\) −5.53774 + 37.2217i −0.0233660 + 0.157053i
\(238\) −46.5675 80.6572i −0.195662 0.338896i
\(239\) −124.482 215.609i −0.520845 0.902129i −0.999706 0.0242389i \(-0.992284\pi\)
0.478862 0.877890i \(-0.341050\pi\)
\(240\) 249.189 98.3477i 1.03829 0.409782i
\(241\) 132.042 + 76.2342i 0.547890 + 0.316325i 0.748271 0.663394i \(-0.230884\pi\)
−0.200380 + 0.979718i \(0.564218\pi\)
\(242\) 30.4045 0.125639
\(243\) 73.8348 + 231.511i 0.303847 + 0.952721i
\(244\) −10.9588 −0.0449132
\(245\) −117.168 + 202.941i −0.478237 + 0.828331i
\(246\) 19.3071 7.61999i 0.0784843 0.0309756i
\(247\) 207.141 + 10.3817i 0.838628 + 0.0420310i
\(248\) 223.022 128.762i 0.899283 0.519202i
\(249\) −55.4205 + 372.507i −0.222572 + 1.49601i
\(250\) 124.941 216.405i 0.499766 0.865619i
\(251\) 86.6764i 0.345324i 0.984981 + 0.172662i \(0.0552369\pi\)
−0.984981 + 0.172662i \(0.944763\pi\)
\(252\) 4.02749 + 4.30756i 0.0159821 + 0.0170935i
\(253\) 266.947i 1.05513i
\(254\) 11.2754 19.5295i 0.0443913 0.0768880i
\(255\) 222.690 280.339i 0.873294 1.09937i
\(256\) −32.1772 55.7325i −0.125692 0.217705i
\(257\) 343.940 198.574i 1.33829 0.772661i 0.351735 0.936100i \(-0.385592\pi\)
0.986554 + 0.163438i \(0.0522584\pi\)
\(258\) −45.2956 35.9811i −0.175565 0.139462i
\(259\) −35.6895 + 61.8161i −0.137797 + 0.238672i
\(260\) −19.0928 12.3372i −0.0734340 0.0474506i
\(261\) −390.119 + 90.6078i −1.49471 + 0.347156i
\(262\) 239.264i 0.913221i
\(263\) −0.0947841 0.0547236i −0.000360396 0.000208075i 0.499820 0.866129i \(-0.333400\pi\)
−0.500180 + 0.865921i \(0.666733\pi\)
\(264\) 39.2128 263.567i 0.148533 0.998361i
\(265\) −163.993 + 94.6812i −0.618840 + 0.357288i
\(266\) −32.2524 55.8628i −0.121250 0.210011i
\(267\) 37.2468 14.7003i 0.139501 0.0550572i
\(268\) −7.34070 4.23816i −0.0273907 0.0158140i
\(269\) 54.3787i 0.202151i −0.994879 0.101076i \(-0.967772\pi\)
0.994879 0.101076i \(-0.0322284\pi\)
\(270\) −124.901 + 263.198i −0.462596 + 0.974808i
\(271\) 316.336i 1.16729i 0.812009 + 0.583645i \(0.198374\pi\)
−0.812009 + 0.583645i \(0.801626\pi\)
\(272\) −343.842 198.517i −1.26413 0.729843i
\(273\) −14.8763 + 74.2368i −0.0544921 + 0.271930i
\(274\) 173.586 + 300.660i 0.633526 + 1.09730i
\(275\) 10.7207 + 18.5688i 0.0389843 + 0.0675228i
\(276\) −22.9591 3.41580i −0.0831853 0.0123761i
\(277\) 19.9323 34.5238i 0.0719578 0.124635i −0.827802 0.561021i \(-0.810409\pi\)
0.899759 + 0.436387i \(0.143742\pi\)
\(278\) 360.005 1.29498
\(279\) −88.4550 + 290.693i −0.317043 + 1.04191i
\(280\) 76.7189i 0.273996i
\(281\) −125.592 + 217.532i −0.446947 + 0.774136i −0.998186 0.0602124i \(-0.980822\pi\)
0.551238 + 0.834348i \(0.314156\pi\)
\(282\) 343.733 + 273.048i 1.21891 + 0.968254i
\(283\) 136.772 + 236.897i 0.483295 + 0.837091i 0.999816 0.0191830i \(-0.00610652\pi\)
−0.516521 + 0.856275i \(0.672773\pi\)
\(284\) −2.83659 4.91311i −0.00998798 0.0172997i
\(285\) 154.234 194.161i 0.541172 0.681268i
\(286\) −280.586 + 143.774i −0.981070 + 0.502705i
\(287\) 6.44934i 0.0224716i
\(288\) 46.3762 + 14.1118i 0.161029 + 0.0489994i
\(289\) −241.611 −0.836025
\(290\) −415.830 240.079i −1.43390 0.827860i
\(291\) 486.992 + 72.4533i 1.67351 + 0.248980i
\(292\) 24.0112 13.8629i 0.0822303 0.0474757i
\(293\) −106.619 184.670i −0.363888 0.630273i 0.624709 0.780858i \(-0.285218\pi\)
−0.988597 + 0.150585i \(0.951884\pi\)
\(294\) −262.872 + 103.748i −0.894123 + 0.352885i
\(295\) 220.253 381.489i 0.746621 1.29318i
\(296\) 280.455i 0.947484i
\(297\) 178.594 + 258.758i 0.601326 + 0.871240i
\(298\) 40.1792 0.134830
\(299\) −135.902 265.225i −0.454523 0.887040i
\(300\) −1.73421 + 0.684446i −0.00578071 + 0.00228149i
\(301\) −15.5660 + 8.98704i −0.0517143 + 0.0298573i
\(302\) −242.367 + 139.931i −0.802541 + 0.463347i
\(303\) −306.595 45.6144i −1.01187 0.150543i
\(304\) −238.143 137.492i −0.783366 0.452277i
\(305\) −168.219 −0.551536
\(306\) 420.574 97.6813i 1.37443 0.319220i
\(307\) 185.168i 0.603152i −0.953442 0.301576i \(-0.902487\pi\)
0.953442 0.301576i \(-0.0975128\pi\)
\(308\) 6.60776 + 3.81499i 0.0214538 + 0.0123863i
\(309\) −236.104 187.551i −0.764089 0.606962i
\(310\) −315.482 + 182.143i −1.01768 + 0.587559i
\(311\) −467.154 + 269.712i −1.50210 + 0.867240i −0.502107 + 0.864806i \(0.667442\pi\)
−0.999997 + 0.00243426i \(0.999225\pi\)
\(312\) 95.2221 + 281.831i 0.305199 + 0.903303i
\(313\) −303.999 + 526.541i −0.971242 + 1.68224i −0.279424 + 0.960168i \(0.590144\pi\)
−0.691817 + 0.722073i \(0.743190\pi\)
\(314\) 381.999 1.21656
\(315\) 61.8222 + 66.1213i 0.196261 + 0.209909i
\(316\) −4.23370 −0.0133978
\(317\) 168.124 291.200i 0.530360 0.918611i −0.469012 0.883192i \(-0.655390\pi\)
0.999373 0.0354194i \(-0.0112767\pi\)
\(318\) −225.881 33.6060i −0.710318 0.105679i
\(319\) −448.767 + 259.096i −1.40679 + 0.812213i
\(320\) −149.537 259.006i −0.467305 0.809395i
\(321\) −74.5828 188.974i −0.232345 0.588705i
\(322\) −46.3437 + 80.2697i −0.143925 + 0.249285i
\(323\) −367.499 −1.13777
\(324\) −24.5401 + 12.0492i −0.0757411 + 0.0371889i
\(325\) −20.1049 12.9911i −0.0618612 0.0399726i
\(326\) 397.047 + 229.235i 1.21794 + 0.703176i
\(327\) −51.7575 131.141i −0.158280 0.401042i
\(328\) −12.6700 21.9451i −0.0386281 0.0669059i
\(329\) 118.125 68.1995i 0.359043 0.207293i
\(330\) −55.4695 + 372.836i −0.168089 + 1.12980i
\(331\) 420.968 + 243.046i 1.27181 + 0.734278i 0.975328 0.220762i \(-0.0708543\pi\)
0.296479 + 0.955039i \(0.404188\pi\)
\(332\) −42.3700 −0.127621
\(333\) −225.999 241.714i −0.678675 0.725869i
\(334\) −413.312 −1.23746
\(335\) −112.680 65.0559i −0.336359 0.194197i
\(336\) 62.4388 78.6027i 0.185830 0.233936i
\(337\) 86.1155 + 149.156i 0.255536 + 0.442601i 0.965041 0.262099i \(-0.0844148\pi\)
−0.709505 + 0.704700i \(0.751082\pi\)
\(338\) 205.581 285.692i 0.608228 0.845244i
\(339\) 211.392 266.116i 0.623575 0.785002i
\(340\) 34.8829 + 20.1397i 0.102597 + 0.0592343i
\(341\) 393.142i 1.15291i
\(342\) 291.288 67.6536i 0.851718 0.197817i
\(343\) 182.936i 0.533340i
\(344\) −35.3109 + 61.1603i −0.102648 + 0.177792i
\(345\) −352.424 52.4327i −1.02152 0.151979i
\(346\) −263.914 + 152.371i −0.762756 + 0.440377i
\(347\) −336.454 + 194.252i −0.969607 + 0.559803i −0.899116 0.437710i \(-0.855790\pi\)
−0.0704905 + 0.997512i \(0.522456\pi\)
\(348\) −16.5416 41.9123i −0.0475333 0.120438i
\(349\) 43.5073 + 25.1189i 0.124663 + 0.0719740i 0.561035 0.827792i \(-0.310403\pi\)
−0.436372 + 0.899766i \(0.643737\pi\)
\(350\) 7.44473i 0.0212707i
\(351\) −309.175 166.167i −0.880842 0.473411i
\(352\) 62.7206 0.178183
\(353\) 56.6496 98.1199i 0.160480 0.277960i −0.774561 0.632500i \(-0.782029\pi\)
0.935041 + 0.354539i \(0.115362\pi\)
\(354\) 494.148 195.026i 1.39590 0.550922i
\(355\) −43.5417 75.4165i −0.122653 0.212441i
\(356\) 2.25250 + 3.90144i 0.00632724 + 0.0109591i
\(357\) 19.7422 132.697i 0.0553004 0.371699i
\(358\) 542.684 + 313.318i 1.51588 + 0.875191i
\(359\) 139.525 0.388649 0.194324 0.980937i \(-0.437749\pi\)
0.194324 + 0.980937i \(0.437749\pi\)
\(360\) 340.261 + 103.538i 0.945168 + 0.287605i
\(361\) 106.472 0.294937
\(362\) −75.4299 + 130.649i −0.208370 + 0.360907i
\(363\) 34.2934 + 27.2414i 0.0944723 + 0.0750450i
\(364\) −8.50735 0.426378i −0.0233719 0.00117137i
\(365\) 368.574 212.796i 1.00979 0.583003i
\(366\) −158.849 126.184i −0.434015 0.344764i
\(367\) 199.851 346.152i 0.544552 0.943192i −0.454083 0.890960i \(-0.650033\pi\)
0.998635 0.0522328i \(-0.0166338\pi\)
\(368\) 395.127i 1.07371i
\(369\) 28.6039 + 8.70387i 0.0775172 + 0.0235877i
\(370\) 396.725i 1.07223i
\(371\) −35.4786 + 61.4507i −0.0956296 + 0.165635i
\(372\) −33.8127 5.03057i −0.0908945 0.0135230i
\(373\) −292.378 506.414i −0.783855 1.35768i −0.929681 0.368367i \(-0.879917\pi\)
0.145825 0.989310i \(-0.453416\pi\)
\(374\) 483.802 279.323i 1.29359 0.746853i
\(375\) 334.813 132.141i 0.892835 0.352377i
\(376\) 267.962 464.124i 0.712666 1.23437i
\(377\) 313.967 485.892i 0.832804 1.28884i
\(378\) 8.78023 + 108.813i 0.0232281 + 0.287864i
\(379\) 53.8120i 0.141984i 0.997477 + 0.0709921i \(0.0226165\pi\)
−0.997477 + 0.0709921i \(0.977383\pi\)
\(380\) 24.1597 + 13.9486i 0.0635782 + 0.0367069i
\(381\) 30.2153 11.9251i 0.0793053 0.0312996i
\(382\) 11.5940 6.69378i 0.0303507 0.0175230i
\(383\) 77.8061 + 134.764i 0.203149 + 0.351865i 0.949541 0.313642i \(-0.101549\pi\)
−0.746392 + 0.665506i \(0.768216\pi\)
\(384\) 62.5880 420.682i 0.162989 1.09553i
\(385\) 101.430 + 58.5604i 0.263453 + 0.152105i
\(386\) 702.289i 1.81940i
\(387\) −18.8515 81.1665i −0.0487118 0.209733i
\(388\) 55.3919i 0.142763i
\(389\) 562.403 + 324.704i 1.44577 + 0.834714i 0.998225 0.0595488i \(-0.0189662\pi\)
0.447542 + 0.894263i \(0.352300\pi\)
\(390\) −134.699 398.670i −0.345381 1.02223i
\(391\) 264.031 + 457.315i 0.675271 + 1.16960i
\(392\) 172.506 + 298.789i 0.440066 + 0.762217i
\(393\) 214.372 269.867i 0.545475 0.686685i
\(394\) 71.7165 124.217i 0.182022 0.315271i
\(395\) −64.9876 −0.164525
\(396\) −25.8378 + 24.1579i −0.0652469 + 0.0610047i
\(397\) 708.677i 1.78508i −0.450967 0.892541i \(-0.648921\pi\)
0.450967 0.892541i \(-0.351079\pi\)
\(398\) −33.4535 + 57.9431i −0.0840540 + 0.145586i
\(399\) 13.6734 91.9049i 0.0342691 0.230338i
\(400\) 15.8684 + 27.4850i 0.0396711 + 0.0687124i
\(401\) −205.025 355.113i −0.511283 0.885569i −0.999914 0.0130783i \(-0.995837\pi\)
0.488631 0.872490i \(-0.337496\pi\)
\(402\) −57.6047 145.956i −0.143295 0.363074i
\(403\) −200.148 390.606i −0.496646 0.969246i
\(404\) 34.8731i 0.0863195i
\(405\) −376.692 + 184.956i −0.930104 + 0.456681i
\(406\) −179.923 −0.443161
\(407\) −370.788 214.074i −0.911027 0.525982i
\(408\) −193.512 490.310i −0.474293 1.20174i
\(409\) −251.330 + 145.105i −0.614499 + 0.354781i −0.774724 0.632299i \(-0.782111\pi\)
0.160225 + 0.987080i \(0.448778\pi\)
\(410\) 17.9227 + 31.0430i 0.0437139 + 0.0757147i
\(411\) −73.5916 + 494.643i −0.179055 + 1.20351i
\(412\) 16.9618 29.3787i 0.0411694 0.0713074i
\(413\) 165.065i 0.399672i
\(414\) −293.465 313.872i −0.708852 0.758145i
\(415\) −650.382 −1.56719
\(416\) −62.3160 + 31.9310i −0.149798 + 0.0767572i
\(417\) 406.051 + 322.551i 0.973744 + 0.773504i
\(418\) 335.079 193.458i 0.801623 0.462817i
\(419\) 212.816 122.869i 0.507913 0.293244i −0.224062 0.974575i \(-0.571932\pi\)
0.731976 + 0.681331i \(0.238599\pi\)
\(420\) −6.33444 + 7.97427i −0.0150820 + 0.0189864i
\(421\) 496.801 + 286.828i 1.18005 + 0.681302i 0.956026 0.293281i \(-0.0947472\pi\)
0.224024 + 0.974584i \(0.428081\pi\)
\(422\) 509.350 1.20699
\(423\) 143.057 + 615.944i 0.338197 + 1.45613i
\(424\) 278.797i 0.657541i
\(425\) 36.7319 + 21.2072i 0.0864280 + 0.0498992i
\(426\) 15.4546 103.878i 0.0362784 0.243844i
\(427\) −54.5892 + 31.5171i −0.127844 + 0.0738105i
\(428\) 19.7942 11.4282i 0.0462482 0.0267014i
\(429\) −445.290 89.2319i −1.03797 0.208000i
\(430\) 49.9500 86.5159i 0.116163 0.201200i
\(431\) −193.685 −0.449385 −0.224693 0.974430i \(-0.572138\pi\)
−0.224693 + 0.974430i \(0.572138\pi\)
\(432\) 264.350 + 383.006i 0.611920 + 0.886589i
\(433\) −418.947 −0.967546 −0.483773 0.875194i \(-0.660734\pi\)
−0.483773 + 0.875194i \(0.660734\pi\)
\(434\) −68.2521 + 118.216i −0.157263 + 0.272387i
\(435\) −253.914 643.355i −0.583711 1.47898i
\(436\) 13.7364 7.93072i 0.0315055 0.0181897i
\(437\) 182.867 + 316.734i 0.418459 + 0.724792i
\(438\) 507.668 + 75.5295i 1.15906 + 0.172442i
\(439\) −363.965 + 630.405i −0.829077 + 1.43600i 0.0696865 + 0.997569i \(0.477800\pi\)
−0.898763 + 0.438434i \(0.855533\pi\)
\(440\) 460.178 1.04586
\(441\) −389.449 118.506i −0.883105 0.268720i
\(442\) −338.478 + 523.824i −0.765787 + 1.18512i
\(443\) 399.357 + 230.569i 0.901484 + 0.520472i 0.877681 0.479245i \(-0.159089\pi\)
0.0238025 + 0.999717i \(0.492423\pi\)
\(444\) 23.1563 29.1509i 0.0521539 0.0656552i
\(445\) 34.5760 + 59.8873i 0.0776988 + 0.134578i
\(446\) 429.292 247.852i 0.962539 0.555722i
\(447\) 45.3184 + 35.9991i 0.101383 + 0.0805349i
\(448\) −97.0539 56.0341i −0.216638 0.125076i
\(449\) 308.063 0.686108 0.343054 0.939316i \(-0.388539\pi\)
0.343054 + 0.939316i \(0.388539\pi\)
\(450\) −33.0186 10.0472i −0.0733746 0.0223272i
\(451\) 38.6847 0.0857754
\(452\) 33.1131 + 19.1179i 0.0732591 + 0.0422962i
\(453\) −398.740 59.3235i −0.880221 0.130957i
\(454\) −305.977 529.968i −0.673958 1.16733i
\(455\) −130.588 6.54493i −0.287007 0.0143845i
\(456\) −134.025 339.586i −0.293915 0.744707i
\(457\) −340.050 196.328i −0.744091 0.429601i 0.0794639 0.996838i \(-0.474679\pi\)
−0.823555 + 0.567237i \(0.808012\pi\)
\(458\) 867.959i 1.89511i
\(459\) 561.887 + 266.644i 1.22415 + 0.580923i
\(460\) 40.0858i 0.0871430i
\(461\) 203.535 352.533i 0.441508 0.764713i −0.556294 0.830985i \(-0.687777\pi\)
0.997802 + 0.0662721i \(0.0211105\pi\)
\(462\) 51.8531 + 131.383i 0.112236 + 0.284379i
\(463\) −33.4769 + 19.3279i −0.0723043 + 0.0417449i −0.535716 0.844398i \(-0.679958\pi\)
0.463412 + 0.886143i \(0.346625\pi\)
\(464\) −664.253 + 383.507i −1.43158 + 0.826523i
\(465\) −519.027 77.2195i −1.11619 0.166063i
\(466\) −82.7117 47.7536i −0.177493 0.102476i
\(467\) 684.721i 1.46621i −0.680115 0.733105i \(-0.738070\pi\)
0.680115 0.733105i \(-0.261930\pi\)
\(468\) 13.3724 37.1561i 0.0285734 0.0793933i
\(469\) −48.7550 −0.103955
\(470\) −379.053 + 656.538i −0.806495 + 1.39689i
\(471\) 430.858 + 342.257i 0.914774 + 0.726660i
\(472\) −324.277 561.665i −0.687028 1.18997i
\(473\) −53.9065 93.3687i −0.113967 0.197397i
\(474\) −61.3680 48.7483i −0.129468 0.102845i
\(475\) 25.4403 + 14.6880i 0.0535586 + 0.0309221i
\(476\) 15.0933 0.0317086
\(477\) −224.663 240.285i −0.470991 0.503743i
\(478\) 518.509 1.08475
\(479\) 254.722 441.192i 0.531779 0.921068i −0.467533 0.883976i \(-0.654857\pi\)
0.999312 0.0370926i \(-0.0118097\pi\)
\(480\) −12.3193 + 82.8039i −0.0256653 + 0.172508i
\(481\) 477.381 + 23.9258i 0.992477 + 0.0497417i
\(482\) −274.999 + 158.771i −0.570537 + 0.329400i
\(483\) −124.190 + 49.0143i −0.257122 + 0.101479i
\(484\) −2.46365 + 4.26717i −0.00509020 + 0.00881648i
\(485\) 850.269i 1.75313i
\(486\) −494.451 107.909i −1.01739 0.222035i
\(487\) 754.148i 1.54856i −0.632844 0.774280i \(-0.718112\pi\)
0.632844 0.774280i \(-0.281888\pi\)
\(488\) −123.834 + 214.486i −0.253757 + 0.439521i
\(489\) 242.445 + 614.296i 0.495798 + 1.25623i
\(490\) −244.023 422.659i −0.498005 0.862570i
\(491\) 382.789 221.003i 0.779612 0.450109i −0.0566811 0.998392i \(-0.518052\pi\)
0.836293 + 0.548283i \(0.184718\pi\)
\(492\) −0.495002 + 3.32713i −0.00100610 + 0.00676247i
\(493\) −512.532 + 887.732i −1.03962 + 1.80067i
\(494\) −234.428 + 362.798i −0.474551 + 0.734409i
\(495\) −396.611 + 370.825i −0.801235 + 0.749141i
\(496\) 581.917i 1.17322i
\(497\) −28.2598 16.3158i −0.0568607 0.0328285i
\(498\) −614.158 487.863i −1.23325 0.979645i
\(499\) −12.8035 + 7.39211i −0.0256583 + 0.0148138i −0.512774 0.858523i \(-0.671382\pi\)
0.487116 + 0.873337i \(0.338049\pi\)
\(500\) 20.2478 + 35.0702i 0.0404956 + 0.0701404i
\(501\) −466.177 370.313i −0.930494 0.739147i
\(502\) −156.333 90.2592i −0.311421 0.179799i
\(503\) 477.344i 0.948995i −0.880257 0.474497i \(-0.842630\pi\)
0.880257 0.474497i \(-0.157370\pi\)
\(504\) 129.818 30.1511i 0.257575 0.0598236i
\(505\) 535.304i 1.06001i
\(506\) −481.477 277.981i −0.951536 0.549369i
\(507\) 487.846 138.041i 0.962221 0.272270i
\(508\) 1.82727 + 3.16493i 0.00359699 + 0.00623017i
\(509\) −157.294 272.442i −0.309027 0.535250i 0.669123 0.743152i \(-0.266670\pi\)
−0.978150 + 0.207902i \(0.933337\pi\)
\(510\) 273.737 + 693.580i 0.536739 + 1.35996i
\(511\) 79.7382 138.111i 0.156043 0.270275i
\(512\) −433.055 −0.845810
\(513\) 389.160 + 184.676i 0.758596 + 0.359993i
\(514\) 827.128i 1.60920i
\(515\) 260.364 450.964i 0.505561 0.875658i
\(516\) 8.72009 3.44158i 0.0168994 0.00666972i
\(517\) 409.077 + 708.542i 0.791252 + 1.37049i
\(518\) −74.3295 128.743i −0.143493 0.248538i
\(519\) −434.188 64.5973i −0.836586 0.124465i
\(520\) −457.210 + 234.277i −0.879250 + 0.450532i
\(521\) 356.232i 0.683747i −0.939746 0.341874i \(-0.888939\pi\)
0.939746 0.341874i \(-0.111061\pi\)
\(522\) 242.820 797.989i 0.465172 1.52871i
\(523\) 787.642 1.50601 0.753004 0.658016i \(-0.228604\pi\)
0.753004 + 0.658016i \(0.228604\pi\)
\(524\) 33.5799 + 19.3874i 0.0640838 + 0.0369988i
\(525\) −6.67021 + 8.39695i −0.0127052 + 0.0159942i
\(526\) 0.197404 0.113971i 0.000375293 0.000216675i
\(527\) 388.848 + 673.504i 0.737851 + 1.27800i
\(528\) 471.478 + 374.523i 0.892950 + 0.709324i
\(529\) −1.73758 + 3.00957i −0.00328464 + 0.00568917i
\(530\) 394.379i 0.744112i
\(531\) 732.088 + 222.767i 1.37870 + 0.419524i
\(532\) 10.4535 0.0196495
\(533\) −38.4352 + 19.6944i −0.0721110 + 0.0369500i
\(534\) −12.2723 + 82.4879i −0.0229819 + 0.154472i
\(535\) 303.842 175.424i 0.567930 0.327894i
\(536\) −165.898 + 95.7814i −0.309512 + 0.178697i
\(537\) 331.374 + 839.618i 0.617083 + 1.56353i
\(538\) 98.0798 + 56.6264i 0.182304 + 0.105254i
\(539\) −526.703 −0.977185
\(540\) −26.8184 38.8562i −0.0496636 0.0719558i
\(541\) 689.163i 1.27387i 0.770918 + 0.636934i \(0.219798\pi\)
−0.770918 + 0.636934i \(0.780202\pi\)
\(542\) −570.558 329.412i −1.05269 0.607770i
\(543\) −202.134 + 79.7767i −0.372254 + 0.146918i
\(544\) 107.449 62.0355i 0.197516 0.114036i
\(545\) 210.855 121.737i 0.386889 0.223371i
\(546\) −118.406 104.137i −0.216860 0.190727i
\(547\) 411.291 712.378i 0.751904 1.30234i −0.194995 0.980804i \(-0.562469\pi\)
0.946899 0.321531i \(-0.104198\pi\)
\(548\) −56.2621 −0.102668
\(549\) −66.1112 284.647i −0.120421 0.518482i
\(550\) −44.6553 −0.0811914
\(551\) −354.977 + 614.838i −0.644242 + 1.11586i
\(552\) −326.290 + 410.758i −0.591105 + 0.744127i
\(553\) −21.0893 + 12.1759i −0.0381362 + 0.0220180i
\(554\) 41.5124 + 71.9016i 0.0749321 + 0.129786i
\(555\) 355.451 447.468i 0.640452 0.806248i
\(556\) −29.1709 + 50.5255i −0.0524656 + 0.0908732i
\(557\) 888.415 1.59500 0.797500 0.603318i \(-0.206155\pi\)
0.797500 + 0.603318i \(0.206155\pi\)
\(558\) −432.196 462.250i −0.774544 0.828405i
\(559\) 101.093 + 65.3227i 0.180846 + 0.116856i
\(560\) 150.133 + 86.6794i 0.268095 + 0.154785i
\(561\) 795.946 + 118.419i 1.41880 + 0.211085i
\(562\) −261.567 453.048i −0.465422 0.806134i
\(563\) −485.105 + 280.076i −0.861643 + 0.497470i −0.864562 0.502526i \(-0.832404\pi\)
0.00291903 + 0.999996i \(0.499071\pi\)
\(564\) −66.1737 + 26.1169i −0.117329 + 0.0463066i
\(565\) 508.288 + 293.460i 0.899625 + 0.519399i
\(566\) −569.704 −1.00654
\(567\) −87.5888 + 130.597i −0.154478 + 0.230330i
\(568\) −128.212 −0.225726
\(569\) 551.779 + 318.570i 0.969735 + 0.559877i 0.899155 0.437629i \(-0.144182\pi\)
0.0705795 + 0.997506i \(0.477515\pi\)
\(570\) 189.589 + 480.370i 0.332612 + 0.842755i
\(571\) 56.5020 + 97.8643i 0.0989527 + 0.171391i 0.911251 0.411851i \(-0.135117\pi\)
−0.812299 + 0.583242i \(0.801784\pi\)
\(572\) 2.55752 51.0292i 0.00447119 0.0892118i
\(573\) 19.0743 + 2.83782i 0.0332884 + 0.00495256i
\(574\) 11.6323 + 6.71592i 0.0202654 + 0.0117002i
\(575\) 42.2106i 0.0734097i
\(576\) 379.502 354.827i 0.658857 0.616020i
\(577\) 460.077i 0.797361i 0.917090 + 0.398680i \(0.130532\pi\)
−0.917090 + 0.398680i \(0.869468\pi\)
\(578\) 251.598 435.781i 0.435291 0.753947i
\(579\) −629.226 + 792.116i −1.08675 + 1.36808i
\(580\) 67.3887 38.9069i 0.116187 0.0670808i
\(581\) −211.058 + 121.854i −0.363266 + 0.209732i
\(582\) −637.802 + 802.912i −1.09588 + 1.37957i
\(583\) −368.596 212.809i −0.632240 0.365024i
\(584\) 626.597i 1.07294i
\(585\) 205.267 570.347i 0.350883 0.974953i
\(586\) 444.106 0.757860
\(587\) 272.897 472.672i 0.464902 0.805233i −0.534295 0.845298i \(-0.679423\pi\)
0.999197 + 0.0400644i \(0.0127563\pi\)
\(588\) 6.73959 45.2999i 0.0114619 0.0770406i
\(589\) 269.314 + 466.465i 0.457239 + 0.791962i
\(590\) 458.714 + 794.517i 0.777482 + 1.34664i
\(591\) 192.183 75.8493i 0.325183 0.128341i
\(592\) −548.830 316.867i −0.927077 0.535248i
\(593\) −164.234 −0.276954 −0.138477 0.990366i \(-0.544221\pi\)
−0.138477 + 0.990366i \(0.544221\pi\)
\(594\) −652.684 + 52.6660i −1.09879 + 0.0886632i
\(595\) 231.683 0.389383
\(596\) −3.25569 + 5.63902i −0.00546256 + 0.00946144i
\(597\) −89.6473 + 35.3813i −0.150163 + 0.0592651i
\(598\) 619.891 + 31.0682i 1.03661 + 0.0519535i
\(599\) −375.199 + 216.621i −0.626375 + 0.361638i −0.779347 0.626593i \(-0.784449\pi\)
0.152972 + 0.988231i \(0.451116\pi\)
\(600\) −6.20047 + 41.6762i −0.0103341 + 0.0694603i
\(601\) −155.528 + 269.383i −0.258782 + 0.448224i −0.965916 0.258856i \(-0.916655\pi\)
0.707134 + 0.707080i \(0.249988\pi\)
\(602\) 37.4341i 0.0621829i
\(603\) 65.7985 216.236i 0.109119 0.358601i
\(604\) 45.3539i 0.0750893i
\(605\) −37.8172 + 65.5014i −0.0625078 + 0.108267i
\(606\) 401.541 505.489i 0.662609 0.834141i
\(607\) −347.895 602.571i −0.573138 0.992704i −0.996241 0.0866224i \(-0.972393\pi\)
0.423103 0.906081i \(-0.360941\pi\)
\(608\) 74.4184 42.9655i 0.122399 0.0706669i
\(609\) −202.936 161.205i −0.333229 0.264704i
\(610\) 175.172 303.407i 0.287167 0.497388i
\(611\) −767.157 495.711i −1.25558 0.811311i
\(612\) −20.3695 + 66.9412i −0.0332836 + 0.109381i
\(613\) 493.944i 0.805782i 0.915248 + 0.402891i \(0.131995\pi\)
−0.915248 + 0.402891i \(0.868005\pi\)
\(614\) 333.977 + 192.822i 0.543936 + 0.314042i
\(615\) −7.59831 + 51.0717i −0.0123550 + 0.0830434i
\(616\) 149.334 86.2181i 0.242426 0.139964i
\(617\) −442.501 766.435i −0.717182 1.24220i −0.962112 0.272655i \(-0.912098\pi\)
0.244930 0.969541i \(-0.421235\pi\)
\(618\) 584.139 230.543i 0.945209 0.373047i
\(619\) −847.493 489.300i −1.36913 0.790469i −0.378315 0.925677i \(-0.623496\pi\)
−0.990817 + 0.135208i \(0.956830\pi\)
\(620\) 59.0357i 0.0952189i
\(621\) −49.7827 616.952i −0.0801653 0.993481i
\(622\) 1123.44i 1.80617i
\(623\) 22.4407 + 12.9562i 0.0360205 + 0.0207964i
\(624\) −659.106 132.078i −1.05626 0.211664i
\(625\) 333.821 + 578.195i 0.534114 + 0.925112i
\(626\) −633.129 1096.61i −1.01139 1.75178i
\(627\) 551.268 + 82.0162i 0.879215 + 0.130807i
\(628\) −30.9530 + 53.6122i −0.0492883 + 0.0853698i
\(629\) −846.945 −1.34649
\(630\) −183.637 + 42.6510i −0.291487 + 0.0676999i
\(631\) 729.035i 1.15536i −0.816262 0.577682i \(-0.803957\pi\)
0.816262 0.577682i \(-0.196043\pi\)
\(632\) −47.8404 + 82.8620i −0.0756968 + 0.131111i
\(633\) 574.499 + 456.359i 0.907581 + 0.720947i
\(634\) 350.147 + 606.473i 0.552283 + 0.956582i
\(635\) 28.0487 + 48.5818i 0.0441712 + 0.0765068i
\(636\) 23.0194 28.9786i 0.0361941 0.0455638i
\(637\) 523.306 268.144i 0.821516 0.420948i
\(638\) 1079.22i 1.69157i
\(639\) 110.502 103.317i 0.172929 0.161686i
\(640\) 734.495 1.14765
\(641\) −523.380 302.173i −0.816505 0.471409i 0.0327047 0.999465i \(-0.489588\pi\)
−0.849210 + 0.528056i \(0.822921\pi\)
\(642\) 418.508 + 62.2645i 0.651882 + 0.0969852i
\(643\) −578.620 + 334.067i −0.899876 + 0.519544i −0.877160 0.480198i \(-0.840565\pi\)
−0.0227162 + 0.999742i \(0.507231\pi\)
\(644\) −7.51039 13.0084i −0.0116621 0.0201993i
\(645\) 133.854 52.8284i 0.207525 0.0819044i
\(646\) 382.689 662.837i 0.592398 1.02606i
\(647\) 473.645i 0.732064i −0.930602 0.366032i \(-0.880716\pi\)
0.930602 0.366032i \(-0.119284\pi\)
\(648\) −41.4740 + 616.454i −0.0640030 + 0.951318i
\(649\) 990.098 1.52557
\(650\) 44.3672 22.7340i 0.0682573 0.0349754i
\(651\) −182.899 + 72.1851i −0.280951 + 0.110883i
\(652\) −64.3448 + 37.1495i −0.0986884 + 0.0569778i
\(653\) 83.5283 48.2251i 0.127915 0.0738516i −0.434677 0.900586i \(-0.643138\pi\)
0.562592 + 0.826735i \(0.309804\pi\)
\(654\) 290.428 + 43.2091i 0.444079 + 0.0660689i
\(655\) 515.453 + 297.597i 0.786951 + 0.454346i
\(656\) 57.2600 0.0872866
\(657\) 504.930 + 540.042i 0.768539 + 0.821982i
\(658\) 284.074i 0.431724i
\(659\) 78.0724 + 45.0751i 0.118471 + 0.0683993i 0.558065 0.829798i \(-0.311544\pi\)
−0.439593 + 0.898197i \(0.644877\pi\)
\(660\) −47.8316 37.9955i −0.0724721 0.0575690i
\(661\) −572.582 + 330.581i −0.866236 + 0.500122i −0.866096 0.499878i \(-0.833378\pi\)
−0.000140662 1.00000i \(0.500045\pi\)
\(662\) −876.737 + 506.185i −1.32438 + 0.764629i
\(663\) −851.099 + 287.561i −1.28371 + 0.433726i
\(664\) −478.777 + 829.266i −0.721049 + 1.24889i
\(665\) 160.462 0.241297
\(666\) 671.307 155.916i 1.00797 0.234108i
\(667\) 1020.14 1.52944
\(668\) 33.4904 58.0070i 0.0501353 0.0868369i
\(669\) 706.268 + 105.077i 1.05571 + 0.157065i
\(670\) 234.676 135.490i 0.350262 0.202224i
\(671\) −189.047 327.439i −0.281739 0.487987i
\(672\) 11.5162 + 29.1791i 0.0171372 + 0.0434213i
\(673\) 4.74549 8.21943i 0.00705125 0.0122131i −0.862478 0.506094i \(-0.831089\pi\)
0.869529 + 0.493881i \(0.164422\pi\)
\(674\) −358.700 −0.532196
\(675\) −28.2399 40.9158i −0.0418369 0.0606159i
\(676\) 23.4379 + 52.0021i 0.0346714 + 0.0769261i
\(677\) 428.695 + 247.507i 0.633227 + 0.365594i 0.782001 0.623278i \(-0.214199\pi\)
−0.148774 + 0.988871i \(0.547533\pi\)
\(678\) 259.849 + 658.392i 0.383258 + 0.971079i
\(679\) 159.305 + 275.924i 0.234617 + 0.406368i
\(680\) 788.346 455.152i 1.15933 0.669341i
\(681\) 129.719 871.898i 0.190483 1.28032i
\(682\) −709.088 409.392i −1.03972 0.600282i
\(683\) 206.319 0.302077 0.151038 0.988528i \(-0.451738\pi\)
0.151038 + 0.988528i \(0.451738\pi\)
\(684\) −14.1078 + 46.3632i −0.0206255 + 0.0677824i
\(685\) −863.627 −1.26077
\(686\) −329.951 190.497i −0.480978 0.277693i
\(687\) −777.660 + 978.976i −1.13196 + 1.42500i
\(688\) −79.7908 138.202i −0.115975 0.200875i
\(689\) 474.559 + 23.7843i 0.688766 + 0.0345201i
\(690\) 461.562 581.048i 0.668930 0.842098i
\(691\) −824.447 475.995i −1.19312 0.688849i −0.234108 0.972210i \(-0.575217\pi\)
−0.959013 + 0.283361i \(0.908550\pi\)
\(692\) 49.3858i 0.0713668i
\(693\) −59.2288 + 194.646i −0.0854673 + 0.280874i
\(694\) 809.124i 1.16588i
\(695\) −447.775 + 775.569i −0.644280 + 1.11593i
\(696\) −1007.22 149.852i −1.44716 0.215305i
\(697\) 66.2720 38.2622i 0.0950818 0.0548955i
\(698\) −90.6113 + 52.3145i −0.129816 + 0.0749491i
\(699\) −50.5055 127.968i −0.0722539 0.183073i
\(700\) −1.04484 0.603240i −0.00149263 0.000861772i
\(701\) 536.246i 0.764974i 0.923961 + 0.382487i \(0.124932\pi\)
−0.923961 + 0.382487i \(0.875068\pi\)
\(702\) 621.662 384.607i 0.885558 0.547874i
\(703\) −586.590 −0.834410
\(704\) 336.106 582.153i 0.477423 0.826921i
\(705\) −1015.77 + 400.896i −1.44081 + 0.568647i
\(706\) 117.982 + 204.351i 0.167114 + 0.289450i
\(707\) −100.293 173.713i −0.141858 0.245705i
\(708\) −12.6691 + 85.1548i −0.0178942 + 0.120275i
\(709\) 896.526 + 517.609i 1.26449 + 0.730056i 0.973941 0.226803i \(-0.0728274\pi\)
0.290553 + 0.956859i \(0.406161\pi\)
\(710\) 181.366 0.255445
\(711\) −25.5406 109.967i −0.0359221 0.154665i
\(712\) 101.812 0.142994
\(713\) 386.979 670.268i 0.542748 0.940067i
\(714\) 218.779 + 173.789i 0.306413 + 0.243403i
\(715\) 39.2581 783.300i 0.0549064 1.09552i
\(716\) −87.9464 + 50.7759i −0.122830 + 0.0709160i
\(717\) 584.829 + 464.565i 0.815662 + 0.647929i
\(718\) −145.292 + 251.653i −0.202357 + 0.350492i
\(719\) 137.113i 0.190699i 0.995444 + 0.0953497i \(0.0303969\pi\)
−0.995444 + 0.0953497i \(0.969603\pi\)
\(720\) −587.053 + 548.884i −0.815351 + 0.762339i
\(721\) 195.125i 0.270631i
\(722\) −110.873 + 192.038i −0.153564 + 0.265981i
\(723\) −452.425 67.3106i −0.625761 0.0930991i
\(724\) −12.2241 21.1727i −0.0168841 0.0292440i
\(725\) 70.9607 40.9692i 0.0978768 0.0565092i
\(726\) −84.8447 + 33.4858i −0.116866 + 0.0461237i
\(727\) 90.2928 156.392i 0.124199 0.215119i −0.797220 0.603688i \(-0.793697\pi\)
0.921420 + 0.388569i \(0.127030\pi\)
\(728\) −104.477 + 161.688i −0.143513 + 0.222099i
\(729\) −461.011 564.721i −0.632388 0.774651i
\(730\) 886.369i 1.21420i
\(731\) −184.698 106.635i −0.252665 0.145876i
\(732\) 30.5809 12.0694i 0.0417772 0.0164883i
\(733\) 949.602 548.253i 1.29550 0.747957i 0.315877 0.948800i \(-0.397701\pi\)
0.979623 + 0.200843i \(0.0643681\pi\)
\(734\) 416.223 + 720.920i 0.567061 + 0.982179i
\(735\) 103.453 695.355i 0.140752 0.946061i
\(736\) −106.932 61.7374i −0.145289 0.0838824i
\(737\) 292.444i 0.396803i
\(738\) −45.4849 + 42.5276i −0.0616327 + 0.0576254i
\(739\) 275.835i 0.373254i −0.982431 0.186627i \(-0.940244\pi\)
0.982431 0.186627i \(-0.0597556\pi\)
\(740\) 55.6790 + 32.1463i 0.0752419 + 0.0434409i
\(741\) −589.467 + 199.163i −0.795502 + 0.268776i
\(742\) −73.8901 127.981i −0.0995824 0.172482i
\(743\) 566.081 + 980.480i 0.761885 + 1.31962i 0.941878 + 0.335956i \(0.109059\pi\)
−0.179993 + 0.983668i \(0.557607\pi\)
\(744\) −480.539 + 604.938i −0.645885 + 0.813089i
\(745\) −49.9750 + 86.5592i −0.0670805 + 0.116187i
\(746\) 1217.85 1.63251
\(747\) −255.605 1100.53i −0.342175 1.47326i
\(748\) 90.5333i 0.121034i
\(749\) 65.7340 113.855i 0.0877624 0.152009i
\(750\) −110.316 + 741.487i −0.147089 + 0.988649i
\(751\) −666.191 1153.88i −0.887073 1.53645i −0.843320 0.537412i \(-0.819402\pi\)
−0.0437529 0.999042i \(-0.513931\pi\)
\(752\) 605.504 + 1048.76i 0.805192 + 1.39463i
\(753\) −95.4604 241.873i −0.126774 0.321212i
\(754\) 549.432 + 1072.26i 0.728689 + 1.42210i
\(755\) 696.185i 0.922099i
\(756\) −15.9829 7.58472i −0.0211414 0.0100327i
\(757\) −1211.24 −1.60006 −0.800028 0.599962i \(-0.795182\pi\)
−0.800028 + 0.599962i \(0.795182\pi\)
\(758\) −97.0578 56.0364i −0.128045 0.0739266i
\(759\) −294.000 744.922i −0.387352 0.981452i
\(760\) 546.005 315.236i 0.718427 0.414784i
\(761\) 247.045 + 427.894i 0.324632 + 0.562279i 0.981438 0.191781i \(-0.0614263\pi\)
−0.656806 + 0.754060i \(0.728093\pi\)
\(762\) −9.95555 + 66.9158i −0.0130650 + 0.0878160i
\(763\) 45.6168 79.0106i 0.0597861 0.103553i
\(764\) 2.16957i 0.00283975i
\(765\) −312.674 + 1027.55i −0.408724 + 1.34320i
\(766\) −324.089 −0.423092
\(767\) −983.712 + 504.058i −1.28254 + 0.657182i
\(768\) 151.172 + 120.085i 0.196838 + 0.156361i
\(769\) 301.621 174.141i 0.392225 0.226451i −0.290898 0.956754i \(-0.593954\pi\)
0.683124 + 0.730302i \(0.260621\pi\)
\(770\) −211.244 + 121.962i −0.274343 + 0.158392i
\(771\) −741.077 + 932.922i