Properties

Label 117.3.n.a.38.7
Level $117$
Weight $3$
Character 117.38
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(38,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.38");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 38.7
Character \(\chi\) \(=\) 117.38
Dual form 117.3.n.a.77.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.11386 + 1.92926i) q^{2} +(-2.21197 + 2.02662i) q^{3} +(-0.481371 - 0.833760i) q^{4} +(4.12144 + 7.13855i) q^{5} +(-1.44605 - 6.52485i) q^{6} +(8.40220 + 4.85102i) q^{7} -6.76616 q^{8} +(0.785636 - 8.96564i) q^{9} -18.3629 q^{10} +(-1.25825 + 2.17935i) q^{11} +(2.75449 + 0.868697i) q^{12} +(-3.89742 - 12.4020i) q^{13} +(-18.7178 + 10.8067i) q^{14} +(-23.5836 - 7.43767i) q^{15} +(9.46205 - 16.3887i) q^{16} +16.5653i q^{17} +(16.4220 + 11.5022i) q^{18} -17.7403i q^{19} +(3.96789 - 6.87258i) q^{20} +(-28.4166 + 6.29776i) q^{21} +(-2.80303 - 4.85499i) q^{22} +(34.6120 - 19.9833i) q^{23} +(14.9666 - 13.7124i) q^{24} +(-21.4726 + 37.1916i) q^{25} +(28.2679 + 6.29498i) q^{26} +(16.4321 + 21.4239i) q^{27} -9.34056i q^{28} +(-13.9571 - 8.05814i) q^{29} +(40.6181 - 37.2145i) q^{30} +(3.72176 - 2.14876i) q^{31} +(7.54648 + 13.0709i) q^{32} +(-1.63350 - 7.37066i) q^{33} +(-31.9588 - 18.4514i) q^{34} +79.9727i q^{35} +(-7.85338 + 3.66077i) q^{36} +42.9450i q^{37} +(34.2256 + 19.7602i) q^{38} +(33.7551 + 19.5343i) q^{39} +(-27.8864 - 48.3006i) q^{40} +(8.80660 + 15.2535i) q^{41} +(19.5021 - 61.8379i) q^{42} +(27.9361 - 48.3867i) q^{43} +2.42274 q^{44} +(67.2396 - 31.3431i) q^{45} +89.0343i q^{46} +(-26.3913 + 45.7111i) q^{47} +(12.2840 + 55.4274i) q^{48} +(22.5647 + 39.0832i) q^{49} +(-47.8349 - 82.8525i) q^{50} +(-33.5715 - 36.6419i) q^{51} +(-8.46420 + 9.21949i) q^{52} -15.4783i q^{53} +(-59.6355 + 7.83864i) q^{54} -20.7432 q^{55} +(-56.8507 - 32.8228i) q^{56} +(35.9527 + 39.2410i) q^{57} +(31.0925 - 17.9513i) q^{58} +(-30.0606 - 52.0666i) q^{59} +(5.15125 + 23.2434i) q^{60} +(-14.6963 + 25.4548i) q^{61} +9.57368i q^{62} +(50.0935 - 71.5200i) q^{63} +42.0735 q^{64} +(72.4694 - 78.9361i) q^{65} +(16.0394 + 5.05843i) q^{66} +(80.1222 - 46.2585i) q^{67} +(13.8115 - 7.97405i) q^{68} +(-36.0624 + 114.348i) q^{69} +(-154.288 - 89.0785i) q^{70} -35.3729 q^{71} +(-5.31574 + 60.6630i) q^{72} +59.3591i q^{73} +(-82.8521 - 47.8347i) q^{74} +(-27.8764 - 125.783i) q^{75} +(-14.7911 + 8.53965i) q^{76} +(-21.1441 + 12.2076i) q^{77} +(-75.2854 + 43.3640i) q^{78} +(-33.1363 + 57.3938i) q^{79} +155.989 q^{80} +(-79.7656 - 14.0875i) q^{81} -39.2373 q^{82} +(-20.7644 + 35.9651i) q^{83} +(18.9297 + 20.6611i) q^{84} +(-118.252 + 68.2729i) q^{85} +(62.2337 + 107.792i) q^{86} +(47.2035 - 10.4614i) q^{87} +(8.51352 - 14.7459i) q^{88} -59.0530 q^{89} +(-14.4265 + 164.635i) q^{90} +(27.4155 - 123.111i) q^{91} +(-33.3225 - 19.2387i) q^{92} +(-3.87772 + 12.2956i) q^{93} +(-58.7926 - 101.832i) q^{94} +(126.640 - 73.1155i) q^{95} +(-43.1823 - 13.6186i) q^{96} +(31.2930 + 18.0670i) q^{97} -100.536 q^{98} +(18.5508 + 12.9932i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 4 q^{3} - 50 q^{4} + 4 q^{9} + 8 q^{10} - 38 q^{12} - 6 q^{13} - 6 q^{14} - 90 q^{16} + 14 q^{22} + 138 q^{23} - 92 q^{25} - 76 q^{27} + 48 q^{29} + 186 q^{30} - 154 q^{36} + 324 q^{38} - 2 q^{39}+ \cdots + 504 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.11386 + 1.92926i −0.556930 + 0.964632i 0.440820 + 0.897595i \(0.354688\pi\)
−0.997751 + 0.0670362i \(0.978646\pi\)
\(3\) −2.21197 + 2.02662i −0.737324 + 0.675539i
\(4\) −0.481371 0.833760i −0.120343 0.208440i
\(5\) 4.12144 + 7.13855i 0.824288 + 1.42771i 0.902462 + 0.430770i \(0.141758\pi\)
−0.0781734 + 0.996940i \(0.524909\pi\)
\(6\) −1.44605 6.52485i −0.241009 1.08747i
\(7\) 8.40220 + 4.85102i 1.20031 + 0.693002i 0.960625 0.277847i \(-0.0896210\pi\)
0.239690 + 0.970850i \(0.422954\pi\)
\(8\) −6.76616 −0.845770
\(9\) 0.785636 8.96564i 0.0872929 0.996183i
\(10\) −18.3629 −1.83629
\(11\) −1.25825 + 2.17935i −0.114386 + 0.198123i −0.917534 0.397657i \(-0.869823\pi\)
0.803148 + 0.595780i \(0.203157\pi\)
\(12\) 2.75449 + 0.868697i 0.229541 + 0.0723914i
\(13\) −3.89742 12.4020i −0.299801 0.954002i
\(14\) −18.7178 + 10.8067i −1.33698 + 0.771908i
\(15\) −23.5836 7.43767i −1.57224 0.495845i
\(16\) 9.46205 16.3887i 0.591378 1.02430i
\(17\) 16.5653i 0.974428i 0.873282 + 0.487214i \(0.161987\pi\)
−0.873282 + 0.487214i \(0.838013\pi\)
\(18\) 16.4220 + 11.5022i 0.912333 + 0.639010i
\(19\) 17.7403i 0.933698i −0.884337 0.466849i \(-0.845389\pi\)
0.884337 0.466849i \(-0.154611\pi\)
\(20\) 3.96789 6.87258i 0.198394 0.343629i
\(21\) −28.4166 + 6.29776i −1.35317 + 0.299893i
\(22\) −2.80303 4.85499i −0.127410 0.220681i
\(23\) 34.6120 19.9833i 1.50487 0.868837i 0.504886 0.863186i \(-0.331534\pi\)
0.999984 0.00565132i \(-0.00179888\pi\)
\(24\) 14.9666 13.7124i 0.623607 0.571351i
\(25\) −21.4726 + 37.1916i −0.858903 + 1.48766i
\(26\) 28.2679 + 6.29498i 1.08723 + 0.242115i
\(27\) 16.4321 + 21.4239i 0.608598 + 0.793479i
\(28\) 9.34056i 0.333591i
\(29\) −13.9571 8.05814i −0.481280 0.277867i 0.239670 0.970854i \(-0.422961\pi\)
−0.720950 + 0.692988i \(0.756294\pi\)
\(30\) 40.6181 37.2145i 1.35394 1.24048i
\(31\) 3.72176 2.14876i 0.120057 0.0693149i −0.438769 0.898600i \(-0.644585\pi\)
0.558826 + 0.829285i \(0.311252\pi\)
\(32\) 7.54648 + 13.0709i 0.235828 + 0.408465i
\(33\) −1.63350 7.37066i −0.0495001 0.223353i
\(34\) −31.9588 18.4514i −0.939965 0.542689i
\(35\) 79.9727i 2.28493i
\(36\) −7.85338 + 3.66077i −0.218149 + 0.101688i
\(37\) 42.9450i 1.16067i 0.814376 + 0.580337i \(0.197079\pi\)
−0.814376 + 0.580337i \(0.802921\pi\)
\(38\) 34.2256 + 19.7602i 0.900675 + 0.520005i
\(39\) 33.7551 + 19.5343i 0.865516 + 0.500880i
\(40\) −27.8864 48.3006i −0.697159 1.20751i
\(41\) 8.80660 + 15.2535i 0.214795 + 0.372036i 0.953209 0.302312i \(-0.0977583\pi\)
−0.738414 + 0.674348i \(0.764425\pi\)
\(42\) 19.5021 61.8379i 0.464336 1.47233i
\(43\) 27.9361 48.3867i 0.649676 1.12527i −0.333525 0.942741i \(-0.608238\pi\)
0.983200 0.182530i \(-0.0584286\pi\)
\(44\) 2.42274 0.0550623
\(45\) 67.2396 31.3431i 1.49421 0.696513i
\(46\) 89.0343i 1.93553i
\(47\) −26.3913 + 45.7111i −0.561518 + 0.972578i 0.435846 + 0.900021i \(0.356449\pi\)
−0.997364 + 0.0725565i \(0.976884\pi\)
\(48\) 12.2840 + 55.4274i 0.255916 + 1.15474i
\(49\) 22.5647 + 39.0832i 0.460504 + 0.797616i
\(50\) −47.8349 82.8525i −0.956698 1.65705i
\(51\) −33.5715 36.6419i −0.658265 0.718469i
\(52\) −8.46420 + 9.21949i −0.162773 + 0.177298i
\(53\) 15.4783i 0.292043i −0.989281 0.146021i \(-0.953353\pi\)
0.989281 0.146021i \(-0.0466468\pi\)
\(54\) −59.6355 + 7.83864i −1.10436 + 0.145160i
\(55\) −20.7432 −0.377149
\(56\) −56.8507 32.8228i −1.01519 0.586121i
\(57\) 35.9527 + 39.2410i 0.630750 + 0.688438i
\(58\) 31.0925 17.9513i 0.536078 0.309505i
\(59\) −30.0606 52.0666i −0.509502 0.882484i −0.999939 0.0110074i \(-0.996496\pi\)
0.490437 0.871477i \(-0.336837\pi\)
\(60\) 5.15125 + 23.2434i 0.0858542 + 0.387389i
\(61\) −14.6963 + 25.4548i −0.240923 + 0.417291i −0.960978 0.276626i \(-0.910784\pi\)
0.720054 + 0.693918i \(0.244117\pi\)
\(62\) 9.57368i 0.154414i
\(63\) 50.0935 71.5200i 0.795136 1.13524i
\(64\) 42.0735 0.657398
\(65\) 72.4694 78.9361i 1.11491 1.21440i
\(66\) 16.0394 + 5.05843i 0.243022 + 0.0766428i
\(67\) 80.1222 46.2585i 1.19585 0.690426i 0.236225 0.971698i \(-0.424090\pi\)
0.959628 + 0.281272i \(0.0907564\pi\)
\(68\) 13.8115 7.97405i 0.203110 0.117265i
\(69\) −36.0624 + 114.348i −0.522643 + 1.65721i
\(70\) −154.288 89.0785i −2.20412 1.27255i
\(71\) −35.3729 −0.498209 −0.249105 0.968477i \(-0.580136\pi\)
−0.249105 + 0.968477i \(0.580136\pi\)
\(72\) −5.31574 + 60.6630i −0.0738297 + 0.842542i
\(73\) 59.3591i 0.813138i 0.913620 + 0.406569i \(0.133275\pi\)
−0.913620 + 0.406569i \(0.866725\pi\)
\(74\) −82.8521 47.8347i −1.11962 0.646415i
\(75\) −27.8764 125.783i −0.371686 1.67711i
\(76\) −14.7911 + 8.53965i −0.194620 + 0.112364i
\(77\) −21.1441 + 12.2076i −0.274599 + 0.158540i
\(78\) −75.2854 + 43.3640i −0.965198 + 0.555949i
\(79\) −33.1363 + 57.3938i −0.419447 + 0.726504i −0.995884 0.0906378i \(-0.971109\pi\)
0.576437 + 0.817142i \(0.304443\pi\)
\(80\) 155.989 1.94986
\(81\) −79.7656 14.0875i −0.984760 0.173919i
\(82\) −39.2373 −0.478504
\(83\) −20.7644 + 35.9651i −0.250174 + 0.433314i −0.963574 0.267443i \(-0.913821\pi\)
0.713400 + 0.700757i \(0.247154\pi\)
\(84\) 18.9297 + 20.6611i 0.225354 + 0.245965i
\(85\) −118.252 + 68.2729i −1.39120 + 0.803210i
\(86\) 62.2337 + 107.792i 0.723648 + 1.25340i
\(87\) 47.2035 10.4614i 0.542569 0.120245i
\(88\) 8.51352 14.7459i 0.0967446 0.167566i
\(89\) −59.0530 −0.663517 −0.331758 0.943364i \(-0.607642\pi\)
−0.331758 + 0.943364i \(0.607642\pi\)
\(90\) −14.4265 + 164.635i −0.160295 + 1.82928i
\(91\) 27.4155 123.111i 0.301269 1.35287i
\(92\) −33.3225 19.2387i −0.362201 0.209117i
\(93\) −3.87772 + 12.2956i −0.0416959 + 0.132211i
\(94\) −58.7926 101.832i −0.625453 1.08332i
\(95\) 126.640 73.1155i 1.33305 0.769636i
\(96\) −43.1823 13.6186i −0.449816 0.141860i
\(97\) 31.2930 + 18.0670i 0.322608 + 0.186258i 0.652554 0.757742i \(-0.273697\pi\)
−0.329946 + 0.944000i \(0.607031\pi\)
\(98\) −100.536 −1.02587
\(99\) 18.5508 + 12.9932i 0.187381 + 0.131244i
\(100\) 41.3451 0.413451
\(101\) −53.6919 30.9990i −0.531603 0.306921i 0.210066 0.977687i \(-0.432632\pi\)
−0.741669 + 0.670766i \(0.765965\pi\)
\(102\) 108.086 23.9543i 1.05967 0.234846i
\(103\) 67.7211 + 117.296i 0.657487 + 1.13880i 0.981264 + 0.192667i \(0.0617137\pi\)
−0.323778 + 0.946133i \(0.604953\pi\)
\(104\) 26.3706 + 83.9141i 0.253563 + 0.806866i
\(105\) −162.074 176.897i −1.54356 1.68474i
\(106\) 29.8616 + 17.2406i 0.281714 + 0.162647i
\(107\) 128.009i 1.19635i −0.801366 0.598174i \(-0.795893\pi\)
0.801366 0.598174i \(-0.204107\pi\)
\(108\) 9.95245 24.0133i 0.0921523 0.222346i
\(109\) 4.07076i 0.0373464i −0.999826 0.0186732i \(-0.994056\pi\)
0.999826 0.0186732i \(-0.00594421\pi\)
\(110\) 23.1050 40.0191i 0.210046 0.363810i
\(111\) −87.0330 94.9930i −0.784081 0.855793i
\(112\) 159.004 91.8011i 1.41968 0.819653i
\(113\) 52.9530 30.5724i 0.468611 0.270553i −0.247047 0.969003i \(-0.579460\pi\)
0.715658 + 0.698451i \(0.246127\pi\)
\(114\) −115.752 + 25.6533i −1.01537 + 0.225029i
\(115\) 285.303 + 164.720i 2.48089 + 1.43234i
\(116\) 15.5158i 0.133757i
\(117\) −114.254 + 25.1994i −0.976530 + 0.215379i
\(118\) 133.933 1.13503
\(119\) −80.3584 + 139.185i −0.675281 + 1.16962i
\(120\) 159.571 + 50.3245i 1.32976 + 0.419371i
\(121\) 57.3336 + 99.3047i 0.473832 + 0.820700i
\(122\) −32.7393 56.7061i −0.268355 0.464804i
\(123\) −50.3929 15.8926i −0.409699 0.129208i
\(124\) −3.58310 2.06870i −0.0288960 0.0166831i
\(125\) −147.920 −1.18336
\(126\) 82.1838 + 176.307i 0.652252 + 1.39926i
\(127\) −6.65115 −0.0523713 −0.0261856 0.999657i \(-0.508336\pi\)
−0.0261856 + 0.999657i \(0.508336\pi\)
\(128\) −77.0499 + 133.454i −0.601952 + 1.04261i
\(129\) 36.2675 + 163.646i 0.281144 + 1.26857i
\(130\) 71.5677 + 227.736i 0.550521 + 1.75182i
\(131\) 209.484 120.946i 1.59912 0.923250i 0.607458 0.794352i \(-0.292189\pi\)
0.991658 0.128898i \(-0.0411441\pi\)
\(132\) −5.35903 + 4.90997i −0.0405987 + 0.0371968i
\(133\) 86.0583 149.057i 0.647055 1.12073i
\(134\) 206.102i 1.53808i
\(135\) −85.2117 + 205.599i −0.631198 + 1.52296i
\(136\) 112.083i 0.824143i
\(137\) 49.1509 85.1319i 0.358766 0.621401i −0.628989 0.777414i \(-0.716531\pi\)
0.987755 + 0.156013i \(0.0498643\pi\)
\(138\) −180.438 196.941i −1.30753 1.42711i
\(139\) −48.1124 83.3331i −0.346132 0.599518i 0.639427 0.768852i \(-0.279172\pi\)
−0.985559 + 0.169334i \(0.945838\pi\)
\(140\) 66.6780 38.4966i 0.476272 0.274976i
\(141\) −34.2622 154.597i −0.242994 1.09643i
\(142\) 39.4004 68.2436i 0.277468 0.480589i
\(143\) 31.9323 + 7.11099i 0.223303 + 0.0497272i
\(144\) −139.502 97.7090i −0.968764 0.678534i
\(145\) 132.845i 0.916170i
\(146\) −114.519 66.1177i −0.784379 0.452861i
\(147\) −129.119 40.7209i −0.878362 0.277013i
\(148\) 35.8058 20.6725i 0.241931 0.139679i
\(149\) −39.9891 69.2632i −0.268383 0.464854i 0.700061 0.714083i \(-0.253156\pi\)
−0.968445 + 0.249229i \(0.919823\pi\)
\(150\) 273.720 + 86.3242i 1.82480 + 0.575495i
\(151\) 8.07717 + 4.66336i 0.0534912 + 0.0308832i 0.526507 0.850171i \(-0.323501\pi\)
−0.473016 + 0.881054i \(0.656835\pi\)
\(152\) 120.033i 0.789694i
\(153\) 148.518 + 13.0143i 0.970709 + 0.0850607i
\(154\) 54.3901i 0.353183i
\(155\) 30.6781 + 17.7120i 0.197923 + 0.114271i
\(156\) 0.0381841 37.5469i 0.000244770 0.240686i
\(157\) 11.1187 + 19.2582i 0.0708199 + 0.122664i 0.899261 0.437413i \(-0.144105\pi\)
−0.828441 + 0.560076i \(0.810772\pi\)
\(158\) −73.8185 127.857i −0.467206 0.809224i
\(159\) 31.3685 + 34.2375i 0.197286 + 0.215330i
\(160\) −62.2048 + 107.742i −0.388780 + 0.673387i
\(161\) 387.756 2.40842
\(162\) 116.026 138.197i 0.716211 0.853070i
\(163\) 188.492i 1.15639i −0.815898 0.578196i \(-0.803757\pi\)
0.815898 0.578196i \(-0.196243\pi\)
\(164\) 8.47849 14.6852i 0.0516981 0.0895437i
\(165\) 45.8834 42.0386i 0.278081 0.254779i
\(166\) −46.2574 80.1201i −0.278659 0.482651i
\(167\) 51.5486 + 89.2848i 0.308674 + 0.534640i 0.978073 0.208264i \(-0.0667814\pi\)
−0.669398 + 0.742904i \(0.733448\pi\)
\(168\) 192.271 42.6116i 1.14447 0.253641i
\(169\) −138.620 + 96.6717i −0.820238 + 0.572022i
\(170\) 304.186i 1.78933i
\(171\) −159.053 13.9374i −0.930134 0.0815052i
\(172\) −53.7905 −0.312735
\(173\) −238.877 137.916i −1.38079 0.797202i −0.388540 0.921432i \(-0.627021\pi\)
−0.992253 + 0.124230i \(0.960354\pi\)
\(174\) −32.3954 + 102.720i −0.186181 + 0.590348i
\(175\) −360.834 + 208.328i −2.06191 + 1.19044i
\(176\) 23.8112 + 41.2423i 0.135291 + 0.234331i
\(177\) 172.012 + 54.2483i 0.971821 + 0.306488i
\(178\) 65.7768 113.929i 0.369533 0.640049i
\(179\) 11.8276i 0.0660761i −0.999454 0.0330381i \(-0.989482\pi\)
0.999454 0.0330381i \(-0.0105183\pi\)
\(180\) −58.4998 40.9740i −0.324999 0.227633i
\(181\) −64.9356 −0.358760 −0.179380 0.983780i \(-0.557409\pi\)
−0.179380 + 0.983780i \(0.557409\pi\)
\(182\) 206.976 + 190.020i 1.13723 + 1.04407i
\(183\) −19.0793 86.0891i −0.104258 0.470432i
\(184\) −234.191 + 135.210i −1.27277 + 0.734837i
\(185\) −306.565 + 176.995i −1.65711 + 0.956731i
\(186\) −19.4022 21.1767i −0.104313 0.113853i
\(187\) −36.1016 20.8433i −0.193057 0.111461i
\(188\) 50.8161 0.270299
\(189\) 34.1383 + 259.721i 0.180626 + 1.37418i
\(190\) 325.762i 1.71454i
\(191\) 125.020 + 72.1804i 0.654555 + 0.377908i 0.790199 0.612850i \(-0.209977\pi\)
−0.135644 + 0.990758i \(0.543310\pi\)
\(192\) −93.0653 + 85.2669i −0.484715 + 0.444098i
\(193\) −86.2173 + 49.7776i −0.446722 + 0.257915i −0.706445 0.707768i \(-0.749702\pi\)
0.259723 + 0.965683i \(0.416369\pi\)
\(194\) −69.7120 + 40.2483i −0.359340 + 0.207465i
\(195\) −0.326928 + 321.472i −0.00167655 + 1.64858i
\(196\) 21.7240 37.6271i 0.110837 0.191975i
\(197\) −253.468 −1.28664 −0.643320 0.765598i \(-0.722443\pi\)
−0.643320 + 0.765598i \(0.722443\pi\)
\(198\) −45.7303 + 21.3167i −0.230961 + 0.107660i
\(199\) 102.868 0.516924 0.258462 0.966021i \(-0.416784\pi\)
0.258462 + 0.966021i \(0.416784\pi\)
\(200\) 145.287 251.644i 0.726435 1.25822i
\(201\) −83.4795 + 264.700i −0.415321 + 1.31691i
\(202\) 119.611 69.0572i 0.592132 0.341868i
\(203\) −78.1803 135.412i −0.385125 0.667056i
\(204\) −14.3902 + 45.6289i −0.0705402 + 0.223671i
\(205\) −72.5918 + 125.733i −0.354106 + 0.613330i
\(206\) −301.728 −1.46470
\(207\) −151.970 326.019i −0.734156 1.57497i
\(208\) −240.131 53.4747i −1.15448 0.257090i
\(209\) 38.6623 + 22.3217i 0.184987 + 0.106802i
\(210\) 521.810 115.645i 2.48481 0.550689i
\(211\) −93.5578 162.047i −0.443402 0.767995i 0.554537 0.832159i \(-0.312895\pi\)
−0.997939 + 0.0641641i \(0.979562\pi\)
\(212\) −12.9052 + 7.45079i −0.0608734 + 0.0351453i
\(213\) 78.2438 71.6873i 0.367342 0.336560i
\(214\) 246.964 + 142.584i 1.15404 + 0.666282i
\(215\) 460.547 2.14208
\(216\) −111.183 144.958i −0.514734 0.671101i
\(217\) 41.6947 0.192141
\(218\) 7.85356 + 4.53426i 0.0360255 + 0.0207993i
\(219\) −120.298 131.301i −0.549307 0.599546i
\(220\) 9.98519 + 17.2949i 0.0453872 + 0.0786130i
\(221\) 205.443 64.5618i 0.929606 0.292135i
\(222\) 280.209 62.1007i 1.26220 0.279733i
\(223\) −4.74479 2.73941i −0.0212771 0.0122843i 0.489324 0.872102i \(-0.337244\pi\)
−0.510601 + 0.859818i \(0.670577\pi\)
\(224\) 146.432i 0.653716i
\(225\) 316.577 + 221.734i 1.40701 + 0.985487i
\(226\) 136.214i 0.602716i
\(227\) 124.695 215.978i 0.549316 0.951443i −0.449005 0.893529i \(-0.648222\pi\)
0.998322 0.0579144i \(-0.0184451\pi\)
\(228\) 15.4109 48.8654i 0.0675917 0.214322i
\(229\) 281.595 162.579i 1.22967 0.709951i 0.262710 0.964875i \(-0.415384\pi\)
0.966961 + 0.254924i \(0.0820505\pi\)
\(230\) −635.575 + 366.950i −2.76337 + 1.59543i
\(231\) 22.0301 69.8539i 0.0953686 0.302398i
\(232\) 94.4361 + 54.5227i 0.407052 + 0.235012i
\(233\) 200.026i 0.858481i 0.903190 + 0.429241i \(0.141219\pi\)
−0.903190 + 0.429241i \(0.858781\pi\)
\(234\) 78.6468 248.495i 0.336098 1.06194i
\(235\) −435.082 −1.85141
\(236\) −28.9407 + 50.1267i −0.122630 + 0.212401i
\(237\) −43.0187 194.108i −0.181514 0.819022i
\(238\) −179.016 310.065i −0.752169 1.30279i
\(239\) −80.9113 140.143i −0.338541 0.586370i 0.645617 0.763661i \(-0.276600\pi\)
−0.984159 + 0.177291i \(0.943267\pi\)
\(240\) −345.044 + 316.130i −1.43768 + 1.31721i
\(241\) −340.380 196.518i −1.41237 0.815429i −0.416754 0.909019i \(-0.636832\pi\)
−0.995611 + 0.0935898i \(0.970166\pi\)
\(242\) −255.447 −1.05556
\(243\) 204.989 130.493i 0.843576 0.537009i
\(244\) 28.2976 0.115974
\(245\) −185.998 + 322.158i −0.759176 + 1.31493i
\(246\) 86.7918 79.5190i 0.352812 0.323248i
\(247\) −220.015 + 69.1412i −0.890749 + 0.279924i
\(248\) −25.1821 + 14.5389i −0.101541 + 0.0586245i
\(249\) −26.9571 121.635i −0.108261 0.488495i
\(250\) 164.762 285.376i 0.659048 1.14150i
\(251\) 242.343i 0.965510i 0.875755 + 0.482755i \(0.160364\pi\)
−0.875755 + 0.482755i \(0.839636\pi\)
\(252\) −83.7441 7.33828i −0.332318 0.0291202i
\(253\) 100.576i 0.397532i
\(254\) 7.40846 12.8318i 0.0291672 0.0505190i
\(255\) 123.207 390.669i 0.483165 1.53204i
\(256\) −87.4988 151.552i −0.341792 0.592001i
\(257\) 399.900 230.882i 1.55603 0.898375i 0.558401 0.829571i \(-0.311415\pi\)
0.997630 0.0688039i \(-0.0219183\pi\)
\(258\) −356.112 112.309i −1.38028 0.435305i
\(259\) −208.327 + 360.832i −0.804350 + 1.39317i
\(260\) −100.698 22.4245i −0.387302 0.0862481i
\(261\) −83.2116 + 118.804i −0.318818 + 0.455187i
\(262\) 538.867i 2.05674i
\(263\) −2.21094 1.27649i −0.00840661 0.00485356i 0.495791 0.868442i \(-0.334878\pi\)
−0.504197 + 0.863588i \(0.668212\pi\)
\(264\) 11.0525 + 49.8711i 0.0418657 + 0.188906i
\(265\) 110.492 63.7928i 0.416952 0.240727i
\(266\) 191.714 + 332.058i 0.720729 + 1.24834i
\(267\) 130.624 119.678i 0.489227 0.448232i
\(268\) −77.1370 44.5351i −0.287825 0.166176i
\(269\) 117.561i 0.437030i −0.975834 0.218515i \(-0.929879\pi\)
0.975834 0.218515i \(-0.0701212\pi\)
\(270\) −301.741 393.404i −1.11756 1.45705i
\(271\) 357.409i 1.31885i −0.751770 0.659426i \(-0.770799\pi\)
0.751770 0.659426i \(-0.229201\pi\)
\(272\) 271.484 + 156.742i 0.998104 + 0.576256i
\(273\) 188.856 + 327.878i 0.691781 + 1.20102i
\(274\) 109.495 + 189.650i 0.399615 + 0.692154i
\(275\) −54.0357 93.5926i −0.196493 0.340337i
\(276\) 112.698 24.9764i 0.408326 0.0904942i
\(277\) 80.0519 138.654i 0.288996 0.500556i −0.684574 0.728943i \(-0.740012\pi\)
0.973570 + 0.228387i \(0.0733452\pi\)
\(278\) 214.362 0.771086
\(279\) −16.3411 35.0562i −0.0585702 0.125649i
\(280\) 541.108i 1.93253i
\(281\) 146.306 253.410i 0.520662 0.901813i −0.479049 0.877788i \(-0.659018\pi\)
0.999711 0.0240253i \(-0.00764823\pi\)
\(282\) 336.421 + 106.099i 1.19298 + 0.376237i
\(283\) 168.912 + 292.563i 0.596860 + 1.03379i 0.993281 + 0.115724i \(0.0369187\pi\)
−0.396421 + 0.918069i \(0.629748\pi\)
\(284\) 17.0275 + 29.4925i 0.0599559 + 0.103847i
\(285\) −131.946 + 418.380i −0.462969 + 1.46800i
\(286\) −49.2871 + 53.6851i −0.172333 + 0.187710i
\(287\) 170.884i 0.595414i
\(288\) 123.118 57.3901i 0.427492 0.199271i
\(289\) 14.5914 0.0504893
\(290\) 256.292 + 147.970i 0.883766 + 0.510243i
\(291\) −105.834 + 23.4552i −0.363691 + 0.0806021i
\(292\) 49.4912 28.5738i 0.169490 0.0978554i
\(293\) 190.025 + 329.134i 0.648551 + 1.12332i 0.983469 + 0.181076i \(0.0579581\pi\)
−0.334918 + 0.942247i \(0.608709\pi\)
\(294\) 222.382 203.748i 0.756402 0.693019i
\(295\) 247.786 429.179i 0.839954 1.45484i
\(296\) 290.573i 0.981664i
\(297\) −67.3660 + 8.85475i −0.226822 + 0.0298140i
\(298\) 178.169 0.597883
\(299\) −382.730 351.376i −1.28003 1.17517i
\(300\) −91.4542 + 83.7908i −0.304847 + 0.279303i
\(301\) 469.449 271.036i 1.55963 0.900453i
\(302\) −17.9937 + 10.3887i −0.0595817 + 0.0343995i
\(303\) 181.588 40.2440i 0.599301 0.132819i
\(304\) −290.741 167.859i −0.956384 0.552168i
\(305\) −242.280 −0.794361
\(306\) −190.537 + 272.035i −0.622669 + 0.889004i
\(307\) 550.690i 1.79378i 0.442254 + 0.896890i \(0.354179\pi\)
−0.442254 + 0.896890i \(0.645821\pi\)
\(308\) 20.3564 + 11.7528i 0.0660921 + 0.0381583i
\(309\) −387.512 122.211i −1.25409 0.395506i
\(310\) −68.3422 + 39.4574i −0.220459 + 0.127282i
\(311\) 60.5024 34.9311i 0.194541 0.112319i −0.399565 0.916705i \(-0.630839\pi\)
0.594107 + 0.804386i \(0.297506\pi\)
\(312\) −228.393 132.173i −0.732028 0.423630i
\(313\) 104.282 180.622i 0.333170 0.577067i −0.649962 0.759967i \(-0.725215\pi\)
0.983132 + 0.182900i \(0.0585484\pi\)
\(314\) −49.5389 −0.157767
\(315\) 717.007 + 62.8294i 2.27621 + 0.199459i
\(316\) 63.8035 0.201910
\(317\) −15.9654 + 27.6529i −0.0503640 + 0.0872330i −0.890108 0.455749i \(-0.849371\pi\)
0.839744 + 0.542982i \(0.182705\pi\)
\(318\) −100.993 + 22.3824i −0.317589 + 0.0703848i
\(319\) 35.1230 20.2783i 0.110104 0.0635683i
\(320\) 173.403 + 300.343i 0.541886 + 0.938573i
\(321\) 259.426 + 283.153i 0.808180 + 0.882096i
\(322\) −431.907 + 748.084i −1.34132 + 2.32324i
\(323\) 293.872 0.909822
\(324\) 26.6513 + 73.2866i 0.0822571 + 0.226193i
\(325\) 544.938 + 121.352i 1.67673 + 0.373391i
\(326\) 363.650 + 209.954i 1.11549 + 0.644030i
\(327\) 8.24987 + 9.00440i 0.0252290 + 0.0275364i
\(328\) −59.5869 103.208i −0.181667 0.314657i
\(329\) −443.491 + 256.050i −1.34800 + 0.778266i
\(330\) 29.9958 + 135.346i 0.0908963 + 0.410140i
\(331\) −195.507 112.876i −0.590654 0.341014i 0.174702 0.984621i \(-0.444104\pi\)
−0.765356 + 0.643607i \(0.777437\pi\)
\(332\) 39.9816 0.120427
\(333\) 385.029 + 33.7391i 1.15624 + 0.101319i
\(334\) −229.672 −0.687640
\(335\) 660.438 + 381.304i 1.97146 + 1.13822i
\(336\) −165.667 + 525.302i −0.493056 + 1.56340i
\(337\) −145.643 252.261i −0.432176 0.748550i 0.564885 0.825170i \(-0.308921\pi\)
−0.997060 + 0.0766195i \(0.975587\pi\)
\(338\) −32.1016 375.114i −0.0949750 1.10980i
\(339\) −55.1719 + 174.941i −0.162749 + 0.516050i
\(340\) 113.846 + 65.7292i 0.334842 + 0.193321i
\(341\) 10.8147i 0.0317147i
\(342\) 204.052 291.331i 0.596642 0.851844i
\(343\) 37.5528i 0.109483i
\(344\) −189.020 + 327.392i −0.549476 + 0.951721i
\(345\) −964.906 + 213.845i −2.79683 + 0.619840i
\(346\) 532.152 307.238i 1.53801 0.887972i
\(347\) −271.558 + 156.784i −0.782587 + 0.451827i −0.837346 0.546673i \(-0.815894\pi\)
0.0547595 + 0.998500i \(0.482561\pi\)
\(348\) −31.4447 34.3206i −0.0903582 0.0986224i
\(349\) 557.188 + 321.693i 1.59653 + 0.921755i 0.992150 + 0.125057i \(0.0399114\pi\)
0.604377 + 0.796698i \(0.293422\pi\)
\(350\) 928.191i 2.65198i
\(351\) 201.657 287.290i 0.574522 0.818489i
\(352\) −37.9814 −0.107902
\(353\) −169.330 + 293.288i −0.479688 + 0.830844i −0.999729 0.0232976i \(-0.992583\pi\)
0.520041 + 0.854142i \(0.325917\pi\)
\(354\) −296.257 + 271.432i −0.836884 + 0.766757i
\(355\) −145.787 252.511i −0.410668 0.711298i
\(356\) 28.4264 + 49.2360i 0.0798495 + 0.138303i
\(357\) −104.324 470.729i −0.292224 1.31857i
\(358\) 22.8186 + 13.1743i 0.0637391 + 0.0367998i
\(359\) −145.561 −0.405462 −0.202731 0.979235i \(-0.564982\pi\)
−0.202731 + 0.979235i \(0.564982\pi\)
\(360\) −454.954 + 212.072i −1.26376 + 0.589090i
\(361\) 46.2831 0.128208
\(362\) 72.3292 125.278i 0.199804 0.346071i
\(363\) −328.073 103.466i −0.903783 0.285030i
\(364\) −115.842 + 36.4041i −0.318247 + 0.100011i
\(365\) −423.738 + 244.645i −1.16092 + 0.670260i
\(366\) 187.340 + 59.0823i 0.511858 + 0.161427i
\(367\) −212.079 + 367.332i −0.577872 + 1.00090i 0.417851 + 0.908516i \(0.362784\pi\)
−0.995723 + 0.0923886i \(0.970550\pi\)
\(368\) 756.330i 2.05525i
\(369\) 143.676 66.9732i 0.389366 0.181499i
\(370\) 788.592i 2.13133i
\(371\) 75.0853 130.052i 0.202386 0.350543i
\(372\) 12.1182 2.68566i 0.0325758 0.00721953i
\(373\) −11.0395 19.1209i −0.0295964 0.0512625i 0.850848 0.525412i \(-0.176089\pi\)
−0.880444 + 0.474150i \(0.842756\pi\)
\(374\) 80.4243 46.4330i 0.215038 0.124152i
\(375\) 327.194 299.777i 0.872518 0.799405i
\(376\) 178.568 309.289i 0.474915 0.822577i
\(377\) −45.5405 + 204.502i −0.120797 + 0.542446i
\(378\) −539.095 223.431i −1.42618 0.591087i
\(379\) 439.406i 1.15938i 0.814836 + 0.579692i \(0.196827\pi\)
−0.814836 + 0.579692i \(0.803173\pi\)
\(380\) −121.921 70.3914i −0.320846 0.185240i
\(381\) 14.7122 13.4794i 0.0386146 0.0353789i
\(382\) −278.510 + 160.798i −0.729083 + 0.420936i
\(383\) −92.9716 161.031i −0.242746 0.420448i 0.718750 0.695269i \(-0.244715\pi\)
−0.961495 + 0.274821i \(0.911381\pi\)
\(384\) −100.029 451.348i −0.260492 1.17539i
\(385\) −174.289 100.626i −0.452698 0.261365i
\(386\) 221.781i 0.574562i
\(387\) −411.870 288.479i −1.06426 0.745424i
\(388\) 34.7878i 0.0896592i
\(389\) −122.735 70.8611i −0.315514 0.182162i 0.333877 0.942617i \(-0.391643\pi\)
−0.649391 + 0.760454i \(0.724976\pi\)
\(390\) −619.841 358.706i −1.58933 0.919759i
\(391\) 331.028 + 573.358i 0.846620 + 1.46639i
\(392\) −152.676 264.443i −0.389481 0.674600i
\(393\) −218.262 + 692.073i −0.555374 + 1.76100i
\(394\) 282.328 489.006i 0.716568 1.24113i
\(395\) −546.278 −1.38298
\(396\) 1.90339 21.7214i 0.00480655 0.0548521i
\(397\) 128.836i 0.324523i 0.986748 + 0.162261i \(0.0518788\pi\)
−0.986748 + 0.162261i \(0.948121\pi\)
\(398\) −114.581 + 198.459i −0.287891 + 0.498641i
\(399\) 111.724 + 504.118i 0.280010 + 1.26345i
\(400\) 406.349 + 703.817i 1.01587 + 1.75954i
\(401\) 191.622 + 331.899i 0.477861 + 0.827679i 0.999678 0.0253783i \(-0.00807902\pi\)
−0.521817 + 0.853057i \(0.674746\pi\)
\(402\) −417.691 455.892i −1.03903 1.13406i
\(403\) −41.1543 37.7828i −0.102120 0.0937538i
\(404\) 59.6882i 0.147743i
\(405\) −228.185 627.471i −0.563420 1.54931i
\(406\) 348.328 0.857951
\(407\) −93.5922 54.0355i −0.229956 0.132765i
\(408\) 227.150 + 247.925i 0.556741 + 0.607660i
\(409\) −90.3177 + 52.1449i −0.220826 + 0.127494i −0.606332 0.795211i \(-0.707360\pi\)
0.385507 + 0.922705i \(0.374027\pi\)
\(410\) −161.714 280.097i −0.394425 0.683164i
\(411\) 63.8094 + 287.919i 0.155254 + 0.700534i
\(412\) 65.1980 112.926i 0.158248 0.274093i
\(413\) 583.299i 1.41235i
\(414\) 798.249 + 69.9485i 1.92814 + 0.168958i
\(415\) −342.318 −0.824862
\(416\) 132.694 144.534i 0.318975 0.347438i
\(417\) 275.307 + 86.8249i 0.660210 + 0.208213i
\(418\) −86.1288 + 49.7265i −0.206050 + 0.118963i
\(419\) 91.9581 53.0920i 0.219470 0.126711i −0.386235 0.922401i \(-0.626224\pi\)
0.605705 + 0.795689i \(0.292891\pi\)
\(420\) −69.4720 + 220.284i −0.165410 + 0.524486i
\(421\) −220.358 127.224i −0.523416 0.302194i 0.214915 0.976633i \(-0.431052\pi\)
−0.738331 + 0.674439i \(0.764386\pi\)
\(422\) 416.842 0.987776
\(423\) 389.096 + 272.528i 0.919848 + 0.644274i
\(424\) 104.728i 0.247001i
\(425\) −616.089 355.699i −1.44962 0.836939i
\(426\) 51.1510 + 230.803i 0.120073 + 0.541790i
\(427\) −246.963 + 142.584i −0.578368 + 0.333921i
\(428\) −106.729 + 61.6200i −0.249367 + 0.143972i
\(429\) −85.0446 + 48.9853i −0.198239 + 0.114185i
\(430\) −512.986 + 888.517i −1.19299 + 2.06632i
\(431\) −51.7831 −0.120146 −0.0600732 0.998194i \(-0.519133\pi\)
−0.0600732 + 0.998194i \(0.519133\pi\)
\(432\) 506.593 66.5878i 1.17267 0.154139i
\(433\) −238.438 −0.550664 −0.275332 0.961349i \(-0.588788\pi\)
−0.275332 + 0.961349i \(0.588788\pi\)
\(434\) −46.4421 + 80.4400i −0.107009 + 0.185346i
\(435\) 269.225 + 293.849i 0.618909 + 0.675514i
\(436\) −3.39403 + 1.95955i −0.00778448 + 0.00449437i
\(437\) −354.508 614.026i −0.811232 1.40509i
\(438\) 387.309 85.8363i 0.884267 0.195973i
\(439\) 236.614 409.827i 0.538983 0.933546i −0.459976 0.887931i \(-0.652142\pi\)
0.998959 0.0456148i \(-0.0145247\pi\)
\(440\) 140.352 0.318982
\(441\) 368.134 171.602i 0.834770 0.389120i
\(442\) −104.278 + 468.267i −0.235923 + 1.05943i
\(443\) 63.2547 + 36.5201i 0.142787 + 0.0824381i 0.569692 0.821859i \(-0.307063\pi\)
−0.426905 + 0.904297i \(0.640396\pi\)
\(444\) −37.3061 + 118.292i −0.0840228 + 0.266422i
\(445\) −243.384 421.553i −0.546929 0.947309i
\(446\) 10.5701 6.10264i 0.0236997 0.0136830i
\(447\) 228.825 + 72.1655i 0.511912 + 0.161444i
\(448\) 353.510 + 204.099i 0.789085 + 0.455578i
\(449\) −20.6872 −0.0460740 −0.0230370 0.999735i \(-0.507334\pi\)
−0.0230370 + 0.999735i \(0.507334\pi\)
\(450\) −780.407 + 363.779i −1.73424 + 0.808398i
\(451\) −44.3236 −0.0982785
\(452\) −50.9801 29.4334i −0.112788 0.0651181i
\(453\) −27.3173 + 6.05413i −0.0603031 + 0.0133645i
\(454\) 277.785 + 481.138i 0.611862 + 1.05978i
\(455\) 991.823 311.687i 2.17983 0.685027i
\(456\) −243.262 265.511i −0.533470 0.582260i
\(457\) −606.146 349.959i −1.32636 0.765774i −0.341625 0.939836i \(-0.610977\pi\)
−0.984735 + 0.174062i \(0.944311\pi\)
\(458\) 724.360i 1.58157i
\(459\) −354.894 + 272.203i −0.773188 + 0.593035i
\(460\) 317.165i 0.689490i
\(461\) −68.9796 + 119.476i −0.149630 + 0.259167i −0.931091 0.364787i \(-0.881142\pi\)
0.781461 + 0.623955i \(0.214475\pi\)
\(462\) 110.228 + 120.309i 0.238589 + 0.260410i
\(463\) −612.880 + 353.846i −1.32371 + 0.764247i −0.984319 0.176397i \(-0.943556\pi\)
−0.339395 + 0.940644i \(0.610222\pi\)
\(464\) −264.126 + 152.493i −0.569236 + 0.328649i
\(465\) −103.754 + 22.9943i −0.223128 + 0.0494501i
\(466\) −385.903 222.801i −0.828118 0.478114i
\(467\) 566.083i 1.21217i 0.795400 + 0.606085i \(0.207261\pi\)
−0.795400 + 0.606085i \(0.792739\pi\)
\(468\) 76.0089 + 83.1302i 0.162412 + 0.177629i
\(469\) 897.604 1.91387
\(470\) 484.620 839.387i 1.03111 1.78593i
\(471\) −63.6233 20.0652i −0.135081 0.0426012i
\(472\) 203.395 + 352.291i 0.430922 + 0.746379i
\(473\) 70.3010 + 121.765i 0.148628 + 0.257431i
\(474\) 422.403 + 133.215i 0.891145 + 0.281044i
\(475\) 659.788 + 380.929i 1.38903 + 0.801956i
\(476\) 154.729 0.325061
\(477\) −138.773 12.1603i −0.290928 0.0254932i
\(478\) 360.496 0.754175
\(479\) 358.287 620.571i 0.747989 1.29556i −0.200796 0.979633i \(-0.564353\pi\)
0.948785 0.315922i \(-0.102314\pi\)
\(480\) −80.7564 364.387i −0.168243 0.759140i
\(481\) 532.604 167.374i 1.10729 0.347972i
\(482\) 758.272 437.788i 1.57318 0.908275i
\(483\) −857.706 + 785.834i −1.77579 + 1.62699i
\(484\) 55.1975 95.6049i 0.114044 0.197531i
\(485\) 297.848i 0.614121i
\(486\) 23.4266 + 540.829i 0.0482030 + 1.11282i
\(487\) 206.616i 0.424263i −0.977241 0.212131i \(-0.931960\pi\)
0.977241 0.212131i \(-0.0680405\pi\)
\(488\) 99.4377 172.231i 0.203766 0.352933i
\(489\) 382.001 + 416.939i 0.781188 + 0.852635i
\(490\) −414.352 717.679i −0.845617 1.46465i
\(491\) −311.722 + 179.973i −0.634872 + 0.366543i −0.782636 0.622479i \(-0.786126\pi\)
0.147765 + 0.989023i \(0.452792\pi\)
\(492\) 11.0071 + 49.6658i 0.0223721 + 0.100947i
\(493\) 133.485 231.203i 0.270761 0.468972i
\(494\) 111.675 501.481i 0.226062 1.01514i
\(495\) −16.2966 + 185.976i −0.0329224 + 0.375710i
\(496\) 81.3267i 0.163965i
\(497\) −297.210 171.594i −0.598008 0.345260i
\(498\) 264.693 + 83.4774i 0.531512 + 0.167625i
\(499\) 228.110 131.699i 0.457134 0.263926i −0.253705 0.967282i \(-0.581649\pi\)
0.710838 + 0.703355i \(0.248316\pi\)
\(500\) 71.2043 + 123.330i 0.142409 + 0.246659i
\(501\) −294.970 93.0261i −0.588763 0.185681i
\(502\) −467.543 269.936i −0.931361 0.537722i
\(503\) 177.364i 0.352613i −0.984335 0.176307i \(-0.943585\pi\)
0.984335 0.176307i \(-0.0564150\pi\)
\(504\) −338.941 + 483.916i −0.672502 + 0.960151i
\(505\) 511.043i 1.01197i
\(506\) −194.037 112.027i −0.383472 0.221398i
\(507\) 110.707 494.765i 0.218358 0.975869i
\(508\) 3.20168 + 5.54546i 0.00630251 + 0.0109163i
\(509\) 445.798 + 772.144i 0.875830 + 1.51698i 0.855876 + 0.517182i \(0.173019\pi\)
0.0199545 + 0.999801i \(0.493648\pi\)
\(510\) 616.469 + 672.850i 1.20876 + 1.31931i
\(511\) −287.952 + 498.747i −0.563506 + 0.976022i
\(512\) −226.553 −0.442487
\(513\) 380.066 291.510i 0.740870 0.568246i
\(514\) 1028.68i 2.00133i
\(515\) −558.217 + 966.861i −1.08392 + 1.87740i
\(516\) 118.983 109.013i 0.230587 0.211265i
\(517\) −66.4138 115.032i −0.128460 0.222499i
\(518\) −464.094 803.834i −0.895934 1.55180i
\(519\) 807.893 179.047i 1.55663 0.344985i
\(520\) −490.340 + 534.095i −0.942962 + 1.02711i
\(521\) 1038.73i 1.99373i −0.0791331 0.996864i \(-0.525215\pi\)
0.0791331 0.996864i \(-0.474785\pi\)
\(522\) −136.517 292.868i −0.261528 0.561050i
\(523\) 627.155 1.19915 0.599574 0.800319i \(-0.295337\pi\)
0.599574 + 0.800319i \(0.295337\pi\)
\(524\) −201.679 116.440i −0.384884 0.222213i
\(525\) 375.954 1192.09i 0.716103 2.27064i
\(526\) 4.92536 2.84366i 0.00936379 0.00540619i
\(527\) 35.5948 + 61.6521i 0.0675424 + 0.116987i
\(528\) −136.252 42.9704i −0.258053 0.0813834i
\(529\) 534.161 925.194i 1.00976 1.74895i
\(530\) 284.225i 0.536274i
\(531\) −490.427 + 228.608i −0.923591 + 0.430523i
\(532\) −165.704 −0.311474
\(533\) 154.851 168.669i 0.290527 0.316452i
\(534\) 85.3937 + 385.312i 0.159913 + 0.721558i
\(535\) 913.800 527.583i 1.70804 0.986136i
\(536\) −542.120 + 312.993i −1.01142 + 0.583942i
\(537\) 23.9701 + 26.1624i 0.0446370 + 0.0487195i
\(538\) 226.806 + 130.947i 0.421573 + 0.243395i
\(539\) −113.568 −0.210701
\(540\) 212.439 27.9235i 0.393405 0.0517101i
\(541\) 315.164i 0.582558i −0.956638 0.291279i \(-0.905919\pi\)
0.956638 0.291279i \(-0.0940807\pi\)
\(542\) 689.536 + 398.104i 1.27221 + 0.734509i
\(543\) 143.636 131.600i 0.264522 0.242357i
\(544\) −216.523 + 125.010i −0.398020 + 0.229797i
\(545\) 29.0593 16.7774i 0.0533198 0.0307842i
\(546\) −842.923 0.857228i −1.54381 0.00157001i
\(547\) −246.122 + 426.295i −0.449948 + 0.779334i −0.998382 0.0568605i \(-0.981891\pi\)
0.548434 + 0.836194i \(0.315224\pi\)
\(548\) −94.6394 −0.172700
\(549\) 216.672 + 151.760i 0.394668 + 0.276430i
\(550\) 240.753 0.437733
\(551\) −142.954 + 247.603i −0.259444 + 0.449370i
\(552\) 244.004 773.695i 0.442036 1.40162i
\(553\) −556.837 + 321.490i −1.00694 + 0.581356i
\(554\) 178.333 + 308.883i 0.321901 + 0.557550i
\(555\) 319.411 1012.80i 0.575514 1.82486i
\(556\) −46.3198 + 80.2283i −0.0833090 + 0.144295i
\(557\) −481.165 −0.863850 −0.431925 0.901909i \(-0.642166\pi\)
−0.431925 + 0.901909i \(0.642166\pi\)
\(558\) 85.8342 + 7.52143i 0.153825 + 0.0134793i
\(559\) −708.971 157.880i −1.26828 0.282434i
\(560\) 1310.65 + 756.706i 2.34045 + 1.35126i
\(561\) 122.097 27.0594i 0.217642 0.0482343i
\(562\) 325.929 + 564.526i 0.579945 + 1.00449i
\(563\) 150.772 87.0483i 0.267801 0.154615i −0.360087 0.932919i \(-0.617253\pi\)
0.627888 + 0.778304i \(0.283920\pi\)
\(564\) −112.404 + 102.985i −0.199298 + 0.182597i
\(565\) 436.486 + 252.005i 0.772541 + 0.446027i
\(566\) −752.576 −1.32964
\(567\) −601.868 505.310i −1.06150 0.891199i
\(568\) 239.339 0.421371
\(569\) 439.176 + 253.559i 0.771839 + 0.445621i 0.833530 0.552474i \(-0.186316\pi\)
−0.0616914 + 0.998095i \(0.519649\pi\)
\(570\) −660.195 720.576i −1.15824 1.26417i
\(571\) −529.176 916.560i −0.926753 1.60518i −0.788718 0.614756i \(-0.789255\pi\)
−0.138035 0.990427i \(-0.544079\pi\)
\(572\) −9.44244 30.0469i −0.0165078 0.0525295i
\(573\) −422.823 + 93.7070i −0.737911 + 0.163538i
\(574\) −329.680 190.341i −0.574355 0.331604i
\(575\) 1716.37i 2.98499i
\(576\) 33.0544 377.216i 0.0573862 0.654888i
\(577\) 437.958i 0.759026i 0.925186 + 0.379513i \(0.123908\pi\)
−0.925186 + 0.379513i \(0.876092\pi\)
\(578\) −16.2528 + 28.1507i −0.0281190 + 0.0487036i
\(579\) 89.8300 284.836i 0.155147 0.491945i
\(580\) −110.761 + 63.9476i −0.190966 + 0.110254i
\(581\) −348.934 + 201.457i −0.600575 + 0.346742i
\(582\) 72.6332 230.308i 0.124799 0.395718i
\(583\) 33.7326 + 19.4755i 0.0578603 + 0.0334057i
\(584\) 401.633i 0.687728i
\(585\) −650.779 711.750i −1.11244 1.21667i
\(586\) −846.648 −1.44479
\(587\) 59.4816 103.025i 0.101331 0.175511i −0.810902 0.585182i \(-0.801023\pi\)
0.912233 + 0.409671i \(0.134356\pi\)
\(588\) 28.2028 + 127.256i 0.0479640 + 0.216422i
\(589\) −38.1196 66.0251i −0.0647192 0.112097i
\(590\) 551.999 + 956.090i 0.935592 + 1.62049i
\(591\) 560.664 513.683i 0.948670 0.869176i
\(592\) 703.814 + 406.347i 1.18888 + 0.686397i
\(593\) 1100.04 1.85504 0.927520 0.373773i \(-0.121936\pi\)
0.927520 + 0.373773i \(0.121936\pi\)
\(594\) 57.9532 139.830i 0.0975643 0.235404i
\(595\) −1324.77 −2.22651
\(596\) −38.4992 + 66.6826i −0.0645960 + 0.111884i
\(597\) −227.541 + 208.474i −0.381141 + 0.349203i
\(598\) 1104.20 347.004i 1.84650 0.580274i
\(599\) −459.809 + 265.471i −0.767627 + 0.443190i −0.832028 0.554734i \(-0.812820\pi\)
0.0644003 + 0.997924i \(0.479487\pi\)
\(600\) 188.617 + 851.071i 0.314361 + 1.41845i
\(601\) 403.887 699.553i 0.672025 1.16398i −0.305304 0.952255i \(-0.598758\pi\)
0.977329 0.211726i \(-0.0679085\pi\)
\(602\) 1207.59i 2.00596i
\(603\) −351.791 754.689i −0.583401 1.25156i
\(604\) 8.97922i 0.0148663i
\(605\) −472.594 + 818.557i −0.781148 + 1.35299i
\(606\) −124.623 + 395.158i −0.205648 + 0.652076i
\(607\) −324.905 562.753i −0.535264 0.927105i −0.999151 0.0412100i \(-0.986879\pi\)
0.463886 0.885895i \(-0.346455\pi\)
\(608\) 231.881 133.877i 0.381383 0.220192i
\(609\) 447.362 + 141.086i 0.734584 + 0.231669i
\(610\) 269.866 467.422i 0.442404 0.766266i
\(611\) 669.769 + 149.151i 1.09618 + 0.244109i
\(612\) −60.6417 130.093i −0.0990878 0.212571i
\(613\) 190.777i 0.311219i 0.987819 + 0.155609i \(0.0497341\pi\)
−0.987819 + 0.155609i \(0.950266\pi\)
\(614\) −1062.43 613.392i −1.73034 0.999010i
\(615\) −94.2411 425.233i −0.153238 0.691436i
\(616\) 143.065 82.5984i 0.232248 0.134088i
\(617\) −417.367 722.901i −0.676446 1.17164i −0.976044 0.217573i \(-0.930186\pi\)
0.299598 0.954066i \(-0.403147\pi\)
\(618\) 667.413 611.487i 1.07996 0.989461i
\(619\) −344.598 198.954i −0.556702 0.321412i 0.195119 0.980780i \(-0.437491\pi\)
−0.751821 + 0.659368i \(0.770824\pi\)
\(620\) 34.1042i 0.0550067i
\(621\) 996.869 + 413.158i 1.60526 + 0.665311i
\(622\) 155.633i 0.250214i
\(623\) −496.175 286.467i −0.796429 0.459819i
\(624\) 639.536 368.370i 1.02490 0.590336i
\(625\) −72.8284 126.143i −0.116525 0.201828i
\(626\) 232.312 + 402.375i 0.371105 + 0.642772i
\(627\) −130.757 + 28.9788i −0.208544 + 0.0462181i
\(628\) 10.7045 18.5407i 0.0170453 0.0295234i
\(629\) −711.395 −1.13099
\(630\) −919.860 + 1313.31i −1.46010 + 2.08462i
\(631\) 823.864i 1.30565i −0.757509 0.652824i \(-0.773584\pi\)
0.757509 0.652824i \(-0.226416\pi\)
\(632\) 224.206 388.336i 0.354756 0.614456i
\(633\) 535.354 + 168.837i 0.845742 + 0.266725i
\(634\) −35.5664 61.6029i −0.0560985 0.0971654i
\(635\) −27.4123 47.4796i −0.0431690 0.0747710i
\(636\) 13.4459 42.6348i 0.0211414 0.0670358i
\(637\) 396.767 432.171i 0.622867 0.678448i
\(638\) 90.3488i 0.141613i
\(639\) −27.7902 + 317.141i −0.0434901 + 0.496308i
\(640\) −1270.23 −1.98473
\(641\) −460.990 266.153i −0.719174 0.415215i 0.0952747 0.995451i \(-0.469627\pi\)
−0.814449 + 0.580236i \(0.802960\pi\)
\(642\) −835.241 + 185.108i −1.30100 + 0.288330i
\(643\) −45.0664 + 26.0191i −0.0700877 + 0.0404652i −0.534634 0.845084i \(-0.679551\pi\)
0.464547 + 0.885549i \(0.346217\pi\)
\(644\) −186.655 323.296i −0.289837 0.502012i
\(645\) −1018.72 + 933.354i −1.57941 + 1.44706i
\(646\) −327.333 + 566.957i −0.506707 + 0.877643i
\(647\) 27.7907i 0.0429531i −0.999769 0.0214766i \(-0.993163\pi\)
0.999769 0.0214766i \(-0.00683673\pi\)
\(648\) 539.707 + 95.3181i 0.832881 + 0.147096i
\(649\) 151.295 0.233120
\(650\) −841.106 + 916.160i −1.29401 + 1.40948i
\(651\) −92.2275 + 84.4992i −0.141670 + 0.129799i
\(652\) −157.157 + 90.7346i −0.241038 + 0.139163i
\(653\) 496.796 286.825i 0.760791 0.439243i −0.0687890 0.997631i \(-0.521914\pi\)
0.829579 + 0.558389i \(0.188580\pi\)
\(654\) −26.5611 + 5.88653i −0.0406132 + 0.00900081i
\(655\) 1726.75 + 996.942i 2.63627 + 1.52205i
\(656\) 333.314 0.508100
\(657\) 532.192 + 46.6346i 0.810034 + 0.0709812i
\(658\) 1140.81i 1.73376i
\(659\) −354.829 204.861i −0.538435 0.310866i 0.206009 0.978550i \(-0.433952\pi\)
−0.744445 + 0.667684i \(0.767286\pi\)
\(660\) −57.1370 18.0196i −0.0865712 0.0273024i
\(661\) −747.052 + 431.311i −1.13018 + 0.652513i −0.943981 0.329999i \(-0.892952\pi\)
−0.186204 + 0.982511i \(0.559618\pi\)
\(662\) 435.534 251.456i 0.657906 0.379842i
\(663\) −323.592 + 559.163i −0.488072 + 0.843384i
\(664\) 140.496 243.345i 0.211590 0.366484i
\(665\) 1418.74 2.13344
\(666\) −493.961 + 705.242i −0.741682 + 1.05892i
\(667\) −644.112 −0.965684
\(668\) 49.6280 85.9583i 0.0742935 0.128680i
\(669\) 16.0471 3.55639i 0.0239867 0.00531598i
\(670\) −1471.27 + 849.439i −2.19593 + 1.26782i
\(671\) −36.9833 64.0569i −0.0551166 0.0954648i
\(672\) −296.763 323.904i −0.441611 0.482000i
\(673\) −602.341 + 1043.29i −0.895009 + 1.55020i −0.0612150 + 0.998125i \(0.519498\pi\)
−0.833794 + 0.552076i \(0.813836\pi\)
\(674\) 648.905 0.962767
\(675\) −1149.63 + 151.110i −1.70316 + 0.223867i
\(676\) 147.329 + 69.0410i 0.217942 + 0.102132i
\(677\) −253.793 146.527i −0.374879 0.216436i 0.300709 0.953716i \(-0.402777\pi\)
−0.675588 + 0.737280i \(0.736110\pi\)
\(678\) −276.053 301.301i −0.407158 0.444397i
\(679\) 175.287 + 303.605i 0.258154 + 0.447136i
\(680\) 800.113 461.945i 1.17664 0.679331i
\(681\) 161.883 + 730.445i 0.237714 + 1.07261i
\(682\) −20.8644 12.0461i −0.0305930 0.0176629i
\(683\) −791.335 −1.15862 −0.579308 0.815109i \(-0.696677\pi\)
−0.579308 + 0.815109i \(0.696677\pi\)
\(684\) 64.9431 + 139.321i 0.0949460 + 0.203686i
\(685\) 810.291 1.18291
\(686\) 72.4492 + 41.8286i 0.105611 + 0.0609746i
\(687\) −293.394 + 930.304i −0.427066 + 1.35415i
\(688\) −528.665 915.674i −0.768408 1.33092i
\(689\) −191.962 + 60.3253i −0.278609 + 0.0875548i
\(690\) 662.208 2099.75i 0.959721 3.04312i
\(691\) −1127.60 651.022i −1.63184 0.942145i −0.983524 0.180776i \(-0.942139\pi\)
−0.648319 0.761369i \(-0.724528\pi\)
\(692\) 265.555i 0.383750i
\(693\) 92.8372 + 199.162i 0.133964 + 0.287390i
\(694\) 698.542i 1.00654i
\(695\) 396.585 686.905i 0.570625 0.988352i
\(696\) −319.387 + 70.7832i −0.458889 + 0.101700i
\(697\) −252.678 + 145.884i −0.362522 + 0.209302i
\(698\) −1241.26 + 716.641i −1.77831 + 1.02671i
\(699\) −405.377 442.452i −0.579938 0.632979i
\(700\) 347.390 + 200.566i 0.496272 + 0.286523i
\(701\) 43.1832i 0.0616023i −0.999526 0.0308012i \(-0.990194\pi\)
0.999526 0.0308012i \(-0.00980586\pi\)
\(702\) 329.640 + 709.051i 0.469572 + 1.01004i
\(703\) 761.855 1.08372
\(704\) −52.9389 + 91.6929i −0.0751973 + 0.130246i
\(705\) 962.388 881.744i 1.36509 1.25070i
\(706\) −377.220 653.364i −0.534306 0.925444i
\(707\) −300.754 520.921i −0.425394 0.736804i
\(708\) −37.5718 169.531i −0.0530675 0.239450i
\(709\) 177.188 + 102.300i 0.249913 + 0.144287i 0.619724 0.784820i \(-0.287244\pi\)
−0.369811 + 0.929107i \(0.620578\pi\)
\(710\) 649.547 0.914854
\(711\) 488.540 + 342.179i 0.687116 + 0.481265i
\(712\) 399.562 0.561183
\(713\) 85.8785 148.746i 0.120447 0.208620i
\(714\) 1024.36 + 323.058i 1.43468 + 0.452462i
\(715\) 80.8450 + 257.258i 0.113070 + 0.359801i
\(716\) −9.86140 + 5.69348i −0.0137729 + 0.00795179i
\(717\) 462.989 + 146.015i 0.645731 + 0.203647i
\(718\) 162.134 280.825i 0.225814 0.391121i
\(719\) 801.662i 1.11497i 0.830187 + 0.557484i \(0.188233\pi\)
−0.830187 + 0.557484i \(0.811767\pi\)
\(720\) 122.551 1398.54i 0.170209 1.94242i
\(721\) 1314.06i 1.82256i
\(722\) −51.5530 + 89.2923i −0.0714030 + 0.123674i
\(723\) 1151.18 255.127i 1.59223 0.352873i
\(724\) 31.2581 + 54.1407i 0.0431742 + 0.0747799i
\(725\) 599.390 346.058i 0.826745 0.477321i
\(726\) 565.041 517.693i 0.778293 0.713076i
\(727\) −461.472 + 799.294i −0.634763 + 1.09944i 0.351803 + 0.936074i \(0.385569\pi\)
−0.986565 + 0.163367i \(0.947765\pi\)
\(728\) −185.498 + 832.987i −0.254804 + 1.14421i
\(729\) −188.970 + 704.082i −0.259218 + 0.965819i
\(730\) 1090.00i 1.49315i
\(731\) 801.539 + 462.769i 1.09650 + 0.633062i
\(732\) −62.5934 + 57.3483i −0.0855101 + 0.0783447i
\(733\) −909.418 + 525.053i −1.24068 + 0.716306i −0.969232 0.246147i \(-0.920835\pi\)
−0.271447 + 0.962454i \(0.587502\pi\)
\(734\) −472.453 818.313i −0.643669 1.11487i
\(735\) −241.469 1089.55i −0.328530 1.48238i
\(736\) 522.398 + 301.607i 0.709780 + 0.409792i
\(737\) 232.819i 0.315901i
\(738\) −30.8262 + 351.788i −0.0417700 + 0.476677i
\(739\) 594.008i 0.803799i −0.915684 0.401900i \(-0.868350\pi\)
0.915684 0.401900i \(-0.131650\pi\)
\(740\) 295.143 + 170.401i 0.398842 + 0.230271i
\(741\) 346.544 598.825i 0.467671 0.808131i
\(742\) 167.269 + 289.719i 0.225430 + 0.390456i
\(743\) 108.652 + 188.191i 0.146234 + 0.253285i 0.929833 0.367982i \(-0.119951\pi\)
−0.783598 + 0.621268i \(0.786618\pi\)
\(744\) 26.2373 83.1940i 0.0352651 0.111820i
\(745\) 329.626 570.928i 0.442451 0.766347i
\(746\) 49.1857 0.0659326
\(747\) 306.137 + 214.422i 0.409822 + 0.287044i
\(748\) 40.1334i 0.0536543i
\(749\) 620.975 1075.56i 0.829072 1.43599i
\(750\) 213.900 + 965.154i 0.285200 + 1.28687i
\(751\) 418.499 + 724.861i 0.557255 + 0.965194i 0.997724 + 0.0674264i \(0.0214788\pi\)
−0.440469 + 0.897768i \(0.645188\pi\)
\(752\) 499.432 + 865.042i 0.664139 + 1.15032i
\(753\) −491.137 536.056i −0.652240 0.711893i
\(754\) −343.813 315.647i −0.455985 0.418630i
\(755\) 76.8790i 0.101826i
\(756\) 200.112 153.485i 0.264698 0.203023i
\(757\) −1313.32 −1.73490 −0.867450 0.497524i \(-0.834243\pi\)
−0.867450 + 0.497524i \(0.834243\pi\)
\(758\) −847.731 489.437i −1.11838 0.645696i
\(759\) −203.829 222.471i −0.268549 0.293110i
\(760\) −856.865 + 494.711i −1.12745 + 0.650936i
\(761\) −608.861 1054.58i −0.800080 1.38578i −0.919563 0.392943i \(-0.871457\pi\)
0.119483 0.992836i \(-0.461876\pi\)
\(762\) 9.61792 + 43.3978i 0.0126219 + 0.0569524i
\(763\) 19.7473 34.2033i 0.0258811 0.0448274i
\(764\) 138.982i 0.181914i
\(765\) 519.207 + 1113.84i 0.678702 + 1.45600i
\(766\) 414.229 0.540770
\(767\) −528.572 + 575.738i −0.689142 + 0.750636i
\(768\) 500.684 + 157.903i 0.651932 + 0.205603i
\(769\) 234.211 135.222i 0.304565 0.175841i −0.339927 0.940452i \(-0.610402\pi\)
0.644492 + 0.764611i \(0.277069\pi\)
\(770\) 388.267 224.166i 0.504242 0.291124i
\(771\) −416.657 + 1321.15i −0.540411 + 1.71355i