Properties

Label 117.3.n.a.38.5
Level $117$
Weight $3$
Character 117.38
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(38,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.38");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 38.5
Character \(\chi\) \(=\) 117.38
Dual form 117.3.n.a.77.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.38552 + 2.39980i) q^{2} +(0.210571 + 2.99260i) q^{3} +(-1.83936 - 3.18586i) q^{4} +(-2.12220 - 3.67577i) q^{5} +(-7.47339 - 3.64100i) q^{6} +(-4.71279 - 2.72093i) q^{7} -0.890291 q^{8} +(-8.91132 + 1.26031i) q^{9} +11.7615 q^{10} +(-6.06300 + 10.5014i) q^{11} +(9.14670 - 6.17531i) q^{12} +(3.21938 - 12.5951i) q^{13} +(13.0594 - 7.53984i) q^{14} +(10.5532 - 7.12492i) q^{15} +(8.59095 - 14.8800i) q^{16} +15.7681i q^{17} +(9.32237 - 23.1316i) q^{18} +16.0835i q^{19} +(-7.80699 + 13.5221i) q^{20} +(7.15029 - 14.6765i) q^{21} +(-16.8009 - 29.1000i) q^{22} +(-29.1372 + 16.8223i) q^{23} +(-0.187469 - 2.66429i) q^{24} +(3.49249 - 6.04918i) q^{25} +(25.7651 + 25.1766i) q^{26} +(-5.64806 - 26.4026i) q^{27} +20.0191i q^{28} +(-2.73504 - 1.57907i) q^{29} +(2.47662 + 35.1974i) q^{30} +(-8.66585 + 5.00323i) q^{31} +(22.0254 + 38.1491i) q^{32} +(-32.7033 - 15.9329i) q^{33} +(-37.8404 - 21.8472i) q^{34} +23.0975i q^{35} +(20.4063 + 26.0721i) q^{36} +54.7483i q^{37} +(-38.5972 - 22.2841i) q^{38} +(38.3699 + 6.98217i) q^{39} +(1.88938 + 3.27250i) q^{40} +(-17.0319 - 29.5002i) q^{41} +(25.3136 + 37.4938i) q^{42} +(-40.0900 + 69.4379i) q^{43} +44.6081 q^{44} +(23.5442 + 30.0813i) q^{45} -93.2311i q^{46} +(8.29612 - 14.3693i) q^{47} +(46.3388 + 22.5760i) q^{48} +(-9.69307 - 16.7889i) q^{49} +(9.67788 + 16.7626i) q^{50} +(-47.1878 + 3.32031i) q^{51} +(-46.0477 + 12.9103i) q^{52} -16.8893i q^{53} +(71.1866 + 23.0273i) q^{54} +51.4677 q^{55} +(4.19576 + 2.42242i) q^{56} +(-48.1315 + 3.38671i) q^{57} +(7.57892 - 4.37569i) q^{58} +(-7.70351 - 13.3429i) q^{59} +(-42.1102 - 20.5158i) q^{60} +(22.7829 - 39.4612i) q^{61} -27.7284i q^{62} +(45.4264 + 18.3075i) q^{63} -53.3392 q^{64} +(-53.1287 + 14.8956i) q^{65} +(83.5469 - 56.4059i) q^{66} +(-43.2647 + 24.9789i) q^{67} +(50.2351 - 29.0033i) q^{68} +(-56.4780 - 83.6536i) q^{69} +(-55.4294 - 32.0022i) q^{70} +95.5531 q^{71} +(7.93367 - 1.12204i) q^{72} +47.3627i q^{73} +(-131.385 - 75.8552i) q^{74} +(18.8382 + 9.17786i) q^{75} +(51.2399 - 29.5833i) q^{76} +(57.1473 - 32.9940i) q^{77} +(-69.9183 + 82.4061i) q^{78} +(0.426027 - 0.737900i) q^{79} -72.9271 q^{80} +(77.8233 - 22.4620i) q^{81} +94.3926 q^{82} +(14.8880 - 25.7868i) q^{83} +(-59.9091 + 4.21543i) q^{84} +(57.9600 - 33.4632i) q^{85} +(-111.091 - 192.416i) q^{86} +(4.14962 - 8.51738i) q^{87} +(5.39784 - 9.34933i) q^{88} -87.0977 q^{89} +(-104.810 + 14.8231i) q^{90} +(-49.4426 + 50.5982i) q^{91} +(107.187 + 61.8847i) q^{92} +(-16.7975 - 24.8799i) q^{93} +(22.9890 + 39.8180i) q^{94} +(59.1192 - 34.1325i) q^{95} +(-109.527 + 73.9462i) q^{96} +(84.6758 + 48.8876i) q^{97} +53.7199 q^{98} +(40.7943 - 101.223i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 4 q^{3} - 50 q^{4} + 4 q^{9} + 8 q^{10} - 38 q^{12} - 6 q^{13} - 6 q^{14} - 90 q^{16} + 14 q^{22} + 138 q^{23} - 92 q^{25} - 76 q^{27} + 48 q^{29} + 186 q^{30} - 154 q^{36} + 324 q^{38} - 2 q^{39}+ \cdots + 504 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.38552 + 2.39980i −0.692762 + 1.19990i 0.278167 + 0.960533i \(0.410273\pi\)
−0.970929 + 0.239367i \(0.923060\pi\)
\(3\) 0.210571 + 2.99260i 0.0701902 + 0.997534i
\(4\) −1.83936 3.18586i −0.459840 0.796466i
\(5\) −2.12220 3.67577i −0.424441 0.735153i 0.571927 0.820304i \(-0.306196\pi\)
−0.996368 + 0.0851512i \(0.972863\pi\)
\(6\) −7.47339 3.64100i −1.24557 0.606833i
\(7\) −4.71279 2.72093i −0.673256 0.388704i 0.124053 0.992276i \(-0.460411\pi\)
−0.797309 + 0.603571i \(0.793744\pi\)
\(8\) −0.890291 −0.111286
\(9\) −8.91132 + 1.26031i −0.990147 + 0.140034i
\(10\) 11.7615 1.17615
\(11\) −6.06300 + 10.5014i −0.551182 + 0.954675i 0.447008 + 0.894530i \(0.352490\pi\)
−0.998190 + 0.0601452i \(0.980844\pi\)
\(12\) 9.14670 6.17531i 0.762225 0.514610i
\(13\) 3.21938 12.5951i 0.247645 0.968851i
\(14\) 13.0594 7.53984i 0.932813 0.538560i
\(15\) 10.5532 7.12492i 0.703549 0.474995i
\(16\) 8.59095 14.8800i 0.536935 0.929998i
\(17\) 15.7681i 0.927538i 0.885956 + 0.463769i \(0.153503\pi\)
−0.885956 + 0.463769i \(0.846497\pi\)
\(18\) 9.32237 23.1316i 0.517909 1.28509i
\(19\) 16.0835i 0.846501i 0.906013 + 0.423250i \(0.139111\pi\)
−0.906013 + 0.423250i \(0.860889\pi\)
\(20\) −7.80699 + 13.5221i −0.390350 + 0.676105i
\(21\) 7.15029 14.6765i 0.340490 0.698879i
\(22\) −16.8009 29.1000i −0.763676 1.32273i
\(23\) −29.1372 + 16.8223i −1.26683 + 0.731406i −0.974387 0.224876i \(-0.927802\pi\)
−0.292446 + 0.956282i \(0.594469\pi\)
\(24\) −0.187469 2.66429i −0.00781121 0.111012i
\(25\) 3.49249 6.04918i 0.139700 0.241967i
\(26\) 25.7651 + 25.1766i 0.990965 + 0.968332i
\(27\) −5.64806 26.4026i −0.209187 0.977876i
\(28\) 20.0191i 0.714967i
\(29\) −2.73504 1.57907i −0.0943116 0.0544508i 0.452102 0.891966i \(-0.350674\pi\)
−0.546414 + 0.837515i \(0.684007\pi\)
\(30\) 2.47662 + 35.1974i 0.0825540 + 1.17325i
\(31\) −8.66585 + 5.00323i −0.279544 + 0.161395i −0.633217 0.773974i \(-0.718266\pi\)
0.353673 + 0.935369i \(0.384933\pi\)
\(32\) 22.0254 + 38.1491i 0.688293 + 1.19216i
\(33\) −32.7033 15.9329i −0.991008 0.482814i
\(34\) −37.8404 21.8472i −1.11295 0.642563i
\(35\) 23.0975i 0.659928i
\(36\) 20.4063 + 26.0721i 0.566841 + 0.724225i
\(37\) 54.7483i 1.47968i 0.672780 + 0.739842i \(0.265100\pi\)
−0.672780 + 0.739842i \(0.734900\pi\)
\(38\) −38.5972 22.2841i −1.01572 0.586424i
\(39\) 38.3699 + 6.98217i 0.983844 + 0.179030i
\(40\) 1.88938 + 3.27250i 0.0472345 + 0.0818126i
\(41\) −17.0319 29.5002i −0.415413 0.719516i 0.580059 0.814575i \(-0.303030\pi\)
−0.995472 + 0.0950584i \(0.969696\pi\)
\(42\) 25.3136 + 37.4938i 0.602706 + 0.892710i
\(43\) −40.0900 + 69.4379i −0.932325 + 1.61483i −0.152990 + 0.988228i \(0.548890\pi\)
−0.779335 + 0.626607i \(0.784443\pi\)
\(44\) 44.6081 1.01382
\(45\) 23.5442 + 30.0813i 0.523205 + 0.668473i
\(46\) 93.2311i 2.02676i
\(47\) 8.29612 14.3693i 0.176513 0.305730i −0.764171 0.645014i \(-0.776852\pi\)
0.940684 + 0.339284i \(0.110185\pi\)
\(48\) 46.3388 + 22.5760i 0.965392 + 0.470334i
\(49\) −9.69307 16.7889i −0.197818 0.342630i
\(50\) 9.67788 + 16.7626i 0.193558 + 0.335251i
\(51\) −47.1878 + 3.32031i −0.925250 + 0.0651040i
\(52\) −46.0477 + 12.9103i −0.885533 + 0.248276i
\(53\) 16.8893i 0.318667i −0.987225 0.159333i \(-0.949066\pi\)
0.987225 0.159333i \(-0.0509344\pi\)
\(54\) 71.1866 + 23.0273i 1.31827 + 0.426432i
\(55\) 51.4677 0.935777
\(56\) 4.19576 + 2.42242i 0.0749242 + 0.0432575i
\(57\) −48.1315 + 3.38671i −0.844413 + 0.0594160i
\(58\) 7.57892 4.37569i 0.130671 0.0754430i
\(59\) −7.70351 13.3429i −0.130568 0.226150i 0.793328 0.608795i \(-0.208347\pi\)
−0.923896 + 0.382645i \(0.875013\pi\)
\(60\) −42.1102 20.5158i −0.701836 0.341931i
\(61\) 22.7829 39.4612i 0.373491 0.646905i −0.616609 0.787270i \(-0.711494\pi\)
0.990100 + 0.140364i \(0.0448274\pi\)
\(62\) 27.7284i 0.447232i
\(63\) 45.4264 + 18.3075i 0.721054 + 0.290596i
\(64\) −53.3392 −0.833425
\(65\) −53.1287 + 14.8956i −0.817364 + 0.229163i
\(66\) 83.5469 56.4059i 1.26586 0.854635i
\(67\) −43.2647 + 24.9789i −0.645742 + 0.372819i −0.786823 0.617179i \(-0.788276\pi\)
0.141081 + 0.989998i \(0.454942\pi\)
\(68\) 50.2351 29.0033i 0.738752 0.426519i
\(69\) −56.4780 83.6536i −0.818522 1.21237i
\(70\) −55.4294 32.0022i −0.791848 0.457174i
\(71\) 95.5531 1.34582 0.672909 0.739725i \(-0.265044\pi\)
0.672909 + 0.739725i \(0.265044\pi\)
\(72\) 7.93367 1.12204i 0.110190 0.0155839i
\(73\) 47.3627i 0.648804i 0.945919 + 0.324402i \(0.105163\pi\)
−0.945919 + 0.324402i \(0.894837\pi\)
\(74\) −131.385 75.8552i −1.77547 1.02507i
\(75\) 18.8382 + 9.17786i 0.251176 + 0.122372i
\(76\) 51.2399 29.5833i 0.674209 0.389255i
\(77\) 57.1473 32.9940i 0.742173 0.428494i
\(78\) −69.9183 + 82.4061i −0.896388 + 1.05649i
\(79\) 0.426027 0.737900i 0.00539275 0.00934051i −0.863316 0.504663i \(-0.831617\pi\)
0.868709 + 0.495322i \(0.164950\pi\)
\(80\) −72.9271 −0.911588
\(81\) 77.8233 22.4620i 0.960781 0.277309i
\(82\) 94.3926 1.15113
\(83\) 14.8880 25.7868i 0.179374 0.310685i −0.762292 0.647233i \(-0.775926\pi\)
0.941666 + 0.336548i \(0.109260\pi\)
\(84\) −59.9091 + 4.21543i −0.713203 + 0.0501837i
\(85\) 57.9600 33.4632i 0.681882 0.393685i
\(86\) −111.091 192.416i −1.29176 2.23739i
\(87\) 4.14962 8.51738i 0.0476968 0.0979009i
\(88\) 5.39784 9.34933i 0.0613391 0.106242i
\(89\) −87.0977 −0.978626 −0.489313 0.872108i \(-0.662752\pi\)
−0.489313 + 0.872108i \(0.662752\pi\)
\(90\) −104.810 + 14.8231i −1.16456 + 0.164701i
\(91\) −49.4426 + 50.5982i −0.543325 + 0.556024i
\(92\) 107.187 + 61.8847i 1.16508 + 0.672659i
\(93\) −16.7975 24.8799i −0.180618 0.267526i
\(94\) 22.9890 + 39.8180i 0.244563 + 0.423596i
\(95\) 59.1192 34.1325i 0.622308 0.359290i
\(96\) −109.527 + 73.9462i −1.14091 + 0.770273i
\(97\) 84.6758 + 48.8876i 0.872946 + 0.503996i 0.868326 0.495994i \(-0.165196\pi\)
0.00462004 + 0.999989i \(0.498529\pi\)
\(98\) 53.7199 0.548163
\(99\) 40.7943 101.223i 0.412064 1.02245i
\(100\) −25.6958 −0.256958
\(101\) 154.337 + 89.1066i 1.52809 + 0.882243i 0.999442 + 0.0334025i \(0.0106343\pi\)
0.528648 + 0.848841i \(0.322699\pi\)
\(102\) 57.4117 117.842i 0.562860 1.15531i
\(103\) 47.4632 + 82.2087i 0.460808 + 0.798142i 0.999001 0.0446788i \(-0.0142264\pi\)
−0.538194 + 0.842821i \(0.680893\pi\)
\(104\) −2.86618 + 11.2133i −0.0275595 + 0.107820i
\(105\) −69.1216 + 4.86365i −0.658301 + 0.0463205i
\(106\) 40.5310 + 23.4006i 0.382368 + 0.220760i
\(107\) 105.123i 0.982456i 0.871031 + 0.491228i \(0.163452\pi\)
−0.871031 + 0.491228i \(0.836548\pi\)
\(108\) −73.7264 + 66.5579i −0.682652 + 0.616276i
\(109\) 107.467i 0.985934i −0.870048 0.492967i \(-0.835912\pi\)
0.870048 0.492967i \(-0.164088\pi\)
\(110\) −71.3098 + 123.512i −0.648271 + 1.12284i
\(111\) −163.840 + 11.5284i −1.47604 + 0.103859i
\(112\) −80.9747 + 46.7508i −0.722989 + 0.417418i
\(113\) −128.924 + 74.4341i −1.14092 + 0.658709i −0.946658 0.322241i \(-0.895564\pi\)
−0.194260 + 0.980950i \(0.562231\pi\)
\(114\) 58.5600 120.198i 0.513684 1.05437i
\(115\) 123.670 + 71.4009i 1.07539 + 0.620878i
\(116\) 11.6179i 0.100155i
\(117\) −12.8153 + 116.296i −0.109532 + 0.993983i
\(118\) 42.6936 0.361810
\(119\) 42.9040 74.3120i 0.360538 0.624470i
\(120\) −9.39545 + 6.34325i −0.0782954 + 0.0528604i
\(121\) −13.0200 22.5513i −0.107603 0.186375i
\(122\) 63.1327 + 109.349i 0.517481 + 0.896303i
\(123\) 84.6958 57.1816i 0.688584 0.464891i
\(124\) 31.8792 + 18.4055i 0.257090 + 0.148431i
\(125\) −135.757 −1.08606
\(126\) −106.874 + 83.6487i −0.848205 + 0.663879i
\(127\) −106.144 −0.835779 −0.417890 0.908498i \(-0.637230\pi\)
−0.417890 + 0.908498i \(0.637230\pi\)
\(128\) −14.1987 + 24.5929i −0.110927 + 0.192132i
\(129\) −216.242 105.352i −1.67629 0.816680i
\(130\) 37.8646 148.136i 0.291266 1.13951i
\(131\) 192.702 111.256i 1.47100 0.849285i 0.471535 0.881848i \(-0.343700\pi\)
0.999470 + 0.0325629i \(0.0103669\pi\)
\(132\) 9.39316 + 133.494i 0.0711603 + 1.01132i
\(133\) 43.7621 75.7982i 0.329039 0.569912i
\(134\) 138.436i 1.03310i
\(135\) −85.0636 + 76.7928i −0.630101 + 0.568835i
\(136\) 14.0382i 0.103222i
\(137\) −35.2366 + 61.0315i −0.257201 + 0.445486i −0.965491 0.260436i \(-0.916134\pi\)
0.708290 + 0.705922i \(0.249467\pi\)
\(138\) 279.004 19.6317i 2.02176 0.142259i
\(139\) 17.2904 + 29.9478i 0.124391 + 0.215452i 0.921495 0.388391i \(-0.126969\pi\)
−0.797104 + 0.603843i \(0.793636\pi\)
\(140\) 73.5854 42.4846i 0.525610 0.303461i
\(141\) 44.7485 + 21.8012i 0.317365 + 0.154619i
\(142\) −132.391 + 229.308i −0.932333 + 1.61485i
\(143\) 112.747 + 110.172i 0.788441 + 0.770433i
\(144\) −57.8034 + 143.427i −0.401413 + 0.996024i
\(145\) 13.4045i 0.0924446i
\(146\) −113.661 65.6222i −0.778499 0.449467i
\(147\) 48.2014 32.5427i 0.327900 0.221379i
\(148\) 174.421 100.702i 1.17852 0.680418i
\(149\) −97.8456 169.474i −0.656682 1.13741i −0.981469 0.191620i \(-0.938626\pi\)
0.324787 0.945787i \(-0.394707\pi\)
\(150\) −48.1258 + 32.4917i −0.320839 + 0.216611i
\(151\) 221.816 + 128.065i 1.46898 + 0.848114i 0.999395 0.0347746i \(-0.0110713\pi\)
0.469582 + 0.882889i \(0.344405\pi\)
\(152\) 14.3190i 0.0942040i
\(153\) −19.8727 140.515i −0.129887 0.918398i
\(154\) 182.856i 1.18738i
\(155\) 36.7814 + 21.2358i 0.237300 + 0.137005i
\(156\) −48.3318 135.084i −0.309819 0.865923i
\(157\) 109.330 + 189.365i 0.696369 + 1.20615i 0.969717 + 0.244231i \(0.0785356\pi\)
−0.273348 + 0.961915i \(0.588131\pi\)
\(158\) 1.18054 + 2.04476i 0.00747179 + 0.0129415i
\(159\) 50.5430 3.55640i 0.317881 0.0223673i
\(160\) 93.4847 161.920i 0.584280 1.01200i
\(161\) 183.090 1.13720
\(162\) −53.9217 + 217.882i −0.332850 + 1.34495i
\(163\) 305.896i 1.87666i −0.345740 0.938330i \(-0.612372\pi\)
0.345740 0.938330i \(-0.387628\pi\)
\(164\) −62.6556 + 108.523i −0.382047 + 0.661724i
\(165\) 10.8376 + 154.022i 0.0656824 + 0.933469i
\(166\) 41.2555 + 71.4566i 0.248527 + 0.430461i
\(167\) −140.615 243.553i −0.842008 1.45840i −0.888195 0.459467i \(-0.848040\pi\)
0.0461872 0.998933i \(-0.485293\pi\)
\(168\) −6.36584 + 13.0663i −0.0378919 + 0.0777757i
\(169\) −148.271 81.0966i −0.877344 0.479861i
\(170\) 185.457i 1.09092i
\(171\) −20.2702 143.325i −0.118539 0.838160i
\(172\) 294.959 1.71488
\(173\) −173.528 100.186i −1.00305 0.579111i −0.0939003 0.995582i \(-0.529933\pi\)
−0.909149 + 0.416471i \(0.863267\pi\)
\(174\) 14.6906 + 21.7593i 0.0844287 + 0.125053i
\(175\) −32.9188 + 19.0057i −0.188107 + 0.108604i
\(176\) 104.174 + 180.435i 0.591898 + 1.02520i
\(177\) 38.3078 25.8631i 0.216428 0.146119i
\(178\) 120.676 209.017i 0.677956 1.17425i
\(179\) 31.5946i 0.176506i 0.996098 + 0.0882529i \(0.0281284\pi\)
−0.996098 + 0.0882529i \(0.971872\pi\)
\(180\) 52.5286 130.339i 0.291825 0.724106i
\(181\) −249.188 −1.37673 −0.688366 0.725364i \(-0.741672\pi\)
−0.688366 + 0.725364i \(0.741672\pi\)
\(182\) −52.9216 188.757i −0.290778 1.03713i
\(183\) 122.889 + 59.8709i 0.671525 + 0.327163i
\(184\) 25.9406 14.9768i 0.140981 0.0813956i
\(185\) 201.242 116.187i 1.08780 0.628039i
\(186\) 82.9801 5.83879i 0.446129 0.0313913i
\(187\) −165.588 95.6023i −0.885497 0.511242i
\(188\) −61.0381 −0.324671
\(189\) −45.2216 + 139.798i −0.239268 + 0.739673i
\(190\) 189.166i 0.995609i
\(191\) −27.7883 16.0436i −0.145488 0.0839978i 0.425489 0.904964i \(-0.360102\pi\)
−0.570977 + 0.820966i \(0.693436\pi\)
\(192\) −11.2317 159.623i −0.0584983 0.831370i
\(193\) −281.909 + 162.761i −1.46067 + 0.843319i −0.999042 0.0437545i \(-0.986068\pi\)
−0.461629 + 0.887073i \(0.652735\pi\)
\(194\) −234.641 + 135.470i −1.20949 + 0.698299i
\(195\) −55.7640 155.856i −0.285969 0.799263i
\(196\) −35.6580 + 61.7616i −0.181929 + 0.315110i
\(197\) 39.4908 0.200461 0.100231 0.994964i \(-0.468042\pi\)
0.100231 + 0.994964i \(0.468042\pi\)
\(198\) 186.393 + 238.145i 0.941379 + 1.20275i
\(199\) −166.261 −0.835482 −0.417741 0.908566i \(-0.637178\pi\)
−0.417741 + 0.908566i \(0.637178\pi\)
\(200\) −3.10934 + 5.38553i −0.0155467 + 0.0269276i
\(201\) −83.8621 124.214i −0.417225 0.617981i
\(202\) −427.676 + 246.919i −2.11721 + 1.22237i
\(203\) 8.59310 + 14.8837i 0.0423306 + 0.0733187i
\(204\) 97.3732 + 144.226i 0.477320 + 0.706992i
\(205\) −72.2905 + 125.211i −0.352636 + 0.610784i
\(206\) −263.046 −1.27692
\(207\) 238.449 186.631i 1.15193 0.901600i
\(208\) −159.757 156.108i −0.768061 0.750519i
\(209\) −168.900 97.5144i −0.808133 0.466576i
\(210\) 84.0979 172.617i 0.400466 0.821984i
\(211\) −51.4269 89.0741i −0.243730 0.422152i 0.718044 0.695998i \(-0.245038\pi\)
−0.961774 + 0.273846i \(0.911704\pi\)
\(212\) −53.8071 + 31.0655i −0.253807 + 0.146536i
\(213\) 20.1207 + 285.952i 0.0944633 + 1.34250i
\(214\) −252.274 145.650i −1.17885 0.680609i
\(215\) 340.317 1.58287
\(216\) 5.02842 + 23.5060i 0.0232797 + 0.108824i
\(217\) 54.4538 0.250939
\(218\) 257.899 + 148.898i 1.18302 + 0.683018i
\(219\) −141.738 + 9.97319i −0.647204 + 0.0455397i
\(220\) −94.6676 163.969i −0.430307 0.745314i
\(221\) 198.601 + 50.7636i 0.898646 + 0.229700i
\(222\) 199.338 409.156i 0.897921 1.84304i
\(223\) −134.735 77.7894i −0.604194 0.348831i 0.166496 0.986042i \(-0.446755\pi\)
−0.770690 + 0.637211i \(0.780088\pi\)
\(224\) 239.718i 1.07017i
\(225\) −23.4989 + 58.3078i −0.104440 + 0.259146i
\(226\) 412.521i 1.82532i
\(227\) 123.515 213.934i 0.544119 0.942442i −0.454543 0.890725i \(-0.650197\pi\)
0.998662 0.0517169i \(-0.0164693\pi\)
\(228\) 99.3208 + 147.111i 0.435617 + 0.645224i
\(229\) −143.484 + 82.8404i −0.626567 + 0.361749i −0.779421 0.626500i \(-0.784487\pi\)
0.152854 + 0.988249i \(0.451153\pi\)
\(230\) −342.696 + 197.856i −1.48998 + 0.860242i
\(231\) 110.772 + 164.072i 0.479530 + 0.710267i
\(232\) 2.43498 + 1.40584i 0.0104956 + 0.00605964i
\(233\) 224.070i 0.961673i −0.876810 0.480837i \(-0.840333\pi\)
0.876810 0.480837i \(-0.159667\pi\)
\(234\) −261.331 191.885i −1.11680 0.820022i
\(235\) −70.4242 −0.299678
\(236\) −28.3390 + 49.0846i −0.120081 + 0.207986i
\(237\) 2.29795 + 1.11955i 0.00969599 + 0.00472383i
\(238\) 118.889 + 205.922i 0.499534 + 0.865219i
\(239\) 178.007 + 308.318i 0.744801 + 1.29003i 0.950288 + 0.311373i \(0.100789\pi\)
−0.205487 + 0.978660i \(0.565878\pi\)
\(240\) −15.3563 218.242i −0.0639846 0.909340i
\(241\) 333.428 + 192.505i 1.38352 + 0.798774i 0.992574 0.121640i \(-0.0388154\pi\)
0.390944 + 0.920415i \(0.372149\pi\)
\(242\) 72.1582 0.298174
\(243\) 83.6071 + 228.164i 0.344062 + 0.938947i
\(244\) −167.624 −0.686984
\(245\) −41.1413 + 71.2589i −0.167924 + 0.290853i
\(246\) 19.8763 + 282.479i 0.0807980 + 1.14829i
\(247\) 202.573 + 51.7789i 0.820133 + 0.209631i
\(248\) 7.71513 4.45433i 0.0311094 0.0179610i
\(249\) 80.3046 + 39.1240i 0.322509 + 0.157124i
\(250\) 188.095 325.791i 0.752381 1.30316i
\(251\) 229.103i 0.912761i 0.889785 + 0.456381i \(0.150854\pi\)
−0.889785 + 0.456381i \(0.849146\pi\)
\(252\) −25.2302 178.396i −0.100120 0.707922i
\(253\) 407.976i 1.61255i
\(254\) 147.065 254.724i 0.578996 1.00285i
\(255\) 112.347 + 166.405i 0.440575 + 0.652568i
\(256\) −146.024 252.921i −0.570405 0.987971i
\(257\) −137.301 + 79.2710i −0.534247 + 0.308448i −0.742744 0.669575i \(-0.766476\pi\)
0.208497 + 0.978023i \(0.433143\pi\)
\(258\) 552.431 372.969i 2.14121 1.44562i
\(259\) 148.966 258.017i 0.575160 0.996206i
\(260\) 145.178 + 141.862i 0.558377 + 0.545624i
\(261\) 26.3629 + 10.6246i 0.101007 + 0.0407075i
\(262\) 616.593i 2.35341i
\(263\) −48.6838 28.1076i −0.185110 0.106873i 0.404581 0.914502i \(-0.367417\pi\)
−0.589691 + 0.807629i \(0.700751\pi\)
\(264\) 29.1154 + 14.1849i 0.110286 + 0.0537306i
\(265\) −62.0812 + 35.8426i −0.234269 + 0.135255i
\(266\) 121.267 + 210.041i 0.455891 + 0.789627i
\(267\) −18.3402 260.649i −0.0686900 0.976213i
\(268\) 159.159 + 91.8903i 0.593876 + 0.342874i
\(269\) 342.033i 1.27150i −0.771895 0.635750i \(-0.780691\pi\)
0.771895 0.635750i \(-0.219309\pi\)
\(270\) −66.4295 310.534i −0.246035 1.15013i
\(271\) 216.315i 0.798209i 0.916905 + 0.399104i \(0.130679\pi\)
−0.916905 + 0.399104i \(0.869321\pi\)
\(272\) 234.629 + 135.463i 0.862608 + 0.498027i
\(273\) −161.831 137.307i −0.592789 0.502957i
\(274\) −97.6423 169.121i −0.356359 0.617232i
\(275\) 42.3500 + 73.3524i 0.154000 + 0.266736i
\(276\) −162.626 + 333.800i −0.589223 + 1.20942i
\(277\) 97.1805 168.322i 0.350832 0.607659i −0.635563 0.772049i \(-0.719232\pi\)
0.986395 + 0.164390i \(0.0525654\pi\)
\(278\) −95.8251 −0.344695
\(279\) 70.9186 55.5070i 0.254188 0.198950i
\(280\) 20.5635i 0.0734410i
\(281\) −150.967 + 261.483i −0.537249 + 0.930543i 0.461802 + 0.886983i \(0.347203\pi\)
−0.999051 + 0.0435595i \(0.986130\pi\)
\(282\) −114.319 + 77.1813i −0.405385 + 0.273692i
\(283\) 4.18445 + 7.24767i 0.0147860 + 0.0256102i 0.873324 0.487140i \(-0.161960\pi\)
−0.858538 + 0.512750i \(0.828627\pi\)
\(284\) −175.756 304.419i −0.618861 1.07190i
\(285\) 114.594 + 169.733i 0.402083 + 0.595554i
\(286\) −420.605 + 117.924i −1.47065 + 0.412323i
\(287\) 185.371i 0.645891i
\(288\) −244.355 312.200i −0.848454 1.08403i
\(289\) 40.3657 0.139674
\(290\) −32.1680 18.5722i −0.110924 0.0640422i
\(291\) −128.471 + 263.695i −0.441480 + 0.906169i
\(292\) 150.891 87.1169i 0.516750 0.298346i
\(293\) 110.255 + 190.968i 0.376298 + 0.651767i 0.990520 0.137366i \(-0.0438636\pi\)
−0.614223 + 0.789133i \(0.710530\pi\)
\(294\) 11.3118 + 160.762i 0.0384756 + 0.546811i
\(295\) −32.6969 + 56.6326i −0.110837 + 0.191975i
\(296\) 48.7420i 0.164669i
\(297\) 311.510 + 100.767i 1.04885 + 0.339281i
\(298\) 542.270 1.81970
\(299\) 118.075 + 421.142i 0.394900 + 1.40850i
\(300\) −5.41078 76.8973i −0.0180359 0.256324i
\(301\) 377.871 218.164i 1.25539 0.724798i
\(302\) −614.662 + 354.875i −2.03530 + 1.17508i
\(303\) −234.162 + 480.633i −0.772810 + 1.58625i
\(304\) 239.322 + 138.173i 0.787244 + 0.454516i
\(305\) −193.400 −0.634099
\(306\) 364.742 + 146.996i 1.19197 + 0.480381i
\(307\) 253.268i 0.824978i 0.910963 + 0.412489i \(0.135341\pi\)
−0.910963 + 0.412489i \(0.864659\pi\)
\(308\) −210.229 121.376i −0.682561 0.394077i
\(309\) −236.023 + 159.349i −0.763830 + 0.515693i
\(310\) −101.923 + 58.8454i −0.328784 + 0.189824i
\(311\) −311.732 + 179.979i −1.00235 + 0.578709i −0.908944 0.416918i \(-0.863110\pi\)
−0.0934101 + 0.995628i \(0.529777\pi\)
\(312\) −34.1604 6.21616i −0.109488 0.0199236i
\(313\) −34.7019 + 60.1055i −0.110869 + 0.192030i −0.916121 0.400902i \(-0.868697\pi\)
0.805252 + 0.592933i \(0.202030\pi\)
\(314\) −605.917 −1.92967
\(315\) −29.1099 205.829i −0.0924125 0.653426i
\(316\) −3.13447 −0.00991920
\(317\) 115.467 199.995i 0.364249 0.630898i −0.624406 0.781100i \(-0.714659\pi\)
0.988655 + 0.150202i \(0.0479924\pi\)
\(318\) −61.4940 + 126.221i −0.193377 + 0.396920i
\(319\) 33.1651 19.1479i 0.103966 0.0600246i
\(320\) 113.197 + 196.062i 0.353740 + 0.612695i
\(321\) −314.591 + 22.1358i −0.980033 + 0.0689588i
\(322\) −253.675 + 439.379i −0.787812 + 1.36453i
\(323\) −253.607 −0.785161
\(324\) −214.706 206.618i −0.662672 0.637711i
\(325\) −64.9461 63.4628i −0.199834 0.195270i
\(326\) 734.088 + 423.826i 2.25180 + 1.30008i
\(327\) 321.605 22.6293i 0.983502 0.0692029i
\(328\) 15.1634 + 26.2637i 0.0462298 + 0.0800724i
\(329\) −78.1957 + 45.1463i −0.237677 + 0.137223i
\(330\) −384.639 187.394i −1.16557 0.567860i
\(331\) −131.121 75.7027i −0.396136 0.228709i 0.288680 0.957426i \(-0.406784\pi\)
−0.684815 + 0.728717i \(0.740117\pi\)
\(332\) −109.538 −0.329933
\(333\) −68.9997 487.880i −0.207206 1.46510i
\(334\) 779.304 2.33324
\(335\) 183.633 + 106.021i 0.548159 + 0.316480i
\(336\) −156.957 232.481i −0.467135 0.691907i
\(337\) −177.923 308.171i −0.527960 0.914454i −0.999469 0.0325925i \(-0.989624\pi\)
0.471508 0.881862i \(-0.343710\pi\)
\(338\) 400.049 243.460i 1.18358 0.720295i
\(339\) −249.899 370.144i −0.737166 1.09187i
\(340\) −213.218 123.102i −0.627113 0.362064i
\(341\) 121.338i 0.355831i
\(342\) 372.037 + 149.936i 1.08783 + 0.438411i
\(343\) 372.148i 1.08498i
\(344\) 35.6918 61.8199i 0.103755 0.179709i
\(345\) −187.633 + 385.130i −0.543864 + 1.11632i
\(346\) 480.853 277.621i 1.38975 0.802372i
\(347\) 144.234 83.2734i 0.415659 0.239981i −0.277559 0.960709i \(-0.589525\pi\)
0.693218 + 0.720728i \(0.256192\pi\)
\(348\) −34.7678 + 2.44639i −0.0999076 + 0.00702987i
\(349\) 215.596 + 124.474i 0.617754 + 0.356660i 0.775994 0.630740i \(-0.217249\pi\)
−0.158240 + 0.987401i \(0.550582\pi\)
\(350\) 105.331i 0.300947i
\(351\) −350.726 13.8625i −0.999220 0.0394942i
\(352\) −534.160 −1.51750
\(353\) −27.8453 + 48.2294i −0.0788818 + 0.136627i −0.902768 0.430128i \(-0.858468\pi\)
0.823886 + 0.566756i \(0.191802\pi\)
\(354\) 8.99002 + 127.765i 0.0253955 + 0.360918i
\(355\) −202.783 351.231i −0.571221 0.989383i
\(356\) 160.204 + 277.481i 0.450011 + 0.779442i
\(357\) 231.420 + 112.747i 0.648236 + 0.315817i
\(358\) −75.8206 43.7750i −0.211789 0.122277i
\(359\) −114.632 −0.319310 −0.159655 0.987173i \(-0.551038\pi\)
−0.159655 + 0.987173i \(0.551038\pi\)
\(360\) −20.9612 26.7811i −0.0582256 0.0743920i
\(361\) 102.321 0.283437
\(362\) 345.257 598.002i 0.953748 1.65194i
\(363\) 64.7455 43.7123i 0.178362 0.120420i
\(364\) 252.141 + 64.4490i 0.692696 + 0.177058i
\(365\) 174.094 100.513i 0.476970 0.275379i
\(366\) −313.944 + 211.957i −0.857771 + 0.579116i
\(367\) −16.7960 + 29.0915i −0.0457657 + 0.0792684i −0.888001 0.459842i \(-0.847906\pi\)
0.842235 + 0.539110i \(0.181239\pi\)
\(368\) 578.080i 1.57087i
\(369\) 188.956 + 241.420i 0.512076 + 0.654255i
\(370\) 643.921i 1.74033i
\(371\) −45.9547 + 79.5959i −0.123867 + 0.214544i
\(372\) −48.3674 + 99.2774i −0.130020 + 0.266875i
\(373\) 272.986 + 472.826i 0.731867 + 1.26763i 0.956084 + 0.293092i \(0.0946842\pi\)
−0.224217 + 0.974539i \(0.571982\pi\)
\(374\) 458.853 264.919i 1.22688 0.708339i
\(375\) −28.5865 406.268i −0.0762307 1.08338i
\(376\) −7.38596 + 12.7929i −0.0196435 + 0.0340236i
\(377\) −28.6937 + 29.3643i −0.0761105 + 0.0778894i
\(378\) −272.832 302.217i −0.721777 0.799515i
\(379\) 50.5254i 0.133312i −0.997776 0.0666562i \(-0.978767\pi\)
0.997776 0.0666562i \(-0.0212331\pi\)
\(380\) −217.483 125.564i −0.572324 0.330431i
\(381\) −22.3508 317.646i −0.0586635 0.833718i
\(382\) 77.0027 44.4575i 0.201578 0.116381i
\(383\) −178.238 308.718i −0.465374 0.806052i 0.533844 0.845583i \(-0.320747\pi\)
−0.999218 + 0.0395310i \(0.987414\pi\)
\(384\) −76.5865 37.3125i −0.199444 0.0971681i
\(385\) −242.557 140.040i −0.630017 0.363741i
\(386\) 902.035i 2.33688i
\(387\) 269.742 669.309i 0.697007 1.72948i
\(388\) 359.687i 0.927029i
\(389\) −91.0937 52.5930i −0.234174 0.135200i 0.378322 0.925674i \(-0.376501\pi\)
−0.612496 + 0.790474i \(0.709835\pi\)
\(390\) 451.286 + 82.1205i 1.15714 + 0.210565i
\(391\) −265.257 459.439i −0.678407 1.17504i
\(392\) 8.62965 + 14.9470i 0.0220144 + 0.0381301i
\(393\) 373.523 + 553.252i 0.950440 + 1.40776i
\(394\) −54.7155 + 94.7701i −0.138872 + 0.240533i
\(395\) −3.61647 −0.00915561
\(396\) −397.517 + 56.2200i −1.00383 + 0.141970i
\(397\) 461.341i 1.16207i −0.813879 0.581034i \(-0.802648\pi\)
0.813879 0.581034i \(-0.197352\pi\)
\(398\) 230.359 398.993i 0.578791 1.00249i
\(399\) 236.049 + 115.002i 0.591601 + 0.288225i
\(400\) −60.0077 103.936i −0.150019 0.259841i
\(401\) 118.899 + 205.939i 0.296506 + 0.513563i 0.975334 0.220734i \(-0.0708452\pi\)
−0.678828 + 0.734297i \(0.737512\pi\)
\(402\) 414.282 29.1505i 1.03055 0.0725136i
\(403\) 35.1174 + 125.254i 0.0871399 + 0.310805i
\(404\) 655.596i 1.62276i
\(405\) −247.722 238.391i −0.611659 0.588620i
\(406\) −47.6238 −0.117300
\(407\) −574.936 331.939i −1.41262 0.815576i
\(408\) 42.0108 2.95604i 0.102968 0.00724520i
\(409\) −85.7896 + 49.5307i −0.209755 + 0.121102i −0.601197 0.799101i \(-0.705309\pi\)
0.391443 + 0.920202i \(0.371976\pi\)
\(410\) −200.320 346.965i −0.488587 0.846257i
\(411\) −190.063 92.5976i −0.462440 0.225298i
\(412\) 174.604 302.422i 0.423795 0.734035i
\(413\) 83.8429i 0.203009i
\(414\) 117.500 + 830.812i 0.283816 + 2.00679i
\(415\) −126.382 −0.304534
\(416\) 551.398 154.595i 1.32548 0.371622i
\(417\) −85.9811 + 58.0494i −0.206190 + 0.139207i
\(418\) 468.030 270.217i 1.11969 0.646453i
\(419\) −503.726 + 290.826i −1.20221 + 0.694096i −0.961046 0.276388i \(-0.910863\pi\)
−0.241164 + 0.970484i \(0.577529\pi\)
\(420\) 142.634 + 211.266i 0.339605 + 0.503014i
\(421\) −427.771 246.974i −1.01608 0.586636i −0.103116 0.994669i \(-0.532881\pi\)
−0.912967 + 0.408034i \(0.866215\pi\)
\(422\) 285.013 0.675387
\(423\) −55.8196 + 138.505i −0.131961 + 0.327435i
\(424\) 15.0364i 0.0354633i
\(425\) 95.3843 + 55.0701i 0.224434 + 0.129577i
\(426\) −714.106 347.909i −1.67631 0.816687i
\(427\) −214.743 + 123.982i −0.502910 + 0.290355i
\(428\) 334.907 193.358i 0.782492 0.451772i
\(429\) −305.960 + 360.606i −0.713192 + 0.840573i
\(430\) −471.517 + 816.692i −1.09655 + 1.89928i
\(431\) 644.759 1.49596 0.747980 0.663721i \(-0.231024\pi\)
0.747980 + 0.663721i \(0.231024\pi\)
\(432\) −441.393 142.781i −1.02174 0.330511i
\(433\) 754.246 1.74191 0.870954 0.491365i \(-0.163502\pi\)
0.870954 + 0.491365i \(0.163502\pi\)
\(434\) −75.4471 + 130.678i −0.173841 + 0.301102i
\(435\) −40.1142 + 2.82259i −0.0922166 + 0.00648871i
\(436\) −342.374 + 197.670i −0.785262 + 0.453371i
\(437\) −270.562 468.628i −0.619136 1.07238i
\(438\) 172.447 353.960i 0.393715 0.808128i
\(439\) −287.814 + 498.509i −0.655613 + 1.13556i 0.326126 + 0.945326i \(0.394257\pi\)
−0.981740 + 0.190229i \(0.939077\pi\)
\(440\) −45.8213 −0.104139
\(441\) 107.537 + 137.395i 0.243848 + 0.311553i
\(442\) −396.989 + 406.268i −0.898165 + 0.919158i
\(443\) −382.267 220.702i −0.862906 0.498199i 0.00207857 0.999998i \(-0.499338\pi\)
−0.864984 + 0.501799i \(0.832672\pi\)
\(444\) 338.088 + 500.767i 0.761460 + 1.12785i
\(445\) 184.839 + 320.151i 0.415369 + 0.719440i
\(446\) 373.358 215.558i 0.837126 0.483315i
\(447\) 486.564 328.499i 1.08851 0.734897i
\(448\) 251.377 + 145.132i 0.561108 + 0.323956i
\(449\) −597.799 −1.33140 −0.665701 0.746219i \(-0.731867\pi\)
−0.665701 + 0.746219i \(0.731867\pi\)
\(450\) −107.369 137.180i −0.238597 0.304843i
\(451\) 413.058 0.915872
\(452\) 474.274 + 273.822i 1.04928 + 0.605801i
\(453\) −336.540 + 690.772i −0.742915 + 1.52488i
\(454\) 342.266 + 592.823i 0.753890 + 1.30578i
\(455\) 290.914 + 74.3596i 0.639372 + 0.163428i
\(456\) 42.8511 3.01516i 0.0939717 0.00661220i
\(457\) −303.229 175.069i −0.663520 0.383084i 0.130097 0.991501i \(-0.458471\pi\)
−0.793617 + 0.608418i \(0.791805\pi\)
\(458\) 459.110i 1.00242i
\(459\) 416.321 89.0594i 0.907016 0.194029i
\(460\) 525.328i 1.14202i
\(461\) −114.056 + 197.550i −0.247409 + 0.428525i −0.962806 0.270193i \(-0.912913\pi\)
0.715397 + 0.698718i \(0.246246\pi\)
\(462\) −547.216 + 38.5041i −1.18445 + 0.0833423i
\(463\) −141.391 + 81.6320i −0.305380 + 0.176311i −0.644857 0.764303i \(-0.723083\pi\)
0.339477 + 0.940614i \(0.389750\pi\)
\(464\) −46.9931 + 27.1315i −0.101278 + 0.0584731i
\(465\) −55.8051 + 114.544i −0.120011 + 0.246331i
\(466\) 537.723 + 310.454i 1.15391 + 0.666211i
\(467\) 64.3434i 0.137780i 0.997624 + 0.0688902i \(0.0219458\pi\)
−0.997624 + 0.0688902i \(0.978054\pi\)
\(468\) 394.075 173.082i 0.842041 0.369834i
\(469\) 271.863 0.579666
\(470\) 97.5745 169.004i 0.207605 0.359583i
\(471\) −543.672 + 367.056i −1.15429 + 0.779311i
\(472\) 6.85837 + 11.8790i 0.0145304 + 0.0251675i
\(473\) −486.131 842.004i −1.02776 1.78014i
\(474\) −5.87056 + 3.96346i −0.0123851 + 0.00836172i
\(475\) 97.2920 + 56.1716i 0.204825 + 0.118256i
\(476\) −315.664 −0.663159
\(477\) 21.2857 + 150.506i 0.0446242 + 0.315527i
\(478\) −986.535 −2.06388
\(479\) −270.481 + 468.487i −0.564679 + 0.978053i 0.432400 + 0.901682i \(0.357667\pi\)
−0.997079 + 0.0763711i \(0.975667\pi\)
\(480\) 504.248 + 245.667i 1.05052 + 0.511806i
\(481\) 689.559 + 176.256i 1.43359 + 0.366436i
\(482\) −923.945 + 533.440i −1.91690 + 1.10672i
\(483\) 38.5533 + 547.915i 0.0798206 + 1.13440i
\(484\) −47.8969 + 82.9599i −0.0989606 + 0.171405i
\(485\) 414.998i 0.855666i
\(486\) −663.388 115.487i −1.36500 0.237627i
\(487\) 491.385i 1.00900i 0.863411 + 0.504502i \(0.168324\pi\)
−0.863411 + 0.504502i \(0.831676\pi\)
\(488\) −20.2835 + 35.1320i −0.0415645 + 0.0719917i
\(489\) 915.424 64.4126i 1.87203 0.131723i
\(490\) −114.005 197.462i −0.232663 0.402984i
\(491\) 267.027 154.168i 0.543843 0.313988i −0.202792 0.979222i \(-0.565002\pi\)
0.746635 + 0.665234i \(0.231668\pi\)
\(492\) −337.959 164.652i −0.686908 0.334658i
\(493\) 24.8991 43.1264i 0.0505052 0.0874776i
\(494\) −404.929 + 414.393i −0.819694 + 0.838853i
\(495\) −458.645 + 64.8652i −0.926556 + 0.131041i
\(496\) 171.930i 0.346633i
\(497\) −450.322 259.993i −0.906080 0.523126i
\(498\) −205.154 + 138.508i −0.411955 + 0.278128i
\(499\) −367.158 + 211.979i −0.735788 + 0.424807i −0.820536 0.571595i \(-0.806325\pi\)
0.0847480 + 0.996402i \(0.472991\pi\)
\(500\) 249.707 + 432.504i 0.499413 + 0.865009i
\(501\) 699.247 472.090i 1.39570 0.942296i
\(502\) −549.802 317.428i −1.09522 0.632327i
\(503\) 774.682i 1.54012i 0.637970 + 0.770061i \(0.279774\pi\)
−0.637970 + 0.770061i \(0.720226\pi\)
\(504\) −40.4427 16.2990i −0.0802435 0.0323393i
\(505\) 756.410i 1.49784i
\(506\) 979.060 + 565.261i 1.93490 + 1.11712i
\(507\) 211.468 460.793i 0.417097 0.908862i
\(508\) 195.237 + 338.160i 0.384324 + 0.665669i
\(509\) −32.4011 56.1204i −0.0636565 0.110256i 0.832441 0.554114i \(-0.186943\pi\)
−0.896097 + 0.443858i \(0.853610\pi\)
\(510\) −554.997 + 39.0517i −1.08823 + 0.0765719i
\(511\) 128.871 223.210i 0.252193 0.436811i
\(512\) 695.689 1.35877
\(513\) 424.647 90.8406i 0.827772 0.177077i
\(514\) 439.328i 0.854724i
\(515\) 201.453 348.927i 0.391171 0.677529i
\(516\) 62.1098 + 882.696i 0.120368 + 1.71065i
\(517\) 100.599 + 174.242i 0.194582 + 0.337025i
\(518\) 412.793 + 714.979i 0.796899 + 1.38027i
\(519\) 263.277 540.395i 0.507278 1.04122i
\(520\) 47.3000 13.2614i 0.0909615 0.0255028i
\(521\) 345.592i 0.663323i 0.943398 + 0.331662i \(0.107609\pi\)
−0.943398 + 0.331662i \(0.892391\pi\)
\(522\) −62.0235 + 48.5450i −0.118819 + 0.0929980i
\(523\) −199.085 −0.380660 −0.190330 0.981720i \(-0.560956\pi\)
−0.190330 + 0.981720i \(0.560956\pi\)
\(524\) −708.894 409.280i −1.35285 0.781070i
\(525\) −63.8081 94.5108i −0.121539 0.180021i
\(526\) 134.905 77.8876i 0.256474 0.148075i
\(527\) −78.8917 136.644i −0.149700 0.259287i
\(528\) −518.033 + 349.745i −0.981123 + 0.662396i
\(529\) 301.483 522.184i 0.569911 0.987115i
\(530\) 198.643i 0.374799i
\(531\) 85.4646 + 109.194i 0.160950 + 0.205638i
\(532\) −321.977 −0.605220
\(533\) −426.389 + 119.546i −0.799979 + 0.224289i
\(534\) 650.916 + 317.123i 1.21894 + 0.593862i
\(535\) 386.407 223.092i 0.722256 0.416994i
\(536\) 38.5182 22.2385i 0.0718623 0.0414897i
\(537\) −94.5499 + 6.65288i −0.176071 + 0.0123890i
\(538\) 820.811 + 473.896i 1.52567 + 0.880847i
\(539\) 235.076 0.436134
\(540\) 401.114 + 129.752i 0.742803 + 0.240281i
\(541\) 228.668i 0.422676i −0.977413 0.211338i \(-0.932218\pi\)
0.977413 0.211338i \(-0.0677820\pi\)
\(542\) −519.112 299.709i −0.957771 0.552969i
\(543\) −52.4718 745.722i −0.0966331 1.37334i
\(544\) −601.540 + 347.299i −1.10577 + 0.638418i
\(545\) −395.023 + 228.067i −0.724813 + 0.418471i
\(546\) 553.731 198.120i 1.01416 0.362857i
\(547\) 268.854 465.670i 0.491507 0.851315i −0.508445 0.861094i \(-0.669779\pi\)
0.999952 + 0.00977902i \(0.00311281\pi\)
\(548\) 259.251 0.473085
\(549\) −153.293 + 380.365i −0.279222 + 0.692832i
\(550\) −234.708 −0.426742
\(551\) 25.3971 43.9890i 0.0460927 0.0798348i
\(552\) 50.2819 + 74.4761i 0.0910903 + 0.134920i
\(553\) −4.01555 + 2.31838i −0.00726140 + 0.00419237i
\(554\) 269.292 + 466.427i 0.486087 + 0.841927i
\(555\) 390.078 + 577.772i 0.702842 + 1.04103i
\(556\) 63.6065 110.170i 0.114400 0.198147i
\(557\) 906.914 1.62821 0.814106 0.580717i \(-0.197228\pi\)
0.814106 + 0.580717i \(0.197228\pi\)
\(558\) 34.9463 + 247.097i 0.0626278 + 0.442826i
\(559\) 745.510 + 728.483i 1.33365 + 1.30319i
\(560\) 343.690 + 198.430i 0.613732 + 0.354338i
\(561\) 251.232 515.670i 0.447828 0.919198i
\(562\) −418.337 724.581i −0.744372 1.28929i
\(563\) 621.955 359.086i 1.10472 0.637808i 0.167260 0.985913i \(-0.446508\pi\)
0.937456 + 0.348105i \(0.113175\pi\)
\(564\) −12.8528 182.663i −0.0227887 0.323870i
\(565\) 547.205 + 315.929i 0.968504 + 0.559166i
\(566\) −23.1906 −0.0409728
\(567\) −427.882 105.893i −0.754642 0.186760i
\(568\) −85.0701 −0.149771
\(569\) 560.036 + 323.337i 0.984246 + 0.568255i 0.903549 0.428484i \(-0.140952\pi\)
0.0806964 + 0.996739i \(0.474286\pi\)
\(570\) −566.098 + 39.8327i −0.993154 + 0.0698820i
\(571\) −198.171 343.243i −0.347060 0.601126i 0.638665 0.769484i \(-0.279487\pi\)
−0.985726 + 0.168358i \(0.946153\pi\)
\(572\) 143.611 561.842i 0.251067 0.982242i
\(573\) 42.1606 86.5375i 0.0735787 0.151025i
\(574\) −444.853 256.836i −0.775005 0.447449i
\(575\) 235.008i 0.408709i
\(576\) 475.323 67.2238i 0.825213 0.116708i
\(577\) 850.646i 1.47426i 0.675753 + 0.737128i \(0.263819\pi\)
−0.675753 + 0.737128i \(0.736181\pi\)
\(578\) −55.9277 + 96.8697i −0.0967608 + 0.167595i
\(579\) −546.439 809.370i −0.943764 1.39788i
\(580\) 42.7048 24.6556i 0.0736290 0.0425097i
\(581\) −140.328 + 81.0186i −0.241529 + 0.139447i
\(582\) −454.816 673.660i −0.781471 1.15749i
\(583\) 177.362 + 102.400i 0.304223 + 0.175643i
\(584\) 42.1666i 0.0722030i
\(585\) 454.674 199.698i 0.777220 0.341364i
\(586\) −611.046 −1.04274
\(587\) −295.418 + 511.678i −0.503267 + 0.871684i 0.496726 + 0.867907i \(0.334535\pi\)
−0.999993 + 0.00377645i \(0.998798\pi\)
\(588\) −192.336 93.7051i −0.327102 0.159362i
\(589\) −80.4696 139.377i −0.136621 0.236634i
\(590\) −90.6046 156.932i −0.153567 0.265986i
\(591\) 8.31561 + 118.180i 0.0140704 + 0.199967i
\(592\) 814.654 + 470.340i 1.37610 + 0.794494i
\(593\) −140.528 −0.236979 −0.118489 0.992955i \(-0.537805\pi\)
−0.118489 + 0.992955i \(0.537805\pi\)
\(594\) −673.424 + 607.946i −1.13371 + 1.02348i
\(595\) −364.205 −0.612108
\(596\) −359.946 + 623.445i −0.603937 + 1.04605i
\(597\) −35.0097 497.553i −0.0586427 0.833422i
\(598\) −1174.25 300.146i −1.96363 0.501917i
\(599\) −142.441 + 82.2383i −0.237798 + 0.137293i −0.614164 0.789178i \(-0.710507\pi\)
0.376366 + 0.926471i \(0.377173\pi\)
\(600\) −16.7715 8.17097i −0.0279525 0.0136183i
\(601\) 328.043 568.187i 0.545828 0.945403i −0.452726 0.891650i \(-0.649548\pi\)
0.998554 0.0537528i \(-0.0171183\pi\)
\(602\) 1209.09i 2.00845i
\(603\) 354.065 277.122i 0.587172 0.459572i
\(604\) 942.232i 1.55999i
\(605\) −55.2622 + 95.7170i −0.0913426 + 0.158210i
\(606\) −828.985 1227.87i −1.36796 2.02619i
\(607\) −105.406 182.569i −0.173651 0.300772i 0.766043 0.642790i \(-0.222223\pi\)
−0.939694 + 0.342017i \(0.888890\pi\)
\(608\) −613.571 + 354.245i −1.00916 + 0.582641i
\(609\) −42.7315 + 28.8498i −0.0701666 + 0.0473724i
\(610\) 267.961 464.122i 0.439280 0.760856i
\(611\) −154.274 150.750i −0.252494 0.246727i
\(612\) −411.108 + 321.769i −0.671746 + 0.525766i
\(613\) 365.386i 0.596063i 0.954556 + 0.298031i \(0.0963300\pi\)
−0.954556 + 0.298031i \(0.903670\pi\)
\(614\) −607.793 350.910i −0.989891 0.571514i
\(615\) −389.928 189.971i −0.634029 0.308896i
\(616\) −50.8778 + 29.3743i −0.0825938 + 0.0476855i
\(617\) 282.695 + 489.641i 0.458176 + 0.793584i 0.998865 0.0476389i \(-0.0151697\pi\)
−0.540689 + 0.841223i \(0.681836\pi\)
\(618\) −55.3897 787.191i −0.0896273 1.27377i
\(619\) −347.565 200.667i −0.561494 0.324179i 0.192251 0.981346i \(-0.438421\pi\)
−0.753745 + 0.657167i \(0.771755\pi\)
\(620\) 156.241i 0.252001i
\(621\) 608.723 + 674.284i 0.980230 + 1.08580i
\(622\) 997.459i 1.60363i
\(623\) 410.473 + 236.987i 0.658866 + 0.380396i
\(624\) 433.529 510.960i 0.694757 0.818845i
\(625\) 200.793 + 347.783i 0.321268 + 0.556453i
\(626\) −96.1607 166.555i −0.153611 0.266063i
\(627\) 256.256 525.984i 0.408702 0.838889i
\(628\) 402.194 696.620i 0.640436 1.10927i
\(629\) −863.279 −1.37246
\(630\) 534.281 + 215.323i 0.848065 + 0.341783i
\(631\) 514.107i 0.814750i −0.913261 0.407375i \(-0.866444\pi\)
0.913261 0.407375i \(-0.133556\pi\)
\(632\) −0.379288 + 0.656946i −0.000600139 + 0.00103947i
\(633\) 255.734 172.657i 0.404003 0.272759i
\(634\) 319.965 + 554.195i 0.504676 + 0.874124i
\(635\) 225.259 + 390.160i 0.354739 + 0.614426i
\(636\) −104.297 154.482i −0.163989 0.242896i
\(637\) −242.663 + 68.0350i −0.380946 + 0.106805i
\(638\) 106.119i 0.166331i
\(639\) −851.505 + 120.426i −1.33256 + 0.188461i
\(640\) 120.530 0.188329
\(641\) −281.654 162.613i −0.439398 0.253686i 0.263944 0.964538i \(-0.414976\pi\)
−0.703342 + 0.710851i \(0.748310\pi\)
\(642\) 382.752 785.624i 0.596186 1.22371i
\(643\) −802.944 + 463.580i −1.24875 + 0.720964i −0.970859 0.239650i \(-0.922967\pi\)
−0.277887 + 0.960614i \(0.589634\pi\)
\(644\) −336.768 583.299i −0.522931 0.905744i
\(645\) 71.6607 + 1018.43i 0.111102 + 1.57896i
\(646\) 351.379 608.606i 0.543930 0.942115i
\(647\) 905.944i 1.40022i 0.714034 + 0.700111i \(0.246866\pi\)
−0.714034 + 0.700111i \(0.753134\pi\)
\(648\) −69.2854 + 19.9977i −0.106922 + 0.0308607i
\(649\) 186.826 0.287867
\(650\) 242.282 67.9284i 0.372742 0.104505i
\(651\) 11.4664 + 162.959i 0.0176135 + 0.250320i
\(652\) −974.542 + 562.652i −1.49470 + 0.862963i
\(653\) 377.429 217.909i 0.577993 0.333704i −0.182343 0.983235i \(-0.558368\pi\)
0.760335 + 0.649531i \(0.225035\pi\)
\(654\) −391.286 + 803.142i −0.598297 + 1.22805i
\(655\) −817.904 472.217i −1.24871 0.720942i
\(656\) −585.282 −0.892198
\(657\) −59.6915 422.064i −0.0908547 0.642411i
\(658\) 250.205i 0.380251i
\(659\) 290.348 + 167.632i 0.440588 + 0.254374i 0.703847 0.710351i \(-0.251464\pi\)
−0.263259 + 0.964725i \(0.584797\pi\)
\(660\) 470.760 317.829i 0.713273 0.481560i
\(661\) 594.164 343.041i 0.898886 0.518972i 0.0220476 0.999757i \(-0.492981\pi\)
0.876839 + 0.480785i \(0.159648\pi\)
\(662\) 363.343 209.776i 0.548856 0.316882i
\(663\) −110.096 + 605.022i −0.166057 + 0.912552i
\(664\) −13.2547 + 22.9578i −0.0199619 + 0.0345750i
\(665\) −371.489 −0.558630
\(666\) 1266.41 + 510.384i 1.90152 + 0.766343i
\(667\) 106.255 0.159303
\(668\) −517.284 + 895.962i −0.774377 + 1.34126i
\(669\) 204.421 419.589i 0.305563 0.627188i
\(670\) −508.857 + 293.789i −0.759488 + 0.438490i
\(671\) 276.266 + 478.507i 0.411723 + 0.713125i
\(672\) 717.381 50.4776i 1.06753 0.0751155i
\(673\) −29.2868 + 50.7262i −0.0435168 + 0.0753733i −0.886963 0.461840i \(-0.847190\pi\)
0.843447 + 0.537213i \(0.180523\pi\)
\(674\) 986.065 1.46300
\(675\) −179.440 58.0450i −0.265837 0.0859925i
\(676\) 14.3614 + 621.537i 0.0212447 + 0.919434i
\(677\) 406.058 + 234.438i 0.599790 + 0.346289i 0.768959 0.639298i \(-0.220775\pi\)
−0.169169 + 0.985587i \(0.554108\pi\)
\(678\) 1234.51 86.8649i 1.82081 0.128119i
\(679\) −266.040 460.794i −0.391811 0.678636i
\(680\) −51.6013 + 29.7920i −0.0758842 + 0.0438118i
\(681\) 666.229 + 324.583i 0.978309 + 0.476627i
\(682\) 291.188 + 168.117i 0.426962 + 0.246507i
\(683\) 228.933 0.335187 0.167594 0.985856i \(-0.446400\pi\)
0.167594 + 0.985856i \(0.446400\pi\)
\(684\) −419.331 + 328.205i −0.613057 + 0.479831i
\(685\) 299.117 0.436667
\(686\) −893.080 515.620i −1.30187 0.751633i
\(687\) −278.122 411.946i −0.404835 0.599630i
\(688\) 688.823 + 1193.08i 1.00120 + 1.73412i
\(689\) −212.722 54.3732i −0.308740 0.0789160i
\(690\) −664.264 983.889i −0.962702 1.42593i
\(691\) −570.410 329.327i −0.825485 0.476594i 0.0268190 0.999640i \(-0.491462\pi\)
−0.852304 + 0.523046i \(0.824796\pi\)
\(692\) 737.113i 1.06519i
\(693\) −467.676 + 366.044i −0.674856 + 0.528201i
\(694\) 461.509i 0.664999i
\(695\) 73.3875 127.111i 0.105594 0.182893i
\(696\) −3.69437 + 7.58295i −0.00530800 + 0.0108950i
\(697\) 465.163 268.562i 0.667378 0.385311i
\(698\) −597.428 + 344.925i −0.855913 + 0.494162i
\(699\) 670.552 47.1825i 0.959301 0.0675000i
\(700\) 121.099 + 69.9165i 0.172998 + 0.0998807i
\(701\) 652.751i 0.931171i −0.885003 0.465585i \(-0.845844\pi\)
0.885003 0.465585i \(-0.154156\pi\)
\(702\) 519.207 822.466i 0.739611 1.17160i
\(703\) −880.546 −1.25255
\(704\) 323.396 560.138i 0.459369 0.795651i
\(705\) −14.8293 210.752i −0.0210344 0.298938i
\(706\) −77.1606 133.646i −0.109293 0.189300i
\(707\) −484.906 839.881i −0.685864 1.18795i
\(708\) −152.858 74.4716i −0.215901 0.105186i
\(709\) 715.213 + 412.928i 1.00876 + 0.582409i 0.910829 0.412784i \(-0.135443\pi\)
0.0979335 + 0.995193i \(0.468777\pi\)
\(710\) 1123.85 1.58288
\(711\) −2.86648 + 7.11259i −0.00403162 + 0.0100036i
\(712\) 77.5423 0.108908
\(713\) 168.332 291.560i 0.236090 0.408920i
\(714\) −591.208 + 399.149i −0.828023 + 0.559032i
\(715\) 165.694 648.239i 0.231740 0.906628i
\(716\) 100.656 58.1137i 0.140581 0.0811644i
\(717\) −885.189 + 597.628i −1.23457 + 0.833512i
\(718\) 158.826 275.094i 0.221206 0.383140i
\(719\) 584.633i 0.813120i −0.913624 0.406560i \(-0.866728\pi\)
0.913624 0.406560i \(-0.133272\pi\)
\(720\) 649.876 91.9105i 0.902606 0.127653i
\(721\) 516.576i 0.716472i
\(722\) −141.768 + 245.549i −0.196354 + 0.340096i
\(723\) −505.879 + 1038.35i −0.699695 + 1.43617i
\(724\) 458.347 + 793.880i 0.633076 + 1.09652i
\(725\) −19.1042 + 11.0298i −0.0263506 + 0.0152135i
\(726\) 15.1944 + 215.941i 0.0209289 + 0.297439i
\(727\) −308.393 + 534.153i −0.424200 + 0.734735i −0.996345 0.0854166i \(-0.972778\pi\)
0.572146 + 0.820152i \(0.306111\pi\)
\(728\) 44.0183 45.0471i 0.0604647 0.0618779i
\(729\) −665.199 + 298.247i −0.912481 + 0.409118i
\(730\) 557.055i 0.763089i
\(731\) −1094.91 632.145i −1.49782 0.864767i
\(732\) −35.2967 501.632i −0.0482195 0.685289i
\(733\) 107.053 61.8072i 0.146048 0.0843209i −0.425195 0.905102i \(-0.639795\pi\)
0.571243 + 0.820781i \(0.306461\pi\)
\(734\) −46.5425 80.6141i −0.0634095 0.109828i
\(735\) −221.913 108.115i −0.301922 0.147095i
\(736\) −1283.51 741.037i −1.74391 1.00684i
\(737\) 605.789i 0.821965i
\(738\) −841.163 + 118.964i −1.13979 + 0.161197i
\(739\) 1132.78i 1.53285i −0.642333 0.766426i \(-0.722033\pi\)
0.642333 0.766426i \(-0.277967\pi\)
\(740\) −740.313 427.420i −1.00042 0.577594i
\(741\) −112.298 + 617.123i −0.151549 + 0.832824i
\(742\) −127.343 220.564i −0.171621 0.297256i
\(743\) 92.8768 + 160.867i 0.125002 + 0.216511i 0.921734 0.387823i \(-0.126773\pi\)
−0.796731 + 0.604333i \(0.793439\pi\)
\(744\) 14.9546 + 22.1504i 0.0201003 + 0.0297720i
\(745\) −415.297 + 719.315i −0.557446 + 0.965524i
\(746\) −1512.92 −2.02804
\(747\) −100.173 + 248.558i −0.134100 + 0.332742i
\(748\) 703.387i 0.940358i
\(749\) 286.032 495.422i 0.381885 0.661444i
\(750\) 1014.57 + 494.292i 1.35276 + 0.659056i
\(751\) −501.698 868.967i −0.668041 1.15708i −0.978451 0.206478i \(-0.933800\pi\)
0.310411 0.950603i \(-0.399533\pi\)
\(752\) −142.543 246.892i −0.189552 0.328314i
\(753\) −685.614 + 48.2424i −0.910510 + 0.0640669i
\(754\) −30.7127 109.544i −0.0407330 0.145284i
\(755\) 1087.12i 1.43990i
\(756\) 528.556 113.069i 0.699149 0.149562i
\(757\) 210.311 0.277822 0.138911 0.990305i \(-0.455640\pi\)
0.138911 + 0.990305i \(0.455640\pi\)
\(758\) 121.251 + 70.0042i 0.159961 + 0.0923538i
\(759\) 1220.91 85.9077i 1.60858 0.113185i
\(760\) −52.6333 + 30.3879i −0.0692544 + 0.0399840i
\(761\) 698.104 + 1209.15i 0.917351 + 1.58890i 0.803422 + 0.595409i \(0.203010\pi\)
0.113929 + 0.993489i \(0.463657\pi\)
\(762\) 793.255 + 386.470i 1.04102 + 0.507178i
\(763\) −292.410 + 506.469i −0.383237 + 0.663786i
\(764\) 118.040i 0.154502i
\(765\) −474.326 + 371.249i −0.620034 + 0.485293i
\(766\) 987.815 1.28958
\(767\) −192.855 + 54.0704i −0.251440 + 0.0704960i
\(768\) 726.142 490.248i 0.945497 0.638344i
\(769\) 854.200 493.173i 1.11079 0.641317i 0.171759 0.985139i \(-0.445055\pi\)
0.939035 + 0.343822i \(0.111722\pi\)
\(770\) 672.137 388.058i 0.872905 0.503972i
\(771\) −266.138 394.196i −0.345186 0.511279i