Properties

Label 117.3.n.a.38.4
Level $117$
Weight $3$
Character 117.38
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(38,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.38");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 38.4
Character \(\chi\) \(=\) 117.38
Dual form 117.3.n.a.77.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.55290 + 2.68970i) q^{2} +(0.846137 - 2.87820i) q^{3} +(-2.82298 - 4.88955i) q^{4} +(0.611466 + 1.05909i) q^{5} +(6.42753 + 6.74541i) q^{6} +(-8.52943 - 4.92447i) q^{7} +5.11202 q^{8} +(-7.56810 - 4.87071i) q^{9} -3.79817 q^{10} +(10.3377 - 17.9053i) q^{11} +(-16.4617 + 3.98788i) q^{12} +(-12.0892 - 4.78034i) q^{13} +(26.4906 - 15.2944i) q^{14} +(3.56566 - 0.863787i) q^{15} +(3.35349 - 5.80841i) q^{16} +25.2931i q^{17} +(24.8532 - 12.7922i) q^{18} -3.49326i q^{19} +(3.45231 - 5.97958i) q^{20} +(-21.3907 + 20.3826i) q^{21} +(32.1066 + 55.6103i) q^{22} +(15.7163 - 9.07382i) q^{23} +(4.32547 - 14.7134i) q^{24} +(11.7522 - 20.3554i) q^{25} +(31.6309 - 25.0929i) q^{26} +(-20.4225 + 17.6612i) q^{27} +55.6067i q^{28} +(-27.9043 - 16.1105i) q^{29} +(-3.21378 + 10.9319i) q^{30} +(-10.7252 + 6.19219i) q^{31} +(20.6393 + 35.7483i) q^{32} +(-42.7881 - 44.9042i) q^{33} +(-68.0308 - 39.2776i) q^{34} -12.0446i q^{35} +(-2.45095 + 50.7545i) q^{36} -19.4885i q^{37} +(9.39582 + 5.42468i) q^{38} +(-23.9879 + 30.7503i) q^{39} +(3.12582 + 5.41408i) q^{40} +(2.02532 + 3.50796i) q^{41} +(-21.6056 - 89.1866i) q^{42} +(-11.9271 + 20.6584i) q^{43} -116.732 q^{44} +(0.530883 - 10.9936i) q^{45} +56.3628i q^{46} +(-6.24342 + 10.8139i) q^{47} +(-13.8803 - 14.5667i) q^{48} +(24.0008 + 41.5705i) q^{49} +(36.5000 + 63.2198i) q^{50} +(72.7987 + 21.4014i) q^{51} +(10.7538 + 72.6054i) q^{52} +58.3168i q^{53} +(-15.7893 - 82.3566i) q^{54} +25.2845 q^{55} +(-43.6026 - 25.1740i) q^{56} +(-10.0543 - 2.95578i) q^{57} +(86.6649 - 50.0360i) q^{58} +(-6.13856 - 10.6323i) q^{59} +(-14.2893 - 14.9960i) q^{60} +(-12.0421 + 20.8574i) q^{61} -38.4634i q^{62} +(40.5659 + 78.8132i) q^{63} -101.375 q^{64} +(-2.32931 - 15.7265i) q^{65} +(187.224 - 45.3554i) q^{66} +(68.5623 - 39.5845i) q^{67} +(123.672 - 71.4019i) q^{68} +(-12.8181 - 52.9124i) q^{69} +(32.3962 + 18.7040i) q^{70} +8.61851 q^{71} +(-38.6883 - 24.8991i) q^{72} -95.4852i q^{73} +(52.4181 + 30.2636i) q^{74} +(-48.6431 - 51.0488i) q^{75} +(-17.0805 + 9.86142i) q^{76} +(-176.349 + 101.815i) q^{77} +(-45.4582 - 112.272i) q^{78} +(64.4313 - 111.598i) q^{79} +8.20216 q^{80} +(33.5524 + 73.7241i) q^{81} -12.5805 q^{82} +(-13.0262 + 22.5620i) q^{83} +(160.047 + 47.0509i) q^{84} +(-26.7877 + 15.4659i) q^{85} +(-37.0433 - 64.1608i) q^{86} +(-69.9802 + 66.6824i) q^{87} +(52.8463 - 91.5324i) q^{88} +146.747 q^{89} +(28.7450 + 18.4998i) q^{90} +(79.5732 + 100.306i) q^{91} +(-88.7337 - 51.2304i) q^{92} +(8.74740 + 36.1087i) q^{93} +(-19.3908 - 33.5858i) q^{94} +(3.69968 - 2.13601i) q^{95} +(120.354 - 29.1561i) q^{96} +(36.9733 + 21.3465i) q^{97} -149.083 q^{98} +(-165.448 + 85.1578i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 4 q^{3} - 50 q^{4} + 4 q^{9} + 8 q^{10} - 38 q^{12} - 6 q^{13} - 6 q^{14} - 90 q^{16} + 14 q^{22} + 138 q^{23} - 92 q^{25} - 76 q^{27} + 48 q^{29} + 186 q^{30} - 154 q^{36} + 324 q^{38} - 2 q^{39}+ \cdots + 504 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.55290 + 2.68970i −0.776449 + 1.34485i 0.157528 + 0.987515i \(0.449648\pi\)
−0.933977 + 0.357334i \(0.883686\pi\)
\(3\) 0.846137 2.87820i 0.282046 0.959401i
\(4\) −2.82298 4.88955i −0.705745 1.22239i
\(5\) 0.611466 + 1.05909i 0.122293 + 0.211818i 0.920672 0.390338i \(-0.127642\pi\)
−0.798378 + 0.602156i \(0.794309\pi\)
\(6\) 6.42753 + 6.74541i 1.07125 + 1.12423i
\(7\) −8.52943 4.92447i −1.21849 0.703495i −0.253895 0.967232i \(-0.581712\pi\)
−0.964595 + 0.263737i \(0.915045\pi\)
\(8\) 5.11202 0.639002
\(9\) −7.56810 4.87071i −0.840900 0.541190i
\(10\) −3.79817 −0.379817
\(11\) 10.3377 17.9053i 0.939787 1.62776i 0.173919 0.984760i \(-0.444357\pi\)
0.765867 0.642998i \(-0.222310\pi\)
\(12\) −16.4617 + 3.98788i −1.37181 + 0.332324i
\(13\) −12.0892 4.78034i −0.929937 0.367719i
\(14\) 26.4906 15.2944i 1.89219 1.09246i
\(15\) 3.56566 0.863787i 0.237711 0.0575858i
\(16\) 3.35349 5.80841i 0.209593 0.363025i
\(17\) 25.2931i 1.48783i 0.668274 + 0.743915i \(0.267033\pi\)
−0.668274 + 0.743915i \(0.732967\pi\)
\(18\) 24.8532 12.7922i 1.38073 0.710677i
\(19\) 3.49326i 0.183856i −0.995766 0.0919280i \(-0.970697\pi\)
0.995766 0.0919280i \(-0.0293030\pi\)
\(20\) 3.45231 5.97958i 0.172616 0.298979i
\(21\) −21.3907 + 20.3826i −1.01860 + 0.970602i
\(22\) 32.1066 + 55.6103i 1.45939 + 2.52774i
\(23\) 15.7163 9.07382i 0.683318 0.394514i −0.117786 0.993039i \(-0.537580\pi\)
0.801104 + 0.598525i \(0.204246\pi\)
\(24\) 4.32547 14.7134i 0.180228 0.613059i
\(25\) 11.7522 20.3554i 0.470089 0.814218i
\(26\) 31.6309 25.0929i 1.21657 0.965110i
\(27\) −20.4225 + 17.6612i −0.756391 + 0.654120i
\(28\) 55.6067i 1.98595i
\(29\) −27.9043 16.1105i −0.962216 0.555536i −0.0653616 0.997862i \(-0.520820\pi\)
−0.896854 + 0.442326i \(0.854153\pi\)
\(30\) −3.21378 + 10.9319i −0.107126 + 0.364397i
\(31\) −10.7252 + 6.19219i −0.345974 + 0.199748i −0.662911 0.748699i \(-0.730679\pi\)
0.316937 + 0.948447i \(0.397346\pi\)
\(32\) 20.6393 + 35.7483i 0.644977 + 1.11713i
\(33\) −42.7881 44.9042i −1.29661 1.36073i
\(34\) −68.0308 39.2776i −2.00091 1.15522i
\(35\) 12.0446i 0.344131i
\(36\) −2.45095 + 50.7545i −0.0680820 + 1.40985i
\(37\) 19.4885i 0.526715i −0.964698 0.263358i \(-0.915170\pi\)
0.964698 0.263358i \(-0.0848299\pi\)
\(38\) 9.39582 + 5.42468i 0.247259 + 0.142755i
\(39\) −23.9879 + 30.7503i −0.615074 + 0.788469i
\(40\) 3.12582 + 5.41408i 0.0781456 + 0.135352i
\(41\) 2.02532 + 3.50796i 0.0493981 + 0.0855601i 0.889667 0.456610i \(-0.150936\pi\)
−0.840269 + 0.542170i \(0.817603\pi\)
\(42\) −21.6056 89.1866i −0.514419 2.12349i
\(43\) −11.9271 + 20.6584i −0.277375 + 0.480428i −0.970732 0.240167i \(-0.922798\pi\)
0.693356 + 0.720595i \(0.256131\pi\)
\(44\) −116.732 −2.65300
\(45\) 0.530883 10.9936i 0.0117974 0.244302i
\(46\) 56.3628i 1.22528i
\(47\) −6.24342 + 10.8139i −0.132839 + 0.230084i −0.924770 0.380527i \(-0.875743\pi\)
0.791931 + 0.610611i \(0.209076\pi\)
\(48\) −13.8803 14.5667i −0.289172 0.303473i
\(49\) 24.0008 + 41.5705i 0.489811 + 0.848378i
\(50\) 36.5000 + 63.2198i 0.730000 + 1.26440i
\(51\) 72.7987 + 21.4014i 1.42743 + 0.419636i
\(52\) 10.7538 + 72.6054i 0.206804 + 1.39626i
\(53\) 58.3168i 1.10032i 0.835060 + 0.550159i \(0.185433\pi\)
−0.835060 + 0.550159i \(0.814567\pi\)
\(54\) −15.7893 82.3566i −0.292394 1.52512i
\(55\) 25.2845 0.459718
\(56\) −43.6026 25.1740i −0.778617 0.449535i
\(57\) −10.0543 2.95578i −0.176392 0.0518558i
\(58\) 86.6649 50.0360i 1.49422 0.862690i
\(59\) −6.13856 10.6323i −0.104043 0.180208i 0.809304 0.587391i \(-0.199845\pi\)
−0.913347 + 0.407182i \(0.866511\pi\)
\(60\) −14.2893 14.9960i −0.238155 0.249933i
\(61\) −12.0421 + 20.8574i −0.197411 + 0.341925i −0.947688 0.319198i \(-0.896587\pi\)
0.750277 + 0.661123i \(0.229920\pi\)
\(62\) 38.4634i 0.620377i
\(63\) 40.5659 + 78.8132i 0.643904 + 1.25100i
\(64\) −101.375 −1.58398
\(65\) −2.32931 15.7265i −0.0358355 0.241947i
\(66\) 187.224 45.3554i 2.83673 0.687203i
\(67\) 68.5623 39.5845i 1.02332 0.590813i 0.108255 0.994123i \(-0.465474\pi\)
0.915063 + 0.403310i \(0.132140\pi\)
\(68\) 123.672 71.4019i 1.81870 1.05003i
\(69\) −12.8181 52.9124i −0.185770 0.766847i
\(70\) 32.3962 + 18.7040i 0.462803 + 0.267200i
\(71\) 8.61851 0.121387 0.0606937 0.998156i \(-0.480669\pi\)
0.0606937 + 0.998156i \(0.480669\pi\)
\(72\) −38.6883 24.8991i −0.537337 0.345821i
\(73\) 95.4852i 1.30802i −0.756487 0.654008i \(-0.773086\pi\)
0.756487 0.654008i \(-0.226914\pi\)
\(74\) 52.4181 + 30.2636i 0.708352 + 0.408967i
\(75\) −48.6431 51.0488i −0.648575 0.680650i
\(76\) −17.0805 + 9.86142i −0.224743 + 0.129756i
\(77\) −176.349 + 101.815i −2.29024 + 1.32227i
\(78\) −45.4582 112.272i −0.582798 1.43939i
\(79\) 64.4313 111.598i 0.815586 1.41264i −0.0933196 0.995636i \(-0.529748\pi\)
0.908906 0.417001i \(-0.136919\pi\)
\(80\) 8.20216 0.102527
\(81\) 33.5524 + 73.7241i 0.414227 + 0.910174i
\(82\) −12.5805 −0.153420
\(83\) −13.0262 + 22.5620i −0.156942 + 0.271831i −0.933764 0.357888i \(-0.883497\pi\)
0.776823 + 0.629719i \(0.216830\pi\)
\(84\) 160.047 + 47.0509i 1.90533 + 0.560130i
\(85\) −26.7877 + 15.4659i −0.315149 + 0.181951i
\(86\) −37.0433 64.1608i −0.430736 0.746056i
\(87\) −69.9802 + 66.6824i −0.804370 + 0.766464i
\(88\) 52.8463 91.5324i 0.600526 1.04014i
\(89\) 146.747 1.64884 0.824420 0.565979i \(-0.191502\pi\)
0.824420 + 0.565979i \(0.191502\pi\)
\(90\) 28.7450 + 18.4998i 0.319389 + 0.205553i
\(91\) 79.5732 + 100.306i 0.874430 + 1.10227i
\(92\) −88.7337 51.2304i −0.964497 0.556852i
\(93\) 8.74740 + 36.1087i 0.0940581 + 0.388266i
\(94\) −19.3908 33.5858i −0.206285 0.357296i
\(95\) 3.69968 2.13601i 0.0389440 0.0224843i
\(96\) 120.354 29.1561i 1.25369 0.303709i
\(97\) 36.9733 + 21.3465i 0.381168 + 0.220067i 0.678326 0.734761i \(-0.262706\pi\)
−0.297158 + 0.954828i \(0.596039\pi\)
\(98\) −149.083 −1.52125
\(99\) −165.448 + 85.1578i −1.67119 + 0.860179i
\(100\) −132.705 −1.32705
\(101\) −42.4795 24.5256i −0.420589 0.242827i 0.274740 0.961519i \(-0.411408\pi\)
−0.695329 + 0.718691i \(0.744742\pi\)
\(102\) −170.612 + 162.572i −1.67267 + 1.59384i
\(103\) −19.1318 33.1372i −0.185745 0.321721i 0.758082 0.652159i \(-0.226137\pi\)
−0.943827 + 0.330439i \(0.892803\pi\)
\(104\) −61.8001 24.4372i −0.594232 0.234973i
\(105\) −34.6667 10.1914i −0.330159 0.0970606i
\(106\) −156.855 90.5601i −1.47976 0.854340i
\(107\) 5.36035i 0.0500967i −0.999686 0.0250484i \(-0.992026\pi\)
0.999686 0.0250484i \(-0.00797397\pi\)
\(108\) 144.008 + 49.9996i 1.33341 + 0.462959i
\(109\) 23.6340i 0.216825i −0.994106 0.108413i \(-0.965423\pi\)
0.994106 0.108413i \(-0.0345768\pi\)
\(110\) −39.2642 + 68.0076i −0.356947 + 0.618251i
\(111\) −56.0918 16.4899i −0.505331 0.148558i
\(112\) −57.2066 + 33.0283i −0.510773 + 0.294895i
\(113\) 169.505 97.8635i 1.50004 0.866049i 0.500040 0.866002i \(-0.333319\pi\)
1.00000 4.62698e-5i \(-1.47281e-5\pi\)
\(114\) 23.5635 22.4531i 0.206697 0.196957i
\(115\) 19.2200 + 11.0967i 0.167130 + 0.0964927i
\(116\) 181.919i 1.56827i
\(117\) 68.2085 + 95.0610i 0.582979 + 0.812487i
\(118\) 38.1302 0.323137
\(119\) 124.555 215.736i 1.04668 1.81291i
\(120\) 18.2277 4.41569i 0.151898 0.0367974i
\(121\) −153.234 265.409i −1.26640 2.19347i
\(122\) −37.4001 64.7789i −0.306558 0.530975i
\(123\) 11.8103 2.86107i 0.0960189 0.0232607i
\(124\) 60.5540 + 34.9609i 0.488339 + 0.281943i
\(125\) 59.3176 0.474541
\(126\) −274.978 13.2788i −2.18237 0.105387i
\(127\) 129.792 1.02198 0.510992 0.859585i \(-0.329278\pi\)
0.510992 + 0.859585i \(0.329278\pi\)
\(128\) 74.8676 129.674i 0.584903 1.01308i
\(129\) 49.3671 + 51.8086i 0.382691 + 0.401617i
\(130\) 45.9168 + 18.1566i 0.353206 + 0.139666i
\(131\) 5.56829 3.21485i 0.0425060 0.0245409i −0.478596 0.878035i \(-0.658854\pi\)
0.521102 + 0.853494i \(0.325521\pi\)
\(132\) −98.7713 + 335.978i −0.748267 + 2.54529i
\(133\) −17.2025 + 29.7955i −0.129342 + 0.224027i
\(134\) 245.882i 1.83494i
\(135\) −31.1925 10.8301i −0.231056 0.0802227i
\(136\) 129.299i 0.950726i
\(137\) −19.8959 + 34.4606i −0.145225 + 0.251538i −0.929457 0.368931i \(-0.879724\pi\)
0.784232 + 0.620468i \(0.213057\pi\)
\(138\) 162.224 + 47.6907i 1.17553 + 0.345585i
\(139\) 52.6632 + 91.2153i 0.378872 + 0.656225i 0.990898 0.134612i \(-0.0429788\pi\)
−0.612027 + 0.790837i \(0.709645\pi\)
\(140\) −58.8925 + 34.0016i −0.420660 + 0.242868i
\(141\) 25.8419 + 27.1199i 0.183276 + 0.192340i
\(142\) −13.3837 + 23.1812i −0.0942511 + 0.163248i
\(143\) −210.567 + 167.043i −1.47250 + 1.16814i
\(144\) −53.6706 + 27.6248i −0.372712 + 0.191839i
\(145\) 39.4041i 0.271753i
\(146\) 256.826 + 148.279i 1.75908 + 1.01561i
\(147\) 139.956 33.9047i 0.952084 0.230644i
\(148\) −95.2897 + 55.0156i −0.643850 + 0.371727i
\(149\) −94.8152 164.225i −0.636344 1.10218i −0.986229 0.165387i \(-0.947113\pi\)
0.349885 0.936793i \(-0.386221\pi\)
\(150\) 212.843 51.5617i 1.41896 0.343745i
\(151\) −17.8196 10.2881i −0.118010 0.0681333i 0.439833 0.898080i \(-0.355038\pi\)
−0.557843 + 0.829946i \(0.688371\pi\)
\(152\) 17.8576i 0.117484i
\(153\) 123.195 191.421i 0.805199 1.25112i
\(154\) 632.432i 4.10670i
\(155\) −13.1162 7.57263i −0.0846205 0.0488557i
\(156\) 218.072 + 30.4825i 1.39790 + 0.195401i
\(157\) −60.4201 104.651i −0.384841 0.666564i 0.606906 0.794774i \(-0.292410\pi\)
−0.991747 + 0.128209i \(0.959077\pi\)
\(158\) 200.110 + 346.602i 1.26652 + 2.19368i
\(159\) 167.848 + 49.3441i 1.05565 + 0.310340i
\(160\) −25.2404 + 43.7177i −0.157753 + 0.273235i
\(161\) −178.735 −1.11015
\(162\) −250.399 24.2402i −1.54567 0.149631i
\(163\) 41.6323i 0.255413i 0.991812 + 0.127707i \(0.0407616\pi\)
−0.991812 + 0.127707i \(0.959238\pi\)
\(164\) 11.4349 19.8058i 0.0697250 0.120767i
\(165\) 21.3941 72.7739i 0.129661 0.441054i
\(166\) −40.4566 70.0729i −0.243714 0.422126i
\(167\) 92.0192 + 159.382i 0.551013 + 0.954383i 0.998202 + 0.0599433i \(0.0190920\pi\)
−0.447189 + 0.894440i \(0.647575\pi\)
\(168\) −109.350 + 104.196i −0.650890 + 0.620217i
\(169\) 123.297 + 115.581i 0.729566 + 0.683910i
\(170\) 96.0676i 0.565104i
\(171\) −17.0147 + 26.4374i −0.0995011 + 0.154605i
\(172\) 134.680 0.783025
\(173\) −61.9707 35.7788i −0.358212 0.206814i 0.310084 0.950709i \(-0.399643\pi\)
−0.668296 + 0.743895i \(0.732976\pi\)
\(174\) −70.6834 291.777i −0.406226 1.67688i
\(175\) −200.479 + 115.747i −1.14560 + 0.661410i
\(176\) −69.3343 120.091i −0.393945 0.682333i
\(177\) −35.7960 + 8.67163i −0.202237 + 0.0489923i
\(178\) −227.883 + 394.704i −1.28024 + 2.21744i
\(179\) 234.641i 1.31084i −0.755263 0.655422i \(-0.772491\pi\)
0.755263 0.655422i \(-0.227509\pi\)
\(180\) −55.2522 + 28.4389i −0.306957 + 0.157994i
\(181\) −114.420 −0.632154 −0.316077 0.948734i \(-0.602366\pi\)
−0.316077 + 0.948734i \(0.602366\pi\)
\(182\) −393.363 + 58.2622i −2.16133 + 0.320122i
\(183\) 49.8427 + 52.3077i 0.272365 + 0.285835i
\(184\) 80.3421 46.3855i 0.436642 0.252095i
\(185\) 20.6400 11.9165i 0.111568 0.0644137i
\(186\) −110.705 32.5453i −0.595190 0.174975i
\(187\) 452.882 + 261.471i 2.42183 + 1.39824i
\(188\) 70.5003 0.375001
\(189\) 261.165 50.0702i 1.38182 0.264921i
\(190\) 13.2680i 0.0698317i
\(191\) −171.230 98.8599i −0.896494 0.517591i −0.0204332 0.999791i \(-0.506505\pi\)
−0.876061 + 0.482200i \(0.839838\pi\)
\(192\) −85.7770 + 291.777i −0.446755 + 1.51967i
\(193\) −255.158 + 147.316i −1.32206 + 0.763293i −0.984058 0.177851i \(-0.943086\pi\)
−0.338006 + 0.941144i \(0.609752\pi\)
\(194\) −114.831 + 66.2980i −0.591915 + 0.341742i
\(195\) −47.2351 6.60259i −0.242231 0.0338594i
\(196\) 135.507 234.706i 0.691364 1.19748i
\(197\) −195.256 −0.991146 −0.495573 0.868566i \(-0.665042\pi\)
−0.495573 + 0.868566i \(0.665042\pi\)
\(198\) 27.8754 577.247i 0.140785 2.91539i
\(199\) 144.081 0.724027 0.362014 0.932173i \(-0.382089\pi\)
0.362014 + 0.932173i \(0.382089\pi\)
\(200\) 60.0775 104.057i 0.300388 0.520287i
\(201\) −55.9190 230.830i −0.278204 1.14841i
\(202\) 131.933 76.1714i 0.653132 0.377086i
\(203\) 158.672 + 274.827i 0.781633 + 1.35383i
\(204\) −100.866 416.368i −0.494441 2.04102i
\(205\) −2.47683 + 4.29000i −0.0120821 + 0.0209268i
\(206\) 118.839 0.576887
\(207\) −163.139 7.87802i −0.788109 0.0380581i
\(208\) −68.3071 + 54.1881i −0.328399 + 0.260520i
\(209\) −62.5481 36.1122i −0.299273 0.172785i
\(210\) 81.2455 77.4168i 0.386883 0.368652i
\(211\) 94.8655 + 164.312i 0.449599 + 0.778729i 0.998360 0.0572508i \(-0.0182335\pi\)
−0.548761 + 0.835980i \(0.684900\pi\)
\(212\) 285.143 164.627i 1.34501 0.776544i
\(213\) 7.29244 24.8058i 0.0342368 0.116459i
\(214\) 14.4177 + 8.32407i 0.0673725 + 0.0388975i
\(215\) −29.1721 −0.135684
\(216\) −104.400 + 90.2846i −0.483335 + 0.417984i
\(217\) 121.973 0.562088
\(218\) 63.5682 + 36.7011i 0.291597 + 0.168354i
\(219\) −274.826 80.7936i −1.25491 0.368921i
\(220\) −71.3776 123.630i −0.324444 0.561953i
\(221\) 120.910 305.773i 0.547103 1.38359i
\(222\) 131.458 125.263i 0.592152 0.564246i
\(223\) −277.799 160.388i −1.24574 0.719227i −0.275481 0.961306i \(-0.588837\pi\)
−0.970256 + 0.242080i \(0.922170\pi\)
\(224\) 406.550i 1.81495i
\(225\) −188.087 + 96.8104i −0.835944 + 0.430269i
\(226\) 607.888i 2.68977i
\(227\) 47.0775 81.5406i 0.207390 0.359210i −0.743502 0.668734i \(-0.766837\pi\)
0.950892 + 0.309524i \(0.100170\pi\)
\(228\) 13.9307 + 57.5052i 0.0610997 + 0.252216i
\(229\) 342.485 197.734i 1.49557 0.863467i 0.495582 0.868561i \(-0.334955\pi\)
0.999987 + 0.00509440i \(0.00162161\pi\)
\(230\) −59.6933 + 34.4639i −0.259536 + 0.149843i
\(231\) 143.829 + 593.716i 0.622635 + 2.57020i
\(232\) −142.647 82.3573i −0.614858 0.354988i
\(233\) 310.274i 1.33165i −0.746110 0.665823i \(-0.768080\pi\)
0.746110 0.665823i \(-0.231920\pi\)
\(234\) −361.606 + 35.8402i −1.54533 + 0.153163i
\(235\) −15.2706 −0.0649811
\(236\) −34.6580 + 60.0295i −0.146856 + 0.254362i
\(237\) −266.685 279.874i −1.12525 1.18090i
\(238\) 386.842 + 670.031i 1.62539 + 2.81526i
\(239\) 130.497 + 226.027i 0.546012 + 0.945721i 0.998542 + 0.0539721i \(0.0171882\pi\)
−0.452530 + 0.891749i \(0.649478\pi\)
\(240\) 6.94016 23.6075i 0.0289173 0.0983645i
\(241\) 284.068 + 164.007i 1.17870 + 0.680525i 0.955715 0.294295i \(-0.0950849\pi\)
0.222990 + 0.974821i \(0.428418\pi\)
\(242\) 951.828 3.93317
\(243\) 240.583 34.1898i 0.990052 0.140699i
\(244\) 135.978 0.557286
\(245\) −29.3513 + 50.8379i −0.119801 + 0.207502i
\(246\) −10.6448 + 36.2092i −0.0432716 + 0.147192i
\(247\) −16.6990 + 42.2307i −0.0676073 + 0.170975i
\(248\) −54.8274 + 31.6546i −0.221078 + 0.127639i
\(249\) 53.9160 + 56.5825i 0.216530 + 0.227239i
\(250\) −92.1141 + 159.546i −0.368457 + 0.638185i
\(251\) 10.1232i 0.0403315i −0.999797 0.0201657i \(-0.993581\pi\)
0.999797 0.0201657i \(-0.00641939\pi\)
\(252\) 270.844 420.837i 1.07478 1.66999i
\(253\) 375.208i 1.48304i
\(254\) −201.554 + 349.101i −0.793519 + 1.37441i
\(255\) 21.8479 + 90.1866i 0.0856779 + 0.353673i
\(256\) 29.7737 + 51.5695i 0.116303 + 0.201444i
\(257\) −278.454 + 160.766i −1.08348 + 0.625548i −0.931833 0.362887i \(-0.881791\pi\)
−0.151647 + 0.988435i \(0.548458\pi\)
\(258\) −216.011 + 52.3291i −0.837254 + 0.202826i
\(259\) −95.9703 + 166.225i −0.370542 + 0.641797i
\(260\) −70.3200 + 55.7850i −0.270462 + 0.214558i
\(261\) 132.713 + 257.840i 0.508477 + 0.987892i
\(262\) 19.9693i 0.0762189i
\(263\) 187.874 + 108.469i 0.714351 + 0.412430i 0.812670 0.582724i \(-0.198013\pi\)
−0.0983193 + 0.995155i \(0.531347\pi\)
\(264\) −218.734 229.551i −0.828536 0.869512i
\(265\) −61.7627 + 35.6587i −0.233067 + 0.134561i
\(266\) −53.4273 92.5389i −0.200855 0.347890i
\(267\) 124.168 422.367i 0.465048 1.58190i
\(268\) −387.100 223.492i −1.44440 0.833927i
\(269\) 379.276i 1.40995i 0.709233 + 0.704975i \(0.249042\pi\)
−0.709233 + 0.704975i \(0.750958\pi\)
\(270\) 77.5684 67.0805i 0.287290 0.248446i
\(271\) 157.928i 0.582761i 0.956607 + 0.291380i \(0.0941145\pi\)
−0.956607 + 0.291380i \(0.905886\pi\)
\(272\) 146.913 + 84.8201i 0.540120 + 0.311838i
\(273\) 356.032 144.155i 1.30415 0.528039i
\(274\) −61.7925 107.028i −0.225520 0.390612i
\(275\) −242.981 420.855i −0.883566 1.53038i
\(276\) −222.532 + 212.046i −0.806277 + 0.768281i
\(277\) −100.007 + 173.217i −0.361035 + 0.625332i −0.988132 0.153610i \(-0.950910\pi\)
0.627096 + 0.778942i \(0.284243\pi\)
\(278\) −327.122 −1.17670
\(279\) 111.330 + 5.37615i 0.399031 + 0.0192694i
\(280\) 61.5720i 0.219900i
\(281\) 94.9870 164.522i 0.338032 0.585489i −0.646030 0.763312i \(-0.723572\pi\)
0.984062 + 0.177823i \(0.0569054\pi\)
\(282\) −113.074 + 27.3924i −0.400972 + 0.0971362i
\(283\) −189.618 328.429i −0.670030 1.16053i −0.977895 0.209095i \(-0.932948\pi\)
0.307866 0.951430i \(-0.400385\pi\)
\(284\) −24.3299 42.1406i −0.0856686 0.148382i
\(285\) −3.01744 12.4558i −0.0105875 0.0437045i
\(286\) −122.307 825.764i −0.427645 2.88729i
\(287\) 39.8945i 0.139005i
\(288\) 17.9193 371.074i 0.0622198 1.28845i
\(289\) −350.741 −1.21364
\(290\) 105.985 + 61.1906i 0.365466 + 0.211002i
\(291\) 92.7242 88.3545i 0.318640 0.303624i
\(292\) −466.879 + 269.553i −1.59890 + 0.923126i
\(293\) 8.42558 + 14.5935i 0.0287563 + 0.0498073i 0.880045 0.474890i \(-0.157512\pi\)
−0.851289 + 0.524697i \(0.824179\pi\)
\(294\) −126.145 + 429.091i −0.429063 + 1.45949i
\(295\) 7.50703 13.0026i 0.0254476 0.0440765i
\(296\) 99.6254i 0.336572i
\(297\) 105.109 + 548.249i 0.353904 + 1.84595i
\(298\) 588.953 1.97635
\(299\) −233.373 + 34.5657i −0.780513 + 0.115604i
\(300\) −112.287 + 381.952i −0.374289 + 1.27317i
\(301\) 203.463 117.470i 0.675958 0.390265i
\(302\) 55.3439 31.9528i 0.183258 0.105804i
\(303\) −106.533 + 101.513i −0.351594 + 0.335025i
\(304\) −20.2903 11.7146i −0.0667444 0.0385349i
\(305\) −29.4532 −0.0965679
\(306\) 323.554 + 628.615i 1.05737 + 2.05430i
\(307\) 57.0349i 0.185782i −0.995676 0.0928908i \(-0.970389\pi\)
0.995676 0.0928908i \(-0.0296107\pi\)
\(308\) 995.657 + 574.843i 3.23265 + 1.86637i
\(309\) −111.564 + 27.0265i −0.361048 + 0.0874644i
\(310\) 40.7361 23.5190i 0.131407 0.0758678i
\(311\) 35.6272 20.5694i 0.114557 0.0661395i −0.441627 0.897199i \(-0.645598\pi\)
0.556184 + 0.831059i \(0.312265\pi\)
\(312\) −122.627 + 157.196i −0.393034 + 0.503833i
\(313\) −166.556 + 288.483i −0.532127 + 0.921672i 0.467169 + 0.884168i \(0.345274\pi\)
−0.999296 + 0.0375036i \(0.988059\pi\)
\(314\) 375.305 1.19524
\(315\) −58.6656 + 91.1545i −0.186240 + 0.289379i
\(316\) −727.553 −2.30238
\(317\) −88.9725 + 154.105i −0.280670 + 0.486135i −0.971550 0.236834i \(-0.923890\pi\)
0.690880 + 0.722970i \(0.257223\pi\)
\(318\) −393.371 + 374.833i −1.23701 + 1.17872i
\(319\) −576.929 + 333.090i −1.80856 + 1.04417i
\(320\) −61.9872 107.365i −0.193710 0.335516i
\(321\) −15.4282 4.53559i −0.0480628 0.0141296i
\(322\) 277.557 480.743i 0.861978 1.49299i
\(323\) 88.3555 0.273547
\(324\) 265.760 372.177i 0.820245 1.14870i
\(325\) −239.381 + 189.901i −0.736556 + 0.584311i
\(326\) −111.978 64.6508i −0.343492 0.198315i
\(327\) −68.0234 19.9976i −0.208023 0.0611547i
\(328\) 10.3535 + 17.9328i 0.0315655 + 0.0546730i
\(329\) 106.506 61.4911i 0.323725 0.186903i
\(330\) 162.517 + 170.554i 0.492475 + 0.516831i
\(331\) −20.6670 11.9321i −0.0624382 0.0360487i 0.468456 0.883487i \(-0.344810\pi\)
−0.530894 + 0.847438i \(0.678144\pi\)
\(332\) 147.090 0.443043
\(333\) −94.9227 + 147.491i −0.285053 + 0.442915i
\(334\) −571.586 −1.71133
\(335\) 83.8470 + 48.4091i 0.250290 + 0.144505i
\(336\) 46.6574 + 192.599i 0.138861 + 0.573210i
\(337\) 176.891 + 306.385i 0.524900 + 0.909153i 0.999580 + 0.0289946i \(0.00923055\pi\)
−0.474680 + 0.880159i \(0.657436\pi\)
\(338\) −502.345 + 152.145i −1.48623 + 0.450134i
\(339\) −138.247 570.674i −0.407808 1.68341i
\(340\) 151.242 + 87.3197i 0.444830 + 0.256823i
\(341\) 256.051i 0.750883i
\(342\) −44.6865 86.8189i −0.130662 0.253856i
\(343\) 9.83416i 0.0286710i
\(344\) −60.9717 + 105.606i −0.177243 + 0.306995i
\(345\) 48.2012 45.9297i 0.139714 0.133130i
\(346\) 192.468 111.122i 0.556267 0.321161i
\(347\) 113.652 65.6170i 0.327527 0.189098i −0.327216 0.944950i \(-0.606110\pi\)
0.654743 + 0.755852i \(0.272777\pi\)
\(348\) 523.599 + 153.928i 1.50460 + 0.442323i
\(349\) −428.731 247.528i −1.22846 0.709250i −0.261750 0.965136i \(-0.584299\pi\)
−0.966707 + 0.255886i \(0.917633\pi\)
\(350\) 718.972i 2.05421i
\(351\) 331.319 115.883i 0.943928 0.330152i
\(352\) 853.446 2.42456
\(353\) −149.196 + 258.416i −0.422652 + 0.732055i −0.996198 0.0871182i \(-0.972234\pi\)
0.573546 + 0.819174i \(0.305568\pi\)
\(354\) 32.2634 109.746i 0.0911395 0.310018i
\(355\) 5.26992 + 9.12777i 0.0148449 + 0.0257120i
\(356\) −414.263 717.525i −1.16366 2.01552i
\(357\) −515.540 541.037i −1.44409 1.51551i
\(358\) 631.113 + 364.373i 1.76289 + 1.01780i
\(359\) −112.423 −0.313157 −0.156579 0.987665i \(-0.550046\pi\)
−0.156579 + 0.987665i \(0.550046\pi\)
\(360\) 2.71388 56.1993i 0.00753856 0.156109i
\(361\) 348.797 0.966197
\(362\) 177.682 307.755i 0.490835 0.850151i
\(363\) −893.559 + 216.466i −2.46160 + 0.596326i
\(364\) 265.819 672.239i 0.730272 1.84681i
\(365\) 101.127 58.3859i 0.277061 0.159961i
\(366\) −218.093 + 52.8333i −0.595881 + 0.144353i
\(367\) 88.8097 153.823i 0.241988 0.419136i −0.719292 0.694708i \(-0.755534\pi\)
0.961281 + 0.275572i \(0.0888671\pi\)
\(368\) 121.716i 0.330749i
\(369\) 1.75841 36.4134i 0.00476535 0.0986812i
\(370\) 74.0206i 0.200056i
\(371\) 287.179 497.409i 0.774068 1.34073i
\(372\) 151.862 144.705i 0.408230 0.388992i
\(373\) −181.640 314.610i −0.486972 0.843460i 0.512916 0.858439i \(-0.328565\pi\)
−0.999888 + 0.0149791i \(0.995232\pi\)
\(374\) −1406.56 + 812.076i −3.76085 + 2.17133i
\(375\) 50.1908 170.728i 0.133842 0.455275i
\(376\) −31.9165 + 55.2810i −0.0848843 + 0.147024i
\(377\) 260.326 + 328.155i 0.690519 + 0.870438i
\(378\) −270.889 + 780.208i −0.716637 + 2.06404i
\(379\) 407.877i 1.07619i 0.842883 + 0.538097i \(0.180856\pi\)
−0.842883 + 0.538097i \(0.819144\pi\)
\(380\) −20.8882 12.0598i −0.0549691 0.0317364i
\(381\) 109.822 373.568i 0.288246 0.980493i
\(382\) 531.807 307.039i 1.39216 0.803766i
\(383\) 126.399 + 218.929i 0.330023 + 0.571616i 0.982516 0.186179i \(-0.0596103\pi\)
−0.652493 + 0.757795i \(0.726277\pi\)
\(384\) −309.881 325.206i −0.806982 0.846892i
\(385\) −215.662 124.513i −0.560161 0.323409i
\(386\) 915.064i 2.37063i
\(387\) 190.887 98.2514i 0.493248 0.253880i
\(388\) 241.043i 0.621246i
\(389\) 236.386 + 136.477i 0.607675 + 0.350841i 0.772055 0.635556i \(-0.219229\pi\)
−0.164380 + 0.986397i \(0.552562\pi\)
\(390\) 91.1102 116.795i 0.233616 0.299474i
\(391\) 229.505 + 397.514i 0.586969 + 1.01666i
\(392\) 122.692 + 212.509i 0.312990 + 0.542115i
\(393\) −4.54146 18.7469i −0.0115559 0.0477020i
\(394\) 303.212 525.179i 0.769574 1.33294i
\(395\) 157.590 0.398962
\(396\) 883.440 + 568.568i 2.23091 + 1.43578i
\(397\) 271.431i 0.683705i −0.939754 0.341852i \(-0.888946\pi\)
0.939754 0.341852i \(-0.111054\pi\)
\(398\) −223.744 + 387.535i −0.562170 + 0.973707i
\(399\) 71.2020 + 74.7233i 0.178451 + 0.187276i
\(400\) −78.8218 136.523i −0.197054 0.341308i
\(401\) 63.1130 + 109.315i 0.157389 + 0.272606i 0.933926 0.357465i \(-0.116359\pi\)
−0.776537 + 0.630071i \(0.783026\pi\)
\(402\) 707.700 + 208.050i 1.76045 + 0.517538i
\(403\) 159.260 23.5885i 0.395185 0.0585321i
\(404\) 276.941i 0.685497i
\(405\) −57.5643 + 80.6147i −0.142134 + 0.199049i
\(406\) −985.603 −2.42759
\(407\) −348.948 201.465i −0.857365 0.495000i
\(408\) 372.148 + 109.405i 0.912128 + 0.268148i
\(409\) 677.374 391.082i 1.65617 0.956191i 0.681715 0.731618i \(-0.261235\pi\)
0.974457 0.224573i \(-0.0720988\pi\)
\(410\) −7.69253 13.3238i −0.0187623 0.0324972i
\(411\) 82.3501 + 86.4228i 0.200365 + 0.210274i
\(412\) −108.017 + 187.091i −0.262178 + 0.454105i
\(413\) 120.916i 0.292776i
\(414\) 274.527 426.560i 0.663109 1.03034i
\(415\) −31.8602 −0.0767716
\(416\) −78.6229 530.830i −0.188997 1.27603i
\(417\) 307.096 74.3946i 0.736442 0.178404i
\(418\) 194.262 112.157i 0.464741 0.268318i
\(419\) 197.372 113.953i 0.471055 0.271963i −0.245626 0.969365i \(-0.578994\pi\)
0.716681 + 0.697401i \(0.245660\pi\)
\(420\) 48.0323 + 198.274i 0.114363 + 0.472082i
\(421\) −589.735 340.484i −1.40080 0.808750i −0.406322 0.913730i \(-0.633189\pi\)
−0.994474 + 0.104979i \(0.966522\pi\)
\(422\) −589.265 −1.39636
\(423\) 99.9224 51.4310i 0.236223 0.121586i
\(424\) 298.117i 0.703105i
\(425\) 514.852 + 297.250i 1.21142 + 0.699412i
\(426\) 55.3957 + 58.1354i 0.130037 + 0.136468i
\(427\) 205.424 118.601i 0.481086 0.277755i
\(428\) −26.2097 + 15.1322i −0.0612375 + 0.0353555i
\(429\) 302.616 + 747.398i 0.705398 + 1.74219i
\(430\) 45.3014 78.4642i 0.105352 0.182475i
\(431\) 43.2839 0.100427 0.0502133 0.998739i \(-0.484010\pi\)
0.0502133 + 0.998739i \(0.484010\pi\)
\(432\) 34.0970 + 177.849i 0.0789282 + 0.411688i
\(433\) −95.3259 −0.220152 −0.110076 0.993923i \(-0.535109\pi\)
−0.110076 + 0.993923i \(0.535109\pi\)
\(434\) −189.412 + 328.070i −0.436432 + 0.755923i
\(435\) −113.413 33.3413i −0.260720 0.0766467i
\(436\) −115.559 + 66.7182i −0.265044 + 0.153023i
\(437\) −31.6973 54.9012i −0.0725338 0.125632i
\(438\) 644.087 613.734i 1.47052 1.40122i
\(439\) 201.483 348.979i 0.458959 0.794940i −0.539947 0.841699i \(-0.681556\pi\)
0.998906 + 0.0467588i \(0.0148892\pi\)
\(440\) 129.255 0.293761
\(441\) 20.8378 431.511i 0.0472512 0.978482i
\(442\) 634.676 + 800.045i 1.43592 + 1.81006i
\(443\) −478.511 276.268i −1.08016 0.623631i −0.149220 0.988804i \(-0.547676\pi\)
−0.930940 + 0.365173i \(0.881010\pi\)
\(444\) 77.7177 + 320.814i 0.175040 + 0.722554i
\(445\) 89.7306 + 155.418i 0.201642 + 0.349254i
\(446\) 862.788 498.131i 1.93450 1.11689i
\(447\) −552.899 + 133.941i −1.23691 + 0.299644i
\(448\) 864.669 + 499.217i 1.93006 + 1.11432i
\(449\) −631.702 −1.40691 −0.703454 0.710740i \(-0.748360\pi\)
−0.703454 + 0.710740i \(0.748360\pi\)
\(450\) 31.6898 656.235i 0.0704218 1.45830i
\(451\) 83.7483 0.185695
\(452\) −957.016 552.533i −2.11729 1.22242i
\(453\) −44.6891 + 42.5832i −0.0986515 + 0.0940026i
\(454\) 146.213 + 253.248i 0.322055 + 0.557816i
\(455\) −57.5772 + 145.609i −0.126543 + 0.320020i
\(456\) −51.3979 15.1100i −0.112715 0.0331360i
\(457\) −401.315 231.700i −0.878152 0.507001i −0.00810315 0.999967i \(-0.502579\pi\)
−0.870049 + 0.492966i \(0.835913\pi\)
\(458\) 1228.24i 2.68175i
\(459\) −446.708 516.550i −0.973220 1.12538i
\(460\) 125.303i 0.272397i
\(461\) −297.103 + 514.598i −0.644476 + 1.11627i 0.339946 + 0.940445i \(0.389591\pi\)
−0.984422 + 0.175820i \(0.943742\pi\)
\(462\) −1820.27 535.125i −3.93997 1.15828i
\(463\) 96.7700 55.8702i 0.209007 0.120670i −0.391843 0.920032i \(-0.628162\pi\)
0.600850 + 0.799362i \(0.294829\pi\)
\(464\) −187.153 + 108.053i −0.403347 + 0.232873i
\(465\) −32.8936 + 31.3435i −0.0707390 + 0.0674054i
\(466\) 834.542 + 481.823i 1.79086 + 1.03396i
\(467\) 273.583i 0.585831i −0.956138 0.292915i \(-0.905375\pi\)
0.956138 0.292915i \(-0.0946255\pi\)
\(468\) 272.254 601.864i 0.581739 1.28603i
\(469\) −779.730 −1.66254
\(470\) 23.7136 41.0732i 0.0504545 0.0873897i
\(471\) −352.329 + 85.3524i −0.748045 + 0.181215i
\(472\) −31.3804 54.3524i −0.0664839 0.115153i
\(473\) 246.597 + 427.119i 0.521347 + 0.903000i
\(474\) 1166.91 282.686i 2.46184 0.596384i
\(475\) −71.1070 41.0536i −0.149699 0.0864287i
\(476\) −1406.47 −2.95476
\(477\) 284.044 441.348i 0.595481 0.925257i
\(478\) −810.594 −1.69580
\(479\) −66.9177 + 115.905i −0.139703 + 0.241973i −0.927384 0.374110i \(-0.877948\pi\)
0.787681 + 0.616083i \(0.211281\pi\)
\(480\) 104.471 + 109.638i 0.217649 + 0.228413i
\(481\) −93.1615 + 235.600i −0.193683 + 0.489812i
\(482\) −882.256 + 509.371i −1.83041 + 1.05679i
\(483\) −151.234 + 514.435i −0.313114 + 1.06508i
\(484\) −865.154 + 1498.49i −1.78751 + 3.09606i
\(485\) 52.2107i 0.107651i
\(486\) −281.640 + 700.188i −0.579506 + 1.44072i
\(487\) 777.334i 1.59617i −0.602546 0.798084i \(-0.705847\pi\)
0.602546 0.798084i \(-0.294153\pi\)
\(488\) −61.5592 + 106.624i −0.126146 + 0.218491i
\(489\) 119.826 + 35.2267i 0.245044 + 0.0720382i
\(490\) −91.1590 157.892i −0.186039 0.322229i
\(491\) 495.481 286.066i 1.00913 0.582620i 0.0981909 0.995168i \(-0.468694\pi\)
0.910936 + 0.412548i \(0.135361\pi\)
\(492\) −47.3297 49.6704i −0.0961985 0.100956i
\(493\) 407.485 705.785i 0.826542 1.43161i
\(494\) −87.6560 110.495i −0.177441 0.223675i
\(495\) −191.356 123.153i −0.386577 0.248795i
\(496\) 83.0617i 0.167463i
\(497\) −73.5110 42.4416i −0.147909 0.0853955i
\(498\) −235.916 + 57.1510i −0.473726 + 0.114761i
\(499\) 382.938 221.089i 0.767411 0.443065i −0.0645394 0.997915i \(-0.520558\pi\)
0.831950 + 0.554850i \(0.187224\pi\)
\(500\) −167.452 290.036i −0.334905 0.580072i
\(501\) 536.595 129.991i 1.07105 0.259463i
\(502\) 27.2283 + 15.7203i 0.0542397 + 0.0313153i
\(503\) 374.526i 0.744584i 0.928116 + 0.372292i \(0.121428\pi\)
−0.928116 + 0.372292i \(0.878572\pi\)
\(504\) 207.374 + 402.895i 0.411456 + 0.799394i
\(505\) 59.9862i 0.118785i
\(506\) 1009.20 + 582.659i 1.99446 + 1.15150i
\(507\) 436.991 257.075i 0.861915 0.507052i
\(508\) −366.400 634.624i −0.721261 1.24926i
\(509\) 150.147 + 260.062i 0.294984 + 0.510927i 0.974981 0.222287i \(-0.0713523\pi\)
−0.679997 + 0.733215i \(0.738019\pi\)
\(510\) −276.502 81.2864i −0.542161 0.159385i
\(511\) −470.214 + 814.434i −0.920184 + 1.59380i
\(512\) 413.998 0.808591
\(513\) 61.6954 + 71.3414i 0.120264 + 0.139067i
\(514\) 998.611i 1.94282i
\(515\) 23.3969 40.5245i 0.0454308 0.0786884i
\(516\) 113.958 387.637i 0.220849 0.751235i
\(517\) 129.085 + 223.581i 0.249680 + 0.432459i
\(518\) −298.064 516.262i −0.575413 0.996645i
\(519\) −155.414 + 148.091i −0.299450 + 0.285338i
\(520\) −11.9075 80.3943i −0.0228990 0.154604i
\(521\) 609.830i 1.17050i 0.810853 + 0.585249i \(0.199003\pi\)
−0.810853 + 0.585249i \(0.800997\pi\)
\(522\) −899.600 43.4420i −1.72337 0.0832222i
\(523\) 640.706 1.22506 0.612530 0.790448i \(-0.290152\pi\)
0.612530 + 0.790448i \(0.290152\pi\)
\(524\) −31.4383 18.1509i −0.0599968 0.0346392i
\(525\) 163.510 + 674.958i 0.311447 + 1.28563i
\(526\) −583.499 + 336.883i −1.10931 + 0.640462i
\(527\) −156.620 271.273i −0.297191 0.514750i
\(528\) −404.311 + 97.9451i −0.765741 + 0.185502i
\(529\) −99.8316 + 172.913i −0.188718 + 0.326869i
\(530\) 221.497i 0.417920i
\(531\) −5.32958 + 110.365i −0.0100369 + 0.207844i
\(532\) 194.249 0.365130
\(533\) −7.71524 52.0901i −0.0144751 0.0977301i
\(534\) 943.219 + 989.866i 1.76633 + 1.85368i
\(535\) 5.67709 3.27767i 0.0106114 0.00612648i
\(536\) 350.492 202.356i 0.653902 0.377531i
\(537\) −675.344 198.539i −1.25762 0.369718i
\(538\) −1020.14 588.977i −1.89617 1.09475i
\(539\) 992.446 1.84127
\(540\) 35.1018 + 183.090i 0.0650034 + 0.339056i
\(541\) 792.516i 1.46491i 0.680816 + 0.732455i \(0.261625\pi\)
−0.680816 + 0.732455i \(0.738375\pi\)
\(542\) −424.779 245.246i −0.783725 0.452484i
\(543\) −96.8149 + 329.324i −0.178296 + 0.606489i
\(544\) −904.185 + 522.031i −1.66210 + 0.959616i
\(545\) 25.0305 14.4514i 0.0459275 0.0265163i
\(546\) −165.148 + 1181.48i −0.302470 + 2.16387i
\(547\) 162.120 280.800i 0.296380 0.513345i −0.678925 0.734207i \(-0.737554\pi\)
0.975305 + 0.220863i \(0.0708873\pi\)
\(548\) 224.663 0.409968
\(549\) 192.726 99.1979i 0.351049 0.180688i
\(550\) 1509.30 2.74418
\(551\) −56.2784 + 97.4770i −0.102139 + 0.176909i
\(552\) −65.5265 270.489i −0.118707 0.490017i
\(553\) −1099.12 + 634.580i −1.98757 + 1.14752i
\(554\) −310.601 537.976i −0.560651 0.971076i
\(555\) −16.8339 69.4892i −0.0303313 0.125206i
\(556\) 297.334 514.998i 0.534774 0.926255i
\(557\) 262.057 0.470479 0.235239 0.971937i \(-0.424413\pi\)
0.235239 + 0.971937i \(0.424413\pi\)
\(558\) −187.344 + 291.095i −0.335742 + 0.521675i
\(559\) 242.944 192.728i 0.434604 0.344772i
\(560\) −69.9598 40.3913i −0.124928 0.0721273i
\(561\) 1135.77 1082.24i 2.02454 1.92914i
\(562\) 295.010 + 510.973i 0.524929 + 0.909204i
\(563\) 105.814 61.0915i 0.187946 0.108511i −0.403075 0.915167i \(-0.632058\pi\)
0.591021 + 0.806656i \(0.298725\pi\)
\(564\) 59.6529 202.914i 0.105768 0.359777i
\(565\) 207.292 + 119.680i 0.366889 + 0.211824i
\(566\) 1177.83 2.08097
\(567\) 76.8693 794.052i 0.135572 1.40044i
\(568\) 44.0580 0.0775668
\(569\) 731.319 + 422.227i 1.28527 + 0.742051i 0.977807 0.209509i \(-0.0671865\pi\)
0.307463 + 0.951560i \(0.400520\pi\)
\(570\) 38.1881 + 11.2266i 0.0669966 + 0.0196957i
\(571\) −304.502 527.413i −0.533278 0.923665i −0.999245 0.0388626i \(-0.987627\pi\)
0.465966 0.884802i \(-0.345707\pi\)
\(572\) 1411.19 + 558.019i 2.46712 + 0.975557i
\(573\) −429.423 + 409.187i −0.749430 + 0.714113i
\(574\) 107.304 + 61.9521i 0.186941 + 0.107931i
\(575\) 426.550i 0.741826i
\(576\) 767.215 + 493.767i 1.33197 + 0.857235i
\(577\) 775.270i 1.34362i −0.740722 0.671811i \(-0.765517\pi\)
0.740722 0.671811i \(-0.234483\pi\)
\(578\) 544.665 943.388i 0.942327 1.63216i
\(579\) 208.105 + 859.046i 0.359422 + 1.48367i
\(580\) −192.668 + 111.237i −0.332187 + 0.191788i
\(581\) 222.211 128.294i 0.382464 0.220816i
\(582\) 93.6558 + 386.605i 0.160921 + 0.664270i
\(583\) 1044.18 + 602.859i 1.79105 + 1.03406i
\(584\) 488.122i 0.835825i
\(585\) −58.9710 + 130.365i −0.100805 + 0.222847i
\(586\) −52.3363 −0.0893110
\(587\) 507.863 879.645i 0.865184 1.49854i −0.00167957 0.999999i \(-0.500535\pi\)
0.866864 0.498545i \(-0.166132\pi\)
\(588\) −560.872 588.611i −0.953864 1.00104i
\(589\) 21.6310 + 37.4659i 0.0367249 + 0.0636094i
\(590\) 23.3153 + 40.3833i 0.0395175 + 0.0684463i
\(591\) −165.213 + 561.985i −0.279548 + 0.950906i
\(592\) −113.197 65.3543i −0.191211 0.110396i
\(593\) −799.947 −1.34898 −0.674492 0.738282i \(-0.735637\pi\)
−0.674492 + 0.738282i \(0.735637\pi\)
\(594\) −1637.85 568.661i −2.75732 0.957342i
\(595\) 304.645 0.512008
\(596\) −535.323 + 927.206i −0.898193 + 1.55572i
\(597\) 121.913 414.696i 0.204209 0.694632i
\(598\) 269.434 681.381i 0.450558 1.13943i
\(599\) 8.50606 4.91098i 0.0142004 0.00819862i −0.492883 0.870096i \(-0.664057\pi\)
0.507083 + 0.861897i \(0.330724\pi\)
\(600\) −248.664 260.962i −0.414440 0.434937i
\(601\) 17.1826 29.7611i 0.0285900 0.0495194i −0.851376 0.524555i \(-0.824232\pi\)
0.879966 + 0.475036i \(0.157565\pi\)
\(602\) 729.673i 1.21208i
\(603\) −711.691 34.3678i −1.18025 0.0569947i
\(604\) 116.173i 0.192339i
\(605\) 187.395 324.577i 0.309744 0.536492i
\(606\) −107.604 444.181i −0.177564 0.732971i
\(607\) 535.271 + 927.117i 0.881830 + 1.52737i 0.849304 + 0.527904i \(0.177022\pi\)
0.0325263 + 0.999471i \(0.489645\pi\)
\(608\) 124.878 72.0984i 0.205392 0.118583i
\(609\) 925.266 224.147i 1.51932 0.368058i
\(610\) 45.7378 79.2202i 0.0749800 0.129869i
\(611\) 127.172 100.886i 0.208138 0.165116i
\(612\) −1283.74 61.9922i −2.09761 0.101294i
\(613\) 587.652i 0.958650i 0.877637 + 0.479325i \(0.159118\pi\)
−0.877637 + 0.479325i \(0.840882\pi\)
\(614\) 153.407 + 88.5694i 0.249848 + 0.144250i
\(615\) 10.2517 + 10.7587i 0.0166695 + 0.0174939i
\(616\) −901.497 + 520.479i −1.46347 + 0.844934i
\(617\) 496.007 + 859.109i 0.803901 + 1.39240i 0.917030 + 0.398817i \(0.130579\pi\)
−0.113130 + 0.993580i \(0.536088\pi\)
\(618\) 100.554 342.042i 0.162709 0.553466i
\(619\) −533.108 307.790i −0.861240 0.497237i 0.00318717 0.999995i \(-0.498985\pi\)
−0.864427 + 0.502758i \(0.832319\pi\)
\(620\) 85.5095i 0.137919i
\(621\) −160.712 + 462.880i −0.258796 + 0.745379i
\(622\) 127.769i 0.205416i
\(623\) −1251.67 722.649i −2.00909 1.15995i
\(624\) 98.1671 + 242.452i 0.157319 + 0.388545i
\(625\) −257.535 446.063i −0.412056 0.713701i
\(626\) −517.288 895.970i −0.826339 1.43126i
\(627\) −156.862 + 149.470i −0.250179 + 0.238390i
\(628\) −341.129 + 590.853i −0.543200 + 0.940849i
\(629\) 492.924 0.783663
\(630\) −154.076 299.346i −0.244566 0.475153i
\(631\) 156.910i 0.248670i −0.992240 0.124335i \(-0.960320\pi\)
0.992240 0.124335i \(-0.0396797\pi\)
\(632\) 329.374 570.492i 0.521161 0.902678i
\(633\) 553.192 134.012i 0.873921 0.211709i
\(634\) −276.330 478.618i −0.435852 0.754918i
\(635\) 79.3634 + 137.461i 0.124982 + 0.216475i
\(636\) −232.561 959.996i −0.365661 1.50943i
\(637\) −91.4281 617.285i −0.143529 0.969051i
\(638\) 2069.02i 3.24298i
\(639\) −65.2258 41.9783i −0.102075 0.0656937i
\(640\) 183.116 0.286118
\(641\) 448.845 + 259.141i 0.700226 + 0.404276i 0.807432 0.589961i \(-0.200857\pi\)
−0.107206 + 0.994237i \(0.534190\pi\)
\(642\) 36.1577 34.4538i 0.0563204 0.0536663i
\(643\) −177.835 + 102.673i −0.276571 + 0.159678i −0.631870 0.775074i \(-0.717712\pi\)
0.355299 + 0.934753i \(0.384379\pi\)
\(644\) 504.565 + 873.932i 0.783486 + 1.35704i
\(645\) −24.6836 + 83.9634i −0.0382692 + 0.130176i
\(646\) −137.207 + 237.650i −0.212395 + 0.367879i
\(647\) 244.936i 0.378571i −0.981922 0.189286i \(-0.939383\pi\)
0.981922 0.189286i \(-0.0606172\pi\)
\(648\) 171.520 + 376.879i 0.264692 + 0.581603i
\(649\) −253.833 −0.391114
\(650\) −139.043 938.758i −0.213912 1.44424i
\(651\) 103.206 351.063i 0.158534 0.539267i
\(652\) 203.563 117.527i 0.312214 0.180257i
\(653\) −230.756 + 133.227i −0.353378 + 0.204023i −0.666172 0.745798i \(-0.732068\pi\)
0.312794 + 0.949821i \(0.398735\pi\)
\(654\) 159.421 151.908i 0.243763 0.232275i
\(655\) 6.80963 + 3.93154i 0.0103964 + 0.00600236i
\(656\) 27.1676 0.0414140
\(657\) −465.081 + 722.642i −0.707886 + 1.09991i
\(658\) 381.957i 0.580482i
\(659\) 693.369 + 400.317i 1.05215 + 0.607461i 0.923251 0.384197i \(-0.125522\pi\)
0.128901 + 0.991657i \(0.458855\pi\)
\(660\) −416.226 + 100.832i −0.630646 + 0.152775i
\(661\) 109.979 63.4963i 0.166382 0.0960609i −0.414497 0.910051i \(-0.636042\pi\)
0.580879 + 0.813990i \(0.302709\pi\)
\(662\) 64.1875 37.0587i 0.0969600 0.0559799i
\(663\) −777.770 606.729i −1.17311 0.915126i
\(664\) −66.5900 + 115.337i −0.100286 + 0.173701i
\(665\) −42.0749 −0.0632705
\(666\) −249.300 484.351i −0.374325 0.727254i
\(667\) −584.736 −0.876666
\(668\) 519.537 899.864i 0.777750 1.34710i
\(669\) −696.685 + 663.853i −1.04138 + 0.992307i
\(670\) −260.412 + 150.349i −0.388674 + 0.224401i
\(671\) 248.973 + 431.234i 0.371048 + 0.642674i
\(672\) −1170.13 343.997i −1.74127 0.511900i
\(673\) −456.273 + 790.288i −0.677969 + 1.17428i 0.297623 + 0.954683i \(0.403806\pi\)
−0.975592 + 0.219593i \(0.929527\pi\)
\(674\) −1098.78 −1.63023
\(675\) 119.492 + 623.269i 0.177025 + 0.923361i
\(676\) 217.074 929.147i 0.321115 1.37448i
\(677\) 665.602 + 384.286i 0.983164 + 0.567630i 0.903224 0.429169i \(-0.141194\pi\)
0.0799403 + 0.996800i \(0.474527\pi\)
\(678\) 1749.62 + 514.357i 2.58057 + 0.758638i
\(679\) −210.241 364.148i −0.309633 0.536300i
\(680\) −136.939 + 79.0617i −0.201381 + 0.116267i
\(681\) −194.856 204.493i −0.286133 0.300283i
\(682\) −688.700 397.621i −1.00982 0.583022i
\(683\) −510.032 −0.746752 −0.373376 0.927680i \(-0.621800\pi\)
−0.373376 + 0.927680i \(0.621800\pi\)
\(684\) 177.299 + 8.56182i 0.259209 + 0.0125173i
\(685\) −48.6625 −0.0710402
\(686\) −26.4509 15.2714i −0.0385582 0.0222616i
\(687\) −279.329 1153.05i −0.406592 1.67839i
\(688\) 79.9950 + 138.555i 0.116272 + 0.201389i
\(689\) 278.774 705.003i 0.404607 1.02323i
\(690\) 48.6855 + 200.971i 0.0705587 + 0.291262i
\(691\) −429.570 248.013i −0.621665 0.358918i 0.155852 0.987780i \(-0.450188\pi\)
−0.777517 + 0.628862i \(0.783521\pi\)
\(692\) 404.012i 0.583832i
\(693\) 1830.53 + 88.3971i 2.64146 + 0.127557i
\(694\) 407.586i 0.587299i
\(695\) −64.4034 + 111.550i −0.0926668 + 0.160504i
\(696\) −357.740 + 340.882i −0.513994 + 0.489772i
\(697\) −88.7273 + 51.2267i −0.127299 + 0.0734960i
\(698\) 1331.55 768.772i 1.90767 1.10139i
\(699\) −893.030 262.534i −1.27758 0.375585i
\(700\) 1131.90 + 653.502i 1.61700 + 0.933574i
\(701\) 468.089i 0.667745i 0.942618 + 0.333872i \(0.108355\pi\)
−0.942618 + 0.333872i \(0.891645\pi\)
\(702\) −202.813 + 1071.10i −0.288908 + 1.52579i
\(703\) −68.0784 −0.0968398
\(704\) −1047.98 + 1815.15i −1.48860 + 2.57834i
\(705\) −12.9210 + 43.9518i −0.0183276 + 0.0623429i
\(706\) −463.373 802.586i −0.656336 1.13681i
\(707\) 241.551 + 418.378i 0.341656 + 0.591765i
\(708\) 143.452 + 150.546i 0.202615 + 0.212636i
\(709\) 782.263 + 451.640i 1.10333 + 0.637009i 0.937094 0.349076i \(-0.113505\pi\)
0.166238 + 0.986086i \(0.446838\pi\)
\(710\) −32.7346 −0.0461051
\(711\) −1031.19 + 530.761i −1.45033 + 0.746500i
\(712\) 750.171 1.05361
\(713\) −112.374 + 194.637i −0.157607 + 0.272983i
\(714\) 2255.81 546.473i 3.15939 0.765368i
\(715\) −305.669 120.868i −0.427509 0.169047i
\(716\) −1147.29 + 662.387i −1.60236 + 0.925121i
\(717\) 760.971 184.347i 1.06133 0.257108i
\(718\) 174.582 302.385i 0.243151 0.421149i
\(719\) 1133.38i 1.57632i 0.615468 + 0.788162i \(0.288967\pi\)
−0.615468 + 0.788162i \(0.711033\pi\)
\(720\) −62.0748 39.9504i −0.0862150 0.0554866i
\(721\) 376.855i 0.522684i
\(722\) −541.646 + 938.159i −0.750202 + 1.29939i
\(723\) 712.405 678.833i 0.985345 0.938911i
\(724\) 323.005 + 559.461i 0.446140 + 0.772736i
\(725\) −655.874 + 378.669i −0.904654 + 0.522302i
\(726\) 805.377 2739.55i 1.10933 3.77349i
\(727\) 5.42709 9.40000i 0.00746505 0.0129298i −0.862269 0.506451i \(-0.830957\pi\)
0.869734 + 0.493521i \(0.164290\pi\)
\(728\) 406.779 + 512.768i 0.558763 + 0.704351i
\(729\) 105.161 721.375i 0.144253 0.989541i
\(730\) 362.669i 0.496807i
\(731\) −522.516 301.674i −0.714796 0.412687i
\(732\) 115.056 391.372i 0.157180 0.534661i
\(733\) 980.042 565.827i 1.33703 0.771934i 0.350663 0.936502i \(-0.385956\pi\)
0.986366 + 0.164568i \(0.0526231\pi\)
\(734\) 275.825 + 477.743i 0.375783 + 0.650875i
\(735\) 121.487 + 127.495i 0.165288 + 0.173462i
\(736\) 648.746 + 374.554i 0.881449 + 0.508905i
\(737\) 1636.84i 2.22095i
\(738\) 95.2103 + 61.2758i 0.129011 + 0.0830296i
\(739\) 408.332i 0.552547i 0.961079 + 0.276273i \(0.0890995\pi\)
−0.961079 + 0.276273i \(0.910900\pi\)
\(740\) −116.533 67.2802i −0.157477 0.0909192i
\(741\) 107.419 + 83.7961i 0.144965 + 0.113085i
\(742\) 891.920 + 1544.85i 1.20205 + 2.08201i
\(743\) −431.107 746.698i −0.580224 1.00498i −0.995452 0.0952605i \(-0.969632\pi\)
0.415228 0.909717i \(-0.363702\pi\)
\(744\) 44.7169 + 184.588i 0.0601033 + 0.248103i
\(745\) 115.952 200.836i 0.155641 0.269578i
\(746\) 1128.28 1.51243
\(747\) 208.476 107.305i 0.279085 0.143648i
\(748\) 2952.51i 3.94721i
\(749\) −26.3969 + 45.7207i −0.0352428 + 0.0610423i
\(750\) 381.266 + 400.121i 0.508354 + 0.533495i
\(751\) 645.450 + 1117.95i 0.859454 + 1.48862i 0.872450 + 0.488703i \(0.162530\pi\)
−0.0129961 + 0.999916i \(0.504137\pi\)
\(752\) 41.8745 + 72.5287i 0.0556841 + 0.0964477i
\(753\) −29.1366 8.56562i −0.0386940 0.0113753i
\(754\) −1286.90 + 190.606i −1.70676 + 0.252794i
\(755\) 25.1634i 0.0333290i
\(756\) −982.084 1135.63i −1.29905 1.50216i
\(757\) −602.004 −0.795249 −0.397625 0.917548i \(-0.630165\pi\)
−0.397625 + 0.917548i \(0.630165\pi\)
\(758\) −1097.07 633.392i −1.44732 0.835609i
\(759\) −1079.92 317.477i −1.42283 0.418284i
\(760\) 18.9128 10.9193i 0.0248853 0.0143675i
\(761\) −234.682 406.482i −0.308387 0.534142i 0.669623 0.742701i \(-0.266456\pi\)
−0.978010 + 0.208560i \(0.933122\pi\)
\(762\) 834.242 + 875.500i 1.09481 + 1.14895i
\(763\) −116.385 + 201.584i −0.152536 + 0.264200i
\(764\) 1116.32i 1.46115i
\(765\) 278.062 + 13.4277i 0.363479 + 0.0175525i
\(766\) −785.137 −1.02498
\(767\) 23.3841 + 157.880i 0.0304878 + 0.205841i
\(768\) 173.620 42.0598i 0.226068 0.0547654i
\(769\) 453.182 261.645i 0.589314 0.340240i −0.175512 0.984477i \(-0.556158\pi\)
0.764826 + 0.644237i \(0.222825\pi\)
\(770\) 669.802 386.711i 0.869873 0.502221i
\(771\) 227.106 + 937.478i 0.294560 + 1.21593i