Properties

Label 117.3.n.a.38.3
Level $117$
Weight $3$
Character 117.38
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(38,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.38");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 38.3
Character \(\chi\) \(=\) 117.38
Dual form 117.3.n.a.77.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.68517 + 2.91881i) q^{2} +(2.36131 + 1.85046i) q^{3} +(-3.67962 - 6.37330i) q^{4} +(3.61500 + 6.26136i) q^{5} +(-9.38036 + 3.77386i) q^{6} +(-2.20723 - 1.27434i) q^{7} +11.3218 q^{8} +(2.15158 + 8.73903i) q^{9} -24.3676 q^{10} +(0.796079 - 1.37885i) q^{11} +(3.10481 - 21.8583i) q^{12} +(-1.08797 + 12.9544i) q^{13} +(7.43913 - 4.29498i) q^{14} +(-3.05028 + 21.4744i) q^{15} +(-4.36077 + 7.55307i) q^{16} -17.5218i q^{17} +(-29.1333 - 8.44675i) q^{18} -33.2052i q^{19} +(26.6037 - 46.0789i) q^{20} +(-2.85383 - 7.09352i) q^{21} +(2.68306 + 4.64720i) q^{22} +(-13.3796 + 7.72474i) q^{23} +(26.7344 + 20.9506i) q^{24} +(-13.6364 + 23.6189i) q^{25} +(-35.9780 - 25.0060i) q^{26} +(-11.0907 + 24.6170i) q^{27} +18.7564i q^{28} +(40.5355 + 23.4032i) q^{29} +(-57.5395 - 45.0913i) q^{30} +(19.7402 - 11.3970i) q^{31} +(7.94636 + 13.7635i) q^{32} +(4.43130 - 1.78278i) q^{33} +(51.1427 + 29.5272i) q^{34} -18.4270i q^{35} +(47.7794 - 45.8690i) q^{36} +40.4940i q^{37} +(96.9197 + 55.9566i) q^{38} +(-26.5407 + 28.5761i) q^{39} +(40.9284 + 70.8901i) q^{40} +(7.21611 + 12.4987i) q^{41} +(25.5138 + 3.62404i) q^{42} +(-16.2824 + 28.2019i) q^{43} -11.7171 q^{44} +(-46.9403 + 45.0634i) q^{45} -52.0701i q^{46} +(11.5162 - 19.9467i) q^{47} +(-24.2738 + 9.76572i) q^{48} +(-21.2521 - 36.8097i) q^{49} +(-45.9594 - 79.6041i) q^{50} +(32.4234 - 41.3744i) q^{51} +(86.5655 - 40.7333i) q^{52} +29.9403i q^{53} +(-53.1625 - 73.8556i) q^{54} +11.5113 q^{55} +(-24.9899 - 14.4279i) q^{56} +(61.4450 - 78.4079i) q^{57} +(-136.619 + 78.8769i) q^{58} +(33.8805 + 58.6828i) q^{59} +(148.087 - 59.5775i) q^{60} +(57.3856 - 99.3948i) q^{61} +76.8239i q^{62} +(6.38751 - 22.0309i) q^{63} -88.4502 q^{64} +(-85.0451 + 40.0179i) q^{65} +(-2.26393 + 15.9384i) q^{66} +(94.0391 - 54.2935i) q^{67} +(-111.671 + 64.4735i) q^{68} +(-45.8878 - 6.51801i) q^{69} +(53.7849 + 31.0527i) q^{70} +3.91799 q^{71} +(24.3598 + 98.9419i) q^{72} -13.3331i q^{73} +(-118.194 - 68.2395i) q^{74} +(-75.9057 + 30.5380i) q^{75} +(-211.627 + 122.183i) q^{76} +(-3.51426 + 2.02896i) q^{77} +(-38.6825 - 125.623i) q^{78} +(-17.6162 + 30.5122i) q^{79} -63.0567 q^{80} +(-71.7414 + 37.6054i) q^{81} -48.6416 q^{82} +(2.29384 - 3.97305i) q^{83} +(-34.7081 + 44.2898i) q^{84} +(109.710 - 63.3411i) q^{85} +(-54.8773 - 95.0503i) q^{86} +(52.4103 + 130.272i) q^{87} +(9.01307 - 15.6111i) q^{88} -80.5545 q^{89} +(-52.4288 - 212.949i) q^{90} +(18.9098 - 27.2069i) q^{91} +(98.4640 + 56.8482i) q^{92} +(67.7025 + 9.61662i) q^{93} +(38.8138 + 67.2274i) q^{94} +(207.910 - 120.037i) q^{95} +(-6.70501 + 47.2043i) q^{96} +(26.6439 + 15.3828i) q^{97} +143.254 q^{98} +(13.7626 + 3.99026i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 4 q^{3} - 50 q^{4} + 4 q^{9} + 8 q^{10} - 38 q^{12} - 6 q^{13} - 6 q^{14} - 90 q^{16} + 14 q^{22} + 138 q^{23} - 92 q^{25} - 76 q^{27} + 48 q^{29} + 186 q^{30} - 154 q^{36} + 324 q^{38} - 2 q^{39}+ \cdots + 504 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.68517 + 2.91881i −0.842587 + 1.45940i 0.0451132 + 0.998982i \(0.485635\pi\)
−0.887700 + 0.460422i \(0.847698\pi\)
\(3\) 2.36131 + 1.85046i 0.787104 + 0.616821i
\(4\) −3.67962 6.37330i −0.919906 1.59332i
\(5\) 3.61500 + 6.26136i 0.722999 + 1.25227i 0.959792 + 0.280711i \(0.0905704\pi\)
−0.236793 + 0.971560i \(0.576096\pi\)
\(6\) −9.38036 + 3.77386i −1.56339 + 0.628977i
\(7\) −2.20723 1.27434i −0.315318 0.182049i 0.333985 0.942578i \(-0.391606\pi\)
−0.649304 + 0.760529i \(0.724940\pi\)
\(8\) 11.3218 1.41523
\(9\) 2.15158 + 8.73903i 0.239064 + 0.971004i
\(10\) −24.3676 −2.43676
\(11\) 0.796079 1.37885i 0.0723708 0.125350i −0.827569 0.561364i \(-0.810277\pi\)
0.899940 + 0.436014i \(0.143610\pi\)
\(12\) 3.10481 21.8583i 0.258734 1.82153i
\(13\) −1.08797 + 12.9544i −0.0836903 + 0.996492i
\(14\) 7.43913 4.29498i 0.531367 0.306785i
\(15\) −3.05028 + 21.4744i −0.203352 + 1.43163i
\(16\) −4.36077 + 7.55307i −0.272548 + 0.472067i
\(17\) 17.5218i 1.03069i −0.856982 0.515346i \(-0.827663\pi\)
0.856982 0.515346i \(-0.172337\pi\)
\(18\) −29.1333 8.44675i −1.61852 0.469264i
\(19\) 33.2052i 1.74764i −0.486246 0.873822i \(-0.661634\pi\)
0.486246 0.873822i \(-0.338366\pi\)
\(20\) 26.6037 46.0789i 1.33018 2.30394i
\(21\) −2.85383 7.09352i −0.135897 0.337787i
\(22\) 2.68306 + 4.64720i 0.121957 + 0.211236i
\(23\) −13.3796 + 7.72474i −0.581723 + 0.335858i −0.761818 0.647791i \(-0.775693\pi\)
0.180095 + 0.983649i \(0.442360\pi\)
\(24\) 26.7344 + 20.9506i 1.11393 + 0.872943i
\(25\) −13.6364 + 23.6189i −0.545456 + 0.944758i
\(26\) −35.9780 25.0060i −1.38377 0.961769i
\(27\) −11.0907 + 24.6170i −0.410767 + 0.911740i
\(28\) 18.7564i 0.669873i
\(29\) 40.5355 + 23.4032i 1.39778 + 0.807007i 0.994159 0.107921i \(-0.0344193\pi\)
0.403618 + 0.914928i \(0.367753\pi\)
\(30\) −57.5395 45.0913i −1.91798 1.50304i
\(31\) 19.7402 11.3970i 0.636781 0.367646i −0.146592 0.989197i \(-0.546831\pi\)
0.783374 + 0.621551i \(0.213497\pi\)
\(32\) 7.94636 + 13.7635i 0.248324 + 0.430109i
\(33\) 4.43130 1.78278i 0.134282 0.0540235i
\(34\) 51.1427 + 29.5272i 1.50420 + 0.868448i
\(35\) 18.4270i 0.526486i
\(36\) 47.7794 45.8690i 1.32721 1.27414i
\(37\) 40.4940i 1.09443i 0.836991 + 0.547217i \(0.184313\pi\)
−0.836991 + 0.547217i \(0.815687\pi\)
\(38\) 96.9197 + 55.9566i 2.55052 + 1.47254i
\(39\) −26.5407 + 28.5761i −0.680530 + 0.732720i
\(40\) 40.9284 + 70.8901i 1.02321 + 1.77225i
\(41\) 7.21611 + 12.4987i 0.176003 + 0.304845i 0.940508 0.339772i \(-0.110350\pi\)
−0.764505 + 0.644618i \(0.777017\pi\)
\(42\) 25.5138 + 3.62404i 0.607472 + 0.0862867i
\(43\) −16.2824 + 28.2019i −0.378660 + 0.655859i −0.990868 0.134839i \(-0.956948\pi\)
0.612207 + 0.790697i \(0.290282\pi\)
\(44\) −11.7171 −0.266297
\(45\) −46.9403 + 45.0634i −1.04312 + 1.00141i
\(46\) 52.0701i 1.13196i
\(47\) 11.5162 19.9467i 0.245027 0.424398i −0.717113 0.696957i \(-0.754537\pi\)
0.962139 + 0.272559i \(0.0878700\pi\)
\(48\) −24.2738 + 9.76572i −0.505704 + 0.203452i
\(49\) −21.2521 36.8097i −0.433716 0.751218i
\(50\) −45.9594 79.6041i −0.919188 1.59208i
\(51\) 32.4234 41.3744i 0.635753 0.811262i
\(52\) 86.5655 40.7333i 1.66472 0.783333i
\(53\) 29.9403i 0.564911i 0.959280 + 0.282456i \(0.0911490\pi\)
−0.959280 + 0.282456i \(0.908851\pi\)
\(54\) −53.1625 73.8556i −0.984490 1.36770i
\(55\) 11.5113 0.209296
\(56\) −24.9899 14.4279i −0.446248 0.257641i
\(57\) 61.4450 78.4079i 1.07798 1.37558i
\(58\) −136.619 + 78.8769i −2.35550 + 1.35995i
\(59\) 33.8805 + 58.6828i 0.574246 + 0.994624i 0.996123 + 0.0879708i \(0.0280382\pi\)
−0.421877 + 0.906653i \(0.638628\pi\)
\(60\) 148.087 59.5775i 2.46811 0.992958i
\(61\) 57.3856 99.3948i 0.940748 1.62942i 0.176699 0.984265i \(-0.443458\pi\)
0.764049 0.645158i \(-0.223209\pi\)
\(62\) 76.8239i 1.23909i
\(63\) 6.38751 22.0309i 0.101389 0.349697i
\(64\) −88.4502 −1.38203
\(65\) −85.0451 + 40.0179i −1.30839 + 0.615660i
\(66\) −2.26393 + 15.9384i −0.0343019 + 0.241491i
\(67\) 94.0391 54.2935i 1.40357 0.810351i 0.408812 0.912619i \(-0.365943\pi\)
0.994757 + 0.102267i \(0.0326098\pi\)
\(68\) −111.671 + 64.4735i −1.64223 + 0.948140i
\(69\) −45.8878 6.51801i −0.665041 0.0944639i
\(70\) 53.7849 + 31.0527i 0.768355 + 0.443610i
\(71\) 3.91799 0.0551830 0.0275915 0.999619i \(-0.491216\pi\)
0.0275915 + 0.999619i \(0.491216\pi\)
\(72\) 24.3598 + 98.9419i 0.338331 + 1.37419i
\(73\) 13.3331i 0.182645i −0.995821 0.0913224i \(-0.970891\pi\)
0.995821 0.0913224i \(-0.0291094\pi\)
\(74\) −118.194 68.2395i −1.59722 0.922155i
\(75\) −75.9057 + 30.5380i −1.01208 + 0.407173i
\(76\) −211.627 + 122.183i −2.78456 + 1.60767i
\(77\) −3.51426 + 2.02896i −0.0456397 + 0.0263501i
\(78\) −38.6825 125.623i −0.495929 1.61055i
\(79\) −17.6162 + 30.5122i −0.222990 + 0.386230i −0.955715 0.294295i \(-0.904915\pi\)
0.732724 + 0.680526i \(0.238248\pi\)
\(80\) −63.0567 −0.788208
\(81\) −71.7414 + 37.6054i −0.885697 + 0.464264i
\(82\) −48.6416 −0.593190
\(83\) 2.29384 3.97305i 0.0276366 0.0478681i −0.851876 0.523743i \(-0.824535\pi\)
0.879513 + 0.475875i \(0.157869\pi\)
\(84\) −34.7081 + 44.2898i −0.413191 + 0.527259i
\(85\) 109.710 63.3411i 1.29071 0.745190i
\(86\) −54.8773 95.0503i −0.638108 1.10524i
\(87\) 52.4103 + 130.272i 0.602417 + 1.49738i
\(88\) 9.01307 15.6111i 0.102421 0.177399i
\(89\) −80.5545 −0.905106 −0.452553 0.891737i \(-0.649487\pi\)
−0.452553 + 0.891737i \(0.649487\pi\)
\(90\) −52.4288 212.949i −0.582542 2.36610i
\(91\) 18.9098 27.2069i 0.207800 0.298977i
\(92\) 98.4640 + 56.8482i 1.07026 + 0.617916i
\(93\) 67.7025 + 9.61662i 0.727984 + 0.103405i
\(94\) 38.8138 + 67.2274i 0.412912 + 0.715185i
\(95\) 207.910 120.037i 2.18852 1.26355i
\(96\) −6.70501 + 47.2043i −0.0698439 + 0.491712i
\(97\) 26.6439 + 15.3828i 0.274679 + 0.158586i 0.631012 0.775773i \(-0.282640\pi\)
−0.356333 + 0.934359i \(0.615973\pi\)
\(98\) 143.254 1.46177
\(99\) 13.7626 + 3.99026i 0.139016 + 0.0403056i
\(100\) 200.707 2.00707
\(101\) −45.5824 26.3170i −0.451311 0.260564i 0.257073 0.966392i \(-0.417242\pi\)
−0.708384 + 0.705828i \(0.750575\pi\)
\(102\) 66.1247 + 164.361i 0.648281 + 1.61138i
\(103\) −19.6139 33.9723i −0.190427 0.329828i 0.754965 0.655765i \(-0.227654\pi\)
−0.945392 + 0.325937i \(0.894320\pi\)
\(104\) −12.3179 + 146.668i −0.118441 + 1.41026i
\(105\) 34.0985 43.5119i 0.324747 0.414399i
\(106\) −87.3899 50.4546i −0.824433 0.475987i
\(107\) 171.598i 1.60372i −0.597515 0.801858i \(-0.703845\pi\)
0.597515 0.801858i \(-0.296155\pi\)
\(108\) 197.701 19.8969i 1.83056 0.184230i
\(109\) 141.755i 1.30050i −0.759719 0.650252i \(-0.774663\pi\)
0.759719 0.650252i \(-0.225337\pi\)
\(110\) −19.3985 + 33.5992i −0.176350 + 0.305448i
\(111\) −74.9327 + 95.6190i −0.675069 + 0.861432i
\(112\) 19.2504 11.1142i 0.171879 0.0992343i
\(113\) −106.190 + 61.3089i −0.939736 + 0.542557i −0.889877 0.456200i \(-0.849210\pi\)
−0.0498582 + 0.998756i \(0.515877\pi\)
\(114\) 125.312 + 311.477i 1.09923 + 2.73226i
\(115\) −96.7347 55.8498i −0.841171 0.485650i
\(116\) 344.460i 2.96948i
\(117\) −115.550 + 18.3645i −0.987605 + 0.156962i
\(118\) −228.378 −1.93541
\(119\) −22.3288 + 38.6746i −0.187637 + 0.324996i
\(120\) −34.5347 + 243.130i −0.287789 + 2.02608i
\(121\) 59.2325 + 102.594i 0.489525 + 0.847882i
\(122\) 193.410 + 334.995i 1.58532 + 2.74586i
\(123\) −6.08884 + 42.8664i −0.0495027 + 0.348507i
\(124\) −145.273 83.8735i −1.17156 0.676399i
\(125\) −16.4323 −0.131459
\(126\) 53.5399 + 55.7698i 0.424920 + 0.442618i
\(127\) 224.469 1.76747 0.883736 0.467985i \(-0.155020\pi\)
0.883736 + 0.467985i \(0.155020\pi\)
\(128\) 117.268 203.115i 0.916160 1.58684i
\(129\) −90.6344 + 36.4636i −0.702592 + 0.282663i
\(130\) 26.5113 315.667i 0.203933 2.42821i
\(131\) −43.6415 + 25.1964i −0.333141 + 0.192339i −0.657235 0.753686i \(-0.728274\pi\)
0.324094 + 0.946025i \(0.394941\pi\)
\(132\) −27.6677 21.6820i −0.209604 0.164258i
\(133\) −42.3149 + 73.2916i −0.318157 + 0.551064i
\(134\) 365.976i 2.73117i
\(135\) −194.229 + 19.5474i −1.43873 + 0.144796i
\(136\) 198.379i 1.45867i
\(137\) −11.1350 + 19.2865i −0.0812777 + 0.140777i −0.903799 0.427957i \(-0.859233\pi\)
0.822521 + 0.568734i \(0.192567\pi\)
\(138\) 96.3538 122.954i 0.698216 0.890969i
\(139\) −49.3955 85.5556i −0.355364 0.615508i 0.631816 0.775118i \(-0.282310\pi\)
−0.987180 + 0.159610i \(0.948976\pi\)
\(140\) −117.441 + 67.8044i −0.838862 + 0.484317i
\(141\) 64.1041 25.7900i 0.454639 0.182908i
\(142\) −6.60250 + 11.4359i −0.0464965 + 0.0805343i
\(143\) 16.9960 + 11.8129i 0.118853 + 0.0826075i
\(144\) −75.3891 21.8579i −0.523535 0.151791i
\(145\) 338.410i 2.33386i
\(146\) 38.9167 + 22.4686i 0.266553 + 0.153894i
\(147\) 17.9322 126.245i 0.121988 0.858812i
\(148\) 258.080 149.003i 1.74379 1.00678i
\(149\) 20.7254 + 35.8975i 0.139097 + 0.240923i 0.927155 0.374678i \(-0.122247\pi\)
−0.788058 + 0.615601i \(0.788913\pi\)
\(150\) 38.7798 273.016i 0.258532 1.82011i
\(151\) −212.950 122.947i −1.41026 0.814216i −0.414851 0.909889i \(-0.636166\pi\)
−0.995413 + 0.0956729i \(0.969500\pi\)
\(152\) 375.944i 2.47332i
\(153\) 153.123 37.6995i 1.00081 0.246402i
\(154\) 13.6766i 0.0888090i
\(155\) 142.722 + 82.4004i 0.920785 + 0.531615i
\(156\) 279.784 + 64.0022i 1.79348 + 0.410271i
\(157\) −87.9765 152.380i −0.560360 0.970572i −0.997465 0.0711615i \(-0.977329\pi\)
0.437105 0.899411i \(-0.356004\pi\)
\(158\) −59.3728 102.837i −0.375777 0.650865i
\(159\) −55.4034 + 70.6983i −0.348449 + 0.444644i
\(160\) −57.4521 + 99.5100i −0.359076 + 0.621938i
\(161\) 39.3759 0.244571
\(162\) 11.1338 272.771i 0.0687273 1.68377i
\(163\) 120.543i 0.739529i 0.929126 + 0.369764i \(0.120562\pi\)
−0.929126 + 0.369764i \(0.879438\pi\)
\(164\) 53.1051 91.9808i 0.323812 0.560858i
\(165\) 27.1817 + 21.3012i 0.164738 + 0.129098i
\(166\) 7.73104 + 13.3906i 0.0465725 + 0.0806660i
\(167\) −93.4676 161.891i −0.559686 0.969405i −0.997522 0.0703500i \(-0.977588\pi\)
0.437836 0.899055i \(-0.355745\pi\)
\(168\) −32.3106 80.3116i −0.192325 0.478046i
\(169\) −166.633 28.1881i −0.985992 0.166793i
\(170\) 426.963i 2.51155i
\(171\) 290.182 71.4436i 1.69697 0.417799i
\(172\) 239.652 1.39333
\(173\) −17.5631 10.1401i −0.101521 0.0586130i 0.448380 0.893843i \(-0.352001\pi\)
−0.549901 + 0.835230i \(0.685334\pi\)
\(174\) −468.558 66.5551i −2.69286 0.382501i
\(175\) 60.1973 34.7549i 0.343985 0.198600i
\(176\) 6.94303 + 12.0257i 0.0394490 + 0.0683277i
\(177\) −28.5879 + 201.263i −0.161513 + 1.13708i
\(178\) 135.748 235.123i 0.762631 1.32092i
\(179\) 160.073i 0.894262i −0.894468 0.447131i \(-0.852446\pi\)
0.894468 0.447131i \(-0.147554\pi\)
\(180\) 459.925 + 133.348i 2.55514 + 0.740822i
\(181\) 116.492 0.643600 0.321800 0.946808i \(-0.395712\pi\)
0.321800 + 0.946808i \(0.395712\pi\)
\(182\) 47.5453 + 101.042i 0.261238 + 0.555177i
\(183\) 319.432 128.512i 1.74553 0.702252i
\(184\) −151.482 + 87.4582i −0.823272 + 0.475316i
\(185\) −253.548 + 146.386i −1.37053 + 0.791274i
\(186\) −142.160 + 181.405i −0.764299 + 0.975296i
\(187\) −24.1599 13.9487i −0.129197 0.0745920i
\(188\) −169.502 −0.901605
\(189\) 55.8503 40.2020i 0.295504 0.212709i
\(190\) 809.132i 4.25859i
\(191\) −202.354 116.829i −1.05944 0.611670i −0.134166 0.990959i \(-0.542835\pi\)
−0.925278 + 0.379289i \(0.876169\pi\)
\(192\) −208.858 163.674i −1.08780 0.852467i
\(193\) −194.186 + 112.113i −1.00615 + 0.580898i −0.910061 0.414475i \(-0.863965\pi\)
−0.0960848 + 0.995373i \(0.530632\pi\)
\(194\) −89.7991 + 51.8455i −0.462882 + 0.267245i
\(195\) −274.870 62.8781i −1.40959 0.322452i
\(196\) −156.399 + 270.892i −0.797956 + 1.38210i
\(197\) −200.974 −1.02017 −0.510086 0.860124i \(-0.670386\pi\)
−0.510086 + 0.860124i \(0.670386\pi\)
\(198\) −34.8392 + 33.4462i −0.175956 + 0.168920i
\(199\) 96.9630 0.487251 0.243626 0.969869i \(-0.421663\pi\)
0.243626 + 0.969869i \(0.421663\pi\)
\(200\) −154.389 + 267.410i −0.771945 + 1.33705i
\(201\) 322.524 + 45.8120i 1.60460 + 0.227920i
\(202\) 153.628 88.6974i 0.760537 0.439096i
\(203\) −59.6475 103.312i −0.293830 0.508928i
\(204\) −382.997 54.4017i −1.87744 0.266675i
\(205\) −52.1724 + 90.3653i −0.254500 + 0.440806i
\(206\) 132.212 0.641804
\(207\) −96.2940 100.305i −0.465189 0.484564i
\(208\) −93.1011 64.7087i −0.447601 0.311099i
\(209\) −45.7850 26.4340i −0.219067 0.126478i
\(210\) 69.5409 + 172.852i 0.331147 + 0.823105i
\(211\) 123.499 + 213.907i 0.585303 + 1.01378i 0.994838 + 0.101480i \(0.0323579\pi\)
−0.409534 + 0.912295i \(0.634309\pi\)
\(212\) 190.818 110.169i 0.900086 0.519665i
\(213\) 9.25160 + 7.25010i 0.0434347 + 0.0340380i
\(214\) 500.860 + 289.172i 2.34047 + 1.35127i
\(215\) −235.443 −1.09508
\(216\) −125.567 + 278.710i −0.581330 + 1.29032i
\(217\) −58.0949 −0.267719
\(218\) 413.755 + 238.882i 1.89796 + 1.09579i
\(219\) 24.6724 31.4835i 0.112659 0.143760i
\(220\) −42.3572 73.3648i −0.192533 0.333477i
\(221\) 226.984 + 19.0632i 1.02708 + 0.0862590i
\(222\) −152.819 379.849i −0.688373 1.71103i
\(223\) 47.8254 + 27.6120i 0.214464 + 0.123821i 0.603384 0.797451i \(-0.293819\pi\)
−0.388920 + 0.921271i \(0.627152\pi\)
\(224\) 40.5056i 0.180829i
\(225\) −235.746 68.3510i −1.04776 0.303782i
\(226\) 413.265i 1.82860i
\(227\) 66.2010 114.663i 0.291634 0.505125i −0.682562 0.730828i \(-0.739134\pi\)
0.974196 + 0.225702i \(0.0724676\pi\)
\(228\) −725.811 103.096i −3.18338 0.452175i
\(229\) −113.797 + 65.7006i −0.496929 + 0.286902i −0.727445 0.686167i \(-0.759292\pi\)
0.230515 + 0.973069i \(0.425959\pi\)
\(230\) 326.030 188.233i 1.41752 0.818405i
\(231\) −12.0528 1.71200i −0.0521765 0.00741126i
\(232\) 458.937 + 264.967i 1.97818 + 1.14210i
\(233\) 18.2772i 0.0784431i −0.999231 0.0392215i \(-0.987512\pi\)
0.999231 0.0392215i \(-0.0124878\pi\)
\(234\) 141.119 368.215i 0.603072 1.57357i
\(235\) 166.525 0.708616
\(236\) 249.335 431.861i 1.05651 1.82992i
\(237\) −98.0591 + 39.4506i −0.413751 + 0.166458i
\(238\) −75.2557 130.347i −0.316201 0.547676i
\(239\) −153.523 265.909i −0.642354 1.11259i −0.984906 0.173091i \(-0.944625\pi\)
0.342552 0.939499i \(-0.388709\pi\)
\(240\) −148.896 116.684i −0.620402 0.486183i
\(241\) 163.378 + 94.3262i 0.677916 + 0.391395i 0.799069 0.601239i \(-0.205326\pi\)
−0.121154 + 0.992634i \(0.538659\pi\)
\(242\) −399.268 −1.64987
\(243\) −238.991 43.9567i −0.983503 0.180892i
\(244\) −844.630 −3.46160
\(245\) 153.652 266.134i 0.627153 1.08626i
\(246\) −114.858 90.0094i −0.466902 0.365892i
\(247\) 430.154 + 36.1264i 1.74151 + 0.146261i
\(248\) 223.496 129.035i 0.901192 0.520303i
\(249\) 12.7684 5.13694i 0.0512789 0.0206303i
\(250\) 27.6914 47.9628i 0.110765 0.191851i
\(251\) 221.279i 0.881589i −0.897608 0.440795i \(-0.854697\pi\)
0.897608 0.440795i \(-0.145303\pi\)
\(252\) −163.913 + 40.3559i −0.650449 + 0.160143i
\(253\) 24.5980i 0.0972253i
\(254\) −378.269 + 655.182i −1.48925 + 2.57946i
\(255\) 376.270 + 53.4462i 1.47557 + 0.209593i
\(256\) 218.335 + 378.168i 0.852872 + 1.47722i
\(257\) −311.454 + 179.818i −1.21188 + 0.699682i −0.963170 0.268895i \(-0.913342\pi\)
−0.248715 + 0.968577i \(0.580008\pi\)
\(258\) 46.3046 325.992i 0.179475 1.26353i
\(259\) 51.6033 89.3796i 0.199241 0.345095i
\(260\) 567.980 + 394.767i 2.18454 + 1.51833i
\(261\) −117.306 + 404.595i −0.449448 + 1.55017i
\(262\) 169.841i 0.648250i
\(263\) 243.053 + 140.327i 0.924156 + 0.533562i 0.884958 0.465670i \(-0.154187\pi\)
0.0391972 + 0.999231i \(0.487520\pi\)
\(264\) 50.1704 20.1843i 0.190039 0.0764557i
\(265\) −187.467 + 108.234i −0.707422 + 0.408430i
\(266\) −142.616 247.018i −0.536150 0.928639i
\(267\) −190.214 149.063i −0.712412 0.558288i
\(268\) −692.057 399.559i −2.58230 1.49089i
\(269\) 224.370i 0.834088i 0.908886 + 0.417044i \(0.136934\pi\)
−0.908886 + 0.417044i \(0.863066\pi\)
\(270\) 270.254 599.857i 1.00094 2.22169i
\(271\) 69.7426i 0.257353i −0.991687 0.128676i \(-0.958927\pi\)
0.991687 0.128676i \(-0.0410729\pi\)
\(272\) 132.343 + 76.4084i 0.486556 + 0.280913i
\(273\) 94.9971 29.2520i 0.347975 0.107150i
\(274\) −37.5290 65.0021i −0.136967 0.237234i
\(275\) 21.7113 + 37.6051i 0.0789502 + 0.136746i
\(276\) 127.309 + 316.440i 0.461263 + 1.14652i
\(277\) 121.631 210.670i 0.439099 0.760542i −0.558521 0.829490i \(-0.688631\pi\)
0.997620 + 0.0689480i \(0.0219643\pi\)
\(278\) 332.960 1.19770
\(279\) 142.072 + 147.989i 0.509217 + 0.530426i
\(280\) 208.628i 0.745098i
\(281\) 115.235 199.593i 0.410089 0.710295i −0.584810 0.811170i \(-0.698831\pi\)
0.994899 + 0.100875i \(0.0321643\pi\)
\(282\) −32.7504 + 230.568i −0.116136 + 0.817618i
\(283\) −116.854 202.397i −0.412912 0.715185i 0.582295 0.812978i \(-0.302155\pi\)
−0.995207 + 0.0977929i \(0.968822\pi\)
\(284\) −14.4167 24.9705i −0.0507632 0.0879244i
\(285\) 713.063 + 101.285i 2.50198 + 0.355386i
\(286\) −63.1208 + 29.7014i −0.220702 + 0.103851i
\(287\) 36.7832i 0.128165i
\(288\) −103.182 + 99.0568i −0.358273 + 0.343947i
\(289\) −18.0125 −0.0623270
\(290\) −987.754 570.280i −3.40605 1.96648i
\(291\) 34.4491 + 85.6271i 0.118382 + 0.294251i
\(292\) −84.9756 + 49.0607i −0.291012 + 0.168016i
\(293\) 254.259 + 440.390i 0.867780 + 1.50304i 0.864260 + 0.503045i \(0.167787\pi\)
0.00351943 + 0.999994i \(0.498880\pi\)
\(294\) 338.267 + 265.086i 1.15057 + 0.901653i
\(295\) −244.956 + 424.276i −0.830360 + 1.43823i
\(296\) 458.467i 1.54887i
\(297\) 25.1140 + 34.8895i 0.0845590 + 0.117473i
\(298\) −139.704 −0.468805
\(299\) −85.5126 181.729i −0.285995 0.607790i
\(300\) 473.932 + 371.401i 1.57977 + 1.23800i
\(301\) 71.8779 41.4987i 0.238797 0.137870i
\(302\) 717.715 414.373i 2.37654 1.37210i
\(303\) −58.9355 146.491i −0.194507 0.483469i
\(304\) 250.802 + 144.800i 0.825005 + 0.476317i
\(305\) 829.795 2.72064
\(306\) −148.002 + 510.468i −0.483667 + 1.66820i
\(307\) 9.23416i 0.0300787i 0.999887 + 0.0150394i \(0.00478736\pi\)
−0.999887 + 0.0150394i \(0.995213\pi\)
\(308\) 25.8623 + 14.9316i 0.0839685 + 0.0484792i
\(309\) 16.5499 116.514i 0.0535596 0.377068i
\(310\) −481.022 + 277.718i −1.55168 + 0.895864i
\(311\) −229.075 + 132.257i −0.736576 + 0.425262i −0.820823 0.571183i \(-0.806485\pi\)
0.0842470 + 0.996445i \(0.473152\pi\)
\(312\) −300.489 + 323.534i −0.963106 + 1.03697i
\(313\) 90.1946 156.222i 0.288162 0.499110i −0.685209 0.728346i \(-0.740289\pi\)
0.973371 + 0.229236i \(0.0736227\pi\)
\(314\) 593.023 1.88861
\(315\) 161.034 39.6471i 0.511220 0.125864i
\(316\) 259.284 0.820520
\(317\) −148.339 + 256.931i −0.467947 + 0.810508i −0.999329 0.0366243i \(-0.988340\pi\)
0.531382 + 0.847132i \(0.321673\pi\)
\(318\) −112.990 280.851i −0.355316 0.883179i
\(319\) 64.5390 37.2616i 0.202316 0.116807i
\(320\) −319.747 553.818i −0.999209 1.73068i
\(321\) 317.535 405.195i 0.989205 1.26229i
\(322\) −66.3552 + 114.931i −0.206072 + 0.356927i
\(323\) −581.814 −1.80128
\(324\) 503.652 + 318.856i 1.55448 + 0.984122i
\(325\) −291.133 202.348i −0.895794 0.622610i
\(326\) −351.842 203.136i −1.07927 0.623117i
\(327\) 262.312 334.727i 0.802178 1.02363i
\(328\) 81.6996 + 141.508i 0.249084 + 0.431426i
\(329\) −50.8380 + 29.3513i −0.154523 + 0.0892138i
\(330\) −107.980 + 43.4420i −0.327212 + 0.131642i
\(331\) −16.6396 9.60687i −0.0502706 0.0290238i 0.474654 0.880172i \(-0.342573\pi\)
−0.524925 + 0.851149i \(0.675907\pi\)
\(332\) −33.7619 −0.101692
\(333\) −353.879 + 87.1260i −1.06270 + 0.261640i
\(334\) 630.037 1.88634
\(335\) 679.902 + 392.542i 2.02956 + 1.17177i
\(336\) 66.0228 + 9.37802i 0.196496 + 0.0279108i
\(337\) −54.9401 95.1591i −0.163027 0.282371i 0.772926 0.634496i \(-0.218792\pi\)
−0.935953 + 0.352125i \(0.885459\pi\)
\(338\) 363.081 438.867i 1.07420 1.29842i
\(339\) −364.198 51.7315i −1.07433 0.152600i
\(340\) −807.384 466.143i −2.37466 1.37101i
\(341\) 36.2917i 0.106427i
\(342\) −280.476 + 967.379i −0.820106 + 2.82859i
\(343\) 233.216i 0.679929i
\(344\) −184.347 + 319.298i −0.535891 + 0.928191i
\(345\) −125.073 310.883i −0.362530 0.901109i
\(346\) 59.1937 34.1755i 0.171080 0.0987731i
\(347\) 127.592 73.6654i 0.367701 0.212292i −0.304753 0.952432i \(-0.598574\pi\)
0.672454 + 0.740139i \(0.265240\pi\)
\(348\) 637.410 813.377i 1.83164 2.33729i
\(349\) 389.200 + 224.705i 1.11519 + 0.643854i 0.940168 0.340711i \(-0.110668\pi\)
0.175019 + 0.984565i \(0.444001\pi\)
\(350\) 234.273i 0.669350i
\(351\) −306.832 170.456i −0.874165 0.485630i
\(352\) 25.3037 0.0718856
\(353\) −19.8373 + 34.3593i −0.0561964 + 0.0973351i −0.892755 0.450542i \(-0.851231\pi\)
0.836559 + 0.547877i \(0.184564\pi\)
\(354\) −539.273 422.606i −1.52337 1.19380i
\(355\) 14.1635 + 24.5320i 0.0398973 + 0.0691041i
\(356\) 296.410 + 513.397i 0.832613 + 1.44213i
\(357\) −124.291 + 50.0041i −0.348154 + 0.140068i
\(358\) 467.222 + 269.751i 1.30509 + 0.753494i
\(359\) 439.859 1.22524 0.612618 0.790379i \(-0.290117\pi\)
0.612618 + 0.790379i \(0.290117\pi\)
\(360\) −531.450 + 510.200i −1.47625 + 1.41722i
\(361\) −741.587 −2.05426
\(362\) −196.309 + 340.017i −0.542289 + 0.939273i
\(363\) −49.9795 + 351.863i −0.137684 + 0.969320i
\(364\) −242.978 20.4065i −0.667523 0.0560619i
\(365\) 83.4832 48.1990i 0.228721 0.132052i
\(366\) −163.196 + 1148.92i −0.445890 + 3.13914i
\(367\) 83.2209 144.143i 0.226760 0.392760i −0.730086 0.683355i \(-0.760520\pi\)
0.956846 + 0.290596i \(0.0938534\pi\)
\(368\) 134.743i 0.366150i
\(369\) −93.7002 + 89.9537i −0.253930 + 0.243777i
\(370\) 986.742i 2.66687i
\(371\) 38.1542 66.0851i 0.102842 0.178127i
\(372\) −187.830 466.874i −0.504920 1.25504i
\(373\) 36.2155 + 62.7271i 0.0970924 + 0.168169i 0.910480 0.413553i \(-0.135712\pi\)
−0.813388 + 0.581722i \(0.802379\pi\)
\(374\) 81.4272 47.0120i 0.217720 0.125701i
\(375\) −38.8019 30.4074i −0.103472 0.0810865i
\(376\) 130.385 225.834i 0.346769 0.600621i
\(377\) −347.276 + 499.651i −0.921156 + 1.32533i
\(378\) 23.2243 + 230.763i 0.0614401 + 0.610485i
\(379\) 474.167i 1.25110i 0.780184 + 0.625550i \(0.215125\pi\)
−0.780184 + 0.625550i \(0.784875\pi\)
\(380\) −1530.06 883.381i −4.02647 2.32469i
\(381\) 530.041 + 415.371i 1.39118 + 1.09021i
\(382\) 682.003 393.754i 1.78535 1.03077i
\(383\) 271.368 + 470.022i 0.708532 + 1.22721i 0.965402 + 0.260767i \(0.0839754\pi\)
−0.256870 + 0.966446i \(0.582691\pi\)
\(384\) 652.764 262.617i 1.69991 0.683898i
\(385\) −25.4081 14.6693i −0.0659949 0.0381022i
\(386\) 755.722i 1.95783i
\(387\) −281.490 81.6137i −0.727365 0.210888i
\(388\) 226.412i 0.583537i
\(389\) −284.122 164.038i −0.730391 0.421691i 0.0881744 0.996105i \(-0.471897\pi\)
−0.818565 + 0.574414i \(0.805230\pi\)
\(390\) 646.732 696.331i 1.65829 1.78546i
\(391\) 135.351 + 234.435i 0.346166 + 0.599578i
\(392\) −240.613 416.753i −0.613808 1.06315i
\(393\) −149.676 21.2603i −0.380855 0.0540976i
\(394\) 338.676 586.604i 0.859583 1.48884i
\(395\) −254.730 −0.644887
\(396\) −25.2102 102.396i −0.0636622 0.258576i
\(397\) 518.469i 1.30597i −0.757372 0.652983i \(-0.773517\pi\)
0.757372 0.652983i \(-0.226483\pi\)
\(398\) −163.400 + 283.016i −0.410552 + 0.711096i
\(399\) −235.542 + 94.7620i −0.590331 + 0.237499i
\(400\) −118.930 205.993i −0.297326 0.514984i
\(401\) −294.320 509.777i −0.733965 1.27126i −0.955176 0.296039i \(-0.904334\pi\)
0.221211 0.975226i \(-0.428999\pi\)
\(402\) −677.225 + 864.183i −1.68464 + 2.14971i
\(403\) 126.165 + 268.122i 0.313064 + 0.665316i
\(404\) 387.346i 0.958778i
\(405\) −494.806 313.255i −1.22174 0.773470i
\(406\) 402.066 0.990309
\(407\) 55.8351 + 32.2364i 0.137187 + 0.0792050i
\(408\) 367.092 468.434i 0.899736 1.14812i
\(409\) −217.840 + 125.770i −0.532617 + 0.307506i −0.742081 0.670310i \(-0.766161\pi\)
0.209465 + 0.977816i \(0.432828\pi\)
\(410\) −175.839 304.562i −0.428876 0.742835i
\(411\) −61.9822 + 24.9363i −0.150808 + 0.0606724i
\(412\) −144.344 + 250.011i −0.350349 + 0.606822i
\(413\) 172.702i 0.418164i
\(414\) 455.042 112.033i 1.09914 0.270611i
\(415\) 33.1689 0.0799251
\(416\) −186.943 + 87.9659i −0.449383 + 0.211457i
\(417\) 41.6792 293.428i 0.0999501 0.703664i
\(418\) 154.311 89.0917i 0.369166 0.213138i
\(419\) −103.394 + 59.6943i −0.246763 + 0.142469i −0.618281 0.785957i \(-0.712171\pi\)
0.371518 + 0.928426i \(0.378837\pi\)
\(420\) −402.784 57.2123i −0.959009 0.136220i
\(421\) −511.679 295.418i −1.21539 0.701706i −0.251462 0.967867i \(-0.580911\pi\)
−0.963928 + 0.266161i \(0.914245\pi\)
\(422\) −832.469 −1.97268
\(423\) 199.093 + 57.7239i 0.470669 + 0.136463i
\(424\) 338.979i 0.799479i
\(425\) 413.846 + 238.934i 0.973755 + 0.562197i
\(426\) −36.7522 + 14.7860i −0.0862728 + 0.0347088i
\(427\) −253.326 + 146.258i −0.593270 + 0.342525i
\(428\) −1093.64 + 631.415i −2.55524 + 1.47527i
\(429\) 18.2737 + 59.3444i 0.0425959 + 0.138332i
\(430\) 396.763 687.213i 0.922704 1.59817i
\(431\) −226.873 −0.526387 −0.263194 0.964743i \(-0.584776\pi\)
−0.263194 + 0.964743i \(0.584776\pi\)
\(432\) −137.570 191.118i −0.318449 0.442403i
\(433\) 462.970 1.06922 0.534608 0.845100i \(-0.320459\pi\)
0.534608 + 0.845100i \(0.320459\pi\)
\(434\) 97.9001 169.568i 0.225576 0.390709i
\(435\) −626.215 + 799.091i −1.43957 + 1.83699i
\(436\) −903.446 + 521.605i −2.07212 + 1.19634i
\(437\) 256.502 + 444.274i 0.586960 + 1.01664i
\(438\) 50.3172 + 125.069i 0.114879 + 0.285546i
\(439\) −53.3374 + 92.3831i −0.121497 + 0.210440i −0.920358 0.391076i \(-0.872103\pi\)
0.798861 + 0.601516i \(0.205436\pi\)
\(440\) 130.329 0.296202
\(441\) 275.956 264.922i 0.625750 0.600729i
\(442\) −438.149 + 630.397i −0.991288 + 1.42624i
\(443\) 285.885 + 165.056i 0.645338 + 0.372586i 0.786668 0.617376i \(-0.211804\pi\)
−0.141330 + 0.989963i \(0.545138\pi\)
\(444\) 885.132 + 125.726i 1.99354 + 0.283167i
\(445\) −291.204 504.380i −0.654391 1.13344i
\(446\) −161.188 + 93.0622i −0.361409 + 0.208660i
\(447\) −17.4878 + 123.117i −0.0391226 + 0.275429i
\(448\) 195.230 + 112.716i 0.435781 + 0.251598i
\(449\) 198.847 0.442867 0.221434 0.975175i \(-0.428926\pi\)
0.221434 + 0.975175i \(0.428926\pi\)
\(450\) 596.777 572.915i 1.32617 1.27315i
\(451\) 22.9784 0.0509498
\(452\) 781.479 + 451.187i 1.72894 + 0.998202i
\(453\) −275.333 684.371i −0.607798 1.51075i
\(454\) 223.120 + 386.456i 0.491455 + 0.851224i
\(455\) 238.711 + 20.0481i 0.524639 + 0.0440618i
\(456\) 695.671 887.721i 1.52559 1.94676i
\(457\) −111.800 64.5475i −0.244638 0.141242i 0.372669 0.927965i \(-0.378443\pi\)
−0.617307 + 0.786723i \(0.711776\pi\)
\(458\) 442.868i 0.966960i
\(459\) 431.333 + 194.329i 0.939724 + 0.423374i
\(460\) 822.025i 1.78701i
\(461\) 50.5581 87.5692i 0.109671 0.189955i −0.805966 0.591961i \(-0.798354\pi\)
0.915637 + 0.402007i \(0.131687\pi\)
\(462\) 25.3080 32.2947i 0.0547792 0.0699019i
\(463\) 98.9027 57.1015i 0.213613 0.123329i −0.389377 0.921079i \(-0.627310\pi\)
0.602989 + 0.797749i \(0.293976\pi\)
\(464\) −353.532 + 204.112i −0.761923 + 0.439896i
\(465\) 184.531 + 458.674i 0.396842 + 0.986396i
\(466\) 53.3477 + 30.8003i 0.114480 + 0.0660951i
\(467\) 197.924i 0.423820i −0.977289 0.211910i \(-0.932032\pi\)
0.977289 0.211910i \(-0.0679684\pi\)
\(468\) 542.222 + 668.858i 1.15859 + 1.42918i
\(469\) −276.755 −0.590095
\(470\) −280.623 + 486.054i −0.597071 + 1.03416i
\(471\) 74.2332 522.613i 0.157608 1.10958i
\(472\) 383.590 + 664.397i 0.812691 + 1.40762i
\(473\) 25.9241 + 44.9019i 0.0548079 + 0.0949300i
\(474\) 50.0978 352.697i 0.105692 0.744086i
\(475\) 784.272 + 452.800i 1.65110 + 0.953263i
\(476\) 328.646 0.690433
\(477\) −261.649 + 64.4189i −0.548531 + 0.135050i
\(478\) 1034.85 2.16496
\(479\) −297.011 + 514.438i −0.620065 + 1.07398i 0.369408 + 0.929267i \(0.379560\pi\)
−0.989473 + 0.144716i \(0.953773\pi\)
\(480\) −319.802 + 128.661i −0.666254 + 0.268044i
\(481\) −524.576 44.0565i −1.09059 0.0915935i
\(482\) −550.640 + 317.912i −1.14241 + 0.659569i
\(483\) 92.9787 + 72.8636i 0.192503 + 0.150856i
\(484\) 435.907 755.013i 0.900634 1.55994i
\(485\) 222.436i 0.458630i
\(486\) 531.043 623.495i 1.09268 1.28291i
\(487\) 40.9619i 0.0841106i 0.999115 + 0.0420553i \(0.0133906\pi\)
−0.999115 + 0.0420553i \(0.986609\pi\)
\(488\) 649.711 1125.33i 1.33137 2.30601i
\(489\) −223.061 + 284.640i −0.456157 + 0.582086i
\(490\) 517.862 + 896.964i 1.05686 + 1.83054i
\(491\) −577.968 + 333.690i −1.17713 + 0.679614i −0.955348 0.295484i \(-0.904519\pi\)
−0.221777 + 0.975097i \(0.571186\pi\)
\(492\) 295.605 118.926i 0.600822 0.241720i
\(493\) 410.066 710.254i 0.831776 1.44068i
\(494\) −830.330 + 1194.66i −1.68083 + 2.41833i
\(495\) 24.7674 + 100.598i 0.0500352 + 0.203227i
\(496\) 198.799i 0.400805i
\(497\) −8.64791 4.99287i −0.0174002 0.0100460i
\(498\) −6.52333 + 45.9253i −0.0130991 + 0.0922194i
\(499\) −132.293 + 76.3792i −0.265116 + 0.153065i −0.626666 0.779288i \(-0.715581\pi\)
0.361550 + 0.932353i \(0.382248\pi\)
\(500\) 60.4648 + 104.728i 0.120930 + 0.209456i
\(501\) 78.8664 555.232i 0.157418 1.10825i
\(502\) 645.871 + 372.894i 1.28659 + 0.742816i
\(503\) 50.5446i 0.100486i −0.998737 0.0502431i \(-0.984000\pi\)
0.998737 0.0502431i \(-0.0159996\pi\)
\(504\) 72.3184 249.430i 0.143489 0.494901i
\(505\) 380.543i 0.753551i
\(506\) −71.7968 41.4519i −0.141891 0.0819207i
\(507\) −341.310 374.908i −0.673196 0.739464i
\(508\) −825.961 1430.61i −1.62591 2.81616i
\(509\) 229.592 + 397.665i 0.451064 + 0.781267i 0.998452 0.0556124i \(-0.0177111\pi\)
−0.547388 + 0.836879i \(0.684378\pi\)
\(510\) −790.080 + 1008.19i −1.54918 + 1.97685i
\(511\) −16.9909 + 29.4292i −0.0332504 + 0.0575913i
\(512\) −533.584 −1.04216
\(513\) 817.413 + 368.270i 1.59340 + 0.717874i
\(514\) 1212.10i 2.35817i
\(515\) 141.809 245.620i 0.275357 0.476931i
\(516\) 565.893 + 443.467i 1.09669 + 0.859433i
\(517\) −18.3357 31.7583i −0.0354655 0.0614281i
\(518\) 173.921 + 301.240i 0.335755 + 0.581545i
\(519\) −22.7081 56.4436i −0.0437536 0.108755i
\(520\) −962.867 + 453.076i −1.85167 + 0.871300i
\(521\) 255.226i 0.489877i −0.969539 0.244938i \(-0.921232\pi\)
0.969539 0.244938i \(-0.0787677\pi\)
\(522\) −983.254 1024.21i −1.88363 1.96208i
\(523\) −298.364 −0.570485 −0.285243 0.958455i \(-0.592074\pi\)
−0.285243 + 0.958455i \(0.592074\pi\)
\(524\) 321.169 + 185.427i 0.612917 + 0.353868i
\(525\) 206.457 + 29.3257i 0.393252 + 0.0558584i
\(526\) −819.173 + 472.950i −1.55736 + 0.899144i
\(527\) −199.696 345.884i −0.378930 0.656326i
\(528\) −5.85842 + 41.2442i −0.0110955 + 0.0781140i
\(529\) −145.157 + 251.419i −0.274399 + 0.475273i
\(530\) 729.573i 1.37655i
\(531\) −439.935 + 422.344i −0.828502 + 0.795375i
\(532\) 622.812 1.17070
\(533\) −169.764 + 79.8821i −0.318506 + 0.149873i
\(534\) 755.630 304.001i 1.41504 0.569291i
\(535\) 1074.43 620.325i 2.00829 1.15949i
\(536\) 1064.70 614.702i 1.98637 1.14683i
\(537\) 296.209 377.982i 0.551600 0.703877i
\(538\) −654.892 378.102i −1.21727 0.702792i
\(539\) −67.6734 −0.125554
\(540\) 839.270 + 1165.95i 1.55420 + 2.15917i
\(541\) 575.956i 1.06461i −0.846552 0.532307i \(-0.821325\pi\)
0.846552 0.532307i \(-0.178675\pi\)
\(542\) 203.565 + 117.528i 0.375582 + 0.216842i
\(543\) 275.073 + 215.563i 0.506580 + 0.396986i
\(544\) 241.161 139.234i 0.443310 0.255945i
\(545\) 887.578 512.444i 1.62858 0.940263i
\(546\) −74.7056 + 326.573i −0.136823 + 0.598119i
\(547\) −349.284 + 604.978i −0.638545 + 1.10599i 0.347207 + 0.937789i \(0.387130\pi\)
−0.985752 + 0.168204i \(0.946203\pi\)
\(548\) 163.891 0.299071
\(549\) 992.084 + 287.639i 1.80708 + 0.523933i
\(550\) −146.349 −0.266090
\(551\) 777.109 1345.99i 1.41036 2.44282i
\(552\) −519.534 73.7958i −0.941185 0.133688i
\(553\) 77.7661 44.8983i 0.140626 0.0811904i
\(554\) 409.937 + 710.032i 0.739959 + 1.28165i
\(555\) −869.586 123.518i −1.56682 0.222555i
\(556\) −363.514 + 629.625i −0.653802 + 1.13242i
\(557\) 832.902 1.49534 0.747668 0.664073i \(-0.231174\pi\)
0.747668 + 0.664073i \(0.231174\pi\)
\(558\) −671.366 + 165.293i −1.20317 + 0.296223i
\(559\) −347.624 241.611i −0.621868 0.432221i
\(560\) 139.181 + 80.3559i 0.248537 + 0.143493i
\(561\) −31.2374 77.6442i −0.0556817 0.138403i
\(562\) 388.382 + 672.697i 0.691071 + 1.19697i
\(563\) −181.376 + 104.717i −0.322159 + 0.185999i −0.652355 0.757914i \(-0.726219\pi\)
0.330195 + 0.943913i \(0.392885\pi\)
\(564\) −400.246 313.657i −0.709657 0.556129i
\(565\) −767.754 443.263i −1.35886 0.784536i
\(566\) 787.679 1.39166
\(567\) 206.272 + 8.41950i 0.363795 + 0.0148492i
\(568\) 44.3589 0.0780966
\(569\) −306.715 177.082i −0.539042 0.311216i 0.205649 0.978626i \(-0.434070\pi\)
−0.744691 + 0.667410i \(0.767403\pi\)
\(570\) −1497.27 + 1910.61i −2.62679 + 3.35195i
\(571\) −21.2844 36.8657i −0.0372757 0.0645635i 0.846786 0.531934i \(-0.178535\pi\)
−0.884061 + 0.467371i \(0.845201\pi\)
\(572\) 12.7479 151.788i 0.0222865 0.265363i
\(573\) −261.633 650.318i −0.456601 1.13493i
\(574\) 107.363 + 61.9861i 0.187044 + 0.107990i
\(575\) 421.350i 0.732783i
\(576\) −190.307 772.969i −0.330395 1.34196i
\(577\) 564.679i 0.978646i 0.872103 + 0.489323i \(0.162756\pi\)
−0.872103 + 0.489323i \(0.837244\pi\)
\(578\) 30.3542 52.5750i 0.0525159 0.0909602i
\(579\) −665.995 94.5995i −1.15025 0.163384i
\(580\) 2156.79 1245.22i 3.71860 2.14693i
\(581\) −10.1261 + 5.84629i −0.0174287 + 0.0100625i
\(582\) −307.982 43.7464i −0.529178 0.0751657i
\(583\) 41.2831 + 23.8348i 0.0708116 + 0.0408831i
\(584\) 150.955i 0.258484i
\(585\) −532.699 657.111i −0.910596 1.12327i
\(586\) −1713.89 −2.92472
\(587\) −217.901 + 377.415i −0.371211 + 0.642956i −0.989752 0.142796i \(-0.954391\pi\)
0.618541 + 0.785752i \(0.287724\pi\)
\(588\) −870.583 + 350.248i −1.48058 + 0.595660i
\(589\) −378.441 655.479i −0.642514 1.11287i
\(590\) −825.587 1429.96i −1.39930 2.42366i
\(591\) −474.562 371.894i −0.802981 0.629263i
\(592\) −305.854 176.585i −0.516646 0.298286i
\(593\) 55.6224 0.0937984 0.0468992 0.998900i \(-0.485066\pi\)
0.0468992 + 0.998900i \(0.485066\pi\)
\(594\) −144.157 + 14.5082i −0.242689 + 0.0244245i
\(595\) −322.874 −0.542645
\(596\) 152.524 264.179i 0.255912 0.443253i
\(597\) 228.960 + 179.426i 0.383517 + 0.300547i
\(598\) 674.537 + 56.6509i 1.12799 + 0.0947340i
\(599\) 763.317 440.701i 1.27432 0.735728i 0.298521 0.954403i \(-0.403507\pi\)
0.975798 + 0.218675i \(0.0701734\pi\)
\(600\) −859.392 + 345.746i −1.43232 + 0.576244i
\(601\) −19.0786 + 33.0451i −0.0317447 + 0.0549835i −0.881461 0.472256i \(-0.843440\pi\)
0.849717 + 0.527240i \(0.176773\pi\)
\(602\) 279.730i 0.464668i
\(603\) 676.805 + 704.994i 1.12240 + 1.16915i
\(604\) 1809.59i 2.99601i
\(605\) −428.251 + 741.752i −0.707852 + 1.22604i
\(606\) 526.896 + 74.8415i 0.869465 + 0.123501i
\(607\) −94.0210 162.849i −0.154895 0.268285i 0.778126 0.628108i \(-0.216170\pi\)
−0.933021 + 0.359823i \(0.882837\pi\)
\(608\) 457.020 263.861i 0.751678 0.433981i
\(609\) 50.3296 354.328i 0.0826430 0.581820i
\(610\) −1398.35 + 2422.01i −2.29238 + 3.97051i
\(611\) 245.868 + 170.888i 0.402403 + 0.279685i
\(612\) −803.706 837.181i −1.31325 1.36794i
\(613\) 728.653i 1.18867i 0.804218 + 0.594334i \(0.202584\pi\)
−0.804218 + 0.594334i \(0.797416\pi\)
\(614\) −26.9527 15.5612i −0.0438970 0.0253439i
\(615\) −290.413 + 116.837i −0.472216 + 0.189979i
\(616\) −39.7878 + 22.9715i −0.0645906 + 0.0372914i
\(617\) −538.990 933.559i −0.873566 1.51306i −0.858282 0.513178i \(-0.828468\pi\)
−0.0152844 0.999883i \(-0.504865\pi\)
\(618\) 312.193 + 244.653i 0.505166 + 0.395878i
\(619\) −317.751 183.454i −0.513330 0.296371i 0.220871 0.975303i \(-0.429110\pi\)
−0.734201 + 0.678932i \(0.762443\pi\)
\(620\) 1212.81i 1.95614i
\(621\) −41.7701 415.039i −0.0672626 0.668340i
\(622\) 891.502i 1.43328i
\(623\) 177.802 + 102.654i 0.285397 + 0.164774i
\(624\) −100.100 325.077i −0.160416 0.520957i
\(625\) 281.507 + 487.585i 0.450411 + 0.780136i
\(626\) 303.987 + 526.521i 0.485602 + 0.841088i
\(627\) −59.1975 147.142i −0.0944139 0.234677i
\(628\) −647.441 + 1121.40i −1.03096 + 1.78567i
\(629\) 709.527 1.12802
\(630\) −155.648 + 536.840i −0.247061 + 0.852127i
\(631\) 79.7699i 0.126418i 0.998000 + 0.0632091i \(0.0201335\pi\)
−0.998000 + 0.0632091i \(0.979866\pi\)
\(632\) −199.448 + 345.454i −0.315582 + 0.546605i
\(633\) −104.206 + 733.630i −0.164623 + 1.15897i
\(634\) −499.955 865.947i −0.788572 1.36585i
\(635\) 811.455 + 1405.48i 1.27788 + 2.21336i
\(636\) 654.445 + 92.9589i 1.02900 + 0.146162i
\(637\) 499.969 235.260i 0.784881 0.369325i
\(638\) 251.169i 0.393682i
\(639\) 8.42987 + 34.2395i 0.0131923 + 0.0535829i
\(640\) 1695.70 2.64953
\(641\) 362.313 + 209.182i 0.565231 + 0.326336i 0.755242 0.655446i \(-0.227519\pi\)
−0.190011 + 0.981782i \(0.560852\pi\)
\(642\) 647.585 + 1609.65i 1.00870 + 2.50724i
\(643\) −99.3380 + 57.3528i −0.154491 + 0.0891957i −0.575253 0.817976i \(-0.695096\pi\)
0.420761 + 0.907171i \(0.361763\pi\)
\(644\) −144.888 250.954i −0.224982 0.389680i
\(645\) −555.954 435.679i −0.861945 0.675471i
\(646\) 980.459 1698.20i 1.51774 2.62880i
\(647\) 31.4954i 0.0486792i 0.999704 + 0.0243396i \(0.00774830\pi\)
−0.999704 + 0.0243396i \(0.992252\pi\)
\(648\) −812.245 + 425.762i −1.25346 + 0.657041i
\(649\) 107.886 0.166235
\(650\) 1081.22 508.769i 1.66342 0.782722i
\(651\) −137.180 107.502i −0.210722 0.165134i
\(652\) 768.257 443.554i 1.17831 0.680297i
\(653\) −507.638 + 293.085i −0.777393 + 0.448828i −0.835506 0.549482i \(-0.814825\pi\)
0.0581125 + 0.998310i \(0.481492\pi\)
\(654\) 534.963 + 1329.71i 0.817986 + 2.03320i
\(655\) −315.528 182.170i −0.481722 0.278122i
\(656\) −125.871 −0.191877
\(657\) 116.518 28.6872i 0.177349 0.0436639i
\(658\) 197.848i 0.300681i
\(659\) −730.478 421.741i −1.10846 0.639972i −0.170033 0.985438i \(-0.554387\pi\)
−0.938431 + 0.345466i \(0.887721\pi\)
\(660\) 35.7403 251.618i 0.0541520 0.381239i
\(661\) −299.887 + 173.140i −0.453686 + 0.261936i −0.709386 0.704820i \(-0.751028\pi\)
0.255699 + 0.966756i \(0.417694\pi\)
\(662\) 56.0812 32.3785i 0.0847148 0.0489101i
\(663\) 500.704 + 465.039i 0.755209 + 0.701417i
\(664\) 25.9705 44.9822i 0.0391122 0.0677443i
\(665\) −611.873 −0.920110
\(666\) 342.043 1179.73i 0.513578 1.77136i
\(667\) −723.134 −1.08416
\(668\) −687.851 + 1191.39i −1.02972 + 1.78352i
\(669\) 61.8357 + 153.700i 0.0924301 + 0.229746i
\(670\) −2291.51 + 1323.00i −3.42016 + 1.97463i
\(671\) −91.3670 158.252i −0.136165 0.235845i
\(672\) 74.9541 95.6463i 0.111539 0.142331i
\(673\) 393.093 680.857i 0.584090 1.01167i −0.410898 0.911681i \(-0.634785\pi\)
0.994988 0.0999926i \(-0.0318819\pi\)
\(674\) 370.335 0.549458
\(675\) −430.190 597.638i −0.637318 0.885390i
\(676\) 433.494 + 1165.72i 0.641264 + 1.72444i
\(677\) 534.737 + 308.730i 0.789862 + 0.456027i 0.839914 0.542720i \(-0.182605\pi\)
−0.0500520 + 0.998747i \(0.515939\pi\)
\(678\) 764.731 975.846i 1.12792 1.43930i
\(679\) −39.2061 67.9069i −0.0577409 0.100010i
\(680\) 1242.12 717.138i 1.82665 1.05461i
\(681\) 368.502 148.254i 0.541118 0.217700i
\(682\) 105.928 + 61.1578i 0.155320 + 0.0896743i
\(683\) −1039.61 −1.52213 −0.761063 0.648678i \(-0.775322\pi\)
−0.761063 + 0.648678i \(0.775322\pi\)
\(684\) −1523.09 1586.53i −2.22674 2.31948i
\(685\) −161.013 −0.235055
\(686\) −680.712 393.009i −0.992291 0.572900i
\(687\) −390.286 55.4371i −0.568102 0.0806945i
\(688\) −142.007 245.964i −0.206406 0.357506i
\(689\) −387.858 32.5743i −0.562929 0.0472776i
\(690\) 1118.18 + 158.828i 1.62054 + 0.230186i
\(691\) 390.293 + 225.336i 0.564823 + 0.326101i 0.755079 0.655634i \(-0.227598\pi\)
−0.190256 + 0.981735i \(0.560932\pi\)
\(692\) 149.246i 0.215674i
\(693\) −25.2923 26.3458i −0.0364969 0.0380170i
\(694\) 496.556i 0.715499i
\(695\) 357.129 618.566i 0.513855 0.890024i
\(696\) 593.380 + 1474.92i 0.852558 + 2.11913i
\(697\) 218.999 126.439i 0.314202 0.181405i
\(698\) −1311.74 + 757.334i −1.87928 + 1.08501i
\(699\) 33.8213 43.1582i 0.0483853 0.0617428i
\(700\) −443.007 255.770i −0.632867 0.365386i
\(701\) 1193.94i 1.70319i 0.524199 + 0.851596i \(0.324365\pi\)
−0.524199 + 0.851596i \(0.675635\pi\)
\(702\) 1014.59 608.335i 1.44529 0.866574i
\(703\) 1344.61 1.91268
\(704\) −70.4133 + 121.959i −0.100019 + 0.173238i
\(705\) 393.217 + 308.148i 0.557754 + 0.437089i
\(706\) −66.8587 115.803i −0.0947008 0.164027i
\(707\) 67.0738 + 116.175i 0.0948710 + 0.164321i
\(708\) 1387.90 558.373i 1.96031 0.788663i
\(709\) 836.882 + 483.174i 1.18037 + 0.681486i 0.956100 0.293041i \(-0.0946673\pi\)
0.224269 + 0.974527i \(0.428001\pi\)
\(710\) −95.4721 −0.134468
\(711\) −304.550 88.2994i −0.428340 0.124190i
\(712\) −912.024 −1.28093
\(713\) −176.078 + 304.976i −0.246954 + 0.427736i
\(714\) 63.4996 447.047i 0.0889350 0.626116i
\(715\) −12.5240 + 149.122i −0.0175161 + 0.208562i
\(716\) −1020.19 + 589.008i −1.42485 + 0.822637i
\(717\) 129.540 911.982i 0.180669 1.27194i
\(718\) −741.240 + 1283.86i −1.03237 + 1.78811i
\(719\) 108.172i 0.150448i 0.997167 + 0.0752241i \(0.0239672\pi\)
−0.997167 + 0.0752241i \(0.976033\pi\)
\(720\) −135.671 551.054i −0.188432 0.765353i
\(721\) 99.9796i 0.138668i
\(722\) 1249.70 2164.55i 1.73089 2.99799i
\(723\) 211.239 + 525.058i 0.292169 + 0.726221i
\(724\) −428.646 742.436i −0.592052 1.02546i
\(725\) −1105.52 + 638.271i −1.52485 + 0.880374i
\(726\) −942.797 738.831i −1.29862 1.01767i
\(727\) −78.3223 + 135.658i −0.107734 + 0.186600i −0.914852 0.403790i \(-0.867693\pi\)
0.807118 + 0.590390i \(0.201026\pi\)
\(728\) 214.093 308.032i 0.294084 0.423120i
\(729\) −482.992 546.040i −0.662541 0.749026i
\(730\) 324.895i 0.445062i
\(731\) 494.148 + 285.296i 0.675989 + 0.390282i
\(732\) −1994.43 1562.96i −2.72464 2.13519i
\(733\) −581.233 + 335.575i −0.792951 + 0.457811i −0.841001 0.541034i \(-0.818033\pi\)
0.0480491 + 0.998845i \(0.484700\pi\)
\(734\) 280.483 + 485.811i 0.382130 + 0.661868i
\(735\) 855.292 344.097i 1.16366 0.468159i
\(736\) −212.639 122.767i −0.288911 0.166803i
\(737\) 172.888i 0.234583i
\(738\) −104.656 425.081i −0.141811 0.575990i
\(739\) 1012.63i 1.37027i −0.728418 0.685133i \(-0.759744\pi\)
0.728418 0.685133i \(-0.240256\pi\)
\(740\) 1865.92 + 1077.29i 2.52151 + 1.45580i
\(741\) 948.876 + 881.289i 1.28053 + 1.18932i
\(742\) 128.593 + 222.730i 0.173306 + 0.300175i
\(743\) −399.361 691.714i −0.537498 0.930974i −0.999038 0.0438545i \(-0.986036\pi\)
0.461540 0.887119i \(-0.347297\pi\)
\(744\) 766.517 + 108.878i 1.03026 + 0.146341i
\(745\) −149.845 + 259.539i −0.201134 + 0.348374i
\(746\) −244.118 −0.327235
\(747\) 39.6560 + 11.4976i 0.0530870 + 0.0153917i
\(748\) 205.304i 0.274471i
\(749\) −218.674 + 378.755i −0.291955 + 0.505681i
\(750\) 154.141 62.0134i 0.205522 0.0826845i
\(751\) 169.930 + 294.327i 0.226272 + 0.391914i 0.956700 0.291075i \(-0.0940130\pi\)
−0.730429 + 0.682989i \(0.760680\pi\)
\(752\) 100.439 + 173.966i 0.133563 + 0.231338i
\(753\) 409.468 522.508i 0.543783 0.693902i
\(754\) −873.165 1855.63i −1.15804 2.46105i
\(755\) 1777.81i 2.35471i
\(756\) −461.727 208.022i −0.610750 0.275162i
\(757\) 7.45770 0.00985165 0.00492583 0.999988i \(-0.498432\pi\)
0.00492583 + 0.999988i \(0.498432\pi\)
\(758\) −1384.00 799.054i −1.82586 1.05416i
\(759\) −45.5177 + 58.0835i −0.0599706 + 0.0765264i
\(760\) 2353.92 1359.04i 3.09726 1.78821i
\(761\) −174.991 303.093i −0.229949 0.398283i 0.727844 0.685743i \(-0.240522\pi\)
−0.957793 + 0.287460i \(0.907189\pi\)
\(762\) −2105.60 + 847.114i −2.76326 + 1.11170i
\(763\) −180.645 + 312.886i −0.236756 + 0.410073i
\(764\) 1719.55i 2.25072i
\(765\) 789.590 + 822.477i 1.03214 + 1.07513i
\(766\) −1829.21 −2.38800
\(767\) −797.062 + 375.056i −1.03919 + 0.488992i
\(768\) −184.228 + 1296.99i −0.239880 + 1.68879i
\(769\) 349.165 201.591i 0.454051 0.262147i −0.255488 0.966812i \(-0.582236\pi\)
0.709540 + 0.704665i \(0.248903\pi\)
\(770\) 85.6340 49.4408i 0.111213 0.0642088i
\(771\) −1068.19 151.728i −1.38546 0.196794i