Properties

Label 117.3.n.a.38.18
Level $117$
Weight $3$
Character 117.38
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(38,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.38");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 38.18
Character \(\chi\) \(=\) 117.38
Dual form 117.3.n.a.77.18

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.647986 - 1.12234i) q^{2} +(2.50362 - 1.65285i) q^{3} +(1.16023 + 2.00957i) q^{4} +(-2.25417 - 3.90433i) q^{5} +(-0.232759 - 3.88094i) q^{6} +(-0.162124 - 0.0936021i) q^{7} +8.19114 q^{8} +(3.53618 - 8.27620i) q^{9} -5.84268 q^{10} +(2.73142 - 4.73097i) q^{11} +(6.22629 + 3.11352i) q^{12} +(-7.06871 + 10.9102i) q^{13} +(-0.210108 + 0.121306i) q^{14} +(-12.0968 - 6.04915i) q^{15} +(0.666831 - 1.15499i) q^{16} +6.56267i q^{17} +(-6.99735 - 9.33167i) q^{18} +9.33560i q^{19} +(5.23069 - 9.05983i) q^{20} +(-0.560605 + 0.0336222i) q^{21} +(-3.53985 - 6.13120i) q^{22} +(-15.5066 + 8.95272i) q^{23} +(20.5075 - 13.5387i) q^{24} +(2.33746 - 4.04860i) q^{25} +(7.66463 + 15.0032i) q^{26} +(-4.82607 - 26.5652i) q^{27} -0.434399i q^{28} +(2.86081 + 1.65169i) q^{29} +(-14.6278 + 9.65706i) q^{30} +(-20.4651 + 11.8155i) q^{31} +(15.5181 + 26.8781i) q^{32} +(-0.981137 - 16.3592i) q^{33} +(7.36558 + 4.25252i) q^{34} +0.843979i q^{35} +(20.7344 - 2.49606i) q^{36} +54.9508i q^{37} +(10.4778 + 6.04934i) q^{38} +(0.335648 + 38.9986i) q^{39} +(-18.4642 - 31.9809i) q^{40} +(27.4123 + 47.4795i) q^{41} +(-0.325529 + 0.650979i) q^{42} +(-20.2961 + 35.1538i) q^{43} +12.6763 q^{44} +(-40.2842 + 4.84951i) q^{45} +23.2050i q^{46} +(16.2252 - 28.1029i) q^{47} +(-0.239528 - 3.99381i) q^{48} +(-24.4825 - 42.4049i) q^{49} +(-3.02929 - 5.24688i) q^{50} +(10.8471 + 16.4304i) q^{51} +(-30.1262 - 1.54673i) q^{52} -70.1519i q^{53} +(-32.9425 - 11.7974i) q^{54} -24.6283 q^{55} +(-1.32798 - 0.766708i) q^{56} +(15.4303 + 23.3727i) q^{57} +(3.70753 - 2.14054i) q^{58} +(-9.16783 - 15.8791i) q^{59} +(-1.87888 - 31.3279i) q^{60} +(-16.7182 + 28.9569i) q^{61} +30.6252i q^{62} +(-1.34797 + 1.01077i) q^{63} +45.5566 q^{64} +(58.5312 + 3.00509i) q^{65} +(-18.9964 - 9.49933i) q^{66} +(73.0282 - 42.1629i) q^{67} +(-13.1882 + 7.61420i) q^{68} +(-24.0250 + 48.0442i) q^{69} +(0.947236 + 0.546887i) q^{70} -52.1928 q^{71} +(28.9653 - 67.7915i) q^{72} -88.7509i q^{73} +(61.6737 + 35.6073i) q^{74} +(-0.839625 - 13.9996i) q^{75} +(-18.7606 + 10.8314i) q^{76} +(-0.885657 + 0.511334i) q^{77} +(43.9873 + 24.8938i) q^{78} +(22.4851 - 38.9453i) q^{79} -6.01260 q^{80} +(-55.9909 - 58.5322i) q^{81} +71.0512 q^{82} +(43.9891 - 76.1913i) q^{83} +(-0.717996 - 1.08757i) q^{84} +(25.6229 - 14.7934i) q^{85} +(26.3031 + 45.5584i) q^{86} +(9.89236 - 0.593292i) q^{87} +(22.3735 - 38.7520i) q^{88} -174.305 q^{89} +(-20.6608 + 48.3551i) q^{90} +(2.16723 - 1.10716i) q^{91} +(-35.9823 - 20.7744i) q^{92} +(-31.7074 + 63.4072i) q^{93} +(-21.0275 - 36.4206i) q^{94} +(36.4493 - 21.0440i) q^{95} +(83.2767 + 41.6434i) q^{96} +(7.09093 + 4.09395i) q^{97} -63.4572 q^{98} +(-29.4956 - 39.3354i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 4 q^{3} - 50 q^{4} + 4 q^{9} + 8 q^{10} - 38 q^{12} - 6 q^{13} - 6 q^{14} - 90 q^{16} + 14 q^{22} + 138 q^{23} - 92 q^{25} - 76 q^{27} + 48 q^{29} + 186 q^{30} - 154 q^{36} + 324 q^{38} - 2 q^{39}+ \cdots + 504 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.647986 1.12234i 0.323993 0.561172i −0.657315 0.753616i \(-0.728308\pi\)
0.981308 + 0.192443i \(0.0616412\pi\)
\(3\) 2.50362 1.65285i 0.834538 0.550950i
\(4\) 1.16023 + 2.00957i 0.290057 + 0.502393i
\(5\) −2.25417 3.90433i −0.450833 0.780866i 0.547605 0.836737i \(-0.315540\pi\)
−0.998438 + 0.0558709i \(0.982206\pi\)
\(6\) −0.232759 3.88094i −0.0387931 0.646824i
\(7\) −0.162124 0.0936021i −0.0231605 0.0133717i 0.488375 0.872634i \(-0.337590\pi\)
−0.511536 + 0.859262i \(0.670923\pi\)
\(8\) 8.19114 1.02389
\(9\) 3.53618 8.27620i 0.392909 0.919577i
\(10\) −5.84268 −0.584268
\(11\) 2.73142 4.73097i 0.248311 0.430088i −0.714746 0.699384i \(-0.753458\pi\)
0.963057 + 0.269296i \(0.0867911\pi\)
\(12\) 6.22629 + 3.11352i 0.518857 + 0.259460i
\(13\) −7.06871 + 10.9102i −0.543747 + 0.839249i
\(14\) −0.210108 + 0.121306i −0.0150077 + 0.00866470i
\(15\) −12.0968 6.04915i −0.806456 0.403276i
\(16\) 0.666831 1.15499i 0.0416770 0.0721866i
\(17\) 6.56267i 0.386040i 0.981195 + 0.193020i \(0.0618282\pi\)
−0.981195 + 0.193020i \(0.938172\pi\)
\(18\) −6.99735 9.33167i −0.388742 0.518426i
\(19\) 9.33560i 0.491347i 0.969353 + 0.245674i \(0.0790092\pi\)
−0.969353 + 0.245674i \(0.920991\pi\)
\(20\) 5.23069 9.05983i 0.261535 0.452991i
\(21\) −0.560605 + 0.0336222i −0.0266955 + 0.00160106i
\(22\) −3.53985 6.13120i −0.160902 0.278691i
\(23\) −15.5066 + 8.95272i −0.674199 + 0.389249i −0.797666 0.603100i \(-0.793932\pi\)
0.123467 + 0.992349i \(0.460599\pi\)
\(24\) 20.5075 13.5387i 0.854477 0.564113i
\(25\) 2.33746 4.04860i 0.0934985 0.161944i
\(26\) 7.66463 + 15.0032i 0.294793 + 0.577047i
\(27\) −4.82607 26.5652i −0.178743 0.983896i
\(28\) 0.434399i 0.0155143i
\(29\) 2.86081 + 1.65169i 0.0986486 + 0.0569548i 0.548513 0.836142i \(-0.315194\pi\)
−0.449864 + 0.893097i \(0.648528\pi\)
\(30\) −14.6278 + 9.65706i −0.487594 + 0.321902i
\(31\) −20.4651 + 11.8155i −0.660164 + 0.381146i −0.792339 0.610080i \(-0.791137\pi\)
0.132175 + 0.991226i \(0.457804\pi\)
\(32\) 15.5181 + 26.8781i 0.484940 + 0.839941i
\(33\) −0.981137 16.3592i −0.0297314 0.495732i
\(34\) 7.36558 + 4.25252i 0.216635 + 0.125074i
\(35\) 0.843979i 0.0241137i
\(36\) 20.7344 2.49606i 0.575956 0.0693350i
\(37\) 54.9508i 1.48516i 0.669760 + 0.742578i \(0.266397\pi\)
−0.669760 + 0.742578i \(0.733603\pi\)
\(38\) 10.4778 + 6.04934i 0.275731 + 0.159193i
\(39\) 0.335648 + 38.9986i 0.00860635 + 0.999963i
\(40\) −18.4642 31.9809i −0.461605 0.799523i
\(41\) 27.4123 + 47.4795i 0.668593 + 1.15804i 0.978298 + 0.207205i \(0.0664366\pi\)
−0.309704 + 0.950833i \(0.600230\pi\)
\(42\) −0.325529 + 0.650979i −0.00775069 + 0.0154995i
\(43\) −20.2961 + 35.1538i −0.472001 + 0.817530i −0.999487 0.0320337i \(-0.989802\pi\)
0.527485 + 0.849564i \(0.323135\pi\)
\(44\) 12.6763 0.288098
\(45\) −40.2842 + 4.84951i −0.895203 + 0.107767i
\(46\) 23.2050i 0.504456i
\(47\) 16.2252 28.1029i 0.345218 0.597935i −0.640176 0.768229i \(-0.721138\pi\)
0.985393 + 0.170294i \(0.0544717\pi\)
\(48\) −0.239528 3.99381i −0.00499017 0.0832044i
\(49\) −24.4825 42.4049i −0.499642 0.865406i
\(50\) −3.02929 5.24688i −0.0605857 0.104938i
\(51\) 10.8471 + 16.4304i 0.212688 + 0.322165i
\(52\) −30.1262 1.54673i −0.579351 0.0297448i
\(53\) 70.1519i 1.32362i −0.749671 0.661810i \(-0.769788\pi\)
0.749671 0.661810i \(-0.230212\pi\)
\(54\) −32.9425 11.7974i −0.610047 0.218470i
\(55\) −24.6283 −0.447788
\(56\) −1.32798 0.766708i −0.0237139 0.0136912i
\(57\) 15.4303 + 23.3727i 0.270708 + 0.410048i
\(58\) 3.70753 2.14054i 0.0639229 0.0369059i
\(59\) −9.16783 15.8791i −0.155387 0.269138i 0.777813 0.628496i \(-0.216329\pi\)
−0.933200 + 0.359358i \(0.882996\pi\)
\(60\) −1.87888 31.3279i −0.0313147 0.522131i
\(61\) −16.7182 + 28.9569i −0.274070 + 0.474703i −0.969900 0.243504i \(-0.921703\pi\)
0.695830 + 0.718206i \(0.255037\pi\)
\(62\) 30.6252i 0.493954i
\(63\) −1.34797 + 1.01077i −0.0213963 + 0.0160440i
\(64\) 45.5566 0.711823
\(65\) 58.5312 + 3.00509i 0.900481 + 0.0462321i
\(66\) −18.9964 9.49933i −0.287824 0.143929i
\(67\) 73.0282 42.1629i 1.08997 0.629297i 0.156404 0.987693i \(-0.450010\pi\)
0.933569 + 0.358396i \(0.116676\pi\)
\(68\) −13.1882 + 7.61420i −0.193944 + 0.111973i
\(69\) −24.0250 + 48.0442i −0.348188 + 0.696292i
\(70\) 0.947236 + 0.546887i 0.0135319 + 0.00781267i
\(71\) −52.1928 −0.735110 −0.367555 0.930002i \(-0.619805\pi\)
−0.367555 + 0.930002i \(0.619805\pi\)
\(72\) 28.9653 67.7915i 0.402296 0.941548i
\(73\) 88.7509i 1.21577i −0.794026 0.607883i \(-0.792019\pi\)
0.794026 0.607883i \(-0.207981\pi\)
\(74\) 61.6737 + 35.6073i 0.833429 + 0.481180i
\(75\) −0.839625 13.9996i −0.0111950 0.186662i
\(76\) −18.7606 + 10.8314i −0.246850 + 0.142519i
\(77\) −0.885657 + 0.511334i −0.0115020 + 0.00664071i
\(78\) 43.9873 + 24.8938i 0.563940 + 0.319151i
\(79\) 22.4851 38.9453i 0.284622 0.492979i −0.687896 0.725810i \(-0.741465\pi\)
0.972517 + 0.232830i \(0.0747987\pi\)
\(80\) −6.01260 −0.0751574
\(81\) −55.9909 58.5322i −0.691245 0.722620i
\(82\) 71.0512 0.866478
\(83\) 43.9891 76.1913i 0.529989 0.917968i −0.469399 0.882986i \(-0.655529\pi\)
0.999388 0.0349817i \(-0.0111373\pi\)
\(84\) −0.717996 1.08757i −0.00854758 0.0129472i
\(85\) 25.6229 14.7934i 0.301445 0.174040i
\(86\) 26.3031 + 45.5584i 0.305850 + 0.529748i
\(87\) 9.89236 0.593292i 0.113705 0.00681945i
\(88\) 22.3735 38.7520i 0.254244 0.440364i
\(89\) −174.305 −1.95848 −0.979241 0.202698i \(-0.935029\pi\)
−0.979241 + 0.202698i \(0.935029\pi\)
\(90\) −20.6608 + 48.3551i −0.229564 + 0.537279i
\(91\) 2.16723 1.10716i 0.0238157 0.0121666i
\(92\) −35.9823 20.7744i −0.391112 0.225809i
\(93\) −31.7074 + 63.4072i −0.340940 + 0.681798i
\(94\) −21.0275 36.4206i −0.223696 0.387453i
\(95\) 36.4493 21.0440i 0.383677 0.221516i
\(96\) 83.2767 + 41.6434i 0.867466 + 0.433785i
\(97\) 7.09093 + 4.09395i 0.0731024 + 0.0422057i 0.536106 0.844151i \(-0.319895\pi\)
−0.463003 + 0.886357i \(0.653228\pi\)
\(98\) −63.4572 −0.647523
\(99\) −29.4956 39.3354i −0.297935 0.397327i
\(100\) 10.8480 0.108480
\(101\) −60.0429 34.6658i −0.594484 0.343226i 0.172384 0.985030i \(-0.444853\pi\)
−0.766869 + 0.641804i \(0.778186\pi\)
\(102\) 25.4694 1.52752i 0.249700 0.0149757i
\(103\) 81.5907 + 141.319i 0.792143 + 1.37203i 0.924637 + 0.380848i \(0.124368\pi\)
−0.132494 + 0.991184i \(0.542299\pi\)
\(104\) −57.9008 + 89.3673i −0.556738 + 0.859301i
\(105\) 1.39497 + 2.11300i 0.0132854 + 0.0201238i
\(106\) −78.7346 45.4574i −0.742779 0.428844i
\(107\) 180.476i 1.68669i −0.537373 0.843345i \(-0.680583\pi\)
0.537373 0.843345i \(-0.319417\pi\)
\(108\) 47.7854 40.5200i 0.442457 0.375185i
\(109\) 149.717i 1.37355i −0.726870 0.686775i \(-0.759026\pi\)
0.726870 0.686775i \(-0.240974\pi\)
\(110\) −15.9588 + 27.6415i −0.145080 + 0.251286i
\(111\) 90.8253 + 137.576i 0.818246 + 1.23942i
\(112\) −0.216218 + 0.124834i −0.00193052 + 0.00111459i
\(113\) 53.6475 30.9734i 0.474757 0.274101i −0.243472 0.969908i \(-0.578286\pi\)
0.718229 + 0.695807i \(0.244953\pi\)
\(114\) 36.2309 2.17294i 0.317815 0.0190609i
\(115\) 69.9088 + 40.3619i 0.607902 + 0.350973i
\(116\) 7.66534i 0.0660805i
\(117\) 65.2991 + 97.0826i 0.558112 + 0.829766i
\(118\) −23.7625 −0.201377
\(119\) 0.614280 1.06396i 0.00516202 0.00894088i
\(120\) −99.0868 49.5494i −0.825724 0.412912i
\(121\) 45.5786 + 78.9445i 0.376683 + 0.652434i
\(122\) 21.6664 + 37.5273i 0.177593 + 0.307601i
\(123\) 147.106 + 73.5621i 1.19599 + 0.598066i
\(124\) −47.4883 27.4174i −0.382970 0.221108i
\(125\) −133.784 −1.07028
\(126\) 0.260972 + 2.16785i 0.00207120 + 0.0172052i
\(127\) −60.3333 −0.475065 −0.237533 0.971380i \(-0.576339\pi\)
−0.237533 + 0.971380i \(0.576339\pi\)
\(128\) −32.5522 + 56.3821i −0.254314 + 0.440485i
\(129\) 7.29041 + 121.558i 0.0565148 + 0.942310i
\(130\) 41.3002 63.7450i 0.317694 0.490346i
\(131\) −168.986 + 97.5640i −1.28997 + 0.744763i −0.978648 0.205542i \(-0.934104\pi\)
−0.311319 + 0.950305i \(0.600771\pi\)
\(132\) 31.7366 20.9520i 0.240429 0.158727i
\(133\) 0.873832 1.51352i 0.00657017 0.0113799i
\(134\) 109.284i 0.815551i
\(135\) −92.8405 + 78.7249i −0.687708 + 0.583148i
\(136\) 53.7557i 0.395263i
\(137\) 55.0447 95.3402i 0.401786 0.695914i −0.592155 0.805824i \(-0.701723\pi\)
0.993942 + 0.109910i \(0.0350562\pi\)
\(138\) 38.3543 + 58.0963i 0.277930 + 0.420988i
\(139\) 110.129 + 190.749i 0.792296 + 1.37230i 0.924542 + 0.381080i \(0.124448\pi\)
−0.132246 + 0.991217i \(0.542219\pi\)
\(140\) −1.69604 + 0.979208i −0.0121146 + 0.00699435i
\(141\) −5.82816 97.1768i −0.0413345 0.689197i
\(142\) −33.8202 + 58.5784i −0.238171 + 0.412524i
\(143\) 32.3083 + 63.2423i 0.225932 + 0.442254i
\(144\) −7.20085 9.60306i −0.0500059 0.0666879i
\(145\) 14.8927i 0.102709i
\(146\) −99.6092 57.5094i −0.682255 0.393900i
\(147\) −131.384 65.6997i −0.893766 0.446937i
\(148\) −110.428 + 63.7554i −0.746133 + 0.430780i
\(149\) −39.0386 67.6168i −0.262004 0.453804i 0.704770 0.709436i \(-0.251050\pi\)
−0.966774 + 0.255631i \(0.917717\pi\)
\(150\) −16.2565 8.12921i −0.108376 0.0541948i
\(151\) 224.322 + 129.512i 1.48557 + 0.857696i 0.999865 0.0164251i \(-0.00522849\pi\)
0.485708 + 0.874121i \(0.338562\pi\)
\(152\) 76.4692i 0.503087i
\(153\) 54.3140 + 23.2068i 0.354993 + 0.151678i
\(154\) 1.32535i 0.00860617i
\(155\) 92.2634 + 53.2683i 0.595248 + 0.343667i
\(156\) −77.9810 + 45.9217i −0.499878 + 0.294370i
\(157\) −68.2125 118.148i −0.434475 0.752532i 0.562778 0.826608i \(-0.309733\pi\)
−0.997253 + 0.0740760i \(0.976399\pi\)
\(158\) −29.1401 50.4721i −0.184431 0.319444i
\(159\) −115.950 175.633i −0.729248 1.10461i
\(160\) 69.9607 121.175i 0.437254 0.757346i
\(161\) 3.35197 0.0208197
\(162\) −101.975 + 24.9130i −0.629473 + 0.153784i
\(163\) 44.8906i 0.275402i 0.990474 + 0.137701i \(0.0439714\pi\)
−0.990474 + 0.137701i \(0.956029\pi\)
\(164\) −63.6091 + 110.174i −0.387860 + 0.671794i
\(165\) −61.6599 + 40.7069i −0.373696 + 0.246709i
\(166\) −57.0086 98.7419i −0.343426 0.594831i
\(167\) 50.4995 + 87.4677i 0.302392 + 0.523759i 0.976677 0.214712i \(-0.0688814\pi\)
−0.674285 + 0.738471i \(0.735548\pi\)
\(168\) −4.59200 + 0.275404i −0.0273333 + 0.00163931i
\(169\) −69.0667 154.243i −0.408678 0.912678i
\(170\) 38.3436i 0.225550i
\(171\) 77.2633 + 33.0124i 0.451832 + 0.193055i
\(172\) −94.1922 −0.547629
\(173\) −15.2225 8.78871i −0.0879913 0.0508018i 0.455359 0.890308i \(-0.349511\pi\)
−0.543350 + 0.839506i \(0.682844\pi\)
\(174\) 5.74423 11.4871i 0.0330128 0.0660177i
\(175\) −0.757916 + 0.437583i −0.00433095 + 0.00250047i
\(176\) −3.64280 6.30951i −0.0206977 0.0358495i
\(177\) −49.1985 24.6022i −0.277958 0.138996i
\(178\) −112.947 + 195.630i −0.634535 + 1.09905i
\(179\) 104.441i 0.583468i 0.956499 + 0.291734i \(0.0942322\pi\)
−0.956499 + 0.291734i \(0.905768\pi\)
\(180\) −56.4843 75.3274i −0.313801 0.418486i
\(181\) 90.6107 0.500612 0.250306 0.968167i \(-0.419469\pi\)
0.250306 + 0.968167i \(0.419469\pi\)
\(182\) 0.161716 3.14980i 0.000888549 0.0173066i
\(183\) 6.00525 + 100.130i 0.0328156 + 0.547156i
\(184\) −127.016 + 73.3329i −0.690306 + 0.398549i
\(185\) 214.546 123.868i 1.15971 0.669558i
\(186\) 50.6188 + 76.6737i 0.272144 + 0.412224i
\(187\) 31.0478 + 17.9254i 0.166031 + 0.0958580i
\(188\) 75.2999 0.400531
\(189\) −1.70414 + 4.75858i −0.00901660 + 0.0251776i
\(190\) 54.5449i 0.287078i
\(191\) 207.774 + 119.958i 1.08782 + 0.628054i 0.932995 0.359888i \(-0.117185\pi\)
0.154825 + 0.987942i \(0.450519\pi\)
\(192\) 114.056 75.2983i 0.594043 0.392178i
\(193\) 310.002 178.980i 1.60623 0.927357i 0.616027 0.787725i \(-0.288741\pi\)
0.990203 0.139632i \(-0.0445919\pi\)
\(194\) 9.18965 5.30564i 0.0473693 0.0273487i
\(195\) 151.507 89.2197i 0.776957 0.457537i
\(196\) 56.8105 98.3987i 0.289850 0.502034i
\(197\) −41.0547 −0.208399 −0.104200 0.994556i \(-0.533228\pi\)
−0.104200 + 0.994556i \(0.533228\pi\)
\(198\) −63.2606 + 7.61547i −0.319498 + 0.0384620i
\(199\) −144.402 −0.725640 −0.362820 0.931859i \(-0.618186\pi\)
−0.362820 + 0.931859i \(0.618186\pi\)
\(200\) 19.1465 33.1627i 0.0957324 0.165813i
\(201\) 113.146 226.264i 0.562914 1.12569i
\(202\) −77.8139 + 44.9259i −0.385218 + 0.222405i
\(203\) −0.309203 0.535556i −0.00152317 0.00263821i
\(204\) −20.4330 + 40.8611i −0.100162 + 0.200299i
\(205\) 123.584 214.054i 0.602848 1.04416i
\(206\) 211.479 1.02660
\(207\) 19.2605 + 159.994i 0.0930458 + 0.772917i
\(208\) 7.88753 + 15.4395i 0.0379208 + 0.0742286i
\(209\) 44.1664 + 25.4995i 0.211323 + 0.122007i
\(210\) 3.27544 0.196444i 0.0155973 0.000935446i
\(211\) 8.28442 + 14.3490i 0.0392626 + 0.0680049i 0.884989 0.465612i \(-0.154166\pi\)
−0.845726 + 0.533617i \(0.820832\pi\)
\(212\) 140.975 81.3922i 0.664978 0.383925i
\(213\) −130.671 + 86.2669i −0.613478 + 0.405009i
\(214\) −202.556 116.946i −0.946524 0.546476i
\(215\) 183.003 0.851176
\(216\) −39.5310 217.599i −0.183014 1.00740i
\(217\) 4.42383 0.0203863
\(218\) −168.034 97.0145i −0.770799 0.445021i
\(219\) −146.692 222.198i −0.669826 1.01460i
\(220\) −28.5745 49.4925i −0.129884 0.224966i
\(221\) −71.6003 46.3896i −0.323983 0.209908i
\(222\) 213.261 12.7903i 0.960634 0.0576139i
\(223\) 250.650 + 144.713i 1.12399 + 0.648936i 0.942417 0.334441i \(-0.108548\pi\)
0.181574 + 0.983377i \(0.441881\pi\)
\(224\) 5.81010i 0.0259379i
\(225\) −25.2414 33.6619i −0.112184 0.149608i
\(226\) 80.2813i 0.355227i
\(227\) 152.915 264.857i 0.673636 1.16677i −0.303230 0.952917i \(-0.598065\pi\)
0.976866 0.213854i \(-0.0686016\pi\)
\(228\) −29.0666 + 58.1261i −0.127485 + 0.254939i
\(229\) −240.075 + 138.607i −1.04836 + 0.605273i −0.922191 0.386736i \(-0.873603\pi\)
−0.126172 + 0.992008i \(0.540269\pi\)
\(230\) 90.5998 52.3078i 0.393912 0.227425i
\(231\) −1.37219 + 2.74404i −0.00594020 + 0.0118790i
\(232\) 23.4333 + 13.5292i 0.101006 + 0.0583156i
\(233\) 203.054i 0.871476i 0.900073 + 0.435738i \(0.143513\pi\)
−0.900073 + 0.435738i \(0.856487\pi\)
\(234\) 151.273 10.3799i 0.646466 0.0443585i
\(235\) −146.298 −0.622543
\(236\) 21.2735 36.8468i 0.0901421 0.156131i
\(237\) −8.07673 134.669i −0.0340790 0.568222i
\(238\) −0.796090 1.37887i −0.00334492 0.00579357i
\(239\) 18.5820 + 32.1850i 0.0777490 + 0.134665i 0.902278 0.431154i \(-0.141893\pi\)
−0.824529 + 0.565819i \(0.808560\pi\)
\(240\) −15.0532 + 9.93791i −0.0627218 + 0.0414080i
\(241\) −239.107 138.048i −0.992144 0.572814i −0.0862292 0.996275i \(-0.527482\pi\)
−0.905914 + 0.423461i \(0.860815\pi\)
\(242\) 118.137 0.488171
\(243\) −236.925 53.9977i −0.974998 0.222213i
\(244\) −77.5879 −0.317983
\(245\) −110.375 + 191.175i −0.450511 + 0.780308i
\(246\) 177.885 117.437i 0.723110 0.477386i
\(247\) −101.854 65.9907i −0.412363 0.267169i
\(248\) −167.632 + 96.7825i −0.675937 + 0.390252i
\(249\) −15.8010 263.461i −0.0634579 1.05808i
\(250\) −86.6905 + 150.152i −0.346762 + 0.600609i
\(251\) 179.821i 0.716417i 0.933642 + 0.358209i \(0.116612\pi\)
−0.933642 + 0.358209i \(0.883388\pi\)
\(252\) −3.59517 1.53611i −0.0142666 0.00609569i
\(253\) 97.8147i 0.386619i
\(254\) −39.0951 + 67.7147i −0.153918 + 0.266593i
\(255\) 39.6986 79.3876i 0.155681 0.311324i
\(256\) 133.300 + 230.883i 0.520703 + 0.901885i
\(257\) −271.324 + 156.649i −1.05574 + 0.609530i −0.924250 0.381788i \(-0.875309\pi\)
−0.131487 + 0.991318i \(0.541975\pi\)
\(258\) 141.154 + 70.5855i 0.547109 + 0.273587i
\(259\) 5.14351 8.90882i 0.0198591 0.0343970i
\(260\) 61.8706 + 121.109i 0.237964 + 0.465806i
\(261\) 23.7860 17.8360i 0.0911343 0.0683370i
\(262\) 252.880i 0.965192i
\(263\) 43.6126 + 25.1797i 0.165827 + 0.0957404i 0.580617 0.814177i \(-0.302811\pi\)
−0.414790 + 0.909917i \(0.636145\pi\)
\(264\) −8.03663 134.000i −0.0304418 0.507576i
\(265\) −273.896 + 158.134i −1.03357 + 0.596732i
\(266\) −1.13246 1.96148i −0.00425738 0.00737399i
\(267\) −436.393 + 288.100i −1.63443 + 1.07903i
\(268\) 169.459 + 97.8371i 0.632309 + 0.365064i
\(269\) 501.502i 1.86432i −0.362047 0.932160i \(-0.617922\pi\)
0.362047 0.932160i \(-0.382078\pi\)
\(270\) 28.1972 + 155.212i 0.104434 + 0.574858i
\(271\) 229.102i 0.845396i 0.906270 + 0.422698i \(0.138917\pi\)
−0.906270 + 0.422698i \(0.861083\pi\)
\(272\) 7.57979 + 4.37620i 0.0278669 + 0.0160890i
\(273\) 3.59593 6.35401i 0.0131719 0.0232747i
\(274\) −71.3364 123.558i −0.260352 0.450943i
\(275\) −12.7692 22.1169i −0.0464335 0.0804252i
\(276\) −124.423 + 7.46223i −0.450807 + 0.0270371i
\(277\) −198.883 + 344.476i −0.717990 + 1.24360i 0.243805 + 0.969824i \(0.421604\pi\)
−0.961795 + 0.273771i \(0.911729\pi\)
\(278\) 285.449 1.02679
\(279\) 25.4194 + 211.155i 0.0911089 + 0.756827i
\(280\) 6.91315i 0.0246898i
\(281\) −97.3277 + 168.576i −0.346362 + 0.599916i −0.985600 0.169092i \(-0.945916\pi\)
0.639238 + 0.769009i \(0.279250\pi\)
\(282\) −112.842 56.4280i −0.400151 0.200099i
\(283\) −208.024 360.308i −0.735067 1.27317i −0.954694 0.297589i \(-0.903817\pi\)
0.219627 0.975584i \(-0.429516\pi\)
\(284\) −60.5556 104.885i −0.213224 0.369315i
\(285\) 56.4724 112.931i 0.198149 0.396250i
\(286\) 91.9151 + 4.71907i 0.321381 + 0.0165002i
\(287\) 10.2634i 0.0357610i
\(288\) 277.323 33.3849i 0.962928 0.115920i
\(289\) 245.931 0.850973
\(290\) −16.7148 9.65029i −0.0576372 0.0332768i
\(291\) 24.5196 1.47056i 0.0842599 0.00505347i
\(292\) 178.352 102.971i 0.610793 0.352642i
\(293\) 118.452 + 205.164i 0.404272 + 0.700219i 0.994236 0.107210i \(-0.0341916\pi\)
−0.589965 + 0.807429i \(0.700858\pi\)
\(294\) −158.872 + 104.885i −0.540383 + 0.356752i
\(295\) −41.3316 + 71.5885i −0.140107 + 0.242673i
\(296\) 450.109i 1.52064i
\(297\) −138.861 49.7288i −0.467546 0.167437i
\(298\) −101.186 −0.339550
\(299\) 11.9351 232.465i 0.0399168 0.777473i
\(300\) 27.1591 17.9300i 0.0905304 0.0597668i
\(301\) 6.58094 3.79951i 0.0218636 0.0126230i
\(302\) 290.715 167.844i 0.962631 0.555775i
\(303\) −207.622 + 12.4521i −0.685220 + 0.0410959i
\(304\) 10.7825 + 6.22527i 0.0354687 + 0.0204779i
\(305\) 150.743 0.494239
\(306\) 61.2407 45.9213i 0.200133 0.150070i
\(307\) 249.037i 0.811195i 0.914052 + 0.405598i \(0.132937\pi\)
−0.914052 + 0.405598i \(0.867063\pi\)
\(308\) −2.05513 1.18653i −0.00667249 0.00385237i
\(309\) 437.851 + 218.952i 1.41699 + 0.708583i
\(310\) 119.571 69.0343i 0.385712 0.222691i
\(311\) −127.535 + 73.6323i −0.410080 + 0.236760i −0.690824 0.723023i \(-0.742752\pi\)
0.280744 + 0.959783i \(0.409419\pi\)
\(312\) 2.74934 + 319.442i 0.00881197 + 1.02385i
\(313\) 83.8809 145.286i 0.267990 0.464172i −0.700353 0.713797i \(-0.746974\pi\)
0.968343 + 0.249625i \(0.0803072\pi\)
\(314\) −176.803 −0.563067
\(315\) 6.98494 + 2.98446i 0.0221744 + 0.00947448i
\(316\) 104.351 0.330226
\(317\) −20.0628 + 34.7498i −0.0632896 + 0.109621i −0.895934 0.444187i \(-0.853492\pi\)
0.832644 + 0.553808i \(0.186826\pi\)
\(318\) −272.255 + 16.3285i −0.856149 + 0.0513474i
\(319\) 15.6282 9.02293i 0.0489911 0.0282850i
\(320\) −102.692 177.868i −0.320913 0.555838i
\(321\) −298.299 451.842i −0.929281 1.40761i
\(322\) 2.17203 3.76207i 0.00674545 0.0116835i
\(323\) −61.2665 −0.189680
\(324\) 52.6627 180.429i 0.162539 0.556878i
\(325\) 27.6484 + 54.1207i 0.0850720 + 0.166525i
\(326\) 50.3827 + 29.0885i 0.154548 + 0.0892285i
\(327\) −247.460 374.834i −0.756757 1.14628i
\(328\) 224.538 + 388.911i 0.684567 + 1.18571i
\(329\) −5.26099 + 3.03743i −0.0159908 + 0.00923232i
\(330\) 5.73247 + 95.5812i 0.0173711 + 0.289640i
\(331\) 10.1298 + 5.84845i 0.0306037 + 0.0176690i 0.515224 0.857056i \(-0.327709\pi\)
−0.484620 + 0.874725i \(0.661042\pi\)
\(332\) 204.149 0.614908
\(333\) 454.783 + 194.316i 1.36572 + 0.583531i
\(334\) 130.892 0.391892
\(335\) −329.236 190.084i −0.982793 0.567416i
\(336\) −0.334996 + 0.669912i −0.000997012 + 0.00199378i
\(337\) −172.531 298.833i −0.511963 0.886745i −0.999904 0.0138688i \(-0.995585\pi\)
0.487941 0.872876i \(-0.337748\pi\)
\(338\) −217.868 22.4305i −0.644579 0.0663624i
\(339\) 83.1183 166.217i 0.245187 0.490315i
\(340\) 59.4567 + 34.3273i 0.174873 + 0.100963i
\(341\) 129.093i 0.378571i
\(342\) 87.1168 65.3245i 0.254727 0.191007i
\(343\) 18.3395i 0.0534678i
\(344\) −166.248 + 287.950i −0.483278 + 0.837063i
\(345\) 241.737 14.4981i 0.700686 0.0420235i
\(346\) −19.7279 + 11.3899i −0.0570171 + 0.0329189i
\(347\) 508.170 293.392i 1.46447 0.845511i 0.465255 0.885177i \(-0.345963\pi\)
0.999213 + 0.0396654i \(0.0126292\pi\)
\(348\) 12.6697 + 19.1911i 0.0364071 + 0.0551468i
\(349\) −501.880 289.761i −1.43805 0.830260i −0.440338 0.897832i \(-0.645141\pi\)
−0.997714 + 0.0675725i \(0.978475\pi\)
\(350\) 1.13419i 0.00324055i
\(351\) 323.947 + 135.128i 0.922925 + 0.384980i
\(352\) 169.546 0.481664
\(353\) −189.372 + 328.001i −0.536463 + 0.929182i 0.462628 + 0.886553i \(0.346907\pi\)
−0.999091 + 0.0426291i \(0.986427\pi\)
\(354\) −59.4922 + 39.2758i −0.168057 + 0.110949i
\(355\) 117.651 + 203.778i 0.331412 + 0.574023i
\(356\) −202.233 350.279i −0.568071 0.983929i
\(357\) −0.220651 3.67907i −0.000618071 0.0103055i
\(358\) 117.219 + 67.6762i 0.327426 + 0.189040i
\(359\) −226.733 −0.631569 −0.315784 0.948831i \(-0.602268\pi\)
−0.315784 + 0.948831i \(0.602268\pi\)
\(360\) −329.973 + 39.7230i −0.916592 + 0.110342i
\(361\) 273.847 0.758578
\(362\) 58.7145 101.696i 0.162195 0.280929i
\(363\) 244.595 + 122.312i 0.673815 + 0.336948i
\(364\) 4.73940 + 3.07064i 0.0130203 + 0.00843583i
\(365\) −346.513 + 200.059i −0.949351 + 0.548108i
\(366\) 116.271 + 58.1426i 0.317681 + 0.158860i
\(367\) −226.025 + 391.487i −0.615873 + 1.06672i 0.374358 + 0.927284i \(0.377863\pi\)
−0.990231 + 0.139439i \(0.955470\pi\)
\(368\) 23.8798i 0.0648908i
\(369\) 489.885 58.9736i 1.32760 0.159820i
\(370\) 321.060i 0.867729i
\(371\) −6.56637 + 11.3733i −0.0176991 + 0.0306557i
\(372\) −164.209 + 9.84842i −0.441423 + 0.0264742i
\(373\) 78.8574 + 136.585i 0.211414 + 0.366180i 0.952157 0.305609i \(-0.0988599\pi\)
−0.740743 + 0.671788i \(0.765527\pi\)
\(374\) 40.2371 23.2309i 0.107586 0.0621147i
\(375\) −334.945 + 221.126i −0.893186 + 0.589668i
\(376\) 132.903 230.195i 0.353466 0.612221i
\(377\) −38.2426 + 19.5368i −0.101439 + 0.0518218i
\(378\) 4.23651 + 4.99612i 0.0112077 + 0.0132173i
\(379\) 514.875i 1.35851i −0.733903 0.679255i \(-0.762303\pi\)
0.733903 0.679255i \(-0.237697\pi\)
\(380\) 84.5789 + 48.8317i 0.222576 + 0.128504i
\(381\) −151.051 + 99.7218i −0.396460 + 0.261737i
\(382\) 269.269 155.463i 0.704893 0.406970i
\(383\) 89.2179 + 154.530i 0.232945 + 0.403473i 0.958673 0.284509i \(-0.0918305\pi\)
−0.725728 + 0.687981i \(0.758497\pi\)
\(384\) 11.6929 + 194.963i 0.0304502 + 0.507716i
\(385\) 3.99284 + 2.30527i 0.0103710 + 0.00598770i
\(386\) 463.906i 1.20183i
\(387\) 219.169 + 292.284i 0.566329 + 0.755257i
\(388\) 18.9997i 0.0489682i
\(389\) −524.201 302.648i −1.34756 0.778014i −0.359657 0.933085i \(-0.617106\pi\)
−0.987903 + 0.155070i \(0.950440\pi\)
\(390\) −1.96108 227.856i −0.00502841 0.584246i
\(391\) −58.7538 101.765i −0.150265 0.260267i
\(392\) −200.539 347.344i −0.511580 0.886082i
\(393\) −261.817 + 523.571i −0.666200 + 1.33224i
\(394\) −26.6029 + 46.0775i −0.0675200 + 0.116948i
\(395\) −202.741 −0.513268
\(396\) 44.8257 104.912i 0.113196 0.264928i
\(397\) 511.953i 1.28955i −0.764371 0.644777i \(-0.776950\pi\)
0.764371 0.644777i \(-0.223050\pi\)
\(398\) −93.5707 + 162.069i −0.235102 + 0.407209i
\(399\) −0.313883 5.23359i −0.000786675 0.0131168i
\(400\) −3.11739 5.39947i −0.00779347 0.0134987i
\(401\) −32.5050 56.3003i −0.0810599 0.140400i 0.822646 0.568555i \(-0.192497\pi\)
−0.903705 + 0.428155i \(0.859164\pi\)
\(402\) −180.630 273.605i −0.449328 0.680609i
\(403\) 15.7516 306.799i 0.0390858 0.761289i
\(404\) 160.881i 0.398220i
\(405\) −102.316 + 350.548i −0.252633 + 0.865551i
\(406\) −0.801438 −0.00197398
\(407\) 259.970 + 150.094i 0.638748 + 0.368781i
\(408\) 88.8501 + 134.584i 0.217770 + 0.329862i
\(409\) 238.707 137.817i 0.583635 0.336962i −0.178942 0.983860i \(-0.557267\pi\)
0.762577 + 0.646898i \(0.223934\pi\)
\(410\) −160.161 277.408i −0.390637 0.676604i
\(411\) −19.7722 329.676i −0.0481076 0.802131i
\(412\) −189.328 + 327.925i −0.459533 + 0.795935i
\(413\) 3.43251i 0.00831117i
\(414\) 192.049 + 82.0569i 0.463886 + 0.198205i
\(415\) −396.635 −0.955747
\(416\) −402.939 20.6876i −0.968604 0.0497297i
\(417\) 591.001 + 295.536i 1.41727 + 0.708719i
\(418\) 57.2384 33.0466i 0.136934 0.0790589i
\(419\) 405.554 234.147i 0.967910 0.558823i 0.0693118 0.997595i \(-0.477920\pi\)
0.898599 + 0.438772i \(0.144586\pi\)
\(420\) −2.62774 + 5.25486i −0.00625653 + 0.0125116i
\(421\) −123.688 71.4111i −0.293795 0.169623i 0.345857 0.938287i \(-0.387588\pi\)
−0.639652 + 0.768665i \(0.720922\pi\)
\(422\) 21.4727 0.0508833
\(423\) −175.210 233.660i −0.414208 0.552388i
\(424\) 574.624i 1.35524i
\(425\) 26.5697 + 15.3400i 0.0625169 + 0.0360941i
\(426\) 12.1483 + 202.557i 0.0285172 + 0.475487i
\(427\) 5.42085 3.12973i 0.0126952 0.00732957i
\(428\) 362.679 209.393i 0.847382 0.489236i
\(429\) 185.418 + 104.934i 0.432209 + 0.244601i
\(430\) 118.583 205.392i 0.275775 0.477657i
\(431\) 234.681 0.544504 0.272252 0.962226i \(-0.412232\pi\)
0.272252 + 0.962226i \(0.412232\pi\)
\(432\) −33.9006 12.1405i −0.0784736 0.0281029i
\(433\) −15.5025 −0.0358026 −0.0179013 0.999840i \(-0.505698\pi\)
−0.0179013 + 0.999840i \(0.505698\pi\)
\(434\) 2.86658 4.96507i 0.00660503 0.0114402i
\(435\) −24.6154 37.2857i −0.0565872 0.0857142i
\(436\) 300.867 173.706i 0.690063 0.398408i
\(437\) −83.5790 144.763i −0.191256 0.331266i
\(438\) −344.437 + 20.6576i −0.786387 + 0.0471634i
\(439\) 313.874 543.645i 0.714974 1.23837i −0.247995 0.968761i \(-0.579772\pi\)
0.962969 0.269611i \(-0.0868950\pi\)
\(440\) −201.734 −0.458487
\(441\) −437.526 + 52.6705i −0.992122 + 0.119434i
\(442\) −98.4612 + 50.3004i −0.222763 + 0.113802i
\(443\) 495.766 + 286.231i 1.11911 + 0.646119i 0.941174 0.337923i \(-0.109724\pi\)
0.177937 + 0.984042i \(0.443058\pi\)
\(444\) −171.090 + 342.139i −0.385338 + 0.770584i
\(445\) 392.912 + 680.544i 0.882949 + 1.52931i
\(446\) 324.835 187.544i 0.728330 0.420502i
\(447\) −209.498 104.762i −0.468676 0.234366i
\(448\) −7.38581 4.26420i −0.0164862 0.00951830i
\(449\) 80.8219 0.180004 0.0900021 0.995942i \(-0.471313\pi\)
0.0900021 + 0.995942i \(0.471313\pi\)
\(450\) −54.1363 + 6.51707i −0.120303 + 0.0144824i
\(451\) 299.499 0.664077
\(452\) 124.487 + 71.8724i 0.275413 + 0.159010i
\(453\) 775.679 46.5212i 1.71232 0.102696i
\(454\) −198.174 343.247i −0.436507 0.756051i
\(455\) −9.20802 5.96585i −0.0202374 0.0131117i
\(456\) 126.392 + 191.449i 0.277175 + 0.419845i
\(457\) 213.732 + 123.398i 0.467686 + 0.270019i 0.715270 0.698848i \(-0.246303\pi\)
−0.247585 + 0.968866i \(0.579637\pi\)
\(458\) 359.263i 0.784416i
\(459\) 174.339 31.6719i 0.379823 0.0690020i
\(460\) 187.316i 0.407208i
\(461\) −262.211 + 454.162i −0.568787 + 0.985167i 0.427900 + 0.903826i \(0.359254\pi\)
−0.996686 + 0.0813410i \(0.974080\pi\)
\(462\) 2.19060 + 3.31817i 0.00474157 + 0.00718218i
\(463\) 43.9680 25.3849i 0.0949632 0.0548270i −0.451766 0.892136i \(-0.649206\pi\)
0.546730 + 0.837309i \(0.315873\pi\)
\(464\) 3.81535 2.20280i 0.00822275 0.00474741i
\(465\) 319.037 19.1342i 0.686100 0.0411487i
\(466\) 227.897 + 131.576i 0.489049 + 0.282352i
\(467\) 101.615i 0.217592i 0.994064 + 0.108796i \(0.0346995\pi\)
−0.994064 + 0.108796i \(0.965301\pi\)
\(468\) −119.333 + 243.861i −0.254985 + 0.521071i
\(469\) −15.7861 −0.0336591
\(470\) −94.7988 + 164.196i −0.201700 + 0.349354i
\(471\) −366.058 183.051i −0.777193 0.388643i
\(472\) −75.0949 130.068i −0.159099 0.275568i
\(473\) 110.874 + 192.040i 0.234407 + 0.406004i
\(474\) −156.378 78.1986i −0.329912 0.164976i
\(475\) 37.7962 + 21.8216i 0.0795708 + 0.0459402i
\(476\) 2.85082 0.00598912
\(477\) −580.591 248.070i −1.21717 0.520062i
\(478\) 48.1635 0.100761
\(479\) 18.6148 32.2418i 0.0388618 0.0673106i −0.845940 0.533278i \(-0.820960\pi\)
0.884802 + 0.465967i \(0.154293\pi\)
\(480\) −25.1301 419.011i −0.0523544 0.872940i
\(481\) −599.526 388.431i −1.24642 0.807549i
\(482\) −309.876 + 178.907i −0.642895 + 0.371176i
\(483\) 8.39206 5.54031i 0.0173749 0.0114706i
\(484\) −105.763 + 183.187i −0.218519 + 0.378486i
\(485\) 36.9138i 0.0761109i
\(486\) −214.128 + 230.921i −0.440592 + 0.475147i
\(487\) 540.371i 1.10959i 0.831987 + 0.554795i \(0.187203\pi\)
−0.831987 + 0.554795i \(0.812797\pi\)
\(488\) −136.941 + 237.190i −0.280618 + 0.486044i
\(489\) 74.1974 + 112.389i 0.151733 + 0.229834i
\(490\) 143.043 + 247.758i 0.291925 + 0.505629i
\(491\) −441.513 + 254.907i −0.899211 + 0.519160i −0.876944 0.480592i \(-0.840422\pi\)
−0.0222668 + 0.999752i \(0.507088\pi\)
\(492\) 22.8486 + 380.970i 0.0464402 + 0.774329i
\(493\) −10.8395 + 18.7746i −0.0219868 + 0.0380823i
\(494\) −140.064 + 71.5539i −0.283530 + 0.144846i
\(495\) −87.0903 + 203.829i −0.175940 + 0.411776i
\(496\) 31.5158i 0.0635400i
\(497\) 8.46169 + 4.88536i 0.0170255 + 0.00982970i
\(498\) −305.933 152.985i −0.614324 0.307199i
\(499\) 325.310 187.818i 0.651924 0.376389i −0.137269 0.990534i \(-0.543832\pi\)
0.789193 + 0.614145i \(0.210499\pi\)
\(500\) −155.220 268.850i −0.310441 0.537699i
\(501\) 271.002 + 135.517i 0.540923 + 0.270494i
\(502\) 201.821 + 116.521i 0.402034 + 0.232114i
\(503\) 842.603i 1.67515i −0.546319 0.837577i \(-0.683971\pi\)
0.546319 0.837577i \(-0.316029\pi\)
\(504\) −11.0414 + 8.27938i −0.0219075 + 0.0164273i
\(505\) 312.570i 0.618950i
\(506\) 109.782 + 63.3826i 0.216960 + 0.125262i
\(507\) −427.856 272.008i −0.843898 0.536504i
\(508\) −70.0003 121.244i −0.137796 0.238670i
\(509\) 365.564 + 633.175i 0.718200 + 1.24396i 0.961712 + 0.274061i \(0.0883669\pi\)
−0.243513 + 0.969898i \(0.578300\pi\)
\(510\) −63.3761 95.9976i −0.124267 0.188230i
\(511\) −8.30728 + 14.3886i −0.0162569 + 0.0281578i
\(512\) 85.0886 0.166189
\(513\) 248.002 45.0543i 0.483435 0.0878251i
\(514\) 406.026i 0.789934i
\(515\) 367.838 637.115i 0.714249 1.23712i
\(516\) −235.821 + 155.686i −0.457018 + 0.301716i
\(517\) −88.6360 153.522i −0.171443 0.296948i
\(518\) −6.66585 11.5456i −0.0128684 0.0222888i
\(519\) −52.6377 + 3.15693i −0.101421 + 0.00608272i
\(520\) 479.437 + 24.6151i 0.921995 + 0.0473367i
\(521\) 530.709i 1.01864i 0.860579 + 0.509318i \(0.170102\pi\)
−0.860579 + 0.509318i \(0.829898\pi\)
\(522\) −4.60507 38.2536i −0.00882197 0.0732828i
\(523\) 108.736 0.207909 0.103955 0.994582i \(-0.466850\pi\)
0.103955 + 0.994582i \(0.466850\pi\)
\(524\) −392.124 226.393i −0.748328 0.432047i
\(525\) −1.17427 + 2.34826i −0.00223671 + 0.00447288i
\(526\) 56.5207 32.6322i 0.107454 0.0620385i
\(527\) −77.5414 134.306i −0.147137 0.254849i
\(528\) −19.5488 9.77560i −0.0370243 0.0185144i
\(529\) −104.198 + 180.476i −0.196971 + 0.341164i
\(530\) 409.875i 0.773348i
\(531\) −163.838 + 19.7232i −0.308546 + 0.0371436i
\(532\) 4.05538 0.00762289
\(533\) −711.783 36.5441i −1.33543 0.0685630i
\(534\) 40.5710 + 676.468i 0.0759757 + 1.26679i
\(535\) −704.637 + 406.823i −1.31708 + 0.760416i
\(536\) 598.184 345.362i 1.11602 0.644332i
\(537\) 172.625 + 261.480i 0.321462 + 0.486927i
\(538\) −562.858 324.966i −1.04620 0.604027i
\(539\) −267.488 −0.496267
\(540\) −265.920 95.2310i −0.492444 0.176354i
\(541\) 199.865i 0.369436i −0.982792 0.184718i \(-0.940863\pi\)
0.982792 0.184718i \(-0.0591372\pi\)
\(542\) 257.132 + 148.455i 0.474413 + 0.273903i
\(543\) 226.854 149.766i 0.417780 0.275812i
\(544\) −176.392 + 101.840i −0.324250 + 0.187206i
\(545\) −584.545 + 337.487i −1.07256 + 0.619242i
\(546\) −4.80127 8.15318i −0.00879354 0.0149326i
\(547\) −282.244 + 488.862i −0.515986 + 0.893714i 0.483842 + 0.875156i \(0.339241\pi\)
−0.999828 + 0.0185588i \(0.994092\pi\)
\(548\) 255.458 0.466164
\(549\) 180.534 + 240.760i 0.328841 + 0.438543i
\(550\) −33.0971 −0.0601765
\(551\) −15.4195 + 26.7074i −0.0279846 + 0.0484707i
\(552\) −196.792 + 393.536i −0.356507 + 0.712928i
\(553\) −7.29074 + 4.20931i −0.0131840 + 0.00761177i
\(554\) 257.747 + 446.431i 0.465248 + 0.805833i
\(555\) 332.405 664.731i 0.598928 1.19771i
\(556\) −255.550 + 442.625i −0.459622 + 0.796089i
\(557\) 504.734 0.906165 0.453083 0.891469i \(-0.350324\pi\)
0.453083 + 0.891469i \(0.350324\pi\)
\(558\) 253.460 + 108.296i 0.454229 + 0.194079i
\(559\) −240.069 469.927i −0.429462 0.840657i
\(560\) 0.974784 + 0.562792i 0.00174069 + 0.00100499i
\(561\) 107.360 6.43888i 0.191372 0.0114775i
\(562\) 126.134 + 218.470i 0.224438 + 0.388737i
\(563\) 273.837 158.100i 0.486389 0.280817i −0.236686 0.971586i \(-0.576061\pi\)
0.723075 + 0.690769i \(0.242728\pi\)
\(564\) 188.522 124.459i 0.334259 0.220673i
\(565\) −241.861 139.638i −0.428072 0.247148i
\(566\) −539.186 −0.952626
\(567\) 3.59870 + 14.7303i 0.00634692 + 0.0259794i
\(568\) −427.519 −0.752674
\(569\) 37.8576 + 21.8571i 0.0665336 + 0.0384132i 0.532898 0.846180i \(-0.321103\pi\)
−0.466364 + 0.884593i \(0.654436\pi\)
\(570\) −90.1545 136.559i −0.158166 0.239578i
\(571\) 94.3613 + 163.439i 0.165256 + 0.286232i 0.936746 0.350009i \(-0.113822\pi\)
−0.771490 + 0.636241i \(0.780488\pi\)
\(572\) −89.6051 + 138.301i −0.156652 + 0.241786i
\(573\) 718.458 43.0894i 1.25385 0.0751996i
\(574\) −11.5191 6.65055i −0.0200681 0.0115863i
\(575\) 83.7066i 0.145577i
\(576\) 161.096 377.036i 0.279681 0.654576i
\(577\) 633.598i 1.09809i 0.835792 + 0.549045i \(0.185009\pi\)
−0.835792 + 0.549045i \(0.814991\pi\)
\(578\) 159.360 276.020i 0.275710 0.477543i
\(579\) 480.300 960.484i 0.829533 1.65887i
\(580\) 29.9280 17.2790i 0.0516001 0.0297913i
\(581\) −14.2633 + 8.23495i −0.0245496 + 0.0141737i
\(582\) 14.2379 28.4724i 0.0244638 0.0489216i
\(583\) −331.886 191.615i −0.569273 0.328670i
\(584\) 726.971i 1.24481i
\(585\) 231.848 473.790i 0.396321 0.809897i
\(586\) 307.020 0.523925
\(587\) 525.602 910.370i 0.895404 1.55089i 0.0621006 0.998070i \(-0.480220\pi\)
0.833304 0.552816i \(-0.186447\pi\)
\(588\) −20.4065 340.252i −0.0347050 0.578659i
\(589\) −110.305 191.054i −0.187275 0.324370i
\(590\) 53.5646 + 92.7767i 0.0907875 + 0.157249i
\(591\) −102.785 + 67.8572i −0.173917 + 0.114818i
\(592\) 63.4674 + 36.6429i 0.107208 + 0.0618968i
\(593\) 692.941 1.16853 0.584267 0.811562i \(-0.301382\pi\)
0.584267 + 0.811562i \(0.301382\pi\)
\(594\) −145.793 + 123.626i −0.245443 + 0.208125i
\(595\) −5.53876 −0.00930884
\(596\) 90.5873 156.902i 0.151992 0.263258i
\(597\) −361.528 + 238.675i −0.605574 + 0.399791i
\(598\) −253.172 164.029i −0.423364 0.274296i
\(599\) −919.094 + 530.639i −1.53438 + 0.885875i −0.535228 + 0.844708i \(0.679774\pi\)
−0.999152 + 0.0411670i \(0.986892\pi\)
\(600\) −6.87748 114.673i −0.0114625 0.191121i
\(601\) −42.5965 + 73.7793i −0.0708760 + 0.122761i −0.899285 0.437362i \(-0.855913\pi\)
0.828409 + 0.560123i \(0.189246\pi\)
\(602\) 9.84812i 0.0163590i
\(603\) −90.7073 753.492i −0.150427 1.24957i
\(604\) 601.054i 0.995123i
\(605\) 205.484 355.908i 0.339643 0.588278i
\(606\) −120.560 + 241.092i −0.198945 + 0.397841i
\(607\) 111.215 + 192.630i 0.183221 + 0.317348i 0.942976 0.332862i \(-0.108014\pi\)
−0.759755 + 0.650210i \(0.774681\pi\)
\(608\) −250.923 + 144.871i −0.412703 + 0.238274i
\(609\) −1.65932 0.829759i −0.00272466 0.00136249i
\(610\) 97.6793 169.186i 0.160130 0.277353i
\(611\) 191.918 + 375.673i 0.314105 + 0.614849i
\(612\) 16.3808 + 136.073i 0.0267661 + 0.222342i
\(613\) 1211.06i 1.97563i −0.155644 0.987813i \(-0.549745\pi\)
0.155644 0.987813i \(-0.450255\pi\)
\(614\) 279.505 + 161.372i 0.455220 + 0.262822i
\(615\) −44.3918 740.173i −0.0721817 1.20353i
\(616\) −7.25454 + 4.18841i −0.0117768 + 0.00679937i
\(617\) 44.9906 + 77.9259i 0.0729182 + 0.126298i 0.900179 0.435520i \(-0.143435\pi\)
−0.827261 + 0.561818i \(0.810102\pi\)
\(618\) 529.461 349.542i 0.856734 0.565603i
\(619\) −467.089 269.674i −0.754586 0.435661i 0.0727624 0.997349i \(-0.476819\pi\)
−0.827349 + 0.561689i \(0.810152\pi\)
\(620\) 247.214i 0.398732i
\(621\) 312.666 + 368.728i 0.503489 + 0.593765i
\(622\) 190.851i 0.306834i
\(623\) 28.2590 + 16.3153i 0.0453595 + 0.0261883i
\(624\) 45.2666 + 25.6178i 0.0725426 + 0.0410541i
\(625\) 243.136 + 421.124i 0.389018 + 0.673798i
\(626\) −108.707 188.287i −0.173654 0.300777i
\(627\) 152.722 9.15950i 0.243577 0.0146085i
\(628\) 158.284 274.156i 0.252045 0.436554i
\(629\) −360.624 −0.573329
\(630\) 7.87574 5.90562i 0.0125012 0.00937400i
\(631\) 1068.00i 1.69255i 0.532744 + 0.846276i \(0.321161\pi\)
−0.532744 + 0.846276i \(0.678839\pi\)
\(632\) 184.179 319.007i 0.291422 0.504757i
\(633\) 44.4578 + 22.2316i 0.0702334 + 0.0351209i
\(634\) 26.0008 + 45.0347i 0.0410108 + 0.0710327i
\(635\) 136.001 + 235.561i 0.214175 + 0.370962i
\(636\) 218.419 436.786i 0.343426 0.686770i
\(637\) 635.707 + 32.6382i 0.997970 + 0.0512374i
\(638\) 23.3869i 0.0366566i
\(639\) −184.563 + 431.958i −0.288831 + 0.675991i
\(640\) 293.513 0.458614
\(641\) −356.116 205.604i −0.555564 0.320755i 0.195799 0.980644i \(-0.437270\pi\)
−0.751363 + 0.659889i \(0.770603\pi\)
\(642\) −700.416 + 42.0073i −1.09099 + 0.0654320i
\(643\) −776.631 + 448.388i −1.20782 + 0.697338i −0.962284 0.272048i \(-0.912299\pi\)
−0.245541 + 0.969386i \(0.578966\pi\)
\(644\) 3.88905 + 6.73604i 0.00603890 + 0.0104597i
\(645\) 458.169 302.476i 0.710339 0.468955i
\(646\) −39.6998 + 68.7621i −0.0614549 + 0.106443i
\(647\) 39.9656i 0.0617706i −0.999523 0.0308853i \(-0.990167\pi\)
0.999523 0.0308853i \(-0.00983266\pi\)
\(648\) −458.629 479.445i −0.707761 0.739885i
\(649\) −100.165 −0.154337
\(650\) 78.6579 + 4.03842i 0.121012 + 0.00621296i
\(651\) 11.0756 7.31193i 0.0170132 0.0112318i
\(652\) −90.2110 + 52.0833i −0.138360 + 0.0798824i
\(653\) 189.335 109.313i 0.289947 0.167401i −0.347971 0.937505i \(-0.613129\pi\)
0.637918 + 0.770104i \(0.279796\pi\)
\(654\) −581.043 + 34.8479i −0.888445 + 0.0532843i
\(655\) 761.844 + 439.851i 1.16312 + 0.671528i
\(656\) 73.1176 0.111460
\(657\) −734.520 313.839i −1.11799 0.477685i
\(658\) 7.87286i 0.0119648i
\(659\) 839.444 + 484.653i 1.27382 + 0.735437i 0.975704 0.219094i \(-0.0703100\pi\)
0.298111 + 0.954531i \(0.403643\pi\)
\(660\) −153.343 76.6808i −0.232338 0.116183i
\(661\) 205.518 118.656i 0.310919 0.179509i −0.336418 0.941713i \(-0.609216\pi\)
0.647338 + 0.762203i \(0.275882\pi\)
\(662\) 13.1280 7.57943i 0.0198308 0.0114493i
\(663\) −255.935 + 2.20275i −0.386025 + 0.00332239i
\(664\) 360.321 624.094i 0.542652 0.939900i
\(665\) −7.87905 −0.0118482
\(666\) 512.783 384.510i 0.769944 0.577342i
\(667\) −59.1484 −0.0886783
\(668\) −117.182 + 202.965i −0.175422 + 0.303840i
\(669\) 866.719 51.9813i 1.29554 0.0777000i
\(670\) −426.680 + 246.344i −0.636836 + 0.367678i
\(671\) 91.3293 + 158.187i 0.136109 + 0.235748i
\(672\) −9.60322 14.5463i −0.0142905 0.0216462i
\(673\) 545.331 944.541i 0.810299 1.40348i −0.102356 0.994748i \(-0.532638\pi\)
0.912655 0.408731i \(-0.134029\pi\)
\(674\) −447.192 −0.663489
\(675\) −118.833 42.5563i −0.176048 0.0630463i
\(676\) 229.829 317.751i 0.339984 0.470046i
\(677\) 1125.33 + 649.709i 1.66223 + 0.959689i 0.971647 + 0.236435i \(0.0759790\pi\)
0.690582 + 0.723254i \(0.257354\pi\)
\(678\) −132.693 200.994i −0.195712 0.296451i
\(679\) −0.766405 1.32745i −0.00112873 0.00195501i
\(680\) 209.880 121.174i 0.308647 0.178198i
\(681\) −54.9277 915.846i −0.0806574 1.34485i
\(682\) 144.887 + 83.6504i 0.212444 + 0.122655i
\(683\) −703.770 −1.03041 −0.515205 0.857067i \(-0.672284\pi\)
−0.515205 + 0.857067i \(0.672284\pi\)
\(684\) 23.3022 + 193.568i 0.0340676 + 0.282994i
\(685\) −496.320 −0.724554
\(686\) 20.5832 + 11.8837i 0.0300047 + 0.0173232i
\(687\) −371.958 + 743.827i −0.541424 + 1.08272i
\(688\) 27.0681 + 46.8833i 0.0393432 + 0.0681444i
\(689\) 765.374 + 495.883i 1.11085 + 0.719715i
\(690\) 140.370 280.707i 0.203435 0.406821i
\(691\) 267.940 + 154.695i 0.387757 + 0.223872i 0.681188 0.732109i \(-0.261464\pi\)
−0.293431 + 0.955980i \(0.594797\pi\)
\(692\) 40.7876i 0.0589417i
\(693\) 1.10006 + 9.13804i 0.00158739 + 0.0131862i
\(694\) 760.457i 1.09576i
\(695\) 496.499 859.961i 0.714387 1.23735i
\(696\) 81.0297 4.85974i 0.116422 0.00698238i
\(697\) −311.593 + 179.898i −0.447048 + 0.258103i
\(698\) −650.423 + 375.522i −0.931838 + 0.537997i
\(699\) 335.618 + 508.369i 0.480140 + 0.727280i
\(700\) −1.75871 1.01539i −0.00251244 0.00145056i
\(701\) 321.205i 0.458210i −0.973402 0.229105i \(-0.926420\pi\)
0.973402 0.229105i \(-0.0735799\pi\)
\(702\) 361.573 276.019i 0.515062 0.393189i
\(703\) −512.998 −0.729727
\(704\) 124.435 215.527i 0.176754 0.306146i
\(705\) −366.273 + 241.808i −0.519536 + 0.342990i
\(706\) 245.420 + 425.080i 0.347621 + 0.602097i
\(707\) 6.48958 + 11.2403i 0.00917904 + 0.0158986i
\(708\) −7.64152 127.412i −0.0107931 0.179961i
\(709\) −10.3769 5.99109i −0.0146359 0.00845006i 0.492664 0.870220i \(-0.336023\pi\)
−0.507300 + 0.861769i \(0.669356\pi\)
\(710\) 304.946 0.429501
\(711\) −242.808 323.809i −0.341502 0.455427i
\(712\) −1427.76 −2.00527
\(713\) 211.562 366.436i 0.296721 0.513936i
\(714\) −4.27217 2.13634i −0.00598342 0.00299207i
\(715\) 174.091 268.701i 0.243483 0.375806i
\(716\) −209.881 + 121.175i −0.293131 + 0.169239i
\(717\) 99.7191 + 49.8656i 0.139078 + 0.0695475i
\(718\) −146.920 + 254.473i −0.204624 + 0.354419i
\(719\) 366.091i 0.509167i 0.967051 + 0.254584i \(0.0819384\pi\)
−0.967051 + 0.254584i \(0.918062\pi\)
\(720\) −21.2616 + 49.7614i −0.0295300 + 0.0691131i
\(721\) 30.5483i 0.0423693i
\(722\) 177.449 307.350i 0.245774 0.425693i
\(723\) −826.804 + 49.5874i −1.14357 + 0.0685856i
\(724\) 105.129 + 182.089i 0.145206 + 0.251504i
\(725\) 13.3741 7.72153i 0.0184470 0.0106504i
\(726\) 295.770 195.263i 0.407397 0.268957i
\(727\) −19.9404 + 34.5377i −0.0274283 + 0.0475072i −0.879414 0.476058i \(-0.842065\pi\)
0.851985 + 0.523565i \(0.175398\pi\)
\(728\) 17.7520 9.06891i 0.0243847 0.0124573i
\(729\) −682.418 + 256.411i −0.936102 + 0.351730i
\(730\) 518.543i 0.710333i
\(731\) −230.703 133.196i −0.315599 0.182211i
\(732\) −194.250 + 128.241i −0.265369 + 0.175193i
\(733\) 517.367 298.702i 0.705821 0.407506i −0.103691 0.994610i \(-0.533065\pi\)
0.809512 + 0.587104i \(0.199732\pi\)
\(734\) 292.923 + 507.357i 0.399077 + 0.691222i
\(735\) 39.6471 + 661.063i 0.0539417 + 0.899406i
\(736\) −481.264 277.858i −0.653892 0.377524i
\(737\) 460.659i 0.625046i
\(738\) 251.250 588.034i 0.340447 0.796794i
\(739\) 36.3743i 0.0492209i 0.999697 + 0.0246105i \(0.00783454\pi\)
−0.999697 + 0.0246105i \(0.992165\pi\)
\(740\) 497.845 + 287.431i 0.672763 + 0.388420i
\(741\) −364.075 + 3.13347i −0.491329 + 0.00422871i
\(742\) 8.50983 + 14.7395i 0.0114688 + 0.0198645i
\(743\) 117.915 + 204.235i 0.158702 + 0.274879i 0.934401 0.356224i \(-0.115936\pi\)
−0.775699 + 0.631103i \(0.782603\pi\)
\(744\) −259.720 + 519.377i −0.349086 + 0.698088i
\(745\) −175.999 + 304.839i −0.236240 + 0.409180i
\(746\) 204.394 0.273987
\(747\) −475.021 633.489i −0.635905 0.848044i
\(748\) 83.1904i 0.111217i
\(749\) −16.8929 + 29.2594i −0.0225540 + 0.0390646i
\(750\) 31.1395 + 519.210i 0.0415194 + 0.692280i
\(751\) −290.048 502.377i −0.386215 0.668944i 0.605722 0.795677i \(-0.292884\pi\)
−0.991937 + 0.126732i \(0.959551\pi\)
\(752\) −21.6390 37.4798i −0.0287753 0.0498402i
\(753\) 297.217 + 450.202i 0.394710 + 0.597878i
\(754\) −2.85362 + 55.5809i −0.00378464 + 0.0737148i
\(755\) 1167.77i 1.54671i
\(756\) −11.5399 + 2.09644i −0.0152644 + 0.00277307i
\(757\) −177.728 −0.234779 −0.117389 0.993086i \(-0.537453\pi\)
−0.117389 + 0.993086i \(0.537453\pi\)
\(758\) −577.867 333.632i −0.762358 0.440148i
\(759\) 161.673 + 244.890i 0.213008 + 0.322649i
\(760\) 298.561 172.374i 0.392843 0.226808i
\(761\) 327.594 + 567.410i 0.430479 + 0.745611i 0.996915 0.0784949i \(-0.0250114\pi\)
−0.566436 + 0.824106i \(0.691678\pi\)
\(762\) 14.0431 + 234.150i 0.0184293 + 0.307283i
\(763\) −14.0138 + 24.2727i −0.0183667 + 0.0318121i
\(764\) 556.716i 0.728685i
\(765\) −31.8258 264.372i −0.0416023 0.345584i
\(766\) 231.248 0.301890
\(767\) 238.050 + 12.2219i 0.310365 + 0.0159346i
\(768\) 715.346 + 357.716i 0.931440 + 0.465776i
\(769\) −500.571 + 289.005i −0.650938 + 0.375819i −0.788816 0.614630i \(-0.789305\pi\)
0.137877 + 0.990449i \(0.455972\pi\)
\(770\) 5.17461 2.98756i 0.00672027 0.00387995i
\(771\) −420.374 + 840.648i −0.545233