Properties

Label 117.3.n.a.38.17
Level $117$
Weight $3$
Character 117.38
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(38,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.38");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 38.17
Character \(\chi\) \(=\) 117.38
Dual form 117.3.n.a.77.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.641309 - 1.11078i) q^{2} +(2.61442 + 1.47132i) q^{3} +(1.17745 + 2.03940i) q^{4} +(0.763734 + 1.32283i) q^{5} +(3.31097 - 1.96048i) q^{6} +(-5.50560 - 3.17866i) q^{7} +8.15090 q^{8} +(4.67043 + 7.69331i) q^{9} +1.95916 q^{10} +(-4.76900 + 8.26015i) q^{11} +(0.0777368 + 7.06425i) q^{12} +(2.64085 - 12.7289i) q^{13} +(-7.06158 + 4.07700i) q^{14} +(0.0504229 + 4.58213i) q^{15} +(0.517455 - 0.896258i) q^{16} -5.91142i q^{17} +(11.5408 - 0.254026i) q^{18} -28.1819i q^{19} +(-1.79851 + 3.11511i) q^{20} +(-9.71714 - 16.4109i) q^{21} +(6.11681 + 10.5946i) q^{22} +(2.58138 - 1.49036i) q^{23} +(21.3099 + 11.9926i) q^{24} +(11.3334 - 19.6301i) q^{25} +(-12.4454 - 11.0966i) q^{26} +(0.891147 + 26.9853i) q^{27} -14.9708i q^{28} +(-23.3655 - 13.4901i) q^{29} +(5.12207 + 2.88255i) q^{30} +(-40.4659 + 23.3630i) q^{31} +(15.6381 + 27.0860i) q^{32} +(-24.6215 + 14.5788i) q^{33} +(-6.56629 - 3.79105i) q^{34} -9.71060i q^{35} +(-10.1905 + 18.5833i) q^{36} +16.0478i q^{37} +(-31.3039 - 18.0733i) q^{38} +(25.6327 - 29.3933i) q^{39} +(6.22512 + 10.7822i) q^{40} +(0.217120 + 0.376063i) q^{41} +(-24.4605 + 0.269170i) q^{42} +(24.2584 - 42.0167i) q^{43} -22.4610 q^{44} +(-6.60995 + 12.0538i) q^{45} -3.82312i q^{46} +(-41.9845 + 72.7193i) q^{47} +(2.67153 - 1.58186i) q^{48} +(-4.29226 - 7.43442i) q^{49} +(-14.5364 - 25.1779i) q^{50} +(8.69760 - 15.4550i) q^{51} +(29.0688 - 9.60190i) q^{52} +67.8592i q^{53} +(30.5462 + 16.3160i) q^{54} -14.5690 q^{55} +(-44.8756 - 25.9089i) q^{56} +(41.4646 - 73.6795i) q^{57} +(-29.9689 + 17.3026i) q^{58} +(-26.9800 - 46.7307i) q^{59} +(-9.28541 + 5.49804i) q^{60} +(-1.50215 + 2.60180i) q^{61} +59.9315i q^{62} +(-1.25908 - 57.2020i) q^{63} +44.2550 q^{64} +(18.8551 - 6.22814i) q^{65} +(0.403841 + 36.6986i) q^{66} +(18.4220 - 10.6359i) q^{67} +(12.0557 - 6.96038i) q^{68} +(8.94161 - 0.0983958i) q^{69} +(-10.7863 - 6.22749i) q^{70} +105.408 q^{71} +(38.0682 + 62.7074i) q^{72} -15.3294i q^{73} +(17.8256 + 10.2916i) q^{74} +(58.5125 - 34.6462i) q^{75} +(57.4741 - 33.1827i) q^{76} +(52.5124 - 30.3181i) q^{77} +(-16.2110 - 47.3224i) q^{78} +(-37.8643 + 65.5828i) q^{79} +1.58079 q^{80} +(-37.3742 + 71.8622i) q^{81} +0.556964 q^{82} +(19.0458 - 32.9882i) q^{83} +(22.0269 - 39.1400i) q^{84} +(7.81979 - 4.51476i) q^{85} +(-31.1142 - 53.8914i) q^{86} +(-41.2390 - 69.6468i) q^{87} +(-38.8716 + 67.3277i) q^{88} +73.4436 q^{89} +(9.15011 + 15.0724i) q^{90} +(-55.0004 + 61.6861i) q^{91} +(6.07887 + 3.50964i) q^{92} +(-140.169 + 1.54246i) q^{93} +(53.8500 + 93.2710i) q^{94} +(37.2798 - 21.5235i) q^{95} +(1.03245 + 93.8229i) q^{96} +(53.3827 + 30.8205i) q^{97} -11.0107 q^{98} +(-85.8213 + 1.88903i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 4 q^{3} - 50 q^{4} + 4 q^{9} + 8 q^{10} - 38 q^{12} - 6 q^{13} - 6 q^{14} - 90 q^{16} + 14 q^{22} + 138 q^{23} - 92 q^{25} - 76 q^{27} + 48 q^{29} + 186 q^{30} - 154 q^{36} + 324 q^{38} - 2 q^{39}+ \cdots + 504 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.641309 1.11078i 0.320654 0.555390i −0.659969 0.751293i \(-0.729431\pi\)
0.980623 + 0.195903i \(0.0627639\pi\)
\(3\) 2.61442 + 1.47132i 0.871475 + 0.490440i
\(4\) 1.17745 + 2.03940i 0.294362 + 0.509849i
\(5\) 0.763734 + 1.32283i 0.152747 + 0.264565i 0.932236 0.361850i \(-0.117855\pi\)
−0.779489 + 0.626415i \(0.784521\pi\)
\(6\) 3.31097 1.96048i 0.551828 0.326746i
\(7\) −5.50560 3.17866i −0.786514 0.454094i 0.0522199 0.998636i \(-0.483370\pi\)
−0.838734 + 0.544542i \(0.816704\pi\)
\(8\) 8.15090 1.01886
\(9\) 4.67043 + 7.69331i 0.518937 + 0.854813i
\(10\) 1.95916 0.195916
\(11\) −4.76900 + 8.26015i −0.433546 + 0.750923i −0.997176 0.0751042i \(-0.976071\pi\)
0.563630 + 0.826027i \(0.309404\pi\)
\(12\) 0.0777368 + 7.06425i 0.00647807 + 0.588688i
\(13\) 2.64085 12.7289i 0.203142 0.979149i
\(14\) −7.06158 + 4.07700i −0.504398 + 0.291214i
\(15\) 0.0504229 + 4.58213i 0.00336153 + 0.305475i
\(16\) 0.517455 0.896258i 0.0323409 0.0560161i
\(17\) 5.91142i 0.347731i −0.984769 0.173865i \(-0.944374\pi\)
0.984769 0.173865i \(-0.0556258\pi\)
\(18\) 11.5408 0.254026i 0.641153 0.0141125i
\(19\) 28.1819i 1.48326i −0.670810 0.741629i \(-0.734053\pi\)
0.670810 0.741629i \(-0.265947\pi\)
\(20\) −1.79851 + 3.11511i −0.0899256 + 0.155756i
\(21\) −9.71714 16.4109i −0.462721 0.781470i
\(22\) 6.11681 + 10.5946i 0.278037 + 0.481574i
\(23\) 2.58138 1.49036i 0.112234 0.0647982i −0.442832 0.896604i \(-0.646026\pi\)
0.555066 + 0.831806i \(0.312693\pi\)
\(24\) 21.3099 + 11.9926i 0.887912 + 0.499691i
\(25\) 11.3334 19.6301i 0.453337 0.785202i
\(26\) −12.4454 11.0966i −0.478671 0.426792i
\(27\) 0.891147 + 26.9853i 0.0330054 + 0.999455i
\(28\) 14.9708i 0.534671i
\(29\) −23.3655 13.4901i −0.805706 0.465174i 0.0397567 0.999209i \(-0.487342\pi\)
−0.845462 + 0.534035i \(0.820675\pi\)
\(30\) 5.12207 + 2.88255i 0.170736 + 0.0960850i
\(31\) −40.4659 + 23.3630i −1.30535 + 0.753645i −0.981316 0.192401i \(-0.938373\pi\)
−0.324034 + 0.946045i \(0.605039\pi\)
\(32\) 15.6381 + 27.0860i 0.488690 + 0.846437i
\(33\) −24.6215 + 14.5788i −0.746107 + 0.441782i
\(34\) −6.56629 3.79105i −0.193126 0.111501i
\(35\) 9.71060i 0.277446i
\(36\) −10.1905 + 18.5833i −0.283071 + 0.516203i
\(37\) 16.0478i 0.433725i 0.976202 + 0.216863i \(0.0695824\pi\)
−0.976202 + 0.216863i \(0.930418\pi\)
\(38\) −31.3039 18.0733i −0.823786 0.475613i
\(39\) 25.6327 29.3933i 0.657248 0.753675i
\(40\) 6.22512 + 10.7822i 0.155628 + 0.269556i
\(41\) 0.217120 + 0.376063i 0.00529561 + 0.00917227i 0.868661 0.495407i \(-0.164981\pi\)
−0.863365 + 0.504579i \(0.831648\pi\)
\(42\) −24.4605 + 0.269170i −0.582394 + 0.00640881i
\(43\) 24.2584 42.0167i 0.564148 0.977134i −0.432980 0.901404i \(-0.642538\pi\)
0.997128 0.0757301i \(-0.0241287\pi\)
\(44\) −22.4610 −0.510477
\(45\) −6.60995 + 12.0538i −0.146888 + 0.267863i
\(46\) 3.82312i 0.0831113i
\(47\) −41.9845 + 72.7193i −0.893287 + 1.54722i −0.0573761 + 0.998353i \(0.518273\pi\)
−0.835911 + 0.548866i \(0.815060\pi\)
\(48\) 2.67153 1.58186i 0.0556569 0.0329553i
\(49\) −4.29226 7.43442i −0.0875972 0.151723i
\(50\) −14.5364 25.1779i −0.290729 0.503557i
\(51\) 8.69760 15.4550i 0.170541 0.303039i
\(52\) 29.0688 9.60190i 0.559016 0.184652i
\(53\) 67.8592i 1.28036i 0.768224 + 0.640181i \(0.221141\pi\)
−0.768224 + 0.640181i \(0.778859\pi\)
\(54\) 30.5462 + 16.3160i 0.565670 + 0.302149i
\(55\) −14.5690 −0.264891
\(56\) −44.8756 25.9089i −0.801349 0.462659i
\(57\) 41.4646 73.6795i 0.727450 1.29262i
\(58\) −29.9689 + 17.3026i −0.516706 + 0.298320i
\(59\) −26.9800 46.7307i −0.457288 0.792046i 0.541529 0.840682i \(-0.317846\pi\)
−0.998817 + 0.0486363i \(0.984512\pi\)
\(60\) −9.28541 + 5.49804i −0.154757 + 0.0916340i
\(61\) −1.50215 + 2.60180i −0.0246254 + 0.0426525i −0.878075 0.478522i \(-0.841173\pi\)
0.853450 + 0.521175i \(0.174506\pi\)
\(62\) 59.9315i 0.966638i
\(63\) −1.25908 57.2020i −0.0199854 0.907968i
\(64\) 44.2550 0.691485
\(65\) 18.8551 6.22814i 0.290078 0.0958175i
\(66\) 0.403841 + 36.6986i 0.00611880 + 0.556040i
\(67\) 18.4220 10.6359i 0.274955 0.158745i −0.356183 0.934416i \(-0.615922\pi\)
0.631137 + 0.775671i \(0.282589\pi\)
\(68\) 12.0557 6.96038i 0.177290 0.102359i
\(69\) 8.94161 0.0983958i 0.129589 0.00142603i
\(70\) −10.7863 6.22749i −0.154090 0.0889642i
\(71\) 105.408 1.48462 0.742310 0.670057i \(-0.233730\pi\)
0.742310 + 0.670057i \(0.233730\pi\)
\(72\) 38.0682 + 62.7074i 0.528725 + 0.870936i
\(73\) 15.3294i 0.209992i −0.994473 0.104996i \(-0.966517\pi\)
0.994473 0.104996i \(-0.0334830\pi\)
\(74\) 17.8256 + 10.2916i 0.240886 + 0.139076i
\(75\) 58.5125 34.6462i 0.780167 0.461949i
\(76\) 57.4741 33.1827i 0.756238 0.436614i
\(77\) 52.5124 30.3181i 0.681979 0.393741i
\(78\) −16.2110 47.3224i −0.207834 0.606698i
\(79\) −37.8643 + 65.5828i −0.479294 + 0.830162i −0.999718 0.0237459i \(-0.992441\pi\)
0.520424 + 0.853908i \(0.325774\pi\)
\(80\) 1.58079 0.0197599
\(81\) −37.3742 + 71.8622i −0.461410 + 0.887187i
\(82\) 0.556964 0.00679224
\(83\) 19.0458 32.9882i 0.229467 0.397449i −0.728183 0.685383i \(-0.759635\pi\)
0.957650 + 0.287934i \(0.0929683\pi\)
\(84\) 22.0269 39.1400i 0.262224 0.465953i
\(85\) 7.81979 4.51476i 0.0919975 0.0531148i
\(86\) −31.1142 53.8914i −0.361793 0.626644i
\(87\) −41.2390 69.6468i −0.474012 0.800538i
\(88\) −38.8716 + 67.3277i −0.441723 + 0.765087i
\(89\) 73.4436 0.825209 0.412604 0.910910i \(-0.364619\pi\)
0.412604 + 0.910910i \(0.364619\pi\)
\(90\) 9.15011 + 15.0724i 0.101668 + 0.167471i
\(91\) −55.0004 + 61.6861i −0.604400 + 0.677869i
\(92\) 6.07887 + 3.50964i 0.0660747 + 0.0381482i
\(93\) −140.169 + 1.54246i −1.50720 + 0.0165856i
\(94\) 53.8500 + 93.2710i 0.572873 + 0.992244i
\(95\) 37.2798 21.5235i 0.392419 0.226563i
\(96\) 1.03245 + 93.8229i 0.0107547 + 0.977322i
\(97\) 53.3827 + 30.8205i 0.550337 + 0.317737i 0.749258 0.662278i \(-0.230410\pi\)
−0.198921 + 0.980016i \(0.563744\pi\)
\(98\) −11.0107 −0.112354
\(99\) −85.8213 + 1.88903i −0.866881 + 0.0190811i
\(100\) 53.3780 0.533780
\(101\) 26.3652 + 15.2219i 0.261041 + 0.150712i 0.624809 0.780777i \(-0.285177\pi\)
−0.363768 + 0.931490i \(0.618510\pi\)
\(102\) −11.5892 19.5725i −0.113620 0.191887i
\(103\) −49.7692 86.2028i −0.483196 0.836920i 0.516618 0.856216i \(-0.327191\pi\)
−0.999814 + 0.0192959i \(0.993858\pi\)
\(104\) 21.5253 103.752i 0.206974 0.997618i
\(105\) 14.2874 25.3876i 0.136071 0.241787i
\(106\) 75.3766 + 43.5187i 0.711100 + 0.410554i
\(107\) 147.476i 1.37828i 0.724628 + 0.689140i \(0.242011\pi\)
−0.724628 + 0.689140i \(0.757989\pi\)
\(108\) −53.9844 + 33.5911i −0.499856 + 0.311029i
\(109\) 51.9537i 0.476639i 0.971187 + 0.238320i \(0.0765966\pi\)
−0.971187 + 0.238320i \(0.923403\pi\)
\(110\) −9.34323 + 16.1829i −0.0849384 + 0.147118i
\(111\) −23.6115 + 41.9558i −0.212716 + 0.377981i
\(112\) −5.69780 + 3.28962i −0.0508732 + 0.0293716i
\(113\) 129.729 74.8990i 1.14804 0.662823i 0.199633 0.979871i \(-0.436025\pi\)
0.948409 + 0.317048i \(0.102692\pi\)
\(114\) −55.2500 93.3093i −0.484649 0.818503i
\(115\) 3.94297 + 2.27648i 0.0342867 + 0.0197955i
\(116\) 63.5353i 0.547718i
\(117\) 110.262 39.1327i 0.942407 0.334468i
\(118\) −69.2100 −0.586526
\(119\) −18.7904 + 32.5459i −0.157902 + 0.273495i
\(120\) 0.410992 + 37.3484i 0.00342493 + 0.311237i
\(121\) 15.0132 + 26.0037i 0.124076 + 0.214906i
\(122\) 1.92668 + 3.33711i 0.0157925 + 0.0273534i
\(123\) 0.0143346 + 1.30264i 0.000116541 + 0.0105906i
\(124\) −95.2928 55.0173i −0.768490 0.443688i
\(125\) 72.8096 0.582477
\(126\) −64.3462 35.2856i −0.510685 0.280044i
\(127\) −199.708 −1.57250 −0.786252 0.617906i \(-0.787981\pi\)
−0.786252 + 0.617906i \(0.787981\pi\)
\(128\) −34.1712 + 59.1863i −0.266963 + 0.462393i
\(129\) 125.242 74.1577i 0.970867 0.574866i
\(130\) 5.17384 24.9380i 0.0397988 0.191831i
\(131\) −98.4809 + 56.8580i −0.751763 + 0.434030i −0.826330 0.563186i \(-0.809576\pi\)
0.0745678 + 0.997216i \(0.476242\pi\)
\(132\) −58.7225 33.0473i −0.444868 0.250358i
\(133\) −89.5806 + 155.158i −0.673539 + 1.16660i
\(134\) 27.2836i 0.203609i
\(135\) −35.0163 + 21.7884i −0.259380 + 0.161396i
\(136\) 48.1834i 0.354290i
\(137\) 50.6445 87.7189i 0.369668 0.640284i −0.619845 0.784724i \(-0.712805\pi\)
0.989514 + 0.144440i \(0.0461380\pi\)
\(138\) 5.62504 9.99526i 0.0407612 0.0724294i
\(139\) −13.9512 24.1642i −0.100368 0.173843i 0.811468 0.584397i \(-0.198669\pi\)
−0.911836 + 0.410554i \(0.865335\pi\)
\(140\) 19.8038 11.4337i 0.141455 0.0816694i
\(141\) −216.759 + 128.346i −1.53730 + 0.910258i
\(142\) 67.5991 117.085i 0.476050 0.824542i
\(143\) 92.5488 + 82.5182i 0.647194 + 0.577050i
\(144\) 9.31193 0.204966i 0.0646662 0.00142338i
\(145\) 41.2113i 0.284216i
\(146\) −17.0276 9.83089i −0.116627 0.0673349i
\(147\) −0.283382 25.7520i −0.00192777 0.175184i
\(148\) −32.7279 + 18.8955i −0.221134 + 0.127672i
\(149\) −135.912 235.407i −0.912162 1.57991i −0.811004 0.585040i \(-0.801079\pi\)
−0.101157 0.994870i \(-0.532255\pi\)
\(150\) −0.959718 87.2134i −0.00639812 0.581422i
\(151\) 72.5363 + 41.8788i 0.480373 + 0.277343i 0.720572 0.693380i \(-0.243879\pi\)
−0.240199 + 0.970724i \(0.577213\pi\)
\(152\) 229.708i 1.51124i
\(153\) 45.4784 27.6089i 0.297245 0.180450i
\(154\) 77.7729i 0.505019i
\(155\) −61.8103 35.6862i −0.398776 0.230234i
\(156\) 90.1257 + 17.6661i 0.577729 + 0.113244i
\(157\) −30.2181 52.3394i −0.192472 0.333372i 0.753597 0.657337i \(-0.228317\pi\)
−0.946069 + 0.323965i \(0.894984\pi\)
\(158\) 48.5654 + 84.1177i 0.307376 + 0.532390i
\(159\) −99.8426 + 177.413i −0.627941 + 1.11580i
\(160\) −23.8867 + 41.3730i −0.149292 + 0.258581i
\(161\) −18.9494 −0.117698
\(162\) 55.8546 + 87.6003i 0.344781 + 0.540743i
\(163\) 304.325i 1.86703i 0.358543 + 0.933513i \(0.383274\pi\)
−0.358543 + 0.933513i \(0.616726\pi\)
\(164\) −0.511294 + 0.885588i −0.00311765 + 0.00539993i
\(165\) −38.0896 21.4357i −0.230846 0.129913i
\(166\) −24.4284 42.3113i −0.147159 0.254887i
\(167\) 124.037 + 214.839i 0.742739 + 1.28646i 0.951244 + 0.308440i \(0.0998068\pi\)
−0.208505 + 0.978021i \(0.566860\pi\)
\(168\) −79.2034 133.763i −0.471449 0.796210i
\(169\) −155.052 67.2305i −0.917466 0.397814i
\(170\) 11.5814i 0.0681259i
\(171\) 216.812 131.622i 1.26791 0.769717i
\(172\) 114.252 0.664254
\(173\) 1.94606 + 1.12356i 0.0112489 + 0.00649456i 0.505614 0.862760i \(-0.331266\pi\)
−0.494365 + 0.869254i \(0.664599\pi\)
\(174\) −103.809 + 1.14234i −0.596605 + 0.00656519i
\(175\) −124.795 + 72.0501i −0.713111 + 0.411715i
\(176\) 4.93549 + 8.54851i 0.0280425 + 0.0485711i
\(177\) −1.78126 161.870i −0.0100636 0.914521i
\(178\) 47.1000 81.5796i 0.264607 0.458312i
\(179\) 352.455i 1.96902i 0.175316 + 0.984512i \(0.443905\pi\)
−0.175316 + 0.984512i \(0.556095\pi\)
\(180\) −32.3654 + 0.712400i −0.179808 + 0.00395778i
\(181\) 65.7252 0.363123 0.181561 0.983380i \(-0.441885\pi\)
0.181561 + 0.983380i \(0.441885\pi\)
\(182\) 33.2473 + 100.653i 0.182678 + 0.553039i
\(183\) −7.75534 + 4.59206i −0.0423789 + 0.0250932i
\(184\) 21.0405 12.1478i 0.114351 0.0660205i
\(185\) −21.2285 + 12.2563i −0.114749 + 0.0662501i
\(186\) −88.1785 + 156.686i −0.474078 + 0.842400i
\(187\) 48.8293 + 28.1916i 0.261119 + 0.150757i
\(188\) −197.738 −1.05180
\(189\) 80.8707 151.403i 0.427887 0.801073i
\(190\) 55.2128i 0.290594i
\(191\) −216.394 124.935i −1.13295 0.654110i −0.188276 0.982116i \(-0.560290\pi\)
−0.944675 + 0.328007i \(0.893623\pi\)
\(192\) 115.701 + 65.1133i 0.602611 + 0.339132i
\(193\) 192.811 111.320i 0.999022 0.576785i 0.0910629 0.995845i \(-0.470974\pi\)
0.907959 + 0.419060i \(0.137640\pi\)
\(194\) 68.4695 39.5309i 0.352936 0.203768i
\(195\) 58.4588 + 11.4589i 0.299789 + 0.0587635i
\(196\) 10.1078 17.5073i 0.0515705 0.0893227i
\(197\) −130.336 −0.661604 −0.330802 0.943700i \(-0.607319\pi\)
−0.330802 + 0.943700i \(0.607319\pi\)
\(198\) −52.9396 + 96.5399i −0.267372 + 0.487575i
\(199\) 237.077 1.19134 0.595670 0.803229i \(-0.296887\pi\)
0.595670 + 0.803229i \(0.296887\pi\)
\(200\) 92.3775 160.003i 0.461888 0.800013i
\(201\) 63.8117 0.702200i 0.317471 0.00349353i
\(202\) 33.8164 19.5239i 0.167408 0.0966531i
\(203\) 85.7606 + 148.542i 0.422466 + 0.731732i
\(204\) 41.7598 0.459535i 0.204705 0.00225262i
\(205\) −0.331644 + 0.574424i −0.00161778 + 0.00280207i
\(206\) −127.670 −0.619756
\(207\) 23.5219 + 12.8987i 0.113633 + 0.0623127i
\(208\) −10.0419 8.95354i −0.0482783 0.0430458i
\(209\) 232.787 + 134.400i 1.11381 + 0.643060i
\(210\) −19.0374 32.1515i −0.0906543 0.153102i
\(211\) 95.3287 + 165.114i 0.451795 + 0.782532i 0.998498 0.0547951i \(-0.0174506\pi\)
−0.546703 + 0.837327i \(0.684117\pi\)
\(212\) −138.392 + 79.9005i −0.652791 + 0.376889i
\(213\) 275.581 + 155.089i 1.29381 + 0.728118i
\(214\) 163.813 + 94.5776i 0.765482 + 0.441951i
\(215\) 74.1078 0.344688
\(216\) 7.26364 + 219.954i 0.0336280 + 1.01831i
\(217\) 297.052 1.36890
\(218\) 57.7091 + 33.3183i 0.264720 + 0.152836i
\(219\) 22.5545 40.0776i 0.102989 0.183003i
\(220\) −17.1542 29.7120i −0.0779737 0.135054i
\(221\) −75.2461 15.6112i −0.340480 0.0706389i
\(222\) 31.4614 + 53.1338i 0.141718 + 0.239342i
\(223\) −107.197 61.8903i −0.480705 0.277535i 0.240006 0.970772i \(-0.422851\pi\)
−0.720710 + 0.693237i \(0.756184\pi\)
\(224\) 198.833i 0.887646i
\(225\) 203.952 4.48923i 0.906454 0.0199521i
\(226\) 192.133i 0.850148i
\(227\) −83.2671 + 144.223i −0.366815 + 0.635343i −0.989066 0.147476i \(-0.952885\pi\)
0.622250 + 0.782818i \(0.286219\pi\)
\(228\) 199.084 2.19077i 0.873176 0.00960864i
\(229\) 231.335 133.561i 1.01020 0.583237i 0.0989474 0.995093i \(-0.468452\pi\)
0.911249 + 0.411855i \(0.135119\pi\)
\(230\) 5.05733 2.91985i 0.0219884 0.0126950i
\(231\) 181.897 2.00164i 0.787434 0.00866513i
\(232\) −190.449 109.956i −0.820903 0.473948i
\(233\) 1.80691i 0.00775499i 0.999992 + 0.00387750i \(0.00123425\pi\)
−0.999992 + 0.00387750i \(0.998766\pi\)
\(234\) 27.2440 147.572i 0.116427 0.630652i
\(235\) −128.260 −0.545787
\(236\) 63.5350 110.046i 0.269216 0.466296i
\(237\) −195.487 + 115.751i −0.824838 + 0.488400i
\(238\) 24.1009 + 41.7440i 0.101264 + 0.175395i
\(239\) −146.044 252.956i −0.611063 1.05839i −0.991062 0.133405i \(-0.957409\pi\)
0.379998 0.924987i \(-0.375925\pi\)
\(240\) 4.13286 + 2.32585i 0.0172203 + 0.00969105i
\(241\) −244.389 141.098i −1.01406 0.585469i −0.101684 0.994817i \(-0.532423\pi\)
−0.912378 + 0.409348i \(0.865756\pi\)
\(242\) 38.5125 0.159142
\(243\) −203.444 + 132.889i −0.837219 + 0.546867i
\(244\) −7.07480 −0.0289951
\(245\) 6.55629 11.3558i 0.0267604 0.0463503i
\(246\) 1.45614 + 0.819473i 0.00591927 + 0.00333119i
\(247\) −358.726 74.4242i −1.45233 0.301313i
\(248\) −329.833 + 190.429i −1.32997 + 0.767860i
\(249\) 98.3300 58.2228i 0.394900 0.233827i
\(250\) 46.6934 80.8754i 0.186774 0.323502i
\(251\) 156.171i 0.622195i −0.950378 0.311098i \(-0.899303\pi\)
0.950378 0.311098i \(-0.100697\pi\)
\(252\) 115.175 69.9201i 0.457044 0.277461i
\(253\) 28.4301i 0.112372i
\(254\) −128.074 + 221.832i −0.504230 + 0.873353i
\(255\) 27.0869 0.298071i 0.106223 0.00116891i
\(256\) 132.339 + 229.217i 0.516948 + 0.895380i
\(257\) −119.335 + 68.8983i −0.464340 + 0.268087i −0.713867 0.700281i \(-0.753058\pi\)
0.249528 + 0.968368i \(0.419725\pi\)
\(258\) −2.05421 186.674i −0.00796205 0.723543i
\(259\) 51.0106 88.3529i 0.196952 0.341131i
\(260\) 34.9025 + 31.1197i 0.134240 + 0.119691i
\(261\) −5.34348 242.762i −0.0204731 0.930123i
\(262\) 145.854i 0.556695i
\(263\) −348.259 201.068i −1.32418 0.764516i −0.339787 0.940502i \(-0.610355\pi\)
−0.984393 + 0.175987i \(0.943688\pi\)
\(264\) −200.688 + 118.830i −0.760180 + 0.450115i
\(265\) −89.7659 + 51.8264i −0.338739 + 0.195571i
\(266\) 114.898 + 199.009i 0.431946 + 0.748153i
\(267\) 192.013 + 108.059i 0.719149 + 0.404716i
\(268\) 43.3817 + 25.0465i 0.161872 + 0.0934569i
\(269\) 449.323i 1.67035i −0.549986 0.835174i \(-0.685367\pi\)
0.549986 0.835174i \(-0.314633\pi\)
\(270\) 1.74590 + 52.8684i 0.00646628 + 0.195809i
\(271\) 2.53296i 0.00934670i −0.999989 0.00467335i \(-0.998512\pi\)
0.999989 0.00467335i \(-0.00148758\pi\)
\(272\) −5.29816 3.05889i −0.0194785 0.0112459i
\(273\) −234.554 + 80.3502i −0.859174 + 0.294323i
\(274\) −64.9576 112.510i −0.237071 0.410620i
\(275\) 108.098 + 187.232i 0.393084 + 0.680842i
\(276\) 10.7289 + 18.1196i 0.0388730 + 0.0656509i
\(277\) 33.6096 58.2134i 0.121334 0.210157i −0.798960 0.601384i \(-0.794616\pi\)
0.920294 + 0.391227i \(0.127949\pi\)
\(278\) −35.7881 −0.128734
\(279\) −368.732 202.202i −1.32162 0.724737i
\(280\) 79.1501i 0.282679i
\(281\) −85.9968 + 148.951i −0.306039 + 0.530074i −0.977492 0.210972i \(-0.932337\pi\)
0.671453 + 0.741047i \(0.265670\pi\)
\(282\) 3.55526 + 323.081i 0.0126073 + 1.14568i
\(283\) −179.573 311.030i −0.634534 1.09904i −0.986614 0.163075i \(-0.947859\pi\)
0.352080 0.935970i \(-0.385475\pi\)
\(284\) 124.112 + 214.969i 0.437015 + 0.756932i
\(285\) 129.133 1.42101i 0.453099 0.00498601i
\(286\) 151.012 49.8816i 0.528013 0.174411i
\(287\) 2.76060i 0.00961882i
\(288\) −135.344 + 246.812i −0.469946 + 0.856986i
\(289\) 254.055 0.879083
\(290\) −45.7766 26.4291i −0.157850 0.0911350i
\(291\) 94.2181 + 159.121i 0.323773 + 0.546807i
\(292\) 31.2628 18.0496i 0.107064 0.0618136i
\(293\) −41.9881 72.7256i −0.143304 0.248210i 0.785435 0.618944i \(-0.212439\pi\)
−0.928739 + 0.370734i \(0.879106\pi\)
\(294\) −28.7865 16.2002i −0.0979134 0.0551028i
\(295\) 41.2111 71.3797i 0.139699 0.241965i
\(296\) 130.804i 0.441906i
\(297\) −227.153 121.332i −0.764823 0.408525i
\(298\) −348.646 −1.16995
\(299\) −12.1537 36.7940i −0.0406477 0.123057i
\(300\) 139.553 + 78.5361i 0.465176 + 0.261787i
\(301\) −267.114 + 154.218i −0.887421 + 0.512353i
\(302\) 93.0363 53.7145i 0.308067 0.177863i
\(303\) 46.5334 + 78.5882i 0.153576 + 0.259367i
\(304\) −25.2583 14.5829i −0.0830864 0.0479699i
\(305\) −4.58897 −0.0150458
\(306\) −1.50165 68.2223i −0.00490736 0.222949i
\(307\) 355.975i 1.15953i −0.814785 0.579764i \(-0.803145\pi\)
0.814785 0.579764i \(-0.196855\pi\)
\(308\) 123.661 + 71.3958i 0.401497 + 0.231804i
\(309\) −3.28584 298.597i −0.0106338 0.966334i
\(310\) −79.2790 + 45.7718i −0.255739 + 0.147651i
\(311\) −29.6195 + 17.1008i −0.0952397 + 0.0549866i −0.546863 0.837222i \(-0.684178\pi\)
0.451624 + 0.892209i \(0.350845\pi\)
\(312\) 208.929 239.582i 0.669645 0.767890i
\(313\) −72.6374 + 125.812i −0.232068 + 0.401954i −0.958417 0.285373i \(-0.907883\pi\)
0.726348 + 0.687327i \(0.241216\pi\)
\(314\) −77.5166 −0.246868
\(315\) 74.7067 45.3527i 0.237164 0.143977i
\(316\) −178.333 −0.564344
\(317\) −35.8311 + 62.0613i −0.113032 + 0.195777i −0.916991 0.398907i \(-0.869390\pi\)
0.803959 + 0.594684i \(0.202723\pi\)
\(318\) 133.036 + 224.679i 0.418353 + 0.706539i
\(319\) 222.860 128.668i 0.698620 0.403349i
\(320\) 33.7991 + 58.5417i 0.105622 + 0.182943i
\(321\) −216.984 + 385.565i −0.675964 + 1.20114i
\(322\) −12.1524 + 21.0486i −0.0377404 + 0.0653682i
\(323\) −166.595 −0.515775
\(324\) −190.562 + 8.39303i −0.588153 + 0.0259044i
\(325\) −219.940 196.102i −0.676738 0.603392i
\(326\) 338.038 + 195.166i 1.03693 + 0.598670i
\(327\) −76.4405 + 135.829i −0.233763 + 0.415379i
\(328\) 1.76972 + 3.06525i 0.00539550 + 0.00934527i
\(329\) 462.299 266.909i 1.40517 0.811272i
\(330\) −48.2375 + 28.5622i −0.146174 + 0.0865521i
\(331\) −358.154 206.781i −1.08204 0.624715i −0.150592 0.988596i \(-0.548118\pi\)
−0.931445 + 0.363881i \(0.881451\pi\)
\(332\) 89.7015 0.270185
\(333\) −123.461 + 74.9503i −0.370754 + 0.225076i
\(334\) 318.185 0.952649
\(335\) 28.1390 + 16.2460i 0.0839969 + 0.0484956i
\(336\) −19.7365 + 0.217186i −0.0587397 + 0.000646387i
\(337\) 86.6599 + 150.099i 0.257151 + 0.445398i 0.965478 0.260486i \(-0.0838829\pi\)
−0.708327 + 0.705885i \(0.750550\pi\)
\(338\) −174.114 + 129.113i −0.515131 + 0.381991i
\(339\) 449.367 4.94494i 1.32556 0.0145868i
\(340\) 18.4148 + 10.6318i 0.0541611 + 0.0312699i
\(341\) 445.673i 1.30696i
\(342\) −7.15893 325.241i −0.0209325 0.950996i
\(343\) 366.083i 1.06730i
\(344\) 197.728 342.474i 0.574789 0.995564i
\(345\) 6.95918 + 11.7531i 0.0201715 + 0.0340668i
\(346\) 2.49605 1.44110i 0.00721402 0.00416502i
\(347\) −370.144 + 213.703i −1.06670 + 0.615859i −0.927278 0.374375i \(-0.877857\pi\)
−0.139421 + 0.990233i \(0.544524\pi\)
\(348\) 93.4808 166.108i 0.268623 0.477322i
\(349\) 392.043 + 226.346i 1.12333 + 0.648557i 0.942250 0.334911i \(-0.108706\pi\)
0.181084 + 0.983468i \(0.442039\pi\)
\(350\) 184.826i 0.528073i
\(351\) 345.848 + 59.9208i 0.985321 + 0.170715i
\(352\) −298.312 −0.847479
\(353\) 96.4367 167.033i 0.273192 0.473182i −0.696486 0.717571i \(-0.745254\pi\)
0.969677 + 0.244389i \(0.0785873\pi\)
\(354\) −180.944 101.830i −0.511142 0.287656i
\(355\) 80.5037 + 139.437i 0.226771 + 0.392779i
\(356\) 86.4759 + 149.781i 0.242910 + 0.420732i
\(357\) −97.0116 + 57.4421i −0.271741 + 0.160902i
\(358\) 391.500 + 226.033i 1.09358 + 0.631376i
\(359\) 18.1458 0.0505454 0.0252727 0.999681i \(-0.491955\pi\)
0.0252727 + 0.999681i \(0.491955\pi\)
\(360\) −53.8770 + 98.2494i −0.149658 + 0.272915i
\(361\) −433.220 −1.20005
\(362\) 42.1502 73.0062i 0.116437 0.201675i
\(363\) 0.991196 + 90.0739i 0.00273057 + 0.248138i
\(364\) −190.562 39.5357i −0.523523 0.108614i
\(365\) 20.2782 11.7076i 0.0555566 0.0320756i
\(366\) 0.127203 + 11.5594i 0.000347548 + 0.0315831i
\(367\) 223.747 387.541i 0.609665 1.05597i −0.381631 0.924315i \(-0.624637\pi\)
0.991296 0.131655i \(-0.0420292\pi\)
\(368\) 3.08477i 0.00838254i
\(369\) −1.87913 + 3.42675i −0.00509249 + 0.00928658i
\(370\) 31.4402i 0.0849736i
\(371\) 215.701 373.605i 0.581405 1.00702i
\(372\) −168.188 284.045i −0.452117 0.763562i
\(373\) 355.982 + 616.580i 0.954376 + 1.65303i 0.735789 + 0.677211i \(0.236812\pi\)
0.218588 + 0.975817i \(0.429855\pi\)
\(374\) 62.6293 36.1590i 0.167458 0.0966819i
\(375\) 190.355 + 107.126i 0.507614 + 0.285670i
\(376\) −342.211 + 592.727i −0.910136 + 1.57640i
\(377\) −233.419 + 261.792i −0.619148 + 0.694409i
\(378\) −116.312 186.925i −0.307704 0.494512i
\(379\) 633.425i 1.67131i −0.549257 0.835653i \(-0.685089\pi\)
0.549257 0.835653i \(-0.314911\pi\)
\(380\) 87.7899 + 50.6855i 0.231026 + 0.133383i
\(381\) −522.122 293.835i −1.37040 0.771220i
\(382\) −277.550 + 160.244i −0.726571 + 0.419486i
\(383\) 48.4518 + 83.9210i 0.126506 + 0.219115i 0.922321 0.386425i \(-0.126290\pi\)
−0.795815 + 0.605540i \(0.792957\pi\)
\(384\) −176.420 + 104.461i −0.459428 + 0.272035i
\(385\) 80.2111 + 46.3099i 0.208340 + 0.120285i
\(386\) 285.561i 0.739795i
\(387\) 436.545 9.60887i 1.12802 0.0248291i
\(388\) 145.158i 0.374118i
\(389\) 534.942 + 308.849i 1.37517 + 0.793956i 0.991574 0.129543i \(-0.0413512\pi\)
0.383599 + 0.923500i \(0.374685\pi\)
\(390\) 50.2184 57.5861i 0.128765 0.147657i
\(391\) −8.81015 15.2596i −0.0225323 0.0390272i
\(392\) −34.9858 60.5971i −0.0892494 0.154585i
\(393\) −341.127 + 3.75385i −0.868008 + 0.00955178i
\(394\) −83.5856 + 144.774i −0.212146 + 0.367448i
\(395\) −115.673 −0.292843
\(396\) −104.902 172.799i −0.264905 0.436362i
\(397\) 207.827i 0.523493i 0.965137 + 0.261747i \(0.0842985\pi\)
−0.965137 + 0.261747i \(0.915702\pi\)
\(398\) 152.039 263.340i 0.382008 0.661658i
\(399\) −462.489 + 273.848i −1.15912 + 0.686335i
\(400\) −11.7291 20.3153i −0.0293227 0.0507883i
\(401\) −226.908 393.017i −0.565856 0.980091i −0.996969 0.0777935i \(-0.975213\pi\)
0.431114 0.902298i \(-0.358121\pi\)
\(402\) 40.1430 71.3310i 0.0998582 0.177440i
\(403\) 190.522 + 576.786i 0.472758 + 1.43123i
\(404\) 71.6921i 0.177456i
\(405\) −123.605 + 5.44402i −0.305198 + 0.0134420i
\(406\) 219.996 0.541862
\(407\) −132.558 76.5321i −0.325694 0.188040i
\(408\) 70.8932 125.972i 0.173758 0.308755i
\(409\) 494.383 285.432i 1.20876 0.697878i 0.246272 0.969201i \(-0.420794\pi\)
0.962488 + 0.271323i \(0.0874612\pi\)
\(410\) 0.425372 + 0.736767i 0.00103749 + 0.00179699i
\(411\) 261.469 154.820i 0.636178 0.376691i
\(412\) 117.201 202.998i 0.284469 0.492714i
\(413\) 343.041i 0.830607i
\(414\) 29.4125 17.8556i 0.0710446 0.0431295i
\(415\) 58.1836 0.140201
\(416\) 386.074 127.526i 0.928062 0.306554i
\(417\) −0.921079 83.7021i −0.00220882 0.200724i
\(418\) 298.577 172.383i 0.714298 0.412400i
\(419\) 620.074 358.000i 1.47989 0.854416i 0.480151 0.877186i \(-0.340582\pi\)
0.999741 + 0.0227704i \(0.00724866\pi\)
\(420\) 68.5981 0.754871i 0.163329 0.00179731i
\(421\) 148.999 + 86.0245i 0.353916 + 0.204334i 0.666409 0.745586i \(-0.267831\pi\)
−0.312492 + 0.949920i \(0.601164\pi\)
\(422\) 244.541 0.579480
\(423\) −755.538 + 16.6303i −1.78614 + 0.0393150i
\(424\) 553.113i 1.30451i
\(425\) −116.042 66.9966i −0.273039 0.157639i
\(426\) 349.002 206.650i 0.819254 0.485094i
\(427\) 16.5405 9.54964i 0.0387364 0.0223645i
\(428\) −300.762 + 173.645i −0.702715 + 0.405713i
\(429\) 120.551 + 351.907i 0.281005 + 0.820295i
\(430\) 47.5260 82.3174i 0.110526 0.191436i
\(431\) 285.388 0.662153 0.331076 0.943604i \(-0.392588\pi\)
0.331076 + 0.943604i \(0.392588\pi\)
\(432\) 24.6469 + 13.1650i 0.0570530 + 0.0304745i
\(433\) 159.813 0.369082 0.184541 0.982825i \(-0.440920\pi\)
0.184541 + 0.982825i \(0.440920\pi\)
\(434\) 190.502 329.959i 0.438944 0.760274i
\(435\) 60.6350 107.744i 0.139391 0.247687i
\(436\) −105.954 + 61.1727i −0.243014 + 0.140304i
\(437\) −42.0012 72.7482i −0.0961125 0.166472i
\(438\) −30.0530 50.7552i −0.0686141 0.115879i
\(439\) 93.6335 162.178i 0.213288 0.369426i −0.739454 0.673208i \(-0.764916\pi\)
0.952742 + 0.303782i \(0.0982494\pi\)
\(440\) −118.750 −0.269887
\(441\) 37.1486 67.7436i 0.0842372 0.153614i
\(442\) −65.5966 + 73.5703i −0.148409 + 0.166449i
\(443\) 541.940 + 312.889i 1.22334 + 0.706296i 0.965629 0.259926i \(-0.0836981\pi\)
0.257712 + 0.966222i \(0.417031\pi\)
\(444\) −113.366 + 1.24751i −0.255329 + 0.00280970i
\(445\) 56.0914 + 97.1531i 0.126048 + 0.218322i
\(446\) −137.493 + 79.3815i −0.308280 + 0.177986i
\(447\) −8.97312 815.423i −0.0200741 1.82421i
\(448\) −243.650 140.672i −0.543862 0.313999i
\(449\) −437.533 −0.974460 −0.487230 0.873274i \(-0.661993\pi\)
−0.487230 + 0.873274i \(0.661993\pi\)
\(450\) 125.810 229.425i 0.279577 0.509833i
\(451\) −4.14178 −0.00918356
\(452\) 305.497 + 176.379i 0.675879 + 0.390219i
\(453\) 128.023 + 216.213i 0.282612 + 0.477292i
\(454\) 106.800 + 184.983i 0.235242 + 0.407451i
\(455\) −123.606 25.6443i −0.271661 0.0563610i
\(456\) 337.974 600.554i 0.741171 1.31700i
\(457\) 518.150 + 299.154i 1.13381 + 0.654604i 0.944890 0.327388i \(-0.106169\pi\)
0.188918 + 0.981993i \(0.439502\pi\)
\(458\) 342.616i 0.748070i
\(459\) 159.521 5.26794i 0.347541 0.0114770i
\(460\) 10.7217i 0.0233081i
\(461\) −146.252 + 253.316i −0.317250 + 0.549493i −0.979913 0.199425i \(-0.936093\pi\)
0.662663 + 0.748917i \(0.269426\pi\)
\(462\) 114.429 203.331i 0.247682 0.440111i
\(463\) −675.611 + 390.064i −1.45920 + 0.842471i −0.998972 0.0453276i \(-0.985567\pi\)
−0.460231 + 0.887799i \(0.652233\pi\)
\(464\) −24.1811 + 13.9610i −0.0521145 + 0.0300883i
\(465\) −109.093 184.242i −0.234608 0.396219i
\(466\) 2.00708 + 1.15879i 0.00430704 + 0.00248667i
\(467\) 441.322i 0.945015i 0.881327 + 0.472508i \(0.156651\pi\)
−0.881327 + 0.472508i \(0.843349\pi\)
\(468\) 209.634 + 178.791i 0.447937 + 0.382031i
\(469\) −135.232 −0.288341
\(470\) −82.2542 + 142.468i −0.175009 + 0.303124i
\(471\) −1.99505 181.298i −0.00423577 0.384921i
\(472\) −219.911 380.897i −0.465913 0.806986i
\(473\) 231.377 + 400.756i 0.489168 + 0.847264i
\(474\) 3.20636 + 291.375i 0.00676447 + 0.614714i
\(475\) −553.212 319.397i −1.16466 0.672416i
\(476\) −88.4987 −0.185922
\(477\) −522.062 + 316.931i −1.09447 + 0.664426i
\(478\) −374.637 −0.783760
\(479\) −220.584 + 382.062i −0.460509 + 0.797625i −0.998986 0.0450152i \(-0.985666\pi\)
0.538477 + 0.842640i \(0.319000\pi\)
\(480\) −123.323 + 73.0215i −0.256923 + 0.152128i
\(481\) 204.272 + 42.3799i 0.424682 + 0.0881080i
\(482\) −313.458 + 180.975i −0.650327 + 0.375466i
\(483\) −49.5417 27.8806i −0.102571 0.0577238i
\(484\) −35.3546 + 61.2359i −0.0730466 + 0.126520i
\(485\) 94.1547i 0.194133i
\(486\) 17.1395 + 311.204i 0.0352664 + 0.640338i
\(487\) 331.192i 0.680066i 0.940414 + 0.340033i \(0.110438\pi\)
−0.940414 + 0.340033i \(0.889562\pi\)
\(488\) −12.2439 + 21.2070i −0.0250899 + 0.0434570i
\(489\) −447.760 + 795.635i −0.915665 + 1.62707i
\(490\) −8.40922 14.5652i −0.0171617 0.0297249i
\(491\) −262.207 + 151.385i −0.534026 + 0.308320i −0.742654 0.669675i \(-0.766433\pi\)
0.208628 + 0.977995i \(0.433100\pi\)
\(492\) −2.63972 + 1.56302i −0.00536529 + 0.00317688i
\(493\) −79.7454 + 138.123i −0.161755 + 0.280169i
\(494\) −312.723 + 350.736i −0.633042 + 0.709992i
\(495\) −68.0435 112.084i −0.137462 0.226432i
\(496\) 48.3572i 0.0974943i
\(497\) −580.334 335.056i −1.16767 0.674157i
\(498\) −1.61280 146.562i −0.00323856 0.294301i
\(499\) 329.683 190.343i 0.660688 0.381448i −0.131851 0.991270i \(-0.542092\pi\)
0.792539 + 0.609821i \(0.208759\pi\)
\(500\) 85.7294 + 148.488i 0.171459 + 0.296975i
\(501\) 8.18913 + 744.179i 0.0163456 + 1.48539i
\(502\) −173.471 100.154i −0.345561 0.199510i
\(503\) 766.223i 1.52331i −0.647985 0.761654i \(-0.724388\pi\)
0.647985 0.761654i \(-0.275612\pi\)
\(504\) −10.2627 466.247i −0.0203624 0.925094i
\(505\) 46.5021i 0.0920833i
\(506\) 31.5796 + 18.2325i 0.0624102 + 0.0360326i
\(507\) −306.454 403.900i −0.604445 0.796647i
\(508\) −235.146 407.284i −0.462885 0.801740i
\(509\) −239.507 414.839i −0.470545 0.815008i 0.528887 0.848692i \(-0.322609\pi\)
−0.999433 + 0.0336839i \(0.989276\pi\)
\(510\) 17.0400 30.2787i 0.0334117 0.0593700i
\(511\) −48.7270 + 84.3976i −0.0953561 + 0.165162i
\(512\) 66.1098 0.129121
\(513\) 760.497 25.1142i 1.48245 0.0489556i
\(514\) 176.740i 0.343853i
\(515\) 76.0209 131.672i 0.147613 0.255674i
\(516\) 298.703 + 168.101i 0.578881 + 0.325777i
\(517\) −400.448 693.597i −0.774561 1.34158i
\(518\) −65.4270 113.323i −0.126307 0.218770i
\(519\) 3.43471 + 5.80074i 0.00661795 + 0.0111768i
\(520\) 153.686 50.7649i 0.295550 0.0976248i
\(521\) 794.176i 1.52433i −0.647382 0.762165i \(-0.724136\pi\)
0.647382 0.762165i \(-0.275864\pi\)
\(522\) −273.082 149.750i −0.523146 0.286878i
\(523\) 788.966 1.50854 0.754270 0.656564i \(-0.227991\pi\)
0.754270 + 0.656564i \(0.227991\pi\)
\(524\) −231.912 133.894i −0.442580 0.255524i
\(525\) −432.275 + 4.75686i −0.823380 + 0.00906068i
\(526\) −446.683 + 257.893i −0.849208 + 0.490291i
\(527\) 138.108 + 239.211i 0.262065 + 0.453911i
\(528\) 0.325848 + 29.6111i 0.000617137 + 0.0560817i
\(529\) −260.058 + 450.433i −0.491602 + 0.851480i
\(530\) 132.947i 0.250843i
\(531\) 233.506 425.818i 0.439748 0.801917i
\(532\) −421.906 −0.793056
\(533\) 5.36026 1.77058i 0.0100568 0.00332192i
\(534\) 243.169 143.984i 0.455373 0.269634i
\(535\) −195.085 + 112.632i −0.364645 + 0.210528i
\(536\) 150.155 86.6923i 0.280141 0.161739i
\(537\) −518.575 + 921.468i −0.965689 + 1.71596i
\(538\) −499.099 288.155i −0.927694 0.535604i
\(539\) 81.8792 0.151910
\(540\) −85.6650 45.7573i −0.158639 0.0847358i
\(541\) 151.515i 0.280064i −0.990147 0.140032i \(-0.955279\pi\)
0.990147 0.140032i \(-0.0447206\pi\)
\(542\) −2.81356 1.62441i −0.00519106 0.00299706i
\(543\) 171.834 + 96.7029i 0.316452 + 0.178090i
\(544\) 160.117 92.4434i 0.294332 0.169933i
\(545\) −68.7257 + 39.6788i −0.126102 + 0.0728051i
\(546\) −61.1704 + 312.067i −0.112034 + 0.571552i
\(547\) 288.796 500.209i 0.527963 0.914458i −0.471506 0.881863i \(-0.656289\pi\)
0.999469 0.0325954i \(-0.0103773\pi\)
\(548\) 238.525 0.435264
\(549\) −27.0321 + 0.595009i −0.0492389 + 0.00108381i
\(550\) 277.297 0.504177
\(551\) −380.175 + 658.483i −0.689974 + 1.19507i
\(552\) 72.8822 0.802014i 0.132033 0.00145292i
\(553\) 416.931 240.715i 0.753944 0.435290i
\(554\) −43.1082 74.6656i −0.0778126 0.134775i
\(555\) −73.5332 + 0.809178i −0.132492 + 0.00145798i
\(556\) 32.8536 56.9040i 0.0590891 0.102345i
\(557\) 977.285 1.75455 0.877275 0.479988i \(-0.159359\pi\)
0.877275 + 0.479988i \(0.159359\pi\)
\(558\) −461.072 + 279.906i −0.826294 + 0.501624i
\(559\) −470.766 419.743i −0.842157 0.750883i
\(560\) −8.70320 5.02480i −0.0155414 0.00897285i
\(561\) 86.1815 + 145.548i 0.153621 + 0.259444i
\(562\) 110.301 + 191.047i 0.196265 + 0.339941i
\(563\) 394.123 227.547i 0.700041 0.404169i −0.107322 0.994224i \(-0.534227\pi\)
0.807363 + 0.590055i \(0.200894\pi\)
\(564\) −516.971 290.936i −0.916615 0.515844i
\(565\) 198.157 + 114.406i 0.350720 + 0.202488i
\(566\) −460.647 −0.813864
\(567\) 434.193 276.844i 0.765772 0.488262i
\(568\) 859.170 1.51262
\(569\) −389.346 224.789i −0.684263 0.395060i 0.117196 0.993109i \(-0.462609\pi\)
−0.801459 + 0.598049i \(0.795943\pi\)
\(570\) 81.2357 144.350i 0.142519 0.253245i
\(571\) −146.524 253.787i −0.256610 0.444461i 0.708722 0.705488i \(-0.249272\pi\)
−0.965331 + 0.261027i \(0.915939\pi\)
\(572\) −59.3161 + 285.904i −0.103700 + 0.499833i
\(573\) −381.925 645.017i −0.666536 1.12568i
\(574\) −3.06642 1.77040i −0.00534219 0.00308432i
\(575\) 67.5635i 0.117502i
\(576\) 206.690 + 340.468i 0.358837 + 0.591090i
\(577\) 528.656i 0.916215i −0.888897 0.458108i \(-0.848527\pi\)
0.888897 0.458108i \(-0.151473\pi\)
\(578\) 162.928 282.199i 0.281882 0.488234i
\(579\) 667.877 7.34949i 1.15350 0.0126934i
\(580\) 84.0461 48.5241i 0.144907 0.0836622i
\(581\) −209.717 + 121.080i −0.360958 + 0.208399i
\(582\) 237.171 2.60989i 0.407510 0.00448435i
\(583\) −560.527 323.621i −0.961453 0.555095i
\(584\) 124.948i 0.213953i
\(585\) 135.976 + 115.970i 0.232438 + 0.198239i
\(586\) −107.709 −0.183804
\(587\) −334.347 + 579.106i −0.569586 + 0.986552i 0.427020 + 0.904242i \(0.359563\pi\)
−0.996607 + 0.0823105i \(0.973770\pi\)
\(588\) 52.1849 30.8995i 0.0887498 0.0525502i
\(589\) 658.413 + 1140.41i 1.11785 + 1.93617i
\(590\) −52.8581 91.5528i −0.0895899 0.155174i
\(591\) −340.753 191.766i −0.576571 0.324477i
\(592\) 14.3830 + 8.30403i 0.0242956 + 0.0140271i
\(593\) −705.106 −1.18905 −0.594525 0.804077i \(-0.702660\pi\)
−0.594525 + 0.804077i \(0.702660\pi\)
\(594\) −280.448 + 174.505i −0.472134 + 0.293780i
\(595\) −57.4035 −0.0964764
\(596\) 320.058 554.357i 0.537011 0.930130i
\(597\) 619.819 + 348.816i 1.03822 + 0.584281i
\(598\) −48.6643 10.0963i −0.0813784 0.0168834i
\(599\) 126.070 72.7864i 0.210467 0.121513i −0.391061 0.920365i \(-0.627892\pi\)
0.601528 + 0.798851i \(0.294559\pi\)
\(600\) 476.929 282.398i 0.794882 0.470663i
\(601\) 203.611 352.664i 0.338787 0.586796i −0.645418 0.763829i \(-0.723317\pi\)
0.984205 + 0.177034i \(0.0566502\pi\)
\(602\) 395.606i 0.657153i
\(603\) 167.864 + 92.0516i 0.278381 + 0.152656i
\(604\) 197.240i 0.326557i
\(605\) −22.9322 + 39.7198i −0.0379045 + 0.0656526i
\(606\) 117.136 1.28900i 0.193294 0.00212706i
\(607\) −2.73734 4.74122i −0.00450963 0.00781091i 0.863762 0.503900i \(-0.168102\pi\)
−0.868271 + 0.496089i \(0.834769\pi\)
\(608\) 763.334 440.711i 1.25548 0.724854i
\(609\) 5.66204 + 514.532i 0.00929728 + 0.844880i
\(610\) −2.94295 + 5.09734i −0.00482450 + 0.00835629i
\(611\) 814.764 + 726.459i 1.33349 + 1.18897i
\(612\) 109.854 + 60.2406i 0.179500 + 0.0984324i
\(613\) 49.4537i 0.0806749i 0.999186 + 0.0403374i \(0.0128433\pi\)
−0.999186 + 0.0403374i \(0.987157\pi\)
\(614\) −395.410 228.290i −0.643990 0.371808i
\(615\) −1.71222 + 1.01383i −0.00278410 + 0.00164851i
\(616\) 428.023 247.119i 0.694843 0.401168i
\(617\) 24.5895 + 42.5902i 0.0398533 + 0.0690279i 0.885264 0.465089i \(-0.153978\pi\)
−0.845411 + 0.534117i \(0.820644\pi\)
\(618\) −333.783 187.843i −0.540102 0.303953i
\(619\) −73.8390 42.6310i −0.119288 0.0688707i 0.439169 0.898404i \(-0.355273\pi\)
−0.558457 + 0.829534i \(0.688606\pi\)
\(620\) 168.074i 0.271088i
\(621\) 42.5182 + 68.3311i 0.0684673 + 0.110034i
\(622\) 43.8677i 0.0705268i
\(623\) −404.351 233.452i −0.649038 0.374722i
\(624\) −13.0802 38.1832i −0.0209619 0.0611910i
\(625\) −227.728 394.437i −0.364365 0.631099i
\(626\) 93.1660 + 161.368i 0.148828 + 0.257777i
\(627\) 410.859 + 693.882i 0.655277 + 1.10667i
\(628\) 71.1605 123.254i 0.113313 0.196264i
\(629\) 94.8655 0.150820
\(630\) −2.46674 112.068i −0.00391546 0.177885i
\(631\) 520.845i 0.825428i −0.910861 0.412714i \(-0.864581\pi\)
0.910861 0.412714i \(-0.135419\pi\)
\(632\) −308.628 + 534.559i −0.488335 + 0.845821i
\(633\) 6.29375 + 571.938i 0.00994273 + 0.903535i
\(634\) 45.9576 + 79.6009i 0.0724883 + 0.125553i
\(635\) −152.524 264.179i −0.240195 0.416030i
\(636\) −479.374 + 5.27515i −0.753733 + 0.00829427i
\(637\) −105.967 + 35.0028i −0.166354 + 0.0549494i
\(638\) 330.064i 0.517342i
\(639\) 492.301 + 810.937i 0.770424 + 1.26907i
\(640\) −104.391 −0.163111
\(641\) −412.228 238.000i −0.643101 0.371295i 0.142707 0.989765i \(-0.454419\pi\)
−0.785808 + 0.618470i \(0.787753\pi\)
\(642\) 289.123 + 488.288i 0.450348 + 0.760573i
\(643\) 835.538 482.398i 1.29944 0.750230i 0.319130 0.947711i \(-0.396609\pi\)
0.980307 + 0.197480i \(0.0632759\pi\)
\(644\) −22.3119 38.6453i −0.0346458 0.0600082i
\(645\) 193.749 + 109.036i 0.300386 + 0.169049i
\(646\) −106.839 + 185.050i −0.165385 + 0.286456i
\(647\) 1163.49i 1.79829i 0.437653 + 0.899144i \(0.355810\pi\)
−0.437653 + 0.899144i \(0.644190\pi\)
\(648\) −304.633 + 585.741i −0.470113 + 0.903921i
\(649\) 514.671 0.793021
\(650\) −358.876 + 118.542i −0.552117 + 0.182373i
\(651\) 776.619 + 437.059i 1.19296 + 0.671365i
\(652\) −620.640 + 358.327i −0.951902 + 0.549581i
\(653\) 430.864 248.759i 0.659822 0.380948i −0.132387 0.991198i \(-0.542264\pi\)
0.792209 + 0.610250i \(0.208931\pi\)
\(654\) 101.854 + 172.017i 0.155740 + 0.263023i
\(655\) −150.426 86.8488i −0.229659 0.132594i
\(656\) 0.449399 0.000685060
\(657\) 117.934 71.5950i 0.179504 0.108973i
\(658\) 684.683i 1.04055i
\(659\) −492.112 284.121i −0.746756 0.431140i 0.0777643 0.996972i \(-0.475222\pi\)
−0.824521 + 0.565832i \(0.808555\pi\)
\(660\) −1.13255 102.919i −0.00171598 0.155938i
\(661\) −489.391 + 282.550i −0.740380 + 0.427459i −0.822207 0.569188i \(-0.807258\pi\)
0.0818275 + 0.996647i \(0.473924\pi\)
\(662\) −459.375 + 265.220i −0.693920 + 0.400635i
\(663\) −173.756 151.526i −0.262076 0.228545i
\(664\) 155.240 268.884i 0.233795 0.404945i
\(665\) −273.663 −0.411524
\(666\) 4.07656 + 185.204i 0.00612096 + 0.278084i
\(667\) −80.4201 −0.120570
\(668\) −292.095 + 505.923i −0.437267 + 0.757369i
\(669\) −189.198 319.529i −0.282808 0.477622i
\(670\) 36.0915 20.8374i 0.0538679 0.0311007i
\(671\) −14.3275 24.8160i −0.0213525 0.0369836i
\(672\) 292.547 519.833i 0.435337 0.773561i
\(673\) −174.406 + 302.079i −0.259146 + 0.448855i −0.966013 0.258492i \(-0.916775\pi\)
0.706867 + 0.707346i \(0.250108\pi\)
\(674\) 222.303 0.329826
\(675\) 539.823 + 288.342i 0.799737 + 0.427174i
\(676\) −45.4555 395.372i −0.0672419 0.584871i
\(677\) 19.5304 + 11.2759i 0.0288484 + 0.0166557i 0.514355 0.857577i \(-0.328031\pi\)
−0.485506 + 0.874233i \(0.661365\pi\)
\(678\) 282.690 502.318i 0.416947 0.740882i
\(679\) −195.936 339.370i −0.288565 0.499809i
\(680\) 63.7383 36.7993i 0.0937327 0.0541166i
\(681\) −429.894 + 254.547i −0.631268 + 0.373784i
\(682\) −495.044 285.814i −0.725871 0.419082i
\(683\) 827.260 1.21122 0.605608 0.795763i \(-0.292930\pi\)
0.605608 + 0.795763i \(0.292930\pi\)
\(684\) 523.713 + 287.189i 0.765663 + 0.419867i
\(685\) 154.716 0.225863
\(686\) 406.637 + 234.772i 0.592766 + 0.342234i
\(687\) 801.319 8.81792i 1.16640 0.0128354i
\(688\) −25.1052 43.4835i −0.0364902 0.0632028i
\(689\) 863.775 + 179.206i 1.25367 + 0.260096i
\(690\) 17.5180 0.192773i 0.0253885 0.000279381i
\(691\) 177.380 + 102.410i 0.256700 + 0.148206i 0.622828 0.782358i \(-0.285983\pi\)
−0.366128 + 0.930564i \(0.619317\pi\)
\(692\) 5.29172i 0.00764700i
\(693\) 478.502 + 262.396i 0.690479 + 0.378638i
\(694\) 548.198i 0.789911i
\(695\) 21.3100 36.9100i 0.0306619 0.0531079i
\(696\) −336.135 567.684i −0.482953 0.815638i
\(697\) 2.22307 1.28349i 0.00318948 0.00184145i
\(698\) 502.842 290.316i 0.720404 0.415925i
\(699\) −2.65855 + 4.72404i −0.00380336 + 0.00675828i
\(700\) −293.878 169.670i −0.419825 0.242386i
\(701\) 181.050i 0.258274i −0.991627 0.129137i \(-0.958779\pi\)
0.991627 0.129137i \(-0.0412208\pi\)
\(702\) 288.354 345.732i 0.410760 0.492496i
\(703\) 452.258 0.643326
\(704\) −211.052 + 365.553i −0.299790 + 0.519252i
\(705\) −335.326 188.712i −0.475640 0.267676i
\(706\) −123.691 214.240i −0.175200 0.303456i
\(707\) −96.7707 167.612i −0.136875 0.237075i
\(708\) 328.020 194.226i 0.463305 0.274331i
\(709\) −51.9677 30.0036i −0.0732972 0.0423181i 0.462904 0.886409i \(-0.346808\pi\)
−0.536201 + 0.844091i \(0.680141\pi\)
\(710\) 206.511 0.290860
\(711\) −681.392 + 14.9982i −0.958357 + 0.0210946i
\(712\) 598.631 0.840774
\(713\) −69.6385 + 120.617i −0.0976697 + 0.169169i
\(714\) 1.59118 + 144.597i 0.00222854 + 0.202516i
\(715\) −38.4746 + 185.448i −0.0538106 + 0.259368i
\(716\) −718.796 + 414.997i −1.00391 + 0.579605i
\(717\) −9.64205 876.212i −0.0134478 1.22205i
\(718\) 11.6371 20.1560i 0.0162076 0.0280724i
\(719\) 437.875i 0.609005i 0.952511 + 0.304503i \(0.0984903\pi\)
−0.952511 + 0.304503i \(0.901510\pi\)
\(720\) 7.38298 + 12.1615i 0.0102541 + 0.0168910i
\(721\) 632.797i 0.877666i
\(722\) −277.828 + 481.211i −0.384803 + 0.666498i
\(723\) −431.336 728.465i −0.596592 1.00756i
\(724\) 77.3879 + 134.040i 0.106889 + 0.185138i
\(725\) −529.621 + 305.777i −0.730512 + 0.421761i
\(726\) 100.688 + 56.6642i 0.138689 + 0.0780499i
\(727\) 347.346 601.621i 0.477780 0.827539i −0.521896 0.853009i \(-0.674775\pi\)
0.999676 + 0.0254704i \(0.00810836\pi\)
\(728\) −448.303 + 502.797i −0.615800 + 0.690655i
\(729\) −727.412 + 48.0957i −0.997821 + 0.0659749i
\(730\) 30.0327i 0.0411407i
\(731\) −248.379 143.402i −0.339779 0.196172i
\(732\) −18.4965 10.4093i −0.0252685 0.0142204i
\(733\) 625.465 361.112i 0.853295 0.492650i −0.00846655 0.999964i \(-0.502695\pi\)
0.861761 + 0.507314i \(0.169362\pi\)
\(734\) −286.982 497.067i −0.390983 0.677203i
\(735\) 33.8490 20.0426i 0.0460531 0.0272688i
\(736\) 80.7357 + 46.6128i 0.109695 + 0.0633326i
\(737\) 202.891i 0.275293i
\(738\) 2.60126 + 4.28490i 0.00352474 + 0.00580610i
\(739\) 480.571i 0.650298i 0.945663 + 0.325149i \(0.105415\pi\)
−0.945663 + 0.325149i \(0.894585\pi\)
\(740\) −49.9908 28.8622i −0.0675552 0.0390030i
\(741\) −828.359 722.377i −1.11789 0.974868i
\(742\) −276.662 479.193i −0.372860 0.645812i
\(743\) −657.788 1139.32i −0.885314 1.53341i −0.845353 0.534207i \(-0.820610\pi\)
−0.0399605 0.999201i \(-0.512723\pi\)
\(744\) −1142.51 + 12.5724i −1.53563 + 0.0168984i
\(745\) 207.601 359.576i 0.278660 0.482653i
\(746\) 913.178 1.22410
\(747\) 342.741 7.54413i 0.458823 0.0100992i
\(748\) 132.776i 0.177508i
\(749\) 468.776 811.943i 0.625869 1.08404i
\(750\) 241.070 142.742i 0.321427 0.190322i
\(751\) −12.7475 22.0793i −0.0169740 0.0293999i 0.857414 0.514628i \(-0.172070\pi\)
−0.874388 + 0.485228i \(0.838737\pi\)
\(752\) 43.4501 + 75.2578i 0.0577794 + 0.100077i
\(753\) 229.778 408.297i 0.305150 0.542227i
\(754\) 141.100 + 427.166i 0.187135 + 0.566534i
\(755\) 127.937i 0.169453i
\(756\) 403.991 13.3412i 0.534380 0.0176471i
\(757\) −226.199 −0.298810 −0.149405 0.988776i \(-0.547736\pi\)
−0.149405 + 0.988776i \(0.547736\pi\)
\(758\) −703.596 406.221i −0.928226 0.535912i
\(759\) −41.8298 + 74.3284i −0.0551118 + 0.0979293i
\(760\) 303.864 175.436i 0.399820 0.230836i
\(761\) 112.781 + 195.343i 0.148202 + 0.256693i 0.930563 0.366132i \(-0.119318\pi\)
−0.782361 + 0.622825i \(0.785985\pi\)
\(762\) −661.226 + 391.523i −0.867751 + 0.513810i
\(763\) 165.143 286.036i 0.216439 0.374883i
\(764\) 588.417i 0.770179i
\(765\) 71.2552 + 39.0742i 0.0931441 + 0.0510774i
\(766\) 124.290 0.162259
\(767\) −666.083 + 220.018i −0.868426 + 0.286855i
\(768\) 8.73720 + 793.984i 0.0113766 + 1.03383i
\(769\) −994.900 + 574.406i −1.29376 + 0.746951i −0.979318 0.202326i \(-0.935150\pi\)
−0.314439 + 0.949278i \(0.601817\pi\)
\(770\) 102.880 59.3979i 0.133611 0.0771401i
\(771\) −413.365 + 4.54877i