Properties

Label 117.3.n.a.38.15
Level $117$
Weight $3$
Character 117.38
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(38,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.38");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 38.15
Character \(\chi\) \(=\) 117.38
Dual form 117.3.n.a.77.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.245962 - 0.426018i) q^{2} +(-2.80287 - 1.06954i) q^{3} +(1.87901 + 3.25453i) q^{4} +(-1.35391 - 2.34503i) q^{5} +(-1.14504 + 0.931009i) q^{6} +(8.51494 + 4.91611i) q^{7} +3.81635 q^{8} +(6.71217 + 5.99556i) q^{9} -1.33204 q^{10} +(7.77093 - 13.4596i) q^{11} +(-1.78576 - 11.1317i) q^{12} +(8.94077 - 9.43730i) q^{13} +(4.18870 - 2.41835i) q^{14} +(1.28672 + 8.02089i) q^{15} +(-6.57735 + 11.3923i) q^{16} +22.4699i q^{17} +(4.20516 - 1.38483i) q^{18} +10.5454i q^{19} +(5.08800 - 8.81267i) q^{20} +(-18.6083 - 22.8863i) q^{21} +(-3.82270 - 6.62112i) q^{22} +(2.18641 - 1.26233i) q^{23} +(-10.6967 - 4.08173i) q^{24} +(8.83387 - 15.3007i) q^{25} +(-1.82137 - 6.13015i) q^{26} +(-12.4009 - 23.9837i) q^{27} +36.9496i q^{28} +(2.12707 + 1.22806i) q^{29} +(3.73353 + 1.42467i) q^{30} +(-32.9508 + 19.0241i) q^{31} +(10.8683 + 18.8244i) q^{32} +(-36.1765 + 29.4143i) q^{33} +(9.57260 + 5.52674i) q^{34} -26.6238i q^{35} +(-6.90053 + 33.1107i) q^{36} -10.3786i q^{37} +(4.49252 + 2.59376i) q^{38} +(-35.1534 + 16.8890i) q^{39} +(-5.16698 - 8.94947i) q^{40} +(-36.5879 - 63.3720i) q^{41} +(-14.3269 + 2.29834i) q^{42} +(-22.9633 + 39.7736i) q^{43} +58.4065 q^{44} +(4.97214 - 23.8577i) q^{45} -1.24194i q^{46} +(-13.6798 + 23.6942i) q^{47} +(30.6200 - 24.8964i) q^{48} +(23.8362 + 41.2855i) q^{49} +(-4.34559 - 7.52679i) q^{50} +(24.0324 - 62.9803i) q^{51} +(47.5138 + 11.3653i) q^{52} -0.0370030i q^{53} +(-13.2676 - 0.616076i) q^{54} -42.0844 q^{55} +(32.4960 + 18.7616i) q^{56} +(11.2787 - 29.5573i) q^{57} +(1.04636 - 0.604114i) q^{58} +(-32.9332 - 57.0420i) q^{59} +(-23.6865 + 19.2590i) q^{60} +(40.6820 - 70.4633i) q^{61} +18.7168i q^{62} +(27.6790 + 84.0496i) q^{63} -41.9261 q^{64} +(-34.2358 - 8.18920i) q^{65} +(3.63301 + 22.6467i) q^{66} +(56.2009 - 32.4476i) q^{67} +(-73.1291 + 42.2211i) q^{68} +(-7.47835 + 1.19968i) q^{69} +(-11.3422 - 6.54843i) q^{70} +29.5878 q^{71} +(25.6160 + 22.8811i) q^{72} -28.3208i q^{73} +(-4.42149 - 2.55275i) q^{74} +(-41.1249 + 33.4378i) q^{75} +(-34.3203 + 19.8148i) q^{76} +(132.338 - 76.4054i) q^{77} +(-1.45136 + 19.1300i) q^{78} +(-36.3943 + 63.0368i) q^{79} +35.6204 q^{80} +(9.10655 + 80.4865i) q^{81} -35.9969 q^{82} +(-71.9367 + 124.598i) q^{83} +(39.5190 - 103.565i) q^{84} +(52.6927 - 30.4222i) q^{85} +(11.2962 + 19.5656i) q^{86} +(-4.64844 - 5.71709i) q^{87} +(29.6566 - 51.3667i) q^{88} +80.5846 q^{89} +(-8.94086 - 7.98631i) q^{90} +(122.525 - 36.4043i) q^{91} +(8.21657 + 4.74384i) q^{92} +(112.704 - 18.0801i) q^{93} +(6.72944 + 11.6557i) q^{94} +(24.7293 - 14.2775i) q^{95} +(-10.3289 - 64.3863i) q^{96} +(-97.7027 - 56.4087i) q^{97} +23.4512 q^{98} +(132.858 - 43.7524i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 4 q^{3} - 50 q^{4} + 4 q^{9} + 8 q^{10} - 38 q^{12} - 6 q^{13} - 6 q^{14} - 90 q^{16} + 14 q^{22} + 138 q^{23} - 92 q^{25} - 76 q^{27} + 48 q^{29} + 186 q^{30} - 154 q^{36} + 324 q^{38} - 2 q^{39}+ \cdots + 504 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.245962 0.426018i 0.122981 0.213009i −0.797961 0.602709i \(-0.794088\pi\)
0.920942 + 0.389700i \(0.127421\pi\)
\(3\) −2.80287 1.06954i −0.934290 0.356513i
\(4\) 1.87901 + 3.25453i 0.469751 + 0.813633i
\(5\) −1.35391 2.34503i −0.270781 0.469007i 0.698281 0.715824i \(-0.253949\pi\)
−0.969062 + 0.246817i \(0.920615\pi\)
\(6\) −1.14504 + 0.931009i −0.190840 + 0.155168i
\(7\) 8.51494 + 4.91611i 1.21642 + 0.702301i 0.964150 0.265356i \(-0.0854895\pi\)
0.252270 + 0.967657i \(0.418823\pi\)
\(8\) 3.81635 0.477044
\(9\) 6.71217 + 5.99556i 0.745797 + 0.666173i
\(10\) −1.33204 −0.133204
\(11\) 7.77093 13.4596i 0.706448 1.22360i −0.259718 0.965684i \(-0.583630\pi\)
0.966166 0.257920i \(-0.0830370\pi\)
\(12\) −1.78576 11.1317i −0.148813 0.927642i
\(13\) 8.94077 9.43730i 0.687752 0.725946i
\(14\) 4.18870 2.41835i 0.299193 0.172739i
\(15\) 1.28672 + 8.02089i 0.0857813 + 0.534726i
\(16\) −6.57735 + 11.3923i −0.411084 + 0.712019i
\(17\) 22.4699i 1.32176i 0.750492 + 0.660880i \(0.229817\pi\)
−0.750492 + 0.660880i \(0.770183\pi\)
\(18\) 4.20516 1.38483i 0.233620 0.0769350i
\(19\) 10.5454i 0.555020i 0.960723 + 0.277510i \(0.0895091\pi\)
−0.960723 + 0.277510i \(0.910491\pi\)
\(20\) 5.08800 8.81267i 0.254400 0.440633i
\(21\) −18.6083 22.8863i −0.886111 1.08982i
\(22\) −3.82270 6.62112i −0.173759 0.300960i
\(23\) 2.18641 1.26233i 0.0950615 0.0548838i −0.451716 0.892162i \(-0.649188\pi\)
0.546777 + 0.837278i \(0.315854\pi\)
\(24\) −10.6967 4.08173i −0.445697 0.170072i
\(25\) 8.83387 15.3007i 0.353355 0.612029i
\(26\) −1.82137 6.13015i −0.0700528 0.235775i
\(27\) −12.4009 23.9837i −0.459292 0.888286i
\(28\) 36.9496i 1.31963i
\(29\) 2.12707 + 1.22806i 0.0733472 + 0.0423470i 0.536225 0.844075i \(-0.319850\pi\)
−0.462878 + 0.886422i \(0.653183\pi\)
\(30\) 3.73353 + 1.42467i 0.124451 + 0.0474888i
\(31\) −32.9508 + 19.0241i −1.06293 + 0.613682i −0.926241 0.376933i \(-0.876979\pi\)
−0.136687 + 0.990614i \(0.543646\pi\)
\(32\) 10.8683 + 18.8244i 0.339633 + 0.588261i
\(33\) −36.1765 + 29.4143i −1.09626 + 0.891344i
\(34\) 9.57260 + 5.52674i 0.281547 + 0.162551i
\(35\) 26.6238i 0.760680i
\(36\) −6.90053 + 33.1107i −0.191681 + 0.919741i
\(37\) 10.3786i 0.280504i −0.990116 0.140252i \(-0.955209\pi\)
0.990116 0.140252i \(-0.0447912\pi\)
\(38\) 4.49252 + 2.59376i 0.118224 + 0.0682568i
\(39\) −35.1534 + 16.8890i −0.901369 + 0.433052i
\(40\) −5.16698 8.94947i −0.129174 0.223737i
\(41\) −36.5879 63.3720i −0.892387 1.54566i −0.837006 0.547194i \(-0.815696\pi\)
−0.0553805 0.998465i \(-0.517637\pi\)
\(42\) −14.3269 + 2.29834i −0.341117 + 0.0547224i
\(43\) −22.9633 + 39.7736i −0.534030 + 0.924967i 0.465180 + 0.885216i \(0.345990\pi\)
−0.999210 + 0.0397508i \(0.987344\pi\)
\(44\) 58.4065 1.32742
\(45\) 4.97214 23.8577i 0.110492 0.530171i
\(46\) 1.24194i 0.0269986i
\(47\) −13.6798 + 23.6942i −0.291060 + 0.504132i −0.974061 0.226287i \(-0.927341\pi\)
0.683000 + 0.730418i \(0.260675\pi\)
\(48\) 30.6200 24.8964i 0.637916 0.518675i
\(49\) 23.8362 + 41.2855i 0.486453 + 0.842561i
\(50\) −4.34559 7.52679i −0.0869118 0.150536i
\(51\) 24.0324 62.9803i 0.471224 1.23491i
\(52\) 47.5138 + 11.3653i 0.913726 + 0.218564i
\(53\) 0.0370030i 0.000698170i −1.00000 0.000349085i \(-0.999889\pi\)
1.00000 0.000349085i \(-0.000111117\pi\)
\(54\) −13.2676 0.616076i −0.245697 0.0114088i
\(55\) −42.0844 −0.765172
\(56\) 32.4960 + 18.7616i 0.580286 + 0.335028i
\(57\) 11.2787 29.5573i 0.197872 0.518550i
\(58\) 1.04636 0.604114i 0.0180406 0.0104158i
\(59\) −32.9332 57.0420i −0.558190 0.966814i −0.997648 0.0685502i \(-0.978163\pi\)
0.439458 0.898263i \(-0.355171\pi\)
\(60\) −23.6865 + 19.2590i −0.394775 + 0.320983i
\(61\) 40.6820 70.4633i 0.666918 1.15514i −0.311843 0.950134i \(-0.600946\pi\)
0.978761 0.205003i \(-0.0657204\pi\)
\(62\) 18.7168i 0.301885i
\(63\) 27.6790 + 84.0496i 0.439349 + 1.33412i
\(64\) −41.9261 −0.655095
\(65\) −34.2358 8.18920i −0.526704 0.125988i
\(66\) 3.63301 + 22.6467i 0.0550455 + 0.343131i
\(67\) 56.2009 32.4476i 0.838819 0.484293i −0.0180434 0.999837i \(-0.505744\pi\)
0.856863 + 0.515545i \(0.172410\pi\)
\(68\) −73.1291 + 42.2211i −1.07543 + 0.620899i
\(69\) −7.47835 + 1.19968i −0.108382 + 0.0173867i
\(70\) −11.3422 6.54843i −0.162032 0.0935491i
\(71\) 29.5878 0.416730 0.208365 0.978051i \(-0.433186\pi\)
0.208365 + 0.978051i \(0.433186\pi\)
\(72\) 25.6160 + 22.8811i 0.355778 + 0.317794i
\(73\) 28.3208i 0.387956i −0.981006 0.193978i \(-0.937861\pi\)
0.981006 0.193978i \(-0.0621390\pi\)
\(74\) −4.42149 2.55275i −0.0597498 0.0344966i
\(75\) −41.1249 + 33.4378i −0.548332 + 0.445837i
\(76\) −34.3203 + 19.8148i −0.451583 + 0.260721i
\(77\) 132.338 76.4054i 1.71868 0.992278i
\(78\) −1.45136 + 19.1300i −0.0186071 + 0.245257i
\(79\) −36.3943 + 63.0368i −0.460688 + 0.797935i −0.998995 0.0448138i \(-0.985731\pi\)
0.538308 + 0.842748i \(0.319064\pi\)
\(80\) 35.6204 0.445256
\(81\) 9.10655 + 80.4865i 0.112427 + 0.993660i
\(82\) −35.9969 −0.438986
\(83\) −71.9367 + 124.598i −0.866708 + 1.50118i −0.00136586 + 0.999999i \(0.500435\pi\)
−0.865342 + 0.501182i \(0.832899\pi\)
\(84\) 39.5190 103.565i 0.470464 1.23291i
\(85\) 52.6927 30.4222i 0.619915 0.357908i
\(86\) 11.2962 + 19.5656i 0.131351 + 0.227507i
\(87\) −4.64844 5.71709i −0.0534304 0.0657137i
\(88\) 29.6566 51.3667i 0.337007 0.583713i
\(89\) 80.5846 0.905445 0.452722 0.891652i \(-0.350453\pi\)
0.452722 + 0.891652i \(0.350453\pi\)
\(90\) −8.94086 7.98631i −0.0993429 0.0887367i
\(91\) 122.525 36.4043i 1.34643 0.400047i
\(92\) 8.21657 + 4.74384i 0.0893105 + 0.0515635i
\(93\) 112.704 18.0801i 1.21187 0.194409i
\(94\) 6.72944 + 11.6557i 0.0715898 + 0.123997i
\(95\) 24.7293 14.2775i 0.260308 0.150289i
\(96\) −10.3289 64.3863i −0.107593 0.670690i
\(97\) −97.7027 56.4087i −1.00724 0.581533i −0.0968606 0.995298i \(-0.530880\pi\)
−0.910384 + 0.413765i \(0.864213\pi\)
\(98\) 23.4512 0.239298
\(99\) 132.858 43.7524i 1.34200 0.441944i
\(100\) 66.3956 0.663956
\(101\) −171.233 98.8613i −1.69538 0.978825i −0.950036 0.312139i \(-0.898954\pi\)
−0.745339 0.666686i \(-0.767712\pi\)
\(102\) −20.9197 25.7290i −0.205095 0.252245i
\(103\) 10.9095 + 18.8959i 0.105918 + 0.183455i 0.914113 0.405460i \(-0.132889\pi\)
−0.808195 + 0.588915i \(0.799555\pi\)
\(104\) 34.1211 36.0160i 0.328088 0.346308i
\(105\) −28.4752 + 74.6230i −0.271192 + 0.710696i
\(106\) −0.0157640 0.00910133i −0.000148717 8.58616e-5i
\(107\) 180.007i 1.68231i 0.540796 + 0.841154i \(0.318123\pi\)
−0.540796 + 0.841154i \(0.681877\pi\)
\(108\) 54.7545 85.4246i 0.506986 0.790968i
\(109\) 117.078i 1.07411i −0.843548 0.537055i \(-0.819537\pi\)
0.843548 0.537055i \(-0.180463\pi\)
\(110\) −10.3512 + 17.9287i −0.0941015 + 0.162989i
\(111\) −11.1003 + 29.0900i −0.100003 + 0.262072i
\(112\) −112.011 + 64.6699i −1.00010 + 0.577409i
\(113\) −59.6664 + 34.4484i −0.528021 + 0.304853i −0.740210 0.672375i \(-0.765274\pi\)
0.212189 + 0.977229i \(0.431941\pi\)
\(114\) −9.81784 12.0749i −0.0861214 0.105920i
\(115\) −5.92040 3.41815i −0.0514818 0.0297230i
\(116\) 9.23016i 0.0795703i
\(117\) 116.594 9.73985i 0.996529 0.0832466i
\(118\) −32.4013 −0.274587
\(119\) −110.464 + 191.330i −0.928273 + 1.60782i
\(120\) 4.91057 + 30.6105i 0.0409214 + 0.255087i
\(121\) −60.2747 104.399i −0.498138 0.862801i
\(122\) −20.0124 34.6626i −0.164036 0.284119i
\(123\) 34.7722 + 216.756i 0.282701 + 1.76224i
\(124\) −123.829 71.4929i −0.998624 0.576556i
\(125\) −115.536 −0.924290
\(126\) 42.6146 + 8.88124i 0.338211 + 0.0704860i
\(127\) 70.8862 0.558159 0.279080 0.960268i \(-0.409971\pi\)
0.279080 + 0.960268i \(0.409971\pi\)
\(128\) −53.7852 + 93.1587i −0.420197 + 0.727803i
\(129\) 106.903 86.9201i 0.828702 0.673799i
\(130\) −11.9094 + 12.5708i −0.0916111 + 0.0966987i
\(131\) −127.088 + 73.3745i −0.970140 + 0.560111i −0.899279 0.437376i \(-0.855908\pi\)
−0.0708610 + 0.997486i \(0.522575\pi\)
\(132\) −163.706 62.4680i −1.24020 0.473242i
\(133\) −51.8422 + 89.7933i −0.389791 + 0.675137i
\(134\) 31.9235i 0.238235i
\(135\) −39.4530 + 61.5522i −0.292244 + 0.455942i
\(136\) 85.7531i 0.630537i
\(137\) −34.9983 + 60.6188i −0.255462 + 0.442473i −0.965021 0.262173i \(-0.915561\pi\)
0.709559 + 0.704646i \(0.248894\pi\)
\(138\) −1.32830 + 3.48099i −0.00962536 + 0.0252246i
\(139\) −76.5741 132.630i −0.550892 0.954174i −0.998210 0.0597988i \(-0.980954\pi\)
0.447318 0.894375i \(-0.352379\pi\)
\(140\) 86.6480 50.0262i 0.618914 0.357330i
\(141\) 63.6847 51.7806i 0.451664 0.367238i
\(142\) 7.27747 12.6049i 0.0512498 0.0887672i
\(143\) −57.5446 193.676i −0.402410 1.35438i
\(144\) −112.451 + 37.0322i −0.780913 + 0.257168i
\(145\) 6.65074i 0.0458672i
\(146\) −12.0652 6.96583i −0.0826382 0.0477112i
\(147\) −22.6533 141.212i −0.154104 0.960623i
\(148\) 33.7776 19.5015i 0.228227 0.131767i
\(149\) −16.2539 28.1526i −0.109087 0.188944i 0.806314 0.591488i \(-0.201459\pi\)
−0.915400 + 0.402544i \(0.868126\pi\)
\(150\) 4.12994 + 25.7444i 0.0275330 + 0.171629i
\(151\) 29.5608 + 17.0670i 0.195767 + 0.113026i 0.594680 0.803963i \(-0.297279\pi\)
−0.398912 + 0.916989i \(0.630612\pi\)
\(152\) 40.2448i 0.264769i
\(153\) −134.720 + 150.822i −0.880521 + 0.985765i
\(154\) 75.1713i 0.488125i
\(155\) 89.2245 + 51.5138i 0.575642 + 0.332347i
\(156\) −121.019 82.6733i −0.775765 0.529957i
\(157\) 110.354 + 191.138i 0.702889 + 1.21744i 0.967448 + 0.253070i \(0.0814401\pi\)
−0.264559 + 0.964369i \(0.585227\pi\)
\(158\) 17.9032 + 31.0093i 0.113312 + 0.196261i
\(159\) −0.0395762 + 0.103715i −0.000248907 + 0.000652294i
\(160\) 29.4292 50.9728i 0.183932 0.318580i
\(161\) 24.8229 0.154180
\(162\) 36.5286 + 15.9170i 0.225485 + 0.0982533i
\(163\) 42.5714i 0.261174i 0.991437 + 0.130587i \(0.0416862\pi\)
−0.991437 + 0.130587i \(0.958314\pi\)
\(164\) 137.498 238.153i 0.838400 1.45215i
\(165\) 117.957 + 45.0110i 0.714893 + 0.272794i
\(166\) 35.3874 + 61.2927i 0.213177 + 0.369233i
\(167\) −103.978 180.096i −0.622624 1.07842i −0.988995 0.147948i \(-0.952733\pi\)
0.366371 0.930469i \(-0.380600\pi\)
\(168\) −71.0159 87.3420i −0.422713 0.519893i
\(169\) −9.12517 168.753i −0.0539951 0.998541i
\(170\) 29.9308i 0.176063i
\(171\) −63.2254 + 70.7824i −0.369739 + 0.413932i
\(172\) −172.593 −1.00345
\(173\) 47.0331 + 27.1546i 0.271867 + 0.156963i 0.629736 0.776809i \(-0.283163\pi\)
−0.357869 + 0.933772i \(0.616496\pi\)
\(174\) −3.57892 + 0.574135i −0.0205685 + 0.00329963i
\(175\) 150.440 86.8565i 0.859657 0.496323i
\(176\) 102.224 + 177.058i 0.580819 + 1.00601i
\(177\) 31.2989 + 195.105i 0.176830 + 1.10229i
\(178\) 19.8207 34.3305i 0.111352 0.192868i
\(179\) 82.5470i 0.461156i −0.973054 0.230578i \(-0.925938\pi\)
0.973054 0.230578i \(-0.0740617\pi\)
\(180\) 86.9884 28.6468i 0.483269 0.159149i
\(181\) 166.981 0.922544 0.461272 0.887259i \(-0.347393\pi\)
0.461272 + 0.887259i \(0.347393\pi\)
\(182\) 14.6276 61.1519i 0.0803712 0.336000i
\(183\) −189.390 + 153.989i −1.03492 + 0.841468i
\(184\) 8.34412 4.81748i 0.0453485 0.0261820i
\(185\) −24.3383 + 14.0517i −0.131558 + 0.0759551i
\(186\) 20.0184 52.4609i 0.107626 0.282048i
\(187\) 302.437 + 174.612i 1.61731 + 0.933755i
\(188\) −102.818 −0.546904
\(189\) 12.3137 265.184i 0.0651517 1.40309i
\(190\) 14.0468i 0.0739307i
\(191\) 61.1253 + 35.2907i 0.320028 + 0.184768i 0.651405 0.758730i \(-0.274180\pi\)
−0.331377 + 0.943498i \(0.607513\pi\)
\(192\) 117.513 + 44.8416i 0.612049 + 0.233550i
\(193\) −40.4093 + 23.3303i −0.209375 + 0.120883i −0.601021 0.799233i \(-0.705239\pi\)
0.391646 + 0.920116i \(0.371906\pi\)
\(194\) −48.0623 + 27.7488i −0.247744 + 0.143035i
\(195\) 87.1998 + 59.5698i 0.447178 + 0.305486i
\(196\) −89.5766 + 155.151i −0.457024 + 0.791588i
\(197\) 194.423 0.986919 0.493460 0.869769i \(-0.335732\pi\)
0.493460 + 0.869769i \(0.335732\pi\)
\(198\) 14.0386 67.3613i 0.0709023 0.340209i
\(199\) −22.2689 −0.111904 −0.0559520 0.998433i \(-0.517819\pi\)
−0.0559520 + 0.998433i \(0.517819\pi\)
\(200\) 33.7131 58.3929i 0.168566 0.291964i
\(201\) −192.228 + 30.8374i −0.956357 + 0.153420i
\(202\) −84.2335 + 48.6322i −0.416998 + 0.240754i
\(203\) 12.0746 + 20.9138i 0.0594807 + 0.103024i
\(204\) 250.129 40.1259i 1.22612 0.196696i
\(205\) −99.0731 + 171.600i −0.483283 + 0.837071i
\(206\) 10.7333 0.0521034
\(207\) 22.2440 + 4.63582i 0.107459 + 0.0223953i
\(208\) 48.7059 + 163.928i 0.234163 + 0.788117i
\(209\) 141.937 + 81.9474i 0.679125 + 0.392093i
\(210\) 24.7870 + 30.4854i 0.118033 + 0.145168i
\(211\) −96.7627 167.598i −0.458591 0.794303i 0.540296 0.841475i \(-0.318312\pi\)
−0.998887 + 0.0471724i \(0.984979\pi\)
\(212\) 0.120428 0.0695289i 0.000568054 0.000327966i
\(213\) −82.9308 31.6453i −0.389347 0.148570i
\(214\) 76.6863 + 44.2748i 0.358347 + 0.206892i
\(215\) 124.361 0.578421
\(216\) −47.3261 91.5302i −0.219102 0.423751i
\(217\) −374.099 −1.72396
\(218\) −49.8773 28.7967i −0.228795 0.132095i
\(219\) −30.2902 + 79.3795i −0.138311 + 0.362464i
\(220\) −79.0769 136.965i −0.359441 0.622569i
\(221\) 212.055 + 200.898i 0.959526 + 0.909043i
\(222\) 9.66260 + 11.8840i 0.0435252 + 0.0535314i
\(223\) −198.753 114.750i −0.891271 0.514575i −0.0169128 0.999857i \(-0.505384\pi\)
−0.874358 + 0.485282i \(0.838717\pi\)
\(224\) 213.718i 0.954097i
\(225\) 151.031 49.7371i 0.671248 0.221054i
\(226\) 33.8920i 0.149964i
\(227\) 124.606 215.824i 0.548925 0.950766i −0.449423 0.893319i \(-0.648371\pi\)
0.998349 0.0574473i \(-0.0182961\pi\)
\(228\) 117.388 18.8315i 0.514860 0.0825944i
\(229\) 46.3299 26.7486i 0.202314 0.116806i −0.395420 0.918500i \(-0.629401\pi\)
0.597734 + 0.801694i \(0.296068\pi\)
\(230\) −2.91239 + 1.68147i −0.0126625 + 0.00731072i
\(231\) −452.645 + 72.6139i −1.95950 + 0.314346i
\(232\) 8.11764 + 4.68672i 0.0349898 + 0.0202014i
\(233\) 111.432i 0.478248i −0.970989 0.239124i \(-0.923140\pi\)
0.970989 0.239124i \(-0.0768602\pi\)
\(234\) 24.5283 52.0668i 0.104822 0.222508i
\(235\) 74.0849 0.315255
\(236\) 123.763 214.364i 0.524421 0.908324i
\(237\) 169.429 137.759i 0.714890 0.581262i
\(238\) 54.3401 + 94.1198i 0.228320 + 0.395461i
\(239\) −117.640 203.758i −0.492217 0.852545i 0.507743 0.861509i \(-0.330480\pi\)
−0.999960 + 0.00896368i \(0.997147\pi\)
\(240\) −99.8395 38.0974i −0.415998 0.158739i
\(241\) 220.705 + 127.424i 0.915787 + 0.528730i 0.882289 0.470709i \(-0.156002\pi\)
0.0334983 + 0.999439i \(0.489335\pi\)
\(242\) −59.3011 −0.245046
\(243\) 60.5589 235.333i 0.249214 0.968449i
\(244\) 305.767 1.25314
\(245\) 64.5439 111.793i 0.263445 0.456299i
\(246\) 100.895 + 38.5000i 0.410140 + 0.156504i
\(247\) 99.5198 + 94.2838i 0.402914 + 0.381716i
\(248\) −125.752 + 72.6027i −0.507063 + 0.292753i
\(249\) 334.892 272.293i 1.34495 1.09355i
\(250\) −28.4175 + 49.2206i −0.113670 + 0.196882i
\(251\) 222.888i 0.888002i 0.896026 + 0.444001i \(0.146441\pi\)
−0.896026 + 0.444001i \(0.853559\pi\)
\(252\) −221.533 + 248.012i −0.879100 + 0.984174i
\(253\) 39.2378i 0.155090i
\(254\) 17.4353 30.1988i 0.0686429 0.118893i
\(255\) −180.229 + 28.9125i −0.706779 + 0.113382i
\(256\) −57.3939 99.4092i −0.224195 0.388317i
\(257\) 203.969 117.762i 0.793654 0.458217i −0.0475931 0.998867i \(-0.515155\pi\)
0.841247 + 0.540650i \(0.181822\pi\)
\(258\) −10.7356 66.9215i −0.0416109 0.259386i
\(259\) 51.0224 88.3735i 0.196998 0.341210i
\(260\) −37.6771 126.809i −0.144912 0.487727i
\(261\) 6.91433 + 20.9960i 0.0264917 + 0.0804443i
\(262\) 72.1893i 0.275532i
\(263\) −45.2489 26.1244i −0.172049 0.0993325i 0.411503 0.911409i \(-0.365004\pi\)
−0.583552 + 0.812076i \(0.698337\pi\)
\(264\) −138.062 + 112.255i −0.522963 + 0.425210i
\(265\) −0.0867734 + 0.0500986i −0.000327447 + 0.000189051i
\(266\) 25.5024 + 44.1714i 0.0958737 + 0.166058i
\(267\) −225.868 86.1883i −0.845948 0.322803i
\(268\) 211.204 + 121.938i 0.788073 + 0.454994i
\(269\) 435.342i 1.61837i 0.587553 + 0.809186i \(0.300091\pi\)
−0.587553 + 0.809186i \(0.699909\pi\)
\(270\) 16.5184 + 31.9472i 0.0611794 + 0.118323i
\(271\) 535.820i 1.97720i 0.150574 + 0.988599i \(0.451888\pi\)
−0.150574 + 0.988599i \(0.548112\pi\)
\(272\) −255.984 147.792i −0.941118 0.543355i
\(273\) −382.357 29.0086i −1.40058 0.106259i
\(274\) 17.2165 + 29.8198i 0.0628339 + 0.108832i
\(275\) −137.295 237.802i −0.499254 0.864733i
\(276\) −17.9563 22.0843i −0.0650589 0.0800156i
\(277\) 13.4558 23.3061i 0.0485769 0.0841376i −0.840715 0.541479i \(-0.817865\pi\)
0.889291 + 0.457341i \(0.151198\pi\)
\(278\) −75.3372 −0.270997
\(279\) −335.232 69.8650i −1.20155 0.250412i
\(280\) 101.606i 0.362877i
\(281\) −36.6045 + 63.4009i −0.130265 + 0.225626i −0.923779 0.382927i \(-0.874916\pi\)
0.793514 + 0.608553i \(0.208250\pi\)
\(282\) −6.39549 39.8669i −0.0226791 0.141372i
\(283\) 127.130 + 220.196i 0.449223 + 0.778077i 0.998336 0.0576712i \(-0.0183675\pi\)
−0.549113 + 0.835748i \(0.685034\pi\)
\(284\) 55.5957 + 96.2945i 0.195759 + 0.339065i
\(285\) −84.5833 + 13.5689i −0.296783 + 0.0476103i
\(286\) −96.6634 23.1219i −0.337984 0.0808458i
\(287\) 719.479i 2.50690i
\(288\) −39.9130 + 191.514i −0.138587 + 0.664978i
\(289\) −215.897 −0.747049
\(290\) −2.83334 1.63583i −0.00977012 0.00564078i
\(291\) 213.517 + 262.603i 0.733735 + 0.902416i
\(292\) 92.1709 53.2149i 0.315654 0.182243i
\(293\) 21.1134 + 36.5695i 0.0720594 + 0.124810i 0.899804 0.436295i \(-0.143710\pi\)
−0.827744 + 0.561105i \(0.810376\pi\)
\(294\) −65.7306 25.0819i −0.223573 0.0853127i
\(295\) −89.1770 + 154.459i −0.302295 + 0.523590i
\(296\) 39.6085i 0.133812i
\(297\) −419.179 19.4643i −1.41138 0.0655365i
\(298\) −15.9914 −0.0536623
\(299\) 7.63528 31.9200i 0.0255361 0.106756i
\(300\) −186.098 71.0127i −0.620328 0.236709i
\(301\) −391.062 + 225.780i −1.29921 + 0.750099i
\(302\) 14.5417 8.39564i 0.0481512 0.0278001i
\(303\) 374.208 + 460.236i 1.23501 + 1.51893i
\(304\) −120.136 69.3606i −0.395184 0.228160i
\(305\) −220.319 −0.722356
\(306\) 31.1170 + 94.4895i 0.101690 + 0.308789i
\(307\) 136.458i 0.444490i −0.974991 0.222245i \(-0.928662\pi\)
0.974991 0.222245i \(-0.0713385\pi\)
\(308\) 497.328 + 287.132i 1.61470 + 0.932248i
\(309\) −10.3681 64.6308i −0.0335539 0.209161i
\(310\) 43.8916 25.3409i 0.141586 0.0817447i
\(311\) 272.833 157.520i 0.877277 0.506496i 0.00751707 0.999972i \(-0.497607\pi\)
0.869759 + 0.493476i \(0.164274\pi\)
\(312\) −134.158 + 64.4544i −0.429992 + 0.206585i
\(313\) 261.082 452.207i 0.834127 1.44475i −0.0606123 0.998161i \(-0.519305\pi\)
0.894739 0.446589i \(-0.147361\pi\)
\(314\) 108.571 0.345768
\(315\) 159.624 178.703i 0.506744 0.567313i
\(316\) −273.541 −0.865635
\(317\) 41.1674 71.3040i 0.129866 0.224934i −0.793759 0.608233i \(-0.791879\pi\)
0.923624 + 0.383299i \(0.125212\pi\)
\(318\) 0.0344501 + 0.0423700i 0.000108334 + 0.000133239i
\(319\) 33.0586 19.0864i 0.103632 0.0598320i
\(320\) 56.7640 + 98.3181i 0.177387 + 0.307244i
\(321\) 192.524 504.536i 0.599765 1.57176i
\(322\) 6.10549 10.5750i 0.0189612 0.0328417i
\(323\) −236.954 −0.733603
\(324\) −244.835 + 180.872i −0.755662 + 0.558247i
\(325\) −65.4158 220.168i −0.201279 0.677440i
\(326\) 18.1362 + 10.4709i 0.0556325 + 0.0321194i
\(327\) −125.219 + 328.154i −0.382934 + 1.00353i
\(328\) −139.632 241.850i −0.425707 0.737347i
\(329\) −232.966 + 134.503i −0.708104 + 0.408824i
\(330\) 48.1885 39.1810i 0.146026 0.118730i
\(331\) 130.559 + 75.3781i 0.394437 + 0.227728i 0.684081 0.729406i \(-0.260203\pi\)
−0.289644 + 0.957135i \(0.593537\pi\)
\(332\) −540.678 −1.62855
\(333\) 62.2257 69.6632i 0.186864 0.209199i
\(334\) −102.299 −0.306283
\(335\) −152.182 87.8620i −0.454273 0.262275i
\(336\) 383.121 61.4607i 1.14024 0.182919i
\(337\) 120.680 + 209.024i 0.358100 + 0.620248i 0.987643 0.156718i \(-0.0500912\pi\)
−0.629543 + 0.776966i \(0.716758\pi\)
\(338\) −74.1365 37.6194i −0.219339 0.111300i
\(339\) 204.081 32.7389i 0.602009 0.0965750i
\(340\) 198.020 + 114.327i 0.582411 + 0.336255i
\(341\) 591.341i 1.73414i
\(342\) 14.6036 + 44.3450i 0.0427005 + 0.129664i
\(343\) 13.0537i 0.0380573i
\(344\) −87.6359 + 151.790i −0.254756 + 0.441250i
\(345\) 12.9383 + 15.9127i 0.0375023 + 0.0461238i
\(346\) 23.1367 13.3580i 0.0668690 0.0386068i
\(347\) −449.622 + 259.590i −1.29574 + 0.748097i −0.979666 0.200637i \(-0.935699\pi\)
−0.316076 + 0.948734i \(0.602366\pi\)
\(348\) 9.87201 25.8709i 0.0283679 0.0743418i
\(349\) −313.905 181.233i −0.899442 0.519293i −0.0224227 0.999749i \(-0.507138\pi\)
−0.877019 + 0.480456i \(0.840471\pi\)
\(350\) 85.4535i 0.244153i
\(351\) −337.215 97.4021i −0.960726 0.277499i
\(352\) 337.826 0.959732
\(353\) −31.9628 + 55.3612i −0.0905462 + 0.156831i −0.907741 0.419531i \(-0.862195\pi\)
0.817195 + 0.576361i \(0.195528\pi\)
\(354\) 90.8165 + 34.6544i 0.256544 + 0.0978938i
\(355\) −40.0591 69.3844i −0.112843 0.195449i
\(356\) 151.419 + 262.265i 0.425334 + 0.736700i
\(357\) 514.253 418.128i 1.44048 1.17123i
\(358\) −35.1665 20.3034i −0.0982305 0.0567134i
\(359\) 359.930 1.00259 0.501295 0.865276i \(-0.332857\pi\)
0.501295 + 0.865276i \(0.332857\pi\)
\(360\) 18.9754 91.0493i 0.0527095 0.252915i
\(361\) 249.795 0.691953
\(362\) 41.0708 71.1368i 0.113455 0.196510i
\(363\) 57.2836 + 357.083i 0.157806 + 0.983699i
\(364\) 348.704 + 330.358i 0.957978 + 0.907576i
\(365\) −66.4132 + 38.3437i −0.181954 + 0.105051i
\(366\) 19.0193 + 118.559i 0.0519654 + 0.323931i
\(367\) 73.7089 127.668i 0.200842 0.347868i −0.747958 0.663746i \(-0.768966\pi\)
0.948800 + 0.315878i \(0.102299\pi\)
\(368\) 33.2110i 0.0902474i
\(369\) 134.367 644.729i 0.364137 1.74723i
\(370\) 13.8247i 0.0373641i
\(371\) 0.181911 0.315079i 0.000490325 0.000849268i
\(372\) 270.613 + 332.826i 0.727455 + 0.894693i
\(373\) −285.025 493.678i −0.764143 1.32353i −0.940699 0.339243i \(-0.889829\pi\)
0.176556 0.984291i \(-0.443504\pi\)
\(374\) 148.776 85.8959i 0.397797 0.229668i
\(375\) 323.833 + 123.571i 0.863555 + 0.329521i
\(376\) −52.2071 + 90.4253i −0.138849 + 0.240493i
\(377\) 30.6073 9.09395i 0.0811864 0.0241219i
\(378\) −109.945 70.4710i −0.290859 0.186431i
\(379\) 333.547i 0.880071i −0.897980 0.440036i \(-0.854966\pi\)
0.897980 0.440036i \(-0.145034\pi\)
\(380\) 92.9329 + 53.6548i 0.244560 + 0.141197i
\(381\) −198.685 75.8155i −0.521483 0.198991i
\(382\) 30.0690 17.3603i 0.0787146 0.0454459i
\(383\) 226.922 + 393.041i 0.592486 + 1.02622i 0.993896 + 0.110318i \(0.0351868\pi\)
−0.401410 + 0.915898i \(0.631480\pi\)
\(384\) 250.390 203.587i 0.652057 0.530173i
\(385\) −358.347 206.892i −0.930771 0.537381i
\(386\) 22.9535i 0.0594650i
\(387\) −392.598 + 129.289i −1.01447 + 0.334081i
\(388\) 423.969i 1.09270i
\(389\) −331.803 191.567i −0.852965 0.492460i 0.00868524 0.999962i \(-0.497235\pi\)
−0.861650 + 0.507503i \(0.830569\pi\)
\(390\) 46.8256 22.4968i 0.120066 0.0576841i
\(391\) 28.3644 + 49.1286i 0.0725432 + 0.125648i
\(392\) 90.9672 + 157.560i 0.232059 + 0.401938i
\(393\) 434.689 69.7333i 1.10608 0.177438i
\(394\) 47.8206 82.8278i 0.121372 0.210223i
\(395\) 197.098 0.498983
\(396\) 392.034 + 350.180i 0.989986 + 0.884292i
\(397\) 114.607i 0.288682i 0.989528 + 0.144341i \(0.0461062\pi\)
−0.989528 + 0.144341i \(0.953894\pi\)
\(398\) −5.47730 + 9.48696i −0.0137621 + 0.0238366i
\(399\) 241.344 196.232i 0.604873 0.491809i
\(400\) 116.207 + 201.276i 0.290517 + 0.503191i
\(401\) 168.468 + 291.795i 0.420119 + 0.727667i 0.995951 0.0899009i \(-0.0286550\pi\)
−0.575832 + 0.817568i \(0.695322\pi\)
\(402\) −34.1434 + 89.4774i −0.0849338 + 0.222581i
\(403\) −115.069 + 481.057i −0.285531 + 1.19369i
\(404\) 743.044i 1.83922i
\(405\) 176.414 130.326i 0.435590 0.321793i
\(406\) 11.8795 0.0292600
\(407\) −139.693 80.6516i −0.343225 0.198161i
\(408\) 91.7162 240.355i 0.224795 0.589105i
\(409\) −537.500 + 310.326i −1.31418 + 0.758742i −0.982786 0.184750i \(-0.940852\pi\)
−0.331395 + 0.943492i \(0.607519\pi\)
\(410\) 48.7364 + 84.4139i 0.118869 + 0.205888i
\(411\) 162.930 132.475i 0.396423 0.322323i
\(412\) −40.9981 + 71.0108i −0.0995100 + 0.172356i
\(413\) 647.613i 1.56807i
\(414\) 7.44611 8.33610i 0.0179858 0.0201355i
\(415\) 389.582 0.938753
\(416\) 274.822 + 65.7374i 0.660629 + 0.158023i
\(417\) 72.7741 + 453.644i 0.174518 + 1.08788i
\(418\) 69.8222 40.3119i 0.167039 0.0964398i
\(419\) 217.694 125.686i 0.519557 0.299966i −0.217196 0.976128i \(-0.569691\pi\)
0.736753 + 0.676162i \(0.236358\pi\)
\(420\) −296.368 + 47.5437i −0.705638 + 0.113199i
\(421\) −643.709 371.645i −1.52900 0.882768i −0.999404 0.0345179i \(-0.989010\pi\)
−0.529595 0.848250i \(-0.677656\pi\)
\(422\) −95.1997 −0.225592
\(423\) −233.881 + 77.0212i −0.552911 + 0.182083i
\(424\) 0.141216i 0.000333058i
\(425\) 343.806 + 198.496i 0.808955 + 0.467050i
\(426\) −33.8793 + 27.5465i −0.0795289 + 0.0646632i
\(427\) 692.810 399.994i 1.62251 0.936755i
\(428\) −585.839 + 338.234i −1.36878 + 0.790267i
\(429\) −45.8542 + 604.396i −0.106886 + 1.40885i
\(430\) 30.5880 52.9799i 0.0711348 0.123209i
\(431\) −649.249 −1.50638 −0.753189 0.657804i \(-0.771485\pi\)
−0.753189 + 0.657804i \(0.771485\pi\)
\(432\) 354.794 + 16.4747i 0.821283 + 0.0381358i
\(433\) 245.607 0.567222 0.283611 0.958939i \(-0.408468\pi\)
0.283611 + 0.958939i \(0.408468\pi\)
\(434\) −92.0140 + 159.373i −0.212014 + 0.367219i
\(435\) −7.11322 + 18.6412i −0.0163522 + 0.0428532i
\(436\) 381.034 219.990i 0.873931 0.504564i
\(437\) 13.3117 + 23.0566i 0.0304616 + 0.0527610i
\(438\) 26.3669 + 32.4285i 0.0601984 + 0.0740377i
\(439\) 15.0625 26.0889i 0.0343108 0.0594281i −0.848360 0.529420i \(-0.822410\pi\)
0.882671 + 0.469992i \(0.155743\pi\)
\(440\) −160.609 −0.365020
\(441\) −87.5369 + 420.026i −0.198496 + 0.952441i
\(442\) 137.744 40.9261i 0.311638 0.0925930i
\(443\) 152.079 + 87.8030i 0.343294 + 0.198201i 0.661728 0.749744i \(-0.269824\pi\)
−0.318434 + 0.947945i \(0.603157\pi\)
\(444\) −115.532 + 18.5338i −0.260207 + 0.0417427i
\(445\) −109.104 188.974i −0.245178 0.424660i
\(446\) −97.7715 + 56.4484i −0.219219 + 0.126566i
\(447\) 15.4473 + 96.2922i 0.0345577 + 0.215419i
\(448\) −356.998 206.113i −0.796871 0.460074i
\(449\) 126.404 0.281523 0.140762 0.990044i \(-0.455045\pi\)
0.140762 + 0.990044i \(0.455045\pi\)
\(450\) 15.9589 76.5753i 0.0354643 0.170167i
\(451\) −1137.29 −2.52170
\(452\) −224.227 129.458i −0.496077 0.286410i
\(453\) −64.6014 79.4529i −0.142608 0.175393i
\(454\) −61.2966 106.169i −0.135015 0.233852i
\(455\) −251.257 238.037i −0.552212 0.523159i
\(456\) 43.0434 112.801i 0.0943934 0.247371i
\(457\) 574.817 + 331.871i 1.25781 + 0.726194i 0.972647 0.232286i \(-0.0746207\pi\)
0.285158 + 0.958481i \(0.407954\pi\)
\(458\) 26.3165i 0.0574597i
\(459\) 538.912 278.647i 1.17410 0.607073i
\(460\) 25.6909i 0.0558497i
\(461\) −15.6227 + 27.0593i −0.0338887 + 0.0586969i −0.882472 0.470364i \(-0.844123\pi\)
0.848584 + 0.529061i \(0.177456\pi\)
\(462\) −80.3986 + 210.695i −0.174023 + 0.456051i
\(463\) −558.193 + 322.273i −1.20560 + 0.696053i −0.961795 0.273771i \(-0.911729\pi\)
−0.243805 + 0.969824i \(0.578396\pi\)
\(464\) −27.9810 + 16.1548i −0.0603038 + 0.0348164i
\(465\) −194.989 239.816i −0.419331 0.515732i
\(466\) −47.4720 27.4080i −0.101871 0.0588154i
\(467\) 594.979i 1.27405i 0.770845 + 0.637023i \(0.219834\pi\)
−0.770845 + 0.637023i \(0.780166\pi\)
\(468\) 250.779 + 361.157i 0.535853 + 0.771704i
\(469\) 638.063 1.36048
\(470\) 18.2221 31.5615i 0.0387703 0.0671522i
\(471\) −104.877 653.762i −0.222669 1.38803i
\(472\) −125.685 217.692i −0.266281 0.461212i
\(473\) 356.892 + 618.156i 0.754529 + 1.30688i
\(474\) −17.0148 106.063i −0.0358962 0.223762i
\(475\) 161.352 + 93.1565i 0.339688 + 0.196119i
\(476\) −830.254 −1.74423
\(477\) 0.221854 0.248371i 0.000465102 0.000520693i
\(478\) −115.740 −0.242133
\(479\) −31.4715 + 54.5102i −0.0657025 + 0.113800i −0.897005 0.442020i \(-0.854262\pi\)
0.831303 + 0.555820i \(0.187595\pi\)
\(480\) −137.004 + 111.395i −0.285424 + 0.232072i
\(481\) −97.9462 92.7930i −0.203630 0.192917i
\(482\) 108.570 62.6828i 0.225249 0.130047i
\(483\) −69.5755 26.5491i −0.144049 0.0549671i
\(484\) 226.513 392.332i 0.468002 0.810604i
\(485\) 305.488i 0.629873i
\(486\) −85.3610 83.6821i −0.175640 0.172185i
\(487\) 143.450i 0.294558i −0.989095 0.147279i \(-0.952948\pi\)
0.989095 0.147279i \(-0.0470516\pi\)
\(488\) 155.257 268.913i 0.318149 0.551051i
\(489\) 45.5317 119.322i 0.0931119 0.244012i
\(490\) −31.7507 54.9938i −0.0647973 0.112232i
\(491\) 824.274 475.895i 1.67877 0.969236i 0.716316 0.697776i \(-0.245827\pi\)
0.962450 0.271460i \(-0.0875063\pi\)
\(492\) −640.102 + 520.452i −1.30102 + 1.05783i
\(493\) −27.5945 + 47.7951i −0.0559726 + 0.0969474i
\(494\) 64.6447 19.2071i 0.130860 0.0388807i
\(495\) −282.478 252.320i −0.570663 0.509737i
\(496\) 500.513i 1.00910i
\(497\) 251.939 + 145.457i 0.506919 + 0.292670i
\(498\) −33.6313 209.644i −0.0675327 0.420971i
\(499\) −56.3465 + 32.5317i −0.112919 + 0.0651937i −0.555396 0.831586i \(-0.687433\pi\)
0.442477 + 0.896780i \(0.354100\pi\)
\(500\) −217.093 376.017i −0.434187 0.752033i
\(501\) 98.8184 + 615.993i 0.197242 + 1.22953i
\(502\) 94.9546 + 54.8221i 0.189153 + 0.109207i
\(503\) 493.047i 0.980213i 0.871662 + 0.490107i \(0.163042\pi\)
−0.871662 + 0.490107i \(0.836958\pi\)
\(504\) 105.633 + 320.763i 0.209589 + 0.636434i
\(505\) 535.396i 1.06019i
\(506\) −16.7160 9.65101i −0.0330356 0.0190731i
\(507\) −154.912 + 482.754i −0.305546 + 0.952177i
\(508\) 133.196 + 230.702i 0.262196 + 0.454137i
\(509\) 288.131 + 499.058i 0.566073 + 0.980468i 0.996949 + 0.0780566i \(0.0248715\pi\)
−0.430875 + 0.902411i \(0.641795\pi\)
\(510\) −32.0121 + 83.8921i −0.0627689 + 0.164494i
\(511\) 139.228 241.150i 0.272462 0.471918i
\(512\) −486.749 −0.950681
\(513\) 252.917 130.772i 0.493016 0.254916i
\(514\) 115.859i 0.225408i
\(515\) 29.5410 51.1664i 0.0573611 0.0993523i
\(516\) 483.755 + 184.594i 0.937509 + 0.357741i
\(517\) 212.610 + 368.252i 0.411238 + 0.712286i
\(518\) −25.0991 43.4730i −0.0484540 0.0839247i
\(519\) −102.785 126.414i −0.198044 0.243573i
\(520\) −130.656 31.2529i −0.251261 0.0601017i
\(521\) 501.004i 0.961620i −0.876825 0.480810i \(-0.840343\pi\)
0.876825 0.480810i \(-0.159657\pi\)
\(522\) 10.6453 + 2.21857i 0.0203933 + 0.00425014i
\(523\) −400.933 −0.766602 −0.383301 0.923624i \(-0.625213\pi\)
−0.383301 + 0.923624i \(0.625213\pi\)
\(524\) −477.599 275.742i −0.911449 0.526225i
\(525\) −514.560 + 82.5463i −0.980114 + 0.157231i
\(526\) −22.2590 + 12.8512i −0.0423175 + 0.0244320i
\(527\) −427.471 740.401i −0.811140 1.40494i
\(528\) −97.1514 605.602i −0.183999 1.14697i
\(529\) −261.313 + 452.607i −0.493976 + 0.855591i
\(530\) 0.0492894i 9.29988e-5i
\(531\) 120.945 580.329i 0.227769 1.09290i
\(532\) −389.647 −0.732419
\(533\) −925.184 221.304i −1.73581 0.415205i
\(534\) −92.2728 + 75.0250i −0.172795 + 0.140496i
\(535\) 422.123 243.713i 0.789014 0.455538i
\(536\) 214.482 123.831i 0.400153 0.231029i
\(537\) −88.2872 + 231.369i −0.164408 + 0.430854i
\(538\) 185.464 + 107.077i 0.344728 + 0.199029i
\(539\) 740.917 1.37461
\(540\) −274.456 12.7442i −0.508252 0.0236004i
\(541\) 73.5254i 0.135906i −0.997689 0.0679532i \(-0.978353\pi\)
0.997689 0.0679532i \(-0.0216469\pi\)
\(542\) 228.269 + 131.791i 0.421161 + 0.243158i
\(543\) −468.025 178.592i −0.861924 0.328899i
\(544\) −422.982 + 244.209i −0.777540 + 0.448913i
\(545\) −274.552 + 158.513i −0.503765 + 0.290849i
\(546\) −106.404 + 155.756i −0.194878 + 0.285268i
\(547\) −20.0152 + 34.6674i −0.0365909 + 0.0633774i −0.883741 0.467976i \(-0.844983\pi\)
0.847150 + 0.531354i \(0.178317\pi\)
\(548\) −263.048 −0.480015
\(549\) 695.532 229.051i 1.26691 0.417214i
\(550\) −135.077 −0.245595
\(551\) −12.9504 + 22.4308i −0.0235034 + 0.0407092i
\(552\) −28.5400 + 4.57842i −0.0517029 + 0.00829423i
\(553\) −619.791 + 357.837i −1.12078 + 0.647083i
\(554\) −6.61922 11.4648i −0.0119481 0.0206946i
\(555\) 83.2458 13.3544i 0.149992 0.0240620i
\(556\) 287.766 498.426i 0.517565 0.896449i
\(557\) 475.662 0.853972 0.426986 0.904258i \(-0.359575\pi\)
0.426986 + 0.904258i \(0.359575\pi\)
\(558\) −112.218 + 125.631i −0.201107 + 0.225145i
\(559\) 170.046 + 572.318i 0.304196 + 1.02382i
\(560\) 303.306 + 175.114i 0.541618 + 0.312703i
\(561\) −660.938 812.884i −1.17814 1.44899i
\(562\) 18.0066 + 31.1884i 0.0320403 + 0.0554954i
\(563\) 494.852 285.703i 0.878955 0.507465i 0.00864136 0.999963i \(-0.497249\pi\)
0.870314 + 0.492498i \(0.163916\pi\)
\(564\) 288.186 + 109.968i 0.510967 + 0.194978i
\(565\) 161.565 + 93.2798i 0.285957 + 0.165097i
\(566\) 125.077 0.220983
\(567\) −318.138 + 730.106i −0.561090 + 1.28767i
\(568\) 112.917 0.198798
\(569\) −334.478 193.111i −0.587835 0.339387i 0.176406 0.984318i \(-0.443553\pi\)
−0.764241 + 0.644931i \(0.776886\pi\)
\(570\) −15.0236 + 39.3715i −0.0263572 + 0.0690727i
\(571\) 440.436 + 762.858i 0.771342 + 1.33600i 0.936828 + 0.349791i \(0.113748\pi\)
−0.165486 + 0.986212i \(0.552919\pi\)
\(572\) 522.199 551.199i 0.912935 0.963635i
\(573\) −133.582 164.291i −0.233127 0.286721i
\(574\) −306.511 176.964i −0.533992 0.308300i
\(575\) 44.6050i 0.0775738i
\(576\) −281.415 251.370i −0.488568 0.436407i
\(577\) 583.864i 1.01190i 0.862564 + 0.505948i \(0.168857\pi\)
−0.862564 + 0.505948i \(0.831143\pi\)
\(578\) −53.1025 + 91.9762i −0.0918728 + 0.159128i
\(579\) 138.215 22.1726i 0.238713 0.0382946i
\(580\) 21.6450 12.4968i 0.0373190 0.0215462i
\(581\) −1225.07 + 707.297i −2.10856 + 1.21738i
\(582\) 164.391 26.3717i 0.282458 0.0453123i
\(583\) −0.498047 0.287548i −0.000854284 0.000493221i
\(584\) 108.082i 0.185072i
\(585\) −180.698 260.230i −0.308885 0.444837i
\(586\) 20.7724 0.0354477
\(587\) 375.099 649.690i 0.639010 1.10680i −0.346640 0.937998i \(-0.612678\pi\)
0.985650 0.168800i \(-0.0539892\pi\)
\(588\) 417.012 339.063i 0.709204 0.576638i
\(589\) −200.617 347.478i −0.340605 0.589946i
\(590\) 43.8683 + 75.9821i 0.0743530 + 0.128783i
\(591\) −544.943 207.943i −0.922069 0.351849i
\(592\) 118.236 + 68.2639i 0.199724 + 0.115311i
\(593\) 1077.16 1.81646 0.908231 0.418469i \(-0.137433\pi\)
0.908231 + 0.418469i \(0.137433\pi\)
\(594\) −111.394 + 173.790i −0.187532 + 0.292576i
\(595\) 598.234 1.00544
\(596\) 61.0823 105.798i 0.102487 0.177513i
\(597\) 62.4169 + 23.8175i 0.104551 + 0.0398952i
\(598\) −11.7205 11.1039i −0.0195995 0.0185684i
\(599\) −245.190 + 141.561i −0.409333 + 0.236329i −0.690503 0.723329i \(-0.742611\pi\)
0.281170 + 0.959658i \(0.409277\pi\)
\(600\) −156.947 + 127.610i −0.261578 + 0.212684i
\(601\) 66.0237 114.356i 0.109856 0.190277i −0.805856 0.592112i \(-0.798294\pi\)
0.915712 + 0.401835i \(0.131628\pi\)
\(602\) 222.133i 0.368992i
\(603\) 571.772 + 119.162i 0.948212 + 0.197615i
\(604\) 128.276i 0.212377i
\(605\) −163.213 + 282.693i −0.269773 + 0.467260i
\(606\) 288.110 46.2189i 0.475429 0.0762688i
\(607\) −120.206 208.203i −0.198033 0.343003i 0.749858 0.661599i \(-0.230122\pi\)
−0.947891 + 0.318596i \(0.896789\pi\)
\(608\) −198.510 + 114.610i −0.326497 + 0.188503i
\(609\) −11.4754 71.5329i −0.0188430 0.117460i
\(610\) −54.1900 + 93.8598i −0.0888360 + 0.153868i
\(611\) 101.301 + 340.945i 0.165795 + 0.558012i
\(612\) −743.994 155.054i −1.21568 0.253357i
\(613\) 822.777i 1.34221i 0.741360 + 0.671107i \(0.234181\pi\)
−0.741360 + 0.671107i \(0.765819\pi\)
\(614\) −58.1338 33.5636i −0.0946804 0.0546638i
\(615\) 461.221 375.009i 0.749953 0.609771i
\(616\) 505.048 291.590i 0.819884 0.473360i
\(617\) −275.955 477.968i −0.447253 0.774665i 0.550953 0.834536i \(-0.314264\pi\)
−0.998206 + 0.0598711i \(0.980931\pi\)
\(618\) −30.0841 11.4797i −0.0486797 0.0185755i
\(619\) 350.084 + 202.121i 0.565564 + 0.326529i 0.755376 0.655292i \(-0.227454\pi\)
−0.189812 + 0.981821i \(0.560788\pi\)
\(620\) 387.179i 0.624482i
\(621\) −57.3887 36.7844i −0.0924134 0.0592341i
\(622\) 154.976i 0.249157i
\(623\) 686.173 + 396.162i 1.10140 + 0.635895i
\(624\) 38.8112 511.563i 0.0621974 0.819812i
\(625\) −64.4216 111.581i −0.103074 0.178530i
\(626\) −128.432 222.451i −0.205163 0.355353i
\(627\) −310.185 381.495i −0.494713 0.608445i
\(628\) −414.710 + 718.298i −0.660366 + 1.14379i
\(629\) 233.207 0.370758
\(630\) −36.8694 111.957i −0.0585229 0.177710i
\(631\) 443.670i 0.703123i −0.936165 0.351561i \(-0.885651\pi\)
0.936165 0.351561i \(-0.114349\pi\)
\(632\) −138.893 + 240.571i −0.219768 + 0.380650i
\(633\) 91.9609 + 573.247i 0.145278 + 0.905603i
\(634\) −20.2512 35.0761i −0.0319420 0.0553251i
\(635\) −95.9733 166.231i −0.151139 0.261780i
\(636\) −0.411907 + 0.0660785i −0.000647652 + 0.000103897i
\(637\) 602.737 + 144.175i 0.946212 + 0.226334i
\(638\) 18.7781i 0.0294328i
\(639\) 198.599 + 177.395i 0.310796 + 0.277614i
\(640\) 291.281 0.455126
\(641\) 543.758 + 313.939i 0.848297 + 0.489764i 0.860076 0.510166i \(-0.170416\pi\)
−0.0117791 + 0.999931i \(0.503749\pi\)
\(642\) −167.588 206.116i −0.261041 0.321052i
\(643\) 618.928 357.338i 0.962563 0.555736i 0.0656022 0.997846i \(-0.479103\pi\)
0.896961 + 0.442110i \(0.145770\pi\)
\(644\) 46.6424 + 80.7870i 0.0724261 + 0.125446i
\(645\) −348.567 133.008i −0.540413 0.206215i
\(646\) −58.2816 + 100.947i −0.0902192 + 0.156264i
\(647\) 50.9073i 0.0786820i −0.999226 0.0393410i \(-0.987474\pi\)
0.999226 0.0393410i \(-0.0125259\pi\)
\(648\) 34.7538 + 307.164i 0.0536324 + 0.474019i
\(649\) −1023.69 −1.57733
\(650\) −109.885 26.2846i −0.169055 0.0404379i
\(651\) 1048.55 + 400.113i 1.61068 + 0.614613i
\(652\) −138.550 + 79.9918i −0.212500 + 0.122687i
\(653\) 370.592 213.962i 0.567523 0.327659i −0.188637 0.982047i \(-0.560407\pi\)
0.756159 + 0.654388i \(0.227074\pi\)
\(654\) 109.001 + 134.059i 0.166668 + 0.204983i
\(655\) 344.131 + 198.684i 0.525391 + 0.303335i
\(656\) 962.604 1.46738
\(657\) 169.799 190.094i 0.258446 0.289336i
\(658\) 132.331i 0.201110i
\(659\) 472.394 + 272.737i 0.716835 + 0.413865i 0.813587 0.581444i \(-0.197512\pi\)
−0.0967518 + 0.995309i \(0.530845\pi\)
\(660\) 75.1528 + 468.472i 0.113868 + 0.709806i
\(661\) −72.4148 + 41.8087i −0.109553 + 0.0632507i −0.553776 0.832666i \(-0.686813\pi\)
0.444222 + 0.895917i \(0.353480\pi\)
\(662\) 64.2249 37.0803i 0.0970165 0.0560125i
\(663\) −379.495 789.894i −0.572391 1.19139i
\(664\) −274.536 + 475.510i −0.413457 + 0.716129i
\(665\) 280.758 0.422192
\(666\) −14.3726 43.6438i −0.0215806 0.0655312i
\(667\) 6.20088 0.00929667
\(668\) 390.751 676.801i 0.584957 1.01318i
\(669\) 434.350 + 534.205i 0.649253 + 0.798512i
\(670\) −74.8617 + 43.2214i −0.111734 + 0.0645096i
\(671\) −632.274 1095.13i −0.942287 1.63209i
\(672\) 228.580 599.024i 0.340148 0.891404i
\(673\) −65.7751 + 113.926i −0.0977341 + 0.169280i −0.910746 0.412966i \(-0.864493\pi\)
0.813012 + 0.582247i \(0.197826\pi\)
\(674\) 118.730 0.176158
\(675\) −476.516 22.1268i −0.705949 0.0327804i
\(676\) 532.067 346.787i 0.787082 0.512998i
\(677\) 151.765 + 87.6217i 0.224173 + 0.129426i 0.607881 0.794028i \(-0.292020\pi\)
−0.383708 + 0.923454i \(0.625353\pi\)
\(678\) 36.2488 94.9948i 0.0534643 0.140110i
\(679\) −554.622 960.633i −0.816822 1.41478i
\(680\) 201.094 116.102i 0.295726 0.170738i
\(681\) −580.087 + 471.656i −0.851816 + 0.692593i
\(682\) 251.922 + 145.447i 0.369387 + 0.213266i
\(683\) 960.521 1.40633 0.703163 0.711029i \(-0.251770\pi\)
0.703163 + 0.711029i \(0.251770\pi\)
\(684\) −349.165 72.7687i −0.510474 0.106387i
\(685\) 189.538 0.276697
\(686\) −5.56110 3.21070i −0.00810656 0.00468032i
\(687\) −158.466 + 25.4212i −0.230663 + 0.0370032i
\(688\) −302.075 523.209i −0.439063 0.760479i
\(689\) −0.349208 0.330836i −0.000506834 0.000480168i
\(690\) 9.96143 1.59802i 0.0144369 0.00231598i
\(691\) 398.707 + 230.194i 0.577000 + 0.333131i 0.759940 0.649993i \(-0.225228\pi\)
−0.182940 + 0.983124i \(0.558562\pi\)
\(692\) 204.094i 0.294934i
\(693\) 1346.37 + 280.594i 1.94281 + 0.404898i
\(694\) 255.397i 0.368007i
\(695\) −207.348 + 359.138i −0.298343 + 0.516745i
\(696\) −17.7401 21.8184i −0.0254886 0.0313483i
\(697\) 1423.96 822.126i 2.04299 1.17952i
\(698\) −154.417 + 89.1529i −0.221228 + 0.127726i
\(699\) −119.181 + 312.329i −0.170502 + 0.446822i
\(700\) 565.355 + 326.408i 0.807650 + 0.466297i
\(701\) 704.086i 1.00440i −0.864751 0.502201i \(-0.832524\pi\)
0.864751 0.502201i \(-0.167476\pi\)
\(702\) −124.437 + 119.702i −0.177261 + 0.170516i
\(703\) 109.447 0.155685
\(704\) −325.805 + 564.310i −0.462791 + 0.801577i
\(705\) −207.650 79.2367i −0.294540 0.112392i
\(706\) 15.7233 + 27.2335i 0.0222709 + 0.0385743i
\(707\) −972.026 1683.60i −1.37486 2.38133i
\(708\) −576.164 + 468.466i −0.813791 + 0.661676i
\(709\) −1153.90 666.202i −1.62750 0.939636i −0.984837 0.173484i \(-0.944497\pi\)
−0.642660 0.766151i \(-0.722169\pi\)
\(710\) −39.4121 −0.0555099
\(711\) −622.226 + 204.910i −0.875142 + 0.288199i
\(712\) 307.539 0.431937
\(713\) −48.0294 + 83.1893i −0.0673624 + 0.116675i
\(714\) −51.6435 321.924i −0.0723298 0.450875i
\(715\) −376.267 + 397.163i −0.526248 + 0.555473i
\(716\) 268.652 155.106i 0.375212 0.216629i
\(717\) 111.802 + 696.929i 0.155930 + 0.972006i
\(718\) 88.5290 153.337i 0.123299 0.213561i
\(719\) 761.577i 1.05922i 0.848242 + 0.529608i \(0.177661\pi\)
−0.848242 + 0.529608i \(0.822339\pi\)
\(720\) 239.091 + 213.564i 0.332070 + 0.296617i
\(721\) 214.529i 0.297544i
\(722\) 61.4400 106.417i 0.0850970 0.147392i
\(723\) −482.322 593.205i −0.667112 0.820477i
\(724\) 313.757 + 543.444i 0.433367 + 0.750613i
\(725\) 37.5805 21.6971i 0.0518352 0.0299271i
\(726\) 166.213 + 63.4248i 0.228944 + 0.0873620i
\(727\) −482.133 + 835.078i −0.663181 + 1.14866i 0.316594 + 0.948561i \(0.397461\pi\)
−0.979775 + 0.200102i \(0.935873\pi\)
\(728\) 467.598 138.931i 0.642305 0.190840i
\(729\) −421.437 + 594.838i −0.578102 + 0.815964i
\(730\) 37.7243i 0.0516772i
\(731\) −893.709 515.983i −1.22258 0.705859i
\(732\) −857.025 327.030i −1.17080 0.446762i
\(733\) −884.929 + 510.914i −1.20727 + 0.697018i −0.962162 0.272478i \(-0.912157\pi\)
−0.245108 + 0.969496i \(0.578823\pi\)
\(734\) −36.2591 62.8027i −0.0493994 0.0855622i
\(735\) −300.476 + 244.310i −0.408810 + 0.332395i
\(736\) 47.5250 + 27.4386i 0.0645720 + 0.0372807i
\(737\) 1008.59i 1.36851i
\(738\) −241.617 215.821i −0.327395 0.292441i
\(739\) 791.607i 1.07119i −0.844476 0.535593i \(-0.820088\pi\)
0.844476 0.535593i \(-0.179912\pi\)
\(740\) −91.4634 52.8064i −0.123599 0.0713600i
\(741\) −178.101 370.706i −0.240352 0.500278i
\(742\) −0.0894862 0.154995i −0.000120601 0.000208888i
\(743\) 186.552 + 323.118i 0.251080 + 0.434883i 0.963823 0.266542i \(-0.0858809\pi\)
−0.712743 + 0.701425i \(0.752548\pi\)
\(744\) 430.117 68.9999i 0.578114 0.0927418i
\(745\) −44.0125 + 76.2319i −0.0590772 + 0.102325i
\(746\) −280.421 −0.375900
\(747\) −1229.89 + 405.023i −1.64643 + 0.542199i
\(748\) 1312.39i 1.75453i
\(749\) −884.933 + 1532.75i −1.18149 + 2.04639i
\(750\) 132.294 107.565i 0.176392 0.143420i
\(751\) 446.787 + 773.858i 0.594923 + 1.03044i 0.993558 + 0.113327i \(0.0361507\pi\)
−0.398635 + 0.917110i \(0.630516\pi\)
\(752\) −179.954 311.690i −0.239301 0.414481i
\(753\) 238.388 624.728i 0.316584 0.829652i
\(754\) 3.65403 15.2760i 0.00484619 0.0202600i
\(755\) 92.4282i 0.122421i
\(756\) 886.187 458.207i 1.17221 0.606094i
\(757\) −121.247 −0.160168 −0.0800839 0.996788i \(-0.525519\pi\)
−0.0800839 + 0.996788i \(0.525519\pi\)
\(758\) −142.097 82.0398i −0.187463 0.108232i
\(759\) −41.9664 + 109.979i −0.0552917 + 0.144899i
\(760\) 94.3755 54.4877i 0.124178 0.0716944i
\(761\) 342.786 + 593.723i 0.450442 + 0.780189i 0.998413 0.0563086i \(-0.0179331\pi\)
−0.547971 + 0.836497i \(0.684600\pi\)
\(762\) −81.1677 + 65.9957i −0.106519 + 0.0866085i
\(763\) 575.567 996.912i 0.754348 1.30657i
\(764\) 265.246i 0.347180i
\(765\) 536.081 + 111.724i 0.700759 + 0.146044i
\(766\) 223.257 0.291458
\(767\) −832.771 199.199i −1.08575 0.259712i
\(768\) 54.5458 + 340.016i 0.0710232 + 0.442729i
\(769\) −907.453 + 523.918i −1.18004 + 0.681298i −0.956025 0.293287i \(-0.905251\pi\)
−0.224019 + 0.974585i \(0.571918\pi\)
\(770\) −176.279 + 101.775i −0.228934 + 0.132175i
\(771\) −697.650 +