Properties

Label 117.3.n.a.38.14
Level $117$
Weight $3$
Character 117.38
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(38,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.38");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 38.14
Character \(\chi\) \(=\) 117.38
Dual form 117.3.n.a.77.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.146647 - 0.254001i) q^{2} +(-0.187042 + 2.99416i) q^{3} +(1.95699 + 3.38960i) q^{4} +(-2.67644 - 4.63573i) q^{5} +(0.733091 + 0.486595i) q^{6} +(8.20362 + 4.73636i) q^{7} +2.32113 q^{8} +(-8.93003 - 1.12007i) q^{9} -1.56997 q^{10} +(-7.71102 + 13.3559i) q^{11} +(-10.5151 + 5.22555i) q^{12} +(2.27033 + 12.8002i) q^{13} +(2.40608 - 1.38915i) q^{14} +(14.3807 - 7.14663i) q^{15} +(-7.48757 + 12.9688i) q^{16} -2.12074i q^{17} +(-1.59406 + 2.10398i) q^{18} -33.3392i q^{19} +(10.4755 - 18.1442i) q^{20} +(-15.7159 + 23.6771i) q^{21} +(2.26160 + 3.91721i) q^{22} +(24.9644 - 14.4132i) q^{23} +(-0.434148 + 6.94984i) q^{24} +(-1.82668 + 3.16390i) q^{25} +(3.58420 + 1.30045i) q^{26} +(5.02395 - 26.5285i) q^{27} +37.0760i q^{28} +(23.2984 + 13.4514i) q^{29} +(0.293650 - 4.70075i) q^{30} +(22.3881 - 12.9257i) q^{31} +(6.83832 + 11.8443i) q^{32} +(-38.5474 - 25.5861i) q^{33} +(-0.538669 - 0.311001i) q^{34} -50.7064i q^{35} +(-13.6794 - 32.4612i) q^{36} +17.6365i q^{37} +(-8.46819 - 4.88911i) q^{38} +(-38.7506 + 4.40356i) q^{39} +(-6.21236 - 10.7601i) q^{40} +(-28.3722 - 49.1420i) q^{41} +(3.70930 + 7.46402i) q^{42} +(11.1667 - 19.3413i) q^{43} -60.3615 q^{44} +(18.7084 + 44.3950i) q^{45} -8.45463i q^{46} +(3.61133 - 6.25502i) q^{47} +(-37.4304 - 24.8447i) q^{48} +(20.3662 + 35.2753i) q^{49} +(0.535755 + 0.927955i) q^{50} +(6.34983 + 0.396666i) q^{51} +(-38.9447 + 32.7454i) q^{52} -40.2849i q^{53} +(-6.00150 - 5.16642i) q^{54} +82.5523 q^{55} +(19.0416 + 10.9937i) q^{56} +(99.8231 + 6.23583i) q^{57} +(6.83331 - 3.94521i) q^{58} +(52.7704 + 91.4009i) q^{59} +(52.3672 + 34.7592i) q^{60} +(-5.30723 + 9.19239i) q^{61} -7.58211i q^{62} +(-67.9535 - 51.4845i) q^{63} -55.8893 q^{64} +(53.2620 - 44.7837i) q^{65} +(-12.1518 + 6.03892i) q^{66} +(-67.2001 + 38.7980i) q^{67} +(7.18846 - 4.15026i) q^{68} +(38.4861 + 77.4433i) q^{69} +(-12.8795 - 7.43596i) q^{70} -66.8110 q^{71} +(-20.7277 - 2.59982i) q^{72} -54.1949i q^{73} +(4.47968 + 2.58635i) q^{74} +(-9.13157 - 6.06116i) q^{75} +(113.007 - 65.2445i) q^{76} +(-126.516 + 73.0443i) q^{77} +(-4.56417 + 10.4884i) q^{78} +(30.9866 - 53.6704i) q^{79} +80.1602 q^{80} +(78.4909 + 20.0045i) q^{81} -16.6428 q^{82} +(-16.6325 + 28.8082i) q^{83} +(-111.012 - 6.93476i) q^{84} +(-9.83117 + 5.67603i) q^{85} +(-3.27513 - 5.67269i) q^{86} +(-44.6333 + 67.2433i) q^{87} +(-17.8983 + 31.0007i) q^{88} +73.8979 q^{89} +(14.0199 + 1.75847i) q^{90} +(-42.0015 + 115.761i) q^{91} +(97.7100 + 56.4129i) q^{92} +(34.5143 + 69.4512i) q^{93} +(-1.05919 - 1.83456i) q^{94} +(-154.552 + 89.2305i) q^{95} +(-36.7429 + 18.2597i) q^{96} +(25.5787 + 14.7678i) q^{97} +11.9466 q^{98} +(83.8191 - 110.631i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 4 q^{3} - 50 q^{4} + 4 q^{9} + 8 q^{10} - 38 q^{12} - 6 q^{13} - 6 q^{14} - 90 q^{16} + 14 q^{22} + 138 q^{23} - 92 q^{25} - 76 q^{27} + 48 q^{29} + 186 q^{30} - 154 q^{36} + 324 q^{38} - 2 q^{39}+ \cdots + 504 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.146647 0.254001i 0.0733237 0.127000i −0.827032 0.562154i \(-0.809973\pi\)
0.900356 + 0.435154i \(0.143306\pi\)
\(3\) −0.187042 + 2.99416i −0.0623472 + 0.998055i
\(4\) 1.95699 + 3.38960i 0.489247 + 0.847401i
\(5\) −2.67644 4.63573i −0.535288 0.927147i −0.999149 0.0412386i \(-0.986870\pi\)
0.463861 0.885908i \(-0.346464\pi\)
\(6\) 0.733091 + 0.486595i 0.122182 + 0.0810992i
\(7\) 8.20362 + 4.73636i 1.17195 + 0.676623i 0.954138 0.299369i \(-0.0967761\pi\)
0.217808 + 0.975992i \(0.430109\pi\)
\(8\) 2.32113 0.290141
\(9\) −8.93003 1.12007i −0.992226 0.124452i
\(10\) −1.56997 −0.156997
\(11\) −7.71102 + 13.3559i −0.701001 + 1.21417i 0.267114 + 0.963665i \(0.413930\pi\)
−0.968115 + 0.250505i \(0.919403\pi\)
\(12\) −10.5151 + 5.22555i −0.876256 + 0.435462i
\(13\) 2.27033 + 12.8002i 0.174641 + 0.984632i
\(14\) 2.40608 1.38915i 0.171863 0.0992250i
\(15\) 14.3807 7.14663i 0.958717 0.476442i
\(16\) −7.48757 + 12.9688i −0.467973 + 0.810553i
\(17\) 2.12074i 0.124749i −0.998053 0.0623746i \(-0.980133\pi\)
0.998053 0.0623746i \(-0.0198674\pi\)
\(18\) −1.59406 + 2.10398i −0.0885591 + 0.116888i
\(19\) 33.3392i 1.75470i −0.479854 0.877348i \(-0.659310\pi\)
0.479854 0.877348i \(-0.340690\pi\)
\(20\) 10.4755 18.1442i 0.523777 0.907208i
\(21\) −15.7159 + 23.6771i −0.748374 + 1.12748i
\(22\) 2.26160 + 3.91721i 0.102800 + 0.178055i
\(23\) 24.9644 14.4132i 1.08541 0.626660i 0.153058 0.988217i \(-0.451088\pi\)
0.932350 + 0.361557i \(0.117755\pi\)
\(24\) −0.434148 + 6.94984i −0.0180895 + 0.289577i
\(25\) −1.82668 + 3.16390i −0.0730671 + 0.126556i
\(26\) 3.58420 + 1.30045i 0.137854 + 0.0500174i
\(27\) 5.02395 26.5285i 0.186072 0.982536i
\(28\) 37.0760i 1.32414i
\(29\) 23.2984 + 13.4514i 0.803394 + 0.463840i 0.844657 0.535309i \(-0.179805\pi\)
−0.0412625 + 0.999148i \(0.513138\pi\)
\(30\) 0.293650 4.70075i 0.00978835 0.156692i
\(31\) 22.3881 12.9257i 0.722195 0.416960i −0.0933648 0.995632i \(-0.529762\pi\)
0.815560 + 0.578672i \(0.196429\pi\)
\(32\) 6.83832 + 11.8443i 0.213698 + 0.370135i
\(33\) −38.5474 25.5861i −1.16810 0.775338i
\(34\) −0.538669 0.311001i −0.0158432 0.00914708i
\(35\) 50.7064i 1.44875i
\(36\) −13.6794 32.4612i −0.379983 0.901701i
\(37\) 17.6365i 0.476662i 0.971184 + 0.238331i \(0.0766003\pi\)
−0.971184 + 0.238331i \(0.923400\pi\)
\(38\) −8.46819 4.88911i −0.222847 0.128661i
\(39\) −38.7506 + 4.40356i −0.993605 + 0.112912i
\(40\) −6.21236 10.7601i −0.155309 0.269003i
\(41\) −28.3722 49.1420i −0.692004 1.19859i −0.971180 0.238346i \(-0.923395\pi\)
0.279177 0.960240i \(-0.409939\pi\)
\(42\) 3.70930 + 7.46402i 0.0883168 + 0.177715i
\(43\) 11.1667 19.3413i 0.259690 0.449797i −0.706469 0.707744i \(-0.749713\pi\)
0.966159 + 0.257947i \(0.0830462\pi\)
\(44\) −60.3615 −1.37185
\(45\) 18.7084 + 44.3950i 0.415742 + 0.986556i
\(46\) 8.45463i 0.183796i
\(47\) 3.61133 6.25502i 0.0768369 0.133085i −0.825047 0.565065i \(-0.808851\pi\)
0.901884 + 0.431979i \(0.142185\pi\)
\(48\) −37.4304 24.8447i −0.779799 0.517598i
\(49\) 20.3662 + 35.2753i 0.415637 + 0.719905i
\(50\) 0.535755 + 0.927955i 0.0107151 + 0.0185591i
\(51\) 6.34983 + 0.396666i 0.124507 + 0.00777777i
\(52\) −38.9447 + 32.7454i −0.748936 + 0.629719i
\(53\) 40.2849i 0.760092i −0.924968 0.380046i \(-0.875908\pi\)
0.924968 0.380046i \(-0.124092\pi\)
\(54\) −6.00150 5.16642i −0.111139 0.0956744i
\(55\) 82.5523 1.50095
\(56\) 19.0416 + 10.9937i 0.340029 + 0.196316i
\(57\) 99.8231 + 6.23583i 1.75128 + 0.109401i
\(58\) 6.83331 3.94521i 0.117816 0.0680209i
\(59\) 52.7704 + 91.4009i 0.894413 + 1.54917i 0.834530 + 0.550963i \(0.185740\pi\)
0.0598833 + 0.998205i \(0.480927\pi\)
\(60\) 52.3672 + 34.7592i 0.872787 + 0.579320i
\(61\) −5.30723 + 9.19239i −0.0870038 + 0.150695i −0.906243 0.422757i \(-0.861063\pi\)
0.819240 + 0.573451i \(0.194396\pi\)
\(62\) 7.58211i 0.122292i
\(63\) −67.9535 51.4845i −1.07863 0.817213i
\(64\) −55.8893 −0.873270
\(65\) 53.2620 44.7837i 0.819415 0.688980i
\(66\) −12.1518 + 6.03892i −0.184118 + 0.0914988i
\(67\) −67.2001 + 38.7980i −1.00299 + 0.579075i −0.909131 0.416511i \(-0.863253\pi\)
−0.0938563 + 0.995586i \(0.529919\pi\)
\(68\) 7.18846 4.15026i 0.105713 0.0610332i
\(69\) 38.4861 + 77.4433i 0.557769 + 1.12237i
\(70\) −12.8795 7.43596i −0.183992 0.106228i
\(71\) −66.8110 −0.941000 −0.470500 0.882400i \(-0.655926\pi\)
−0.470500 + 0.882400i \(0.655926\pi\)
\(72\) −20.7277 2.59982i −0.287885 0.0361086i
\(73\) 54.1949i 0.742396i −0.928554 0.371198i \(-0.878947\pi\)
0.928554 0.371198i \(-0.121053\pi\)
\(74\) 4.47968 + 2.58635i 0.0605363 + 0.0349506i
\(75\) −9.13157 6.06116i −0.121754 0.0808154i
\(76\) 113.007 65.2445i 1.48693 0.858481i
\(77\) −126.516 + 73.0443i −1.64307 + 0.948627i
\(78\) −4.56417 + 10.4884i −0.0585149 + 0.134467i
\(79\) 30.9866 53.6704i 0.392235 0.679372i −0.600509 0.799618i \(-0.705035\pi\)
0.992744 + 0.120247i \(0.0383685\pi\)
\(80\) 80.1602 1.00200
\(81\) 78.4909 + 20.0045i 0.969023 + 0.246969i
\(82\) −16.6428 −0.202961
\(83\) −16.6325 + 28.8082i −0.200391 + 0.347087i −0.948654 0.316314i \(-0.897555\pi\)
0.748263 + 0.663402i \(0.230888\pi\)
\(84\) −111.012 6.93476i −1.32157 0.0825567i
\(85\) −9.83117 + 5.67603i −0.115661 + 0.0667768i
\(86\) −3.27513 5.67269i −0.0380829 0.0659615i
\(87\) −44.6333 + 67.2433i −0.513027 + 0.772912i
\(88\) −17.8983 + 31.0007i −0.203389 + 0.352281i
\(89\) 73.8979 0.830314 0.415157 0.909750i \(-0.363727\pi\)
0.415157 + 0.909750i \(0.363727\pi\)
\(90\) 14.0199 + 1.75847i 0.155777 + 0.0195386i
\(91\) −42.0015 + 115.761i −0.461555 + 1.27210i
\(92\) 97.7100 + 56.4129i 1.06207 + 0.613184i
\(93\) 34.5143 + 69.4512i 0.371122 + 0.746787i
\(94\) −1.05919 1.83456i −0.0112679 0.0195166i
\(95\) −154.552 + 89.2305i −1.62686 + 0.939269i
\(96\) −36.7429 + 18.2597i −0.382738 + 0.190205i
\(97\) 25.5787 + 14.7678i 0.263698 + 0.152246i 0.626020 0.779807i \(-0.284683\pi\)
−0.362323 + 0.932053i \(0.618016\pi\)
\(98\) 11.9466 0.121904
\(99\) 83.8191 110.631i 0.846657 1.11749i
\(100\) −14.2992 −0.142992
\(101\) 72.0529 + 41.5998i 0.713395 + 0.411879i 0.812317 0.583216i \(-0.198206\pi\)
−0.0989216 + 0.995095i \(0.531539\pi\)
\(102\) 1.03194 1.55469i 0.0101171 0.0152421i
\(103\) −84.0009 145.494i −0.815542 1.41256i −0.908938 0.416932i \(-0.863105\pi\)
0.0933953 0.995629i \(-0.470228\pi\)
\(104\) 5.26972 + 29.7110i 0.0506704 + 0.285682i
\(105\) 151.823 + 9.48421i 1.44593 + 0.0903258i
\(106\) −10.2324 5.90767i −0.0965320 0.0557328i
\(107\) 125.475i 1.17266i −0.810071 0.586332i \(-0.800571\pi\)
0.810071 0.586332i \(-0.199429\pi\)
\(108\) 99.7529 34.8867i 0.923638 0.323025i
\(109\) 2.93689i 0.0269439i −0.999909 0.0134720i \(-0.995712\pi\)
0.999909 0.0134720i \(-0.00428839\pi\)
\(110\) 12.1061 20.9684i 0.110055 0.190621i
\(111\) −52.8066 3.29876i −0.475735 0.0297186i
\(112\) −122.850 + 70.9277i −1.09688 + 0.633283i
\(113\) −151.195 + 87.2926i −1.33801 + 0.772501i −0.986512 0.163687i \(-0.947661\pi\)
−0.351499 + 0.936188i \(0.614328\pi\)
\(114\) 16.2227 24.4407i 0.142304 0.214392i
\(115\) −133.631 77.1521i −1.16201 0.670888i
\(116\) 105.297i 0.907729i
\(117\) −5.93700 116.849i −0.0507436 0.998712i
\(118\) 30.9545 0.262327
\(119\) 10.0446 17.3977i 0.0844082 0.146199i
\(120\) 33.3796 16.5882i 0.278163 0.138235i
\(121\) −58.4195 101.186i −0.482806 0.836244i
\(122\) 1.55658 + 2.69608i 0.0127589 + 0.0220990i
\(123\) 152.446 75.7593i 1.23940 0.615929i
\(124\) 87.6264 + 50.5911i 0.706664 + 0.407993i
\(125\) −114.266 −0.914129
\(126\) −23.0423 + 9.71018i −0.182875 + 0.0770649i
\(127\) −15.9739 −0.125779 −0.0628893 0.998021i \(-0.520032\pi\)
−0.0628893 + 0.998021i \(0.520032\pi\)
\(128\) −35.5493 + 61.5732i −0.277729 + 0.481041i
\(129\) 55.8223 + 37.0525i 0.432731 + 0.287229i
\(130\) −3.56435 20.0960i −0.0274181 0.154585i
\(131\) −20.7147 + 11.9596i −0.158128 + 0.0912950i −0.576976 0.816761i \(-0.695767\pi\)
0.418848 + 0.908056i \(0.362434\pi\)
\(132\) 11.2901 180.732i 0.0855312 1.36918i
\(133\) 157.907 273.502i 1.18727 2.05641i
\(134\) 22.7585i 0.169840i
\(135\) −136.425 + 47.7122i −1.01056 + 0.353424i
\(136\) 4.92250i 0.0361949i
\(137\) −42.8060 + 74.1421i −0.312452 + 0.541183i −0.978893 0.204375i \(-0.934484\pi\)
0.666440 + 0.745558i \(0.267817\pi\)
\(138\) 25.3145 + 1.58137i 0.183439 + 0.0114592i
\(139\) 38.8488 + 67.2881i 0.279488 + 0.484087i 0.971258 0.238031i \(-0.0765020\pi\)
−0.691770 + 0.722118i \(0.743169\pi\)
\(140\) 171.875 99.2318i 1.22768 0.708799i
\(141\) 18.0531 + 11.9829i 0.128036 + 0.0849849i
\(142\) −9.79766 + 16.9700i −0.0689976 + 0.119507i
\(143\) −188.465 68.3805i −1.31793 0.478185i
\(144\) 81.3902 107.426i 0.565210 0.746011i
\(145\) 144.007i 0.993152i
\(146\) −13.7655 7.94754i −0.0942845 0.0544352i
\(147\) −109.429 + 54.3819i −0.744418 + 0.369945i
\(148\) −59.7808 + 34.5144i −0.403924 + 0.233206i
\(149\) 52.8009 + 91.4538i 0.354368 + 0.613784i 0.987010 0.160661i \(-0.0513626\pi\)
−0.632641 + 0.774445i \(0.718029\pi\)
\(150\) −2.87866 + 1.43057i −0.0191911 + 0.00953715i
\(151\) 157.615 + 90.9988i 1.04381 + 0.602641i 0.920909 0.389778i \(-0.127448\pi\)
0.122897 + 0.992419i \(0.460782\pi\)
\(152\) 77.3847i 0.509110i
\(153\) −2.37537 + 18.9382i −0.0155253 + 0.123779i
\(154\) 42.8470i 0.278227i
\(155\) −119.841 69.1900i −0.773165 0.446387i
\(156\) −90.7608 122.731i −0.581800 0.786740i
\(157\) 41.3417 + 71.6058i 0.263323 + 0.456088i 0.967123 0.254310i \(-0.0818483\pi\)
−0.703800 + 0.710398i \(0.748515\pi\)
\(158\) −9.08821 15.7412i −0.0575203 0.0996281i
\(159\) 120.620 + 7.53496i 0.758614 + 0.0473897i
\(160\) 36.6047 63.4013i 0.228780 0.396258i
\(161\) 273.064 1.69605
\(162\) 16.5916 17.0031i 0.102417 0.104958i
\(163\) 107.833i 0.661553i −0.943709 0.330777i \(-0.892689\pi\)
0.943709 0.330777i \(-0.107311\pi\)
\(164\) 111.048 192.341i 0.677122 1.17281i
\(165\) −15.4407 + 247.175i −0.0935802 + 1.49803i
\(166\) 4.87821 + 8.44931i 0.0293868 + 0.0508994i
\(167\) 35.1152 + 60.8212i 0.210270 + 0.364199i 0.951799 0.306722i \(-0.0992322\pi\)
−0.741529 + 0.670921i \(0.765899\pi\)
\(168\) −36.4785 + 54.9575i −0.217134 + 0.327128i
\(169\) −158.691 + 58.1214i −0.939001 + 0.343914i
\(170\) 3.32950i 0.0195853i
\(171\) −37.3422 + 297.720i −0.218375 + 1.74106i
\(172\) 87.4123 0.508211
\(173\) −133.772 77.2336i −0.773251 0.446437i 0.0607819 0.998151i \(-0.480641\pi\)
−0.834033 + 0.551714i \(0.813974\pi\)
\(174\) 10.5345 + 21.1980i 0.0605431 + 0.121827i
\(175\) −29.9707 + 17.3036i −0.171261 + 0.0988778i
\(176\) −115.474 200.006i −0.656100 1.13640i
\(177\) −283.540 + 140.907i −1.60192 + 0.796086i
\(178\) 10.8369 18.7701i 0.0608817 0.105450i
\(179\) 163.453i 0.913147i 0.889686 + 0.456573i \(0.150923\pi\)
−0.889686 + 0.456573i \(0.849077\pi\)
\(180\) −113.870 + 150.295i −0.632608 + 0.834970i
\(181\) −133.695 −0.738644 −0.369322 0.929302i \(-0.620410\pi\)
−0.369322 + 0.929302i \(0.620410\pi\)
\(182\) 23.2440 + 27.6445i 0.127714 + 0.151893i
\(183\) −26.5308 17.6101i −0.144977 0.0962299i
\(184\) 57.9455 33.4549i 0.314921 0.181820i
\(185\) 81.7581 47.2031i 0.441936 0.255152i
\(186\) 22.7021 + 1.41817i 0.122054 + 0.00762457i
\(187\) 28.3243 + 16.3530i 0.151467 + 0.0874494i
\(188\) 28.2694 0.150369
\(189\) 166.863 193.834i 0.882873 1.02558i
\(190\) 52.3417i 0.275483i
\(191\) −142.365 82.1942i −0.745364 0.430336i 0.0786522 0.996902i \(-0.474938\pi\)
−0.824016 + 0.566566i \(0.808272\pi\)
\(192\) 10.4536 167.342i 0.0544460 0.871571i
\(193\) −31.1188 + 17.9665i −0.161237 + 0.0930904i −0.578448 0.815720i \(-0.696341\pi\)
0.417210 + 0.908810i \(0.363008\pi\)
\(194\) 7.50209 4.33133i 0.0386706 0.0223265i
\(195\) 124.127 + 167.852i 0.636551 + 0.860777i
\(196\) −79.7130 + 138.067i −0.406699 + 0.704423i
\(197\) −31.9390 −0.162127 −0.0810633 0.996709i \(-0.525832\pi\)
−0.0810633 + 0.996709i \(0.525832\pi\)
\(198\) −15.8086 37.5139i −0.0798416 0.189464i
\(199\) 63.1067 0.317119 0.158560 0.987349i \(-0.449315\pi\)
0.158560 + 0.987349i \(0.449315\pi\)
\(200\) −4.23996 + 7.34382i −0.0211998 + 0.0367191i
\(201\) −103.598 208.465i −0.515415 1.03714i
\(202\) 21.1327 12.2010i 0.104618 0.0604010i
\(203\) 127.421 + 220.700i 0.627689 + 1.08719i
\(204\) 11.0820 + 22.2997i 0.0543236 + 0.109312i
\(205\) −151.873 + 263.051i −0.740843 + 1.28318i
\(206\) −49.2740 −0.239194
\(207\) −239.076 + 100.748i −1.15496 + 0.486708i
\(208\) −183.003 66.3990i −0.879824 0.319226i
\(209\) 445.275 + 257.079i 2.13050 + 1.23004i
\(210\) 24.6735 37.1724i 0.117493 0.177011i
\(211\) 25.8336 + 44.7451i 0.122434 + 0.212062i 0.920727 0.390207i \(-0.127597\pi\)
−0.798293 + 0.602269i \(0.794263\pi\)
\(212\) 136.550 78.8371i 0.644103 0.371873i
\(213\) 12.4964 200.043i 0.0586687 0.939169i
\(214\) −31.8708 18.4006i −0.148929 0.0859841i
\(215\) −119.548 −0.556037
\(216\) 11.6612 61.5760i 0.0539872 0.285074i
\(217\) 244.884 1.12850
\(218\) −0.745972 0.430687i −0.00342189 0.00197563i
\(219\) 162.268 + 10.1367i 0.740951 + 0.0462863i
\(220\) 161.554 + 279.820i 0.734336 + 1.27191i
\(221\) 27.1459 4.81477i 0.122832 0.0217863i
\(222\) −8.58183 + 12.9291i −0.0386569 + 0.0582394i
\(223\) 97.2097 + 56.1241i 0.435918 + 0.251677i 0.701865 0.712310i \(-0.252351\pi\)
−0.265947 + 0.963988i \(0.585684\pi\)
\(224\) 129.555i 0.578371i
\(225\) 19.8561 26.2077i 0.0882492 0.116479i
\(226\) 51.2049i 0.226571i
\(227\) 71.4825 123.811i 0.314901 0.545424i −0.664516 0.747274i \(-0.731362\pi\)
0.979416 + 0.201850i \(0.0646954\pi\)
\(228\) 174.216 + 350.564i 0.764104 + 1.53756i
\(229\) 69.2157 39.9617i 0.302252 0.174505i −0.341202 0.939990i \(-0.610834\pi\)
0.643454 + 0.765485i \(0.277501\pi\)
\(230\) −39.1934 + 22.6283i −0.170406 + 0.0983840i
\(231\) −195.043 392.473i −0.844341 1.69902i
\(232\) 54.0786 + 31.2223i 0.233098 + 0.134579i
\(233\) 55.4387i 0.237934i 0.992898 + 0.118967i \(0.0379583\pi\)
−0.992898 + 0.118967i \(0.962042\pi\)
\(234\) −30.5504 15.6276i −0.130557 0.0667848i
\(235\) −38.6621 −0.164520
\(236\) −206.542 + 357.741i −0.875178 + 1.51585i
\(237\) 154.902 + 102.818i 0.653595 + 0.433829i
\(238\) −2.94602 5.10266i −0.0123782 0.0214397i
\(239\) −194.301 336.539i −0.812974 1.40811i −0.910774 0.412906i \(-0.864514\pi\)
0.0978002 0.995206i \(-0.468819\pi\)
\(240\) −14.9933 + 240.013i −0.0624721 + 1.00005i
\(241\) −79.1067 45.6723i −0.328244 0.189512i 0.326817 0.945087i \(-0.394024\pi\)
−0.655061 + 0.755576i \(0.727357\pi\)
\(242\) −34.2683 −0.141604
\(243\) −74.5777 + 231.273i −0.306904 + 0.951740i
\(244\) −41.5448 −0.170265
\(245\) 109.018 188.825i 0.444972 0.770713i
\(246\) 3.11290 49.8313i 0.0126541 0.202566i
\(247\) 426.750 75.6910i 1.72773 0.306441i
\(248\) 51.9655 30.0023i 0.209539 0.120977i
\(249\) −83.1456 55.1886i −0.333918 0.221641i
\(250\) −16.7568 + 29.0237i −0.0670273 + 0.116095i
\(251\) 210.440i 0.838405i −0.907893 0.419203i \(-0.862310\pi\)
0.907893 0.419203i \(-0.137690\pi\)
\(252\) 41.5276 331.090i 0.164792 1.31385i
\(253\) 444.561i 1.75716i
\(254\) −2.34253 + 4.05738i −0.00922255 + 0.0159739i
\(255\) −15.1561 30.4978i −0.0594358 0.119599i
\(256\) −101.352 175.547i −0.395907 0.685730i
\(257\) 320.600 185.099i 1.24747 0.720229i 0.276868 0.960908i \(-0.410704\pi\)
0.970605 + 0.240679i \(0.0773702\pi\)
\(258\) 17.5976 8.74525i 0.0682076 0.0338963i
\(259\) −83.5328 + 144.683i −0.322521 + 0.558622i
\(260\) 256.032 + 92.8959i 0.984739 + 0.357292i
\(261\) −192.989 146.217i −0.739422 0.560218i
\(262\) 7.01540i 0.0267763i
\(263\) −404.705 233.657i −1.53880 0.888429i −0.998909 0.0466956i \(-0.985131\pi\)
−0.539894 0.841733i \(-0.681536\pi\)
\(264\) −89.4734 59.3887i −0.338914 0.224957i
\(265\) −186.750 + 107.820i −0.704717 + 0.406869i
\(266\) −46.3132 80.2168i −0.174110 0.301567i
\(267\) −13.8220 + 221.262i −0.0517678 + 0.828698i
\(268\) −263.020 151.855i −0.981417 0.566622i
\(269\) 12.1114i 0.0450239i −0.999747 0.0225119i \(-0.992834\pi\)
0.999747 0.0225119i \(-0.00716638\pi\)
\(270\) −7.88747 + 41.6490i −0.0292128 + 0.154255i
\(271\) 100.797i 0.371945i 0.982555 + 0.185973i \(0.0595435\pi\)
−0.982555 + 0.185973i \(0.940456\pi\)
\(272\) 27.5035 + 15.8792i 0.101116 + 0.0583793i
\(273\) −338.752 147.412i −1.24085 0.539970i
\(274\) 12.5548 + 21.7455i 0.0458203 + 0.0793631i
\(275\) −28.1711 48.7938i −0.102440 0.177432i
\(276\) −187.185 + 282.008i −0.678208 + 1.02177i
\(277\) 3.55206 6.15235i 0.0128233 0.0222106i −0.859543 0.511064i \(-0.829251\pi\)
0.872366 + 0.488854i \(0.162585\pi\)
\(278\) 22.7883 0.0819723
\(279\) −214.404 + 90.3512i −0.768472 + 0.323839i
\(280\) 117.696i 0.420343i
\(281\) −52.2789 + 90.5497i −0.186046 + 0.322241i −0.943928 0.330150i \(-0.892901\pi\)
0.757883 + 0.652391i \(0.226234\pi\)
\(282\) 5.69109 2.82824i 0.0201812 0.0100292i
\(283\) 29.0002 + 50.2298i 0.102474 + 0.177491i 0.912703 0.408623i \(-0.133991\pi\)
−0.810229 + 0.586113i \(0.800657\pi\)
\(284\) −130.748 226.463i −0.460382 0.797404i
\(285\) −238.263 479.443i −0.836011 1.68226i
\(286\) −45.0065 + 37.8423i −0.157365 + 0.132316i
\(287\) 537.523i 1.87290i
\(288\) −47.8000 113.430i −0.165972 0.393853i
\(289\) 284.502 0.984438
\(290\) −36.5779 21.1183i −0.126131 0.0728216i
\(291\) −49.0016 + 73.8245i −0.168390 + 0.253692i
\(292\) 183.699 106.059i 0.629107 0.363215i
\(293\) −18.9537 32.8288i −0.0646885 0.112044i 0.831867 0.554975i \(-0.187272\pi\)
−0.896556 + 0.442931i \(0.853939\pi\)
\(294\) −2.23452 + 35.7701i −0.00760039 + 0.121667i
\(295\) 282.474 489.259i 0.957538 1.65850i
\(296\) 40.9366i 0.138299i
\(297\) 315.571 + 271.661i 1.06253 + 0.914683i
\(298\) 30.9724 0.103934
\(299\) 241.169 + 286.827i 0.806586 + 0.959287i
\(300\) 2.67454 42.8140i 0.00891513 0.142713i
\(301\) 183.214 105.779i 0.608686 0.351425i
\(302\) 46.2275 26.6895i 0.153071 0.0883758i
\(303\) −138.033 + 207.957i −0.455556 + 0.686328i
\(304\) 432.372 + 249.630i 1.42227 + 0.821151i
\(305\) 56.8180 0.186288
\(306\) 4.46199 + 3.38059i 0.0145817 + 0.0110477i
\(307\) 565.040i 1.84052i −0.391305 0.920261i \(-0.627976\pi\)
0.391305 0.920261i \(-0.372024\pi\)
\(308\) −495.183 285.894i −1.60774 0.928227i
\(309\) 451.344 224.299i 1.46066 0.725887i
\(310\) −35.1486 + 20.2931i −0.113383 + 0.0654615i
\(311\) 448.481 258.930i 1.44206 0.832574i 0.444073 0.895991i \(-0.353533\pi\)
0.997987 + 0.0634169i \(0.0201998\pi\)
\(312\) −89.9451 + 10.2212i −0.288286 + 0.0327603i
\(313\) −138.702 + 240.239i −0.443138 + 0.767538i −0.997920 0.0644575i \(-0.979468\pi\)
0.554782 + 0.831996i \(0.312802\pi\)
\(314\) 24.2506 0.0772312
\(315\) −56.7945 + 452.809i −0.180300 + 1.43749i
\(316\) 242.562 0.767600
\(317\) −152.700 + 264.483i −0.481702 + 0.834332i −0.999779 0.0210013i \(-0.993315\pi\)
0.518077 + 0.855334i \(0.326648\pi\)
\(318\) 19.6024 29.5325i 0.0616429 0.0928694i
\(319\) −359.309 + 207.447i −1.12636 + 0.650305i
\(320\) 149.584 + 259.088i 0.467451 + 0.809649i
\(321\) 375.693 + 23.4691i 1.17038 + 0.0731124i
\(322\) 40.0442 69.3585i 0.124361 0.215399i
\(323\) −70.7038 −0.218897
\(324\) 85.7986 + 305.202i 0.264810 + 0.941980i
\(325\) −44.6458 16.1988i −0.137372 0.0498424i
\(326\) −27.3897 15.8134i −0.0840175 0.0485075i
\(327\) 8.79353 + 0.549321i 0.0268915 + 0.00167988i
\(328\) −65.8554 114.065i −0.200779 0.347759i
\(329\) 59.2520 34.2092i 0.180097 0.103979i
\(330\) 60.5183 + 40.1695i 0.183389 + 0.121726i
\(331\) −333.273 192.415i −1.00687 0.581314i −0.0965936 0.995324i \(-0.530795\pi\)
−0.910273 + 0.414009i \(0.864128\pi\)
\(332\) −130.198 −0.392163
\(333\) 19.7541 157.494i 0.0593215 0.472956i
\(334\) 20.5982 0.0616712
\(335\) 359.714 + 207.681i 1.07377 + 0.619944i
\(336\) −189.391 381.100i −0.563663 1.13423i
\(337\) −31.9085 55.2672i −0.0946841 0.163998i 0.814793 0.579752i \(-0.196851\pi\)
−0.909477 + 0.415755i \(0.863517\pi\)
\(338\) −8.50877 + 48.8310i −0.0251739 + 0.144471i
\(339\) −233.089 469.031i −0.687577 1.38357i
\(340\) −38.4790 22.2159i −0.113174 0.0653408i
\(341\) 398.683i 1.16916i
\(342\) 70.1451 + 53.1449i 0.205103 + 0.155394i
\(343\) 78.3161i 0.228327i
\(344\) 25.9193 44.8936i 0.0753468 0.130505i
\(345\) 256.001 385.684i 0.742031 1.11792i
\(346\) −39.2348 + 22.6522i −0.113395 + 0.0654688i
\(347\) −481.248 + 277.849i −1.38688 + 0.800717i −0.992963 0.118427i \(-0.962215\pi\)
−0.393920 + 0.919145i \(0.628881\pi\)
\(348\) −315.275 19.6949i −0.905963 0.0565944i
\(349\) −123.965 71.5710i −0.355199 0.205074i 0.311774 0.950156i \(-0.399077\pi\)
−0.666973 + 0.745082i \(0.732410\pi\)
\(350\) 10.1501i 0.0290003i
\(351\) 350.976 + 4.07934i 0.999932 + 0.0116221i
\(352\) −210.922 −0.599209
\(353\) 115.084 199.332i 0.326018 0.564680i −0.655700 0.755022i \(-0.727626\pi\)
0.981718 + 0.190342i \(0.0609597\pi\)
\(354\) −5.78979 + 92.6830i −0.0163553 + 0.261816i
\(355\) 178.816 + 309.718i 0.503706 + 0.872445i
\(356\) 144.617 + 250.485i 0.406229 + 0.703609i
\(357\) 50.2129 + 33.3292i 0.140652 + 0.0933591i
\(358\) 41.5173 + 23.9700i 0.115970 + 0.0669553i
\(359\) 182.710 0.508943 0.254471 0.967080i \(-0.418099\pi\)
0.254471 + 0.967080i \(0.418099\pi\)
\(360\) 43.4245 + 103.047i 0.120624 + 0.286240i
\(361\) −750.505 −2.07896
\(362\) −19.6060 + 33.9585i −0.0541601 + 0.0938080i
\(363\) 313.893 155.992i 0.864719 0.429729i
\(364\) −474.581 + 84.1748i −1.30379 + 0.231249i
\(365\) −251.233 + 145.049i −0.688310 + 0.397396i
\(366\) −8.36365 + 4.15638i −0.0228515 + 0.0113562i
\(367\) 82.2966 142.542i 0.224242 0.388398i −0.731850 0.681466i \(-0.761343\pi\)
0.956092 + 0.293068i \(0.0946762\pi\)
\(368\) 431.679i 1.17304i
\(369\) 198.322 + 470.618i 0.537458 + 1.27539i
\(370\) 27.6888i 0.0748346i
\(371\) 190.804 330.482i 0.514296 0.890787i
\(372\) −167.868 + 252.905i −0.451258 + 0.679852i
\(373\) −241.992 419.143i −0.648772 1.12371i −0.983416 0.181362i \(-0.941949\pi\)
0.334644 0.942345i \(-0.391384\pi\)
\(374\) 8.30737 4.79626i 0.0222122 0.0128242i
\(375\) 21.3725 342.131i 0.0569934 0.912350i
\(376\) 8.38237 14.5187i 0.0222935 0.0386135i
\(377\) −119.285 + 328.764i −0.316406 + 0.872053i
\(378\) −24.7640 70.8086i −0.0655132 0.187324i
\(379\) 71.6797i 0.189128i 0.995519 + 0.0945642i \(0.0301458\pi\)
−0.995519 + 0.0945642i \(0.969854\pi\)
\(380\) −604.912 349.246i −1.59187 0.919069i
\(381\) 2.98778 47.8284i 0.00784195 0.125534i
\(382\) −41.7548 + 24.1071i −0.109306 + 0.0631077i
\(383\) 20.3546 + 35.2552i 0.0531452 + 0.0920502i 0.891374 0.453268i \(-0.149742\pi\)
−0.838229 + 0.545318i \(0.816409\pi\)
\(384\) −177.711 117.957i −0.462789 0.307180i
\(385\) 677.228 + 390.998i 1.75903 + 1.01558i
\(386\) 10.5389i 0.0273029i
\(387\) −121.382 + 160.211i −0.313650 + 0.413981i
\(388\) 115.602i 0.297943i
\(389\) 66.9628 + 38.6610i 0.172141 + 0.0993855i 0.583595 0.812045i \(-0.301646\pi\)
−0.411454 + 0.911430i \(0.634979\pi\)
\(390\) 60.8374 6.91347i 0.155993 0.0177268i
\(391\) −30.5666 52.9429i −0.0781754 0.135404i
\(392\) 47.2726 + 81.8786i 0.120593 + 0.208874i
\(393\) −31.9346 64.2602i −0.0812585 0.163512i
\(394\) −4.68376 + 8.11252i −0.0118877 + 0.0205901i
\(395\) −331.735 −0.839836
\(396\) 539.030 + 67.6089i 1.36119 + 0.170730i
\(397\) 674.923i 1.70006i 0.526737 + 0.850029i \(0.323415\pi\)
−0.526737 + 0.850029i \(0.676585\pi\)
\(398\) 9.25443 16.0291i 0.0232523 0.0402742i
\(399\) 789.376 + 523.955i 1.97839 + 1.31317i
\(400\) −27.3548 47.3798i −0.0683869 0.118450i
\(401\) 56.1904 + 97.3247i 0.140126 + 0.242705i 0.927544 0.373714i \(-0.121916\pi\)
−0.787418 + 0.616419i \(0.788583\pi\)
\(402\) −68.1427 4.25679i −0.169509 0.0105890i
\(403\) 216.281 + 257.226i 0.536677 + 0.638279i
\(404\) 325.641i 0.806043i
\(405\) −117.341 417.404i −0.289731 1.03063i
\(406\) 74.7438 0.184098
\(407\) −235.551 135.995i −0.578749 0.334141i
\(408\) 14.7388 + 0.920714i 0.0361245 + 0.00225665i
\(409\) 340.599 196.645i 0.832762 0.480795i −0.0220357 0.999757i \(-0.507015\pi\)
0.854797 + 0.518962i \(0.173681\pi\)
\(410\) 44.5435 + 77.1516i 0.108643 + 0.188175i
\(411\) −213.987 142.036i −0.520650 0.345586i
\(412\) 328.778 569.459i 0.798004 1.38218i
\(413\) 999.758i 2.42072i
\(414\) −9.46975 + 75.5001i −0.0228738 + 0.182367i
\(415\) 178.063 0.429068
\(416\) −136.085 + 114.423i −0.327127 + 0.275054i
\(417\) −208.738 + 103.734i −0.500571 + 0.248763i
\(418\) 130.597 75.4000i 0.312432 0.180383i
\(419\) −452.106 + 261.023i −1.07901 + 0.622967i −0.930629 0.365963i \(-0.880740\pi\)
−0.148381 + 0.988930i \(0.547406\pi\)
\(420\) 264.969 + 533.181i 0.630878 + 1.26948i
\(421\) −520.275 300.381i −1.23581 0.713494i −0.267573 0.963538i \(-0.586222\pi\)
−0.968235 + 0.250044i \(0.919555\pi\)
\(422\) 15.1537 0.0359093
\(423\) −39.2554 + 51.8125i −0.0928023 + 0.122488i
\(424\) 93.5064i 0.220534i
\(425\) 6.70980 + 3.87391i 0.0157878 + 0.00911507i
\(426\) −48.9785 32.5099i −0.114973 0.0763143i
\(427\) −87.0770 + 50.2739i −0.203927 + 0.117737i
\(428\) 425.311 245.553i 0.993717 0.573723i
\(429\) 239.993 551.504i 0.559424 1.28556i
\(430\) −17.5314 + 30.3653i −0.0407707 + 0.0706169i
\(431\) 530.893 1.23177 0.615885 0.787836i \(-0.288799\pi\)
0.615885 + 0.787836i \(0.288799\pi\)
\(432\) 306.427 + 263.789i 0.709321 + 0.610622i
\(433\) −118.218 −0.273020 −0.136510 0.990639i \(-0.543589\pi\)
−0.136510 + 0.990639i \(0.543589\pi\)
\(434\) 35.9116 62.2007i 0.0827456 0.143320i
\(435\) 431.181 + 26.9353i 0.991220 + 0.0619203i
\(436\) 9.95490 5.74746i 0.0228323 0.0131823i
\(437\) −480.525 832.293i −1.09960 1.90456i
\(438\) 26.3710 39.7298i 0.0602077 0.0907072i
\(439\) −298.551 + 517.105i −0.680070 + 1.17792i 0.294889 + 0.955532i \(0.404717\pi\)
−0.974959 + 0.222385i \(0.928616\pi\)
\(440\) 191.615 0.435488
\(441\) −142.360 337.821i −0.322812 0.766035i
\(442\) 2.75792 7.60115i 0.00623964 0.0171972i
\(443\) 311.260 + 179.706i 0.702620 + 0.405658i 0.808322 0.588740i \(-0.200376\pi\)
−0.105703 + 0.994398i \(0.533709\pi\)
\(444\) −92.1604 185.449i −0.207568 0.417678i
\(445\) −197.783 342.571i −0.444457 0.769822i
\(446\) 28.5111 16.4609i 0.0639262 0.0369078i
\(447\) −283.703 + 140.989i −0.634683 + 0.315411i
\(448\) −458.494 264.712i −1.02342 0.590874i
\(449\) 568.967 1.26719 0.633594 0.773666i \(-0.281579\pi\)
0.633594 + 0.773666i \(0.281579\pi\)
\(450\) −3.74494 8.88675i −0.00832209 0.0197483i
\(451\) 875.113 1.94038
\(452\) −591.775 341.661i −1.30924 0.755888i
\(453\) −301.946 + 454.903i −0.666547 + 1.00420i
\(454\) −20.9654 36.3132i −0.0461794 0.0799850i
\(455\) 649.053 115.120i 1.42649 0.253011i
\(456\) 231.702 + 14.4742i 0.508119 + 0.0317416i
\(457\) −345.318 199.370i −0.755620 0.436257i 0.0721010 0.997397i \(-0.477030\pi\)
−0.827721 + 0.561140i \(0.810363\pi\)
\(458\) 23.4411i 0.0511815i
\(459\) −56.2599 10.6545i −0.122571 0.0232124i
\(460\) 603.943i 1.31292i
\(461\) −288.621 + 499.906i −0.626076 + 1.08440i 0.362256 + 0.932079i \(0.382007\pi\)
−0.988332 + 0.152317i \(0.951327\pi\)
\(462\) −128.291 8.01418i −0.277686 0.0173467i
\(463\) −456.842 + 263.758i −0.986700 + 0.569671i −0.904286 0.426927i \(-0.859596\pi\)
−0.0824134 + 0.996598i \(0.526263\pi\)
\(464\) −348.897 + 201.436i −0.751934 + 0.434129i
\(465\) 229.581 345.881i 0.493724 0.743830i
\(466\) 14.0815 + 8.12994i 0.0302177 + 0.0174462i
\(467\) 263.576i 0.564404i −0.959355 0.282202i \(-0.908935\pi\)
0.959355 0.282202i \(-0.0910648\pi\)
\(468\) 384.454 248.797i 0.821483 0.531617i
\(469\) −735.046 −1.56726
\(470\) −5.66970 + 9.82020i −0.0120632 + 0.0208940i
\(471\) −222.132 + 110.390i −0.471618 + 0.234375i
\(472\) 122.487 + 212.153i 0.259506 + 0.449477i
\(473\) 172.213 + 298.282i 0.364087 + 0.630617i
\(474\) 48.8317 24.2673i 0.103020 0.0511969i
\(475\) 105.482 + 60.9001i 0.222067 + 0.128211i
\(476\) 78.6285 0.165186
\(477\) −45.1218 + 359.745i −0.0945949 + 0.754183i
\(478\) −113.975 −0.238441
\(479\) −103.619 + 179.473i −0.216324 + 0.374683i −0.953681 0.300819i \(-0.902740\pi\)
0.737358 + 0.675503i \(0.236073\pi\)
\(480\) 182.987 + 121.459i 0.381223 + 0.253040i
\(481\) −225.751 + 40.0406i −0.469337 + 0.0832446i
\(482\) −23.2016 + 13.3954i −0.0481361 + 0.0277914i
\(483\) −51.0744 + 817.599i −0.105744 + 1.69275i
\(484\) 228.653 396.038i 0.472423 0.818261i
\(485\) 158.101i 0.325982i
\(486\) 47.8069 + 52.8584i 0.0983680 + 0.108762i
\(487\) 266.418i 0.547059i −0.961864 0.273529i \(-0.911809\pi\)
0.961864 0.273529i \(-0.0881911\pi\)
\(488\) −12.3188 + 21.3367i −0.0252434 + 0.0437228i
\(489\) 322.870 + 20.1693i 0.660266 + 0.0412460i
\(490\) −31.9744 55.3813i −0.0652539 0.113023i
\(491\) 277.257 160.074i 0.564678 0.326017i −0.190343 0.981718i \(-0.560960\pi\)
0.755021 + 0.655701i \(0.227627\pi\)
\(492\) 555.129 + 368.472i 1.12831 + 0.748926i
\(493\) 28.5268 49.4098i 0.0578637 0.100223i
\(494\) 43.3561 119.495i 0.0877654 0.241892i
\(495\) −737.195 92.4641i −1.48928 0.186796i
\(496\) 387.130i 0.780504i
\(497\) −548.092 316.441i −1.10280 0.636702i
\(498\) −26.2110 + 13.0258i −0.0526326 + 0.0261562i
\(499\) 695.936 401.799i 1.39466 0.805208i 0.400834 0.916151i \(-0.368721\pi\)
0.993827 + 0.110943i \(0.0353872\pi\)
\(500\) −223.617 387.317i −0.447235 0.774634i
\(501\) −188.677 + 93.7644i −0.376600 + 0.187155i
\(502\) −53.4518 30.8604i −0.106478 0.0614750i
\(503\) 548.156i 1.08977i −0.838510 0.544887i \(-0.816573\pi\)
0.838510 0.544887i \(-0.183427\pi\)
\(504\) −157.729 119.502i −0.312954 0.237107i
\(505\) 445.358i 0.881896i
\(506\) 112.919 + 65.1938i 0.223160 + 0.128841i
\(507\) −144.343 486.019i −0.284700 0.958617i
\(508\) −31.2607 54.1451i −0.0615368 0.106585i
\(509\) 138.478 + 239.850i 0.272058 + 0.471218i 0.969389 0.245531i \(-0.0789624\pi\)
−0.697331 + 0.716750i \(0.745629\pi\)
\(510\) −9.96907 0.622755i −0.0195472 0.00122109i
\(511\) 256.687 444.594i 0.502322 0.870047i
\(512\) −343.846 −0.671575
\(513\) −884.439 167.495i −1.72405 0.326500i
\(514\) 108.577i 0.211239i
\(515\) −449.647 + 778.811i −0.873101 + 1.51225i
\(516\) −16.3498 + 261.727i −0.0316856 + 0.507223i
\(517\) 55.6941 + 96.4650i 0.107726 + 0.186586i
\(518\) 24.4997 + 42.4348i 0.0472968 + 0.0819204i
\(519\) 256.271 386.091i 0.493778 0.743913i
\(520\) 123.628 103.949i 0.237746 0.199901i
\(521\) 412.120i 0.791018i −0.918462 0.395509i \(-0.870568\pi\)
0.918462 0.395509i \(-0.129432\pi\)
\(522\) −65.4405 + 27.5771i −0.125365 + 0.0528297i
\(523\) −658.680 −1.25943 −0.629713 0.776828i \(-0.716827\pi\)
−0.629713 + 0.776828i \(0.716827\pi\)
\(524\) −81.0769 46.8098i −0.154727 0.0893316i
\(525\) −46.2041 92.9738i −0.0880078 0.177093i
\(526\) −118.698 + 68.5303i −0.225661 + 0.130286i
\(527\) −27.4121 47.4792i −0.0520154 0.0900933i
\(528\) 620.449 308.337i 1.17509 0.583972i
\(529\) 150.980 261.505i 0.285407 0.494339i
\(530\) 63.2462i 0.119332i
\(531\) −368.866 875.320i −0.694662 1.64844i
\(532\) 1236.09 2.32347
\(533\) 564.614 474.738i 1.05931 0.890691i
\(534\) 54.1739 + 35.9584i 0.101449 + 0.0673377i
\(535\) −581.669 + 335.827i −1.08723 + 0.627714i
\(536\) −155.980 + 90.0552i −0.291008 + 0.168013i
\(537\) −489.406 30.5726i −0.911370 0.0569322i
\(538\) −3.07631 1.77611i −0.00571805 0.00330132i
\(539\) −628.177 −1.16545
\(540\) −428.708 369.055i −0.793904 0.683436i
\(541\) 799.766i 1.47831i 0.673535 + 0.739155i \(0.264775\pi\)
−0.673535 + 0.739155i \(0.735225\pi\)
\(542\) 25.6025 + 14.7816i 0.0472372 + 0.0272724i
\(543\) 25.0065 400.303i 0.0460524 0.737207i
\(544\) 25.1187 14.5023i 0.0461741 0.0266586i
\(545\) −13.6146 + 7.86041i −0.0249810 + 0.0144228i
\(546\) −87.1198 + 64.4257i −0.159560 + 0.117996i
\(547\) −505.787 + 876.049i −0.924657 + 1.60155i −0.132545 + 0.991177i \(0.542315\pi\)
−0.792112 + 0.610376i \(0.791018\pi\)
\(548\) −335.083 −0.611466
\(549\) 57.6898 76.1439i 0.105082 0.138696i
\(550\) −16.5249 −0.0300452
\(551\) 448.458 776.752i 0.813898 1.40971i
\(552\) 89.3311 + 179.756i 0.161832 + 0.325645i
\(553\) 508.404 293.527i 0.919357 0.530791i
\(554\) −1.04180 1.80445i −0.00188051 0.00325713i
\(555\) 126.041 + 253.626i 0.227102 + 0.456984i
\(556\) −152.053 + 263.364i −0.273477 + 0.473677i
\(557\) 164.150 0.294704 0.147352 0.989084i \(-0.452925\pi\)
0.147352 + 0.989084i \(0.452925\pi\)
\(558\) −8.49247 + 67.7085i −0.0152195 + 0.121341i
\(559\) 272.925 + 99.0250i 0.488237 + 0.177147i
\(560\) 657.603 + 379.667i 1.17429 + 0.677978i
\(561\) −54.2615 + 81.7489i −0.0967228 + 0.145720i
\(562\) 15.3331 + 26.5578i 0.0272831 + 0.0472558i
\(563\) 244.075 140.917i 0.433526 0.250297i −0.267321 0.963607i \(-0.586139\pi\)
0.700848 + 0.713311i \(0.252805\pi\)
\(564\) −5.28755 + 84.6431i −0.00937509 + 0.150076i
\(565\) 809.331 + 467.267i 1.43244 + 0.827022i
\(566\) 17.0112 0.0300551
\(567\) 549.161 + 535.870i 0.968538 + 0.945097i
\(568\) −155.077 −0.273023
\(569\) 773.477 + 446.567i 1.35936 + 0.784828i 0.989538 0.144273i \(-0.0460845\pi\)
0.369825 + 0.929102i \(0.379418\pi\)
\(570\) −156.720 9.79008i −0.274947 0.0171756i
\(571\) 179.759 + 311.352i 0.314814 + 0.545274i 0.979398 0.201939i \(-0.0647244\pi\)
−0.664584 + 0.747214i \(0.731391\pi\)
\(572\) −137.040 772.640i −0.239581 1.35077i
\(573\) 272.731 410.889i 0.475970 0.717084i
\(574\) −136.531 78.8264i −0.237859 0.137328i
\(575\) 105.313i 0.183153i
\(576\) 499.093 + 62.5997i 0.866481 + 0.108680i
\(577\) 455.976i 0.790253i 0.918627 + 0.395126i \(0.129299\pi\)
−0.918627 + 0.395126i \(0.870701\pi\)
\(578\) 41.7215 72.2638i 0.0721826 0.125024i
\(579\) −47.9740 96.5353i −0.0828566 0.166728i
\(580\) 488.127 281.820i 0.841598 0.485897i
\(581\) −272.893 + 157.555i −0.469695 + 0.271178i
\(582\) 11.5655 + 23.2726i 0.0198720 + 0.0399873i
\(583\) 538.040 + 310.637i 0.922881 + 0.532826i
\(584\) 125.793i 0.215399i
\(585\) −525.792 + 340.263i −0.898790 + 0.581645i
\(586\) −11.1181 −0.0189728
\(587\) 382.389 662.318i 0.651430 1.12831i −0.331346 0.943509i \(-0.607503\pi\)
0.982776 0.184801i \(-0.0591639\pi\)
\(588\) −398.485 264.498i −0.677696 0.449826i
\(589\) −430.935 746.401i −0.731638 1.26723i
\(590\) −82.8480 143.497i −0.140420 0.243215i
\(591\) 5.97392 95.6304i 0.0101082 0.161811i
\(592\) −228.725 132.054i −0.386360 0.223065i
\(593\) 34.0539 0.0574265 0.0287133 0.999588i \(-0.490859\pi\)
0.0287133 + 0.999588i \(0.490859\pi\)
\(594\) 115.280 40.3169i 0.194074 0.0678736i
\(595\) −107.535 −0.180731
\(596\) −206.661 + 357.948i −0.346747 + 0.600584i
\(597\) −11.8036 + 188.952i −0.0197715 + 0.316502i
\(598\) 108.221 19.1948i 0.180972 0.0320983i
\(599\) −584.137 + 337.251i −0.975186 + 0.563024i −0.900813 0.434206i \(-0.857029\pi\)
−0.0743729 + 0.997230i \(0.523696\pi\)
\(600\) −21.1955 14.0687i −0.0353259 0.0234479i
\(601\) −192.274 + 333.029i −0.319924 + 0.554124i −0.980472 0.196660i \(-0.936991\pi\)
0.660548 + 0.750784i \(0.270324\pi\)
\(602\) 62.0488i 0.103071i
\(603\) 643.556 271.199i 1.06726 0.449749i
\(604\) 712.335i 1.17936i
\(605\) −312.713 + 541.635i −0.516881 + 0.895264i
\(606\) 32.5791 + 65.5570i 0.0537609 + 0.108180i
\(607\) 567.487 + 982.915i 0.934904 + 1.61930i 0.774806 + 0.632200i \(0.217848\pi\)
0.160098 + 0.987101i \(0.448819\pi\)
\(608\) 394.881 227.984i 0.649475 0.374974i
\(609\) −684.643 + 340.239i −1.12421 + 0.558685i
\(610\) 8.33220 14.4318i 0.0136594 0.0236587i
\(611\) 88.2645 + 32.0249i 0.144459 + 0.0524140i
\(612\) −68.8417 + 29.0104i −0.112487 + 0.0474026i
\(613\) 201.546i 0.328787i −0.986395 0.164394i \(-0.947433\pi\)
0.986395 0.164394i \(-0.0525667\pi\)
\(614\) −143.521 82.8617i −0.233747 0.134954i
\(615\) −759.213 503.934i −1.23449 0.819404i
\(616\) −293.661 + 169.545i −0.476722 + 0.275236i
\(617\) 153.384 + 265.670i 0.248597 + 0.430583i 0.963137 0.269012i \(-0.0866972\pi\)
−0.714540 + 0.699595i \(0.753364\pi\)
\(618\) 9.21630 147.535i 0.0149131 0.238729i
\(619\) −785.415 453.460i −1.26885 0.732568i −0.294076 0.955782i \(-0.595012\pi\)
−0.974769 + 0.223214i \(0.928345\pi\)
\(620\) 541.616i 0.873575i
\(621\) −256.940 734.678i −0.413752 1.18306i
\(622\) 151.886i 0.244190i
\(623\) 606.230 + 350.007i 0.973082 + 0.561809i
\(624\) 233.039 535.523i 0.373459 0.858209i
\(625\) 351.493 + 608.805i 0.562390 + 0.974087i
\(626\) 40.6807 + 70.4610i 0.0649851 + 0.112557i
\(627\) −853.023 + 1285.14i −1.36048 + 2.04967i
\(628\) −161.810 + 280.264i −0.257660 + 0.446280i
\(629\) 37.4024 0.0594632
\(630\) 106.685 + 80.8292i 0.169342 + 0.128300i
\(631\) 975.757i 1.54637i −0.634183 0.773183i \(-0.718663\pi\)
0.634183 0.773183i \(-0.281337\pi\)
\(632\) 71.9239 124.576i 0.113804 0.197114i
\(633\) −138.806 + 68.9808i −0.219283 + 0.108974i
\(634\) 44.7860 + 77.5716i 0.0706403 + 0.122353i
\(635\) 42.7532 + 74.0507i 0.0673278 + 0.116615i
\(636\) 210.511 + 423.598i 0.330992 + 0.666035i
\(637\) −405.294 + 340.779i −0.636254 + 0.534975i
\(638\) 121.686i 0.190731i
\(639\) 596.624 + 74.8328i 0.933684 + 0.117109i
\(640\) 380.582 0.594660
\(641\) −639.637 369.295i −0.997874 0.576123i −0.0902554 0.995919i \(-0.528768\pi\)
−0.907619 + 0.419796i \(0.862102\pi\)
\(642\) 61.0556 91.9846i 0.0951021 0.143278i
\(643\) 10.2718 5.93041i 0.0159748 0.00922303i −0.491991 0.870600i \(-0.663731\pi\)
0.507966 + 0.861377i \(0.330398\pi\)
\(644\) 534.384 + 925.580i 0.829789 + 1.43724i
\(645\) 22.3605 357.946i 0.0346674 0.554955i
\(646\) −10.3685 + 17.9588i −0.0160503 + 0.0278000i
\(647\) 752.487i 1.16304i −0.813532 0.581520i \(-0.802458\pi\)
0.813532 0.581520i \(-0.197542\pi\)
\(648\) 182.187 + 46.4329i 0.281153 + 0.0716558i
\(649\) −1627.65 −2.50794
\(650\) −10.6617 + 8.96455i −0.0164026 + 0.0137916i
\(651\) −45.8035 + 733.223i −0.0703587 + 1.12630i
\(652\) 365.512 211.028i 0.560601 0.323663i
\(653\) −201.227 + 116.178i −0.308157 + 0.177915i −0.646102 0.763251i \(-0.723602\pi\)
0.337944 + 0.941166i \(0.390268\pi\)
\(654\) 1.42908 2.15301i 0.00218513 0.00329206i
\(655\) 110.883 + 64.0186i 0.169288 + 0.0977383i
\(656\) 849.754 1.29536
\(657\) −60.7019 + 483.962i −0.0923926 + 0.736624i
\(658\) 20.0667i 0.0304966i
\(659\) 974.227 + 562.470i 1.47834 + 0.853521i 0.999700 0.0244892i \(-0.00779593\pi\)
0.478642 + 0.878010i \(0.341129\pi\)
\(660\) −868.043 + 431.381i −1.31522 + 0.653608i
\(661\) 228.295 131.806i 0.345378 0.199404i −0.317270 0.948335i \(-0.602766\pi\)
0.662648 + 0.748931i \(0.269433\pi\)
\(662\) −97.7471 + 56.4343i −0.147654 + 0.0852482i
\(663\) 9.33879 + 82.1798i 0.0140857 + 0.123951i
\(664\) −38.6061 + 66.8676i −0.0581416 + 0.100704i
\(665\) −1690.51 −2.54212
\(666\) −37.1068 28.1137i −0.0557160 0.0422128i
\(667\) 775.508 1.16268
\(668\) −137.440 + 238.053i −0.205748 + 0.356367i
\(669\) −186.227 + 280.564i −0.278366 + 0.419379i
\(670\) 105.502 60.9118i 0.157466 0.0909132i
\(671\) −81.8482 141.765i −0.121980 0.211275i
\(672\) −387.909 24.2322i −0.577245 0.0360598i
\(673\) −270.310 + 468.190i −0.401649 + 0.695677i −0.993925 0.110059i \(-0.964896\pi\)
0.592276 + 0.805735i \(0.298230\pi\)
\(674\) −18.7172 −0.0277703
\(675\) 74.7563 + 64.3543i 0.110750 + 0.0953397i
\(676\) −507.566 424.158i −0.750837 0.627452i
\(677\) 404.458 + 233.514i 0.597428 + 0.344925i 0.768029 0.640415i \(-0.221238\pi\)
−0.170601 + 0.985340i \(0.554571\pi\)
\(678\) −153.316 9.57746i −0.226130 0.0141260i
\(679\) 139.892 + 242.300i 0.206026 + 0.356848i
\(680\) −22.8194 + 13.1748i −0.0335580 + 0.0193747i
\(681\) 357.341 + 237.188i 0.524730 + 0.348294i
\(682\) 101.266 + 58.4658i 0.148483 + 0.0857269i
\(683\) −456.734 −0.668717 −0.334359 0.942446i \(-0.608520\pi\)
−0.334359 + 0.942446i \(0.608520\pi\)
\(684\) −1082.23 + 456.060i −1.58221 + 0.666755i
\(685\) 458.271 0.669008
\(686\) −19.8924 11.4849i −0.0289976 0.0167418i
\(687\) 106.706 + 214.718i 0.155321 + 0.312544i
\(688\) 167.223 + 289.638i 0.243056 + 0.420986i
\(689\) 515.656 91.4600i 0.748411 0.132743i
\(690\) −60.4221 121.584i −0.0875682 0.176208i
\(691\) 980.035 + 565.824i 1.41829 + 0.818847i 0.996148 0.0876845i \(-0.0279467\pi\)
0.422137 + 0.906532i \(0.361280\pi\)
\(692\) 604.581i 0.873672i
\(693\) 1211.61 510.581i 1.74836 0.736769i
\(694\) 162.983i 0.234846i
\(695\) 207.953 360.185i 0.299213 0.518253i
\(696\) −103.600 + 156.080i −0.148850 + 0.224253i
\(697\) −104.217 + 60.1699i −0.149523 + 0.0863270i
\(698\) −36.3581 + 20.9914i −0.0520890 + 0.0300736i
\(699\) −165.993 10.3694i −0.237471 0.0148346i
\(700\) −117.305 67.7260i −0.167578 0.0967514i
\(701\) 110.878i 0.158171i 0.996868 + 0.0790855i \(0.0252000\pi\)
−0.996868 + 0.0790855i \(0.974800\pi\)
\(702\) 52.5059 88.5500i 0.0747947 0.126140i
\(703\) 587.987 0.836397
\(704\) 430.963 746.450i 0.612163 1.06030i
\(705\) 7.23143 115.761i 0.0102573 0.164200i
\(706\) −33.7536 58.4630i −0.0478097 0.0828088i
\(707\) 394.063 + 682.537i 0.557374 + 0.965399i
\(708\) −1032.50 685.333i −1.45834 0.967985i
\(709\) 23.1239 + 13.3506i 0.0326148 + 0.0188302i 0.516219 0.856457i \(-0.327339\pi\)
−0.483604 + 0.875287i \(0.660672\pi\)
\(710\) 104.891 0.147734
\(711\) −336.826 + 444.571i −0.473735 + 0.625276i
\(712\) 171.527 0.240908
\(713\) 372.603 645.367i 0.522584 0.905142i
\(714\) 15.8292 7.86646i 0.0221698 0.0110175i
\(715\) 187.421 + 1056.69i 0.262127 + 1.47789i
\(716\) −554.042 + 319.876i −0.773802 + 0.446755i
\(717\) 1043.99 518.821i 1.45606 0.723600i
\(718\) 26.7940 46.4086i 0.0373175 0.0646359i
\(719\) 236.651i 0.329139i −0.986365 0.164570i \(-0.947376\pi\)
0.986365 0.164570i \(-0.0526235\pi\)
\(720\) −715.833 89.7848i −0.994212 0.124701i
\(721\) 1591.43i 2.20726i
\(722\) −110.060 + 190.629i −0.152437 + 0.264029i
\(723\) 151.547 228.316i 0.209608 0.315789i
\(724\) −261.639 453.172i −0.361380 0.625928i
\(725\) −85.1175 + 49.1426i −0.117403 + 0.0677829i
\(726\) 6.40960 102.605i 0.00882865 0.141329i
\(727\) 390.231 675.900i 0.536769 0.929711i −0.462306 0.886720i \(-0.652978\pi\)
0.999075 0.0429910i \(-0.0136887\pi\)
\(728\) −97.4910 + 268.697i −0.133916 + 0.369089i
\(729\) −678.520 266.556i −0.930754 0.365646i
\(730\) 85.0845i 0.116554i
\(731\) −41.0178 23.6816i −0.0561118 0.0323962i
\(732\) 7.77060 124.392i 0.0106156 0.169934i
\(733\) −627.004 + 362.001i −0.855394 + 0.493862i −0.862467 0.506113i \(-0.831082\pi\)
0.00707285 + 0.999975i \(0.497749\pi\)
\(734\) −24.1372 41.8068i −0.0328844 0.0569575i
\(735\) 544.981 + 361.736i 0.741471 + 0.492158i
\(736\) 341.429 + 197.124i 0.463898 + 0.267832i
\(737\) 1196.69i 1.62373i
\(738\) 148.621 + 18.6411i 0.201383 + 0.0252589i
\(739\) 557.712i 0.754685i 0.926074 + 0.377342i \(0.123162\pi\)
−0.926074 + 0.377342i \(0.876838\pi\)
\(740\) 319.999 + 184.752i 0.432432 + 0.249665i
\(741\) 146.811 + 1291.92i 0.198126 + 1.74348i
\(742\) −55.9618 96.9286i −0.0754202 0.130632i
\(743\) −148.675 257.513i −0.200101 0.346586i 0.748459 0.663181i \(-0.230794\pi\)
−0.948561 + 0.316595i \(0.897461\pi\)
\(744\) 80.1121 + 161.205i 0.107678 + 0.216673i
\(745\) 282.637 489.541i 0.379378 0.657102i
\(746\) −141.950 −0.190282
\(747\) 180.795 238.629i 0.242029 0.319450i
\(748\) 128.011i 0.171138i
\(749\) 594.295 1029.35i 0.793452 1.37430i
\(750\) −83.7674 55.6013i −0.111690 0.0741351i
\(751\) −189.152 327.620i −0.251866 0.436245i 0.712173 0.702004i \(-0.247711\pi\)
−0.964040 + 0.265758i \(0.914378\pi\)
\(752\) 54.0802 + 93.6697i 0.0719152 + 0.124561i
\(753\) 630.091 + 39.3610i 0.836774 + 0.0522723i
\(754\) 66.0134 + 78.5109i 0.0875510 + 0.104126i
\(755\) 974.212i 1.29035i
\(756\) 983.570 + 186.268i 1.30102 + 0.246387i
\(757\) 521.787 0.689282 0.344641 0.938735i \(-0.388001\pi\)
0.344641 + 0.938735i \(0.388001\pi\)
\(758\) 18.2067 + 10.5116i 0.0240194 + 0.0138676i
\(759\) −1331.09 83.1515i −1.75374 0.109554i
\(760\) −358.735 + 207.115i −0.472019 + 0.272520i
\(761\) −489.973 848.658i −0.643854 1.11519i −0.984565 0.175020i \(-0.944001\pi\)
0.340711 0.940168i \(-0.389332\pi\)
\(762\) −11.7103 7.77281i −0.0153679 0.0102005i
\(763\) 13.9102 24.0931i 0.0182309 0.0315768i
\(764\) 643.413i 0.842163i
\(765\) 94.1502 39.6755i 0.123072 0.0518635i
\(766\) 11.9398 0.0155872
\(767\) −1050.15 + 882.982i −1.36916 + 1.15122i
\(768\) 544.573 270.630i 0.709080 0.352383i
\(769\) −1032.58 + 596.163i −1.34276 + 0.775245i −0.987212 0.159412i \(-0.949040\pi\)
−0.355551 + 0.934657i \(0.615707\pi\)
\(770\) 198.627 114.678i 0.257958 0.148932i
\(771\) 494.250 + 994.551i