Properties

Label 117.3.n.a.38.13
Level $117$
Weight $3$
Character 117.38
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(38,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.38");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 38.13
Character \(\chi\) \(=\) 117.38
Dual form 117.3.n.a.77.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.146647 + 0.254001i) q^{2} +(-0.187042 + 2.99416i) q^{3} +(1.95699 + 3.38960i) q^{4} +(2.67644 + 4.63573i) q^{5} +(-0.733091 - 0.486595i) q^{6} +(-8.20362 - 4.73636i) q^{7} -2.32113 q^{8} +(-8.93003 - 1.12007i) q^{9} -1.56997 q^{10} +(7.71102 - 13.3559i) q^{11} +(-10.5151 + 5.22555i) q^{12} +(9.95015 + 8.36627i) q^{13} +(2.40608 - 1.38915i) q^{14} +(-14.3807 + 7.14663i) q^{15} +(-7.48757 + 12.9688i) q^{16} -2.12074i q^{17} +(1.59406 - 2.10398i) q^{18} +33.3392i q^{19} +(-10.4755 + 18.1442i) q^{20} +(15.7159 - 23.6771i) q^{21} +(2.26160 + 3.91721i) q^{22} +(24.9644 - 14.4132i) q^{23} +(0.434148 - 6.94984i) q^{24} +(-1.82668 + 3.16390i) q^{25} +(-3.58420 + 1.30045i) q^{26} +(5.02395 - 26.5285i) q^{27} -37.0760i q^{28} +(23.2984 + 13.4514i) q^{29} +(0.293650 - 4.70075i) q^{30} +(-22.3881 + 12.9257i) q^{31} +(-6.83832 - 11.8443i) q^{32} +(38.5474 + 25.5861i) q^{33} +(0.538669 + 0.311001i) q^{34} -50.7064i q^{35} +(-13.6794 - 32.4612i) q^{36} -17.6365i q^{37} +(-8.46819 - 4.88911i) q^{38} +(-26.9111 + 28.2275i) q^{39} +(-6.21236 - 10.7601i) q^{40} +(28.3722 + 49.1420i) q^{41} +(3.70930 + 7.46402i) q^{42} +(11.1667 - 19.3413i) q^{43} +60.3615 q^{44} +(-18.7084 - 44.3950i) q^{45} +8.45463i q^{46} +(-3.61133 + 6.25502i) q^{47} +(-37.4304 - 24.8447i) q^{48} +(20.3662 + 35.2753i) q^{49} +(-0.535755 - 0.927955i) q^{50} +(6.34983 + 0.396666i) q^{51} +(-8.88602 + 50.0998i) q^{52} -40.2849i q^{53} +(6.00150 + 5.16642i) q^{54} +82.5523 q^{55} +(19.0416 + 10.9937i) q^{56} +(-99.8231 - 6.23583i) q^{57} +(-6.83331 + 3.94521i) q^{58} +(-52.7704 - 91.4009i) q^{59} +(-52.3672 - 34.7592i) q^{60} +(-5.30723 + 9.19239i) q^{61} -7.58211i q^{62} +(67.9535 + 51.4845i) q^{63} -55.8893 q^{64} +(-12.1528 + 68.5181i) q^{65} +(-12.1518 + 6.03892i) q^{66} +(67.2001 - 38.7980i) q^{67} +(7.18846 - 4.15026i) q^{68} +(38.4861 + 77.4433i) q^{69} +(12.8795 + 7.43596i) q^{70} +66.8110 q^{71} +(20.7277 + 2.59982i) q^{72} +54.1949i q^{73} +(4.47968 + 2.58635i) q^{74} +(-9.13157 - 6.06116i) q^{75} +(-113.007 + 65.2445i) q^{76} +(-126.516 + 73.0443i) q^{77} +(-3.22338 - 10.9749i) q^{78} +(30.9866 - 53.6704i) q^{79} -80.1602 q^{80} +(78.4909 + 20.0045i) q^{81} -16.6428 q^{82} +(16.6325 - 28.8082i) q^{83} +(111.012 + 6.93476i) q^{84} +(9.83117 - 5.67603i) q^{85} +(3.27513 + 5.67269i) q^{86} +(-44.6333 + 67.2433i) q^{87} +(-17.8983 + 31.0007i) q^{88} -73.8979 q^{89} +(14.0199 + 1.75847i) q^{90} +(-42.0015 - 115.761i) q^{91} +(97.7100 + 56.4129i) q^{92} +(-34.5143 - 69.4512i) q^{93} +(-1.05919 - 1.83456i) q^{94} +(-154.552 + 89.2305i) q^{95} +(36.7429 - 18.2597i) q^{96} +(-25.5787 - 14.7678i) q^{97} -11.9466 q^{98} +(-83.8191 + 110.631i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 4 q^{3} - 50 q^{4} + 4 q^{9} + 8 q^{10} - 38 q^{12} - 6 q^{13} - 6 q^{14} - 90 q^{16} + 14 q^{22} + 138 q^{23} - 92 q^{25} - 76 q^{27} + 48 q^{29} + 186 q^{30} - 154 q^{36} + 324 q^{38} - 2 q^{39}+ \cdots + 504 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.146647 + 0.254001i −0.0733237 + 0.127000i −0.900356 0.435154i \(-0.856694\pi\)
0.827032 + 0.562154i \(0.190027\pi\)
\(3\) −0.187042 + 2.99416i −0.0623472 + 0.998055i
\(4\) 1.95699 + 3.38960i 0.489247 + 0.847401i
\(5\) 2.67644 + 4.63573i 0.535288 + 0.927147i 0.999149 + 0.0412386i \(0.0131304\pi\)
−0.463861 + 0.885908i \(0.653536\pi\)
\(6\) −0.733091 0.486595i −0.122182 0.0810992i
\(7\) −8.20362 4.73636i −1.17195 0.676623i −0.217808 0.975992i \(-0.569891\pi\)
−0.954138 + 0.299369i \(0.903224\pi\)
\(8\) −2.32113 −0.290141
\(9\) −8.93003 1.12007i −0.992226 0.124452i
\(10\) −1.56997 −0.156997
\(11\) 7.71102 13.3559i 0.701001 1.21417i −0.267114 0.963665i \(-0.586070\pi\)
0.968115 0.250505i \(-0.0805967\pi\)
\(12\) −10.5151 + 5.22555i −0.876256 + 0.435462i
\(13\) 9.95015 + 8.36627i 0.765396 + 0.643559i
\(14\) 2.40608 1.38915i 0.171863 0.0992250i
\(15\) −14.3807 + 7.14663i −0.958717 + 0.476442i
\(16\) −7.48757 + 12.9688i −0.467973 + 0.810553i
\(17\) 2.12074i 0.124749i −0.998053 0.0623746i \(-0.980133\pi\)
0.998053 0.0623746i \(-0.0198674\pi\)
\(18\) 1.59406 2.10398i 0.0885591 0.116888i
\(19\) 33.3392i 1.75470i 0.479854 + 0.877348i \(0.340690\pi\)
−0.479854 + 0.877348i \(0.659310\pi\)
\(20\) −10.4755 + 18.1442i −0.523777 + 0.907208i
\(21\) 15.7159 23.6771i 0.748374 1.12748i
\(22\) 2.26160 + 3.91721i 0.102800 + 0.178055i
\(23\) 24.9644 14.4132i 1.08541 0.626660i 0.153058 0.988217i \(-0.451088\pi\)
0.932350 + 0.361557i \(0.117755\pi\)
\(24\) 0.434148 6.94984i 0.0180895 0.289577i
\(25\) −1.82668 + 3.16390i −0.0730671 + 0.126556i
\(26\) −3.58420 + 1.30045i −0.137854 + 0.0500174i
\(27\) 5.02395 26.5285i 0.186072 0.982536i
\(28\) 37.0760i 1.32414i
\(29\) 23.2984 + 13.4514i 0.803394 + 0.463840i 0.844657 0.535309i \(-0.179805\pi\)
−0.0412625 + 0.999148i \(0.513138\pi\)
\(30\) 0.293650 4.70075i 0.00978835 0.156692i
\(31\) −22.3881 + 12.9257i −0.722195 + 0.416960i −0.815560 0.578672i \(-0.803571\pi\)
0.0933648 + 0.995632i \(0.470238\pi\)
\(32\) −6.83832 11.8443i −0.213698 0.370135i
\(33\) 38.5474 + 25.5861i 1.16810 + 0.775338i
\(34\) 0.538669 + 0.311001i 0.0158432 + 0.00914708i
\(35\) 50.7064i 1.44875i
\(36\) −13.6794 32.4612i −0.379983 0.901701i
\(37\) 17.6365i 0.476662i −0.971184 0.238331i \(-0.923400\pi\)
0.971184 0.238331i \(-0.0766003\pi\)
\(38\) −8.46819 4.88911i −0.222847 0.128661i
\(39\) −26.9111 + 28.2275i −0.690028 + 0.723783i
\(40\) −6.21236 10.7601i −0.155309 0.269003i
\(41\) 28.3722 + 49.1420i 0.692004 + 1.19859i 0.971180 + 0.238346i \(0.0766052\pi\)
−0.279177 + 0.960240i \(0.590061\pi\)
\(42\) 3.70930 + 7.46402i 0.0883168 + 0.177715i
\(43\) 11.1667 19.3413i 0.259690 0.449797i −0.706469 0.707744i \(-0.749713\pi\)
0.966159 + 0.257947i \(0.0830462\pi\)
\(44\) 60.3615 1.37185
\(45\) −18.7084 44.3950i −0.415742 0.986556i
\(46\) 8.45463i 0.183796i
\(47\) −3.61133 + 6.25502i −0.0768369 + 0.133085i −0.901884 0.431979i \(-0.857815\pi\)
0.825047 + 0.565065i \(0.191149\pi\)
\(48\) −37.4304 24.8447i −0.779799 0.517598i
\(49\) 20.3662 + 35.2753i 0.415637 + 0.719905i
\(50\) −0.535755 0.927955i −0.0107151 0.0185591i
\(51\) 6.34983 + 0.396666i 0.124507 + 0.00777777i
\(52\) −8.88602 + 50.0998i −0.170885 + 0.963457i
\(53\) 40.2849i 0.760092i −0.924968 0.380046i \(-0.875908\pi\)
0.924968 0.380046i \(-0.124092\pi\)
\(54\) 6.00150 + 5.16642i 0.111139 + 0.0956744i
\(55\) 82.5523 1.50095
\(56\) 19.0416 + 10.9937i 0.340029 + 0.196316i
\(57\) −99.8231 6.23583i −1.75128 0.109401i
\(58\) −6.83331 + 3.94521i −0.117816 + 0.0680209i
\(59\) −52.7704 91.4009i −0.894413 1.54917i −0.834530 0.550963i \(-0.814260\pi\)
−0.0598833 0.998205i \(-0.519073\pi\)
\(60\) −52.3672 34.7592i −0.872787 0.579320i
\(61\) −5.30723 + 9.19239i −0.0870038 + 0.150695i −0.906243 0.422757i \(-0.861063\pi\)
0.819240 + 0.573451i \(0.194396\pi\)
\(62\) 7.58211i 0.122292i
\(63\) 67.9535 + 51.4845i 1.07863 + 0.817213i
\(64\) −55.8893 −0.873270
\(65\) −12.1528 + 68.5181i −0.186966 + 1.05412i
\(66\) −12.1518 + 6.03892i −0.184118 + 0.0914988i
\(67\) 67.2001 38.7980i 1.00299 0.579075i 0.0938563 0.995586i \(-0.470081\pi\)
0.909131 + 0.416511i \(0.136747\pi\)
\(68\) 7.18846 4.15026i 0.105713 0.0610332i
\(69\) 38.4861 + 77.4433i 0.557769 + 1.12237i
\(70\) 12.8795 + 7.43596i 0.183992 + 0.106228i
\(71\) 66.8110 0.941000 0.470500 0.882400i \(-0.344074\pi\)
0.470500 + 0.882400i \(0.344074\pi\)
\(72\) 20.7277 + 2.59982i 0.287885 + 0.0361086i
\(73\) 54.1949i 0.742396i 0.928554 + 0.371198i \(0.121053\pi\)
−0.928554 + 0.371198i \(0.878947\pi\)
\(74\) 4.47968 + 2.58635i 0.0605363 + 0.0349506i
\(75\) −9.13157 6.06116i −0.121754 0.0808154i
\(76\) −113.007 + 65.2445i −1.48693 + 0.858481i
\(77\) −126.516 + 73.0443i −1.64307 + 0.948627i
\(78\) −3.22338 10.9749i −0.0413253 0.140704i
\(79\) 30.9866 53.6704i 0.392235 0.679372i −0.600509 0.799618i \(-0.705035\pi\)
0.992744 + 0.120247i \(0.0383685\pi\)
\(80\) −80.1602 −1.00200
\(81\) 78.4909 + 20.0045i 0.969023 + 0.246969i
\(82\) −16.6428 −0.202961
\(83\) 16.6325 28.8082i 0.200391 0.347087i −0.748263 0.663402i \(-0.769112\pi\)
0.948654 + 0.316314i \(0.102445\pi\)
\(84\) 111.012 + 6.93476i 1.32157 + 0.0825567i
\(85\) 9.83117 5.67603i 0.115661 0.0667768i
\(86\) 3.27513 + 5.67269i 0.0380829 + 0.0659615i
\(87\) −44.6333 + 67.2433i −0.513027 + 0.772912i
\(88\) −17.8983 + 31.0007i −0.203389 + 0.352281i
\(89\) −73.8979 −0.830314 −0.415157 0.909750i \(-0.636273\pi\)
−0.415157 + 0.909750i \(0.636273\pi\)
\(90\) 14.0199 + 1.75847i 0.155777 + 0.0195386i
\(91\) −42.0015 115.761i −0.461555 1.27210i
\(92\) 97.7100 + 56.4129i 1.06207 + 0.613184i
\(93\) −34.5143 69.4512i −0.371122 0.746787i
\(94\) −1.05919 1.83456i −0.0112679 0.0195166i
\(95\) −154.552 + 89.2305i −1.62686 + 0.939269i
\(96\) 36.7429 18.2597i 0.382738 0.190205i
\(97\) −25.5787 14.7678i −0.263698 0.152246i 0.362323 0.932053i \(-0.381984\pi\)
−0.626020 + 0.779807i \(0.715317\pi\)
\(98\) −11.9466 −0.121904
\(99\) −83.8191 + 110.631i −0.846657 + 1.11749i
\(100\) −14.2992 −0.142992
\(101\) 72.0529 + 41.5998i 0.713395 + 0.411879i 0.812317 0.583216i \(-0.198206\pi\)
−0.0989216 + 0.995095i \(0.531539\pi\)
\(102\) −1.03194 + 1.55469i −0.0101171 + 0.0152421i
\(103\) −84.0009 145.494i −0.815542 1.41256i −0.908938 0.416932i \(-0.863105\pi\)
0.0933953 0.995629i \(-0.470228\pi\)
\(104\) −23.0956 19.4192i −0.222073 0.186723i
\(105\) 151.823 + 9.48421i 1.44593 + 0.0903258i
\(106\) 10.2324 + 5.90767i 0.0965320 + 0.0557328i
\(107\) 125.475i 1.17266i −0.810071 0.586332i \(-0.800571\pi\)
0.810071 0.586332i \(-0.199429\pi\)
\(108\) 99.7529 34.8867i 0.923638 0.323025i
\(109\) 2.93689i 0.0269439i 0.999909 + 0.0134720i \(0.00428839\pi\)
−0.999909 + 0.0134720i \(0.995712\pi\)
\(110\) −12.1061 + 20.9684i −0.110055 + 0.190621i
\(111\) 52.8066 + 3.29876i 0.475735 + 0.0297186i
\(112\) 122.850 70.9277i 1.09688 0.633283i
\(113\) −151.195 + 87.2926i −1.33801 + 0.772501i −0.986512 0.163687i \(-0.947661\pi\)
−0.351499 + 0.936188i \(0.614328\pi\)
\(114\) 16.2227 24.4407i 0.142304 0.214392i
\(115\) 133.631 + 77.1521i 1.16201 + 0.670888i
\(116\) 105.297i 0.907729i
\(117\) −79.4844 85.8559i −0.679354 0.733811i
\(118\) 30.9545 0.262327
\(119\) −10.0446 + 17.3977i −0.0844082 + 0.146199i
\(120\) 33.3796 16.5882i 0.278163 0.138235i
\(121\) −58.4195 101.186i −0.482806 0.836244i
\(122\) −1.55658 2.69608i −0.0127589 0.0220990i
\(123\) −152.446 + 75.7593i −1.23940 + 0.615929i
\(124\) −87.6264 50.5911i −0.706664 0.407993i
\(125\) 114.266 0.914129
\(126\) −23.0423 + 9.71018i −0.182875 + 0.0770649i
\(127\) −15.9739 −0.125779 −0.0628893 0.998021i \(-0.520032\pi\)
−0.0628893 + 0.998021i \(0.520032\pi\)
\(128\) 35.5493 61.5732i 0.277729 0.481041i
\(129\) 55.8223 + 37.0525i 0.432731 + 0.287229i
\(130\) −15.6215 13.1348i −0.120165 0.101037i
\(131\) −20.7147 + 11.9596i −0.158128 + 0.0912950i −0.576976 0.816761i \(-0.695767\pi\)
0.418848 + 0.908056i \(0.362434\pi\)
\(132\) −11.2901 + 180.732i −0.0855312 + 1.36918i
\(133\) 157.907 273.502i 1.18727 2.05641i
\(134\) 22.7585i 0.169840i
\(135\) 136.425 47.7122i 1.01056 0.353424i
\(136\) 4.92250i 0.0361949i
\(137\) 42.8060 74.1421i 0.312452 0.541183i −0.666440 0.745558i \(-0.732183\pi\)
0.978893 + 0.204375i \(0.0655162\pi\)
\(138\) −25.3145 1.58137i −0.183439 0.0114592i
\(139\) 38.8488 + 67.2881i 0.279488 + 0.484087i 0.971258 0.238031i \(-0.0765020\pi\)
−0.691770 + 0.722118i \(0.743169\pi\)
\(140\) 171.875 99.2318i 1.22768 0.708799i
\(141\) −18.0531 11.9829i −0.128036 0.0849849i
\(142\) −9.79766 + 16.9700i −0.0689976 + 0.119507i
\(143\) 188.465 68.3805i 1.31793 0.478185i
\(144\) 81.3902 107.426i 0.565210 0.746011i
\(145\) 144.007i 0.993152i
\(146\) −13.7655 7.94754i −0.0942845 0.0544352i
\(147\) −109.429 + 54.3819i −0.744418 + 0.369945i
\(148\) 59.7808 34.5144i 0.403924 0.233206i
\(149\) −52.8009 91.4538i −0.354368 0.613784i 0.632641 0.774445i \(-0.281971\pi\)
−0.987010 + 0.160661i \(0.948637\pi\)
\(150\) 2.87866 1.43057i 0.0191911 0.00953715i
\(151\) −157.615 90.9988i −1.04381 0.602641i −0.122897 0.992419i \(-0.539218\pi\)
−0.920909 + 0.389778i \(0.872552\pi\)
\(152\) 77.3847i 0.509110i
\(153\) −2.37537 + 18.9382i −0.0155253 + 0.123779i
\(154\) 42.8470i 0.278227i
\(155\) −119.841 69.1900i −0.773165 0.446387i
\(156\) −148.345 35.9769i −0.950929 0.230621i
\(157\) 41.3417 + 71.6058i 0.263323 + 0.456088i 0.967123 0.254310i \(-0.0818483\pi\)
−0.703800 + 0.710398i \(0.748515\pi\)
\(158\) 9.08821 + 15.7412i 0.0575203 + 0.0996281i
\(159\) 120.620 + 7.53496i 0.758614 + 0.0473897i
\(160\) 36.6047 63.4013i 0.228780 0.396258i
\(161\) −273.064 −1.69605
\(162\) −16.5916 + 17.0031i −0.102417 + 0.104958i
\(163\) 107.833i 0.661553i 0.943709 + 0.330777i \(0.107311\pi\)
−0.943709 + 0.330777i \(0.892689\pi\)
\(164\) −111.048 + 192.341i −0.677122 + 1.17281i
\(165\) −15.4407 + 247.175i −0.0935802 + 1.49803i
\(166\) 4.87821 + 8.44931i 0.0293868 + 0.0508994i
\(167\) −35.1152 60.8212i −0.210270 0.364199i 0.741529 0.670921i \(-0.234101\pi\)
−0.951799 + 0.306722i \(0.900768\pi\)
\(168\) −36.4785 + 54.9575i −0.217134 + 0.327128i
\(169\) 29.0110 + 166.491i 0.171663 + 0.985156i
\(170\) 3.32950i 0.0195853i
\(171\) 37.3422 297.720i 0.218375 1.74106i
\(172\) 87.4123 0.508211
\(173\) −133.772 77.2336i −0.773251 0.446437i 0.0607819 0.998151i \(-0.480641\pi\)
−0.834033 + 0.551714i \(0.813974\pi\)
\(174\) −10.5345 21.1980i −0.0605431 0.121827i
\(175\) 29.9707 17.3036i 0.171261 0.0988778i
\(176\) 115.474 + 200.006i 0.656100 + 1.13640i
\(177\) 283.540 140.907i 1.60192 0.796086i
\(178\) 10.8369 18.7701i 0.0608817 0.105450i
\(179\) 163.453i 0.913147i 0.889686 + 0.456573i \(0.150923\pi\)
−0.889686 + 0.456573i \(0.849077\pi\)
\(180\) 113.870 150.295i 0.632608 0.834970i
\(181\) −133.695 −0.738644 −0.369322 0.929302i \(-0.620410\pi\)
−0.369322 + 0.929302i \(0.620410\pi\)
\(182\) 35.5628 + 6.30765i 0.195400 + 0.0346574i
\(183\) −26.5308 17.6101i −0.144977 0.0962299i
\(184\) −57.9455 + 33.4549i −0.314921 + 0.181820i
\(185\) 81.7581 47.2031i 0.441936 0.255152i
\(186\) 22.7021 + 1.41817i 0.122054 + 0.00762457i
\(187\) −28.3243 16.3530i −0.151467 0.0874494i
\(188\) −28.2694 −0.150369
\(189\) −166.863 + 193.834i −0.882873 + 1.02558i
\(190\) 52.3417i 0.275483i
\(191\) −142.365 82.1942i −0.745364 0.430336i 0.0786522 0.996902i \(-0.474938\pi\)
−0.824016 + 0.566566i \(0.808272\pi\)
\(192\) 10.4536 167.342i 0.0544460 0.871571i
\(193\) 31.1188 17.9665i 0.161237 0.0930904i −0.417210 0.908810i \(-0.636992\pi\)
0.578448 + 0.815720i \(0.303659\pi\)
\(194\) 7.50209 4.33133i 0.0386706 0.0223265i
\(195\) −202.881 49.2032i −1.04042 0.252324i
\(196\) −79.7130 + 138.067i −0.406699 + 0.704423i
\(197\) 31.9390 0.162127 0.0810633 0.996709i \(-0.474168\pi\)
0.0810633 + 0.996709i \(0.474168\pi\)
\(198\) −15.8086 37.5139i −0.0798416 0.189464i
\(199\) 63.1067 0.317119 0.158560 0.987349i \(-0.449315\pi\)
0.158560 + 0.987349i \(0.449315\pi\)
\(200\) 4.23996 7.34382i 0.0211998 0.0367191i
\(201\) 103.598 + 208.465i 0.515415 + 1.03714i
\(202\) −21.1327 + 12.2010i −0.104618 + 0.0604010i
\(203\) −127.421 220.700i −0.627689 1.08719i
\(204\) 11.0820 + 22.2997i 0.0543236 + 0.109312i
\(205\) −151.873 + 263.051i −0.740843 + 1.28318i
\(206\) 49.2740 0.239194
\(207\) −239.076 + 100.748i −1.15496 + 0.486708i
\(208\) −183.003 + 66.3990i −0.879824 + 0.319226i
\(209\) 445.275 + 257.079i 2.13050 + 1.23004i
\(210\) −24.6735 + 37.1724i −0.117493 + 0.177011i
\(211\) 25.8336 + 44.7451i 0.122434 + 0.212062i 0.920727 0.390207i \(-0.127597\pi\)
−0.798293 + 0.602269i \(0.794263\pi\)
\(212\) 136.550 78.8371i 0.644103 0.371873i
\(213\) −12.4964 + 200.043i −0.0586687 + 0.939169i
\(214\) 31.8708 + 18.4006i 0.148929 + 0.0859841i
\(215\) 119.548 0.556037
\(216\) −11.6612 + 61.5760i −0.0539872 + 0.285074i
\(217\) 244.884 1.12850
\(218\) −0.745972 0.430687i −0.00342189 0.00197563i
\(219\) −162.268 10.1367i −0.740951 0.0462863i
\(220\) 161.554 + 279.820i 0.734336 + 1.27191i
\(221\) 17.7427 21.1017i 0.0802836 0.0954826i
\(222\) −8.58183 + 12.9291i −0.0386569 + 0.0582394i
\(223\) −97.2097 56.1241i −0.435918 0.251677i 0.265947 0.963988i \(-0.414316\pi\)
−0.701865 + 0.712310i \(0.747649\pi\)
\(224\) 129.555i 0.578371i
\(225\) 19.8561 26.2077i 0.0882492 0.116479i
\(226\) 51.2049i 0.226571i
\(227\) −71.4825 + 123.811i −0.314901 + 0.545424i −0.979416 0.201850i \(-0.935305\pi\)
0.664516 + 0.747274i \(0.268638\pi\)
\(228\) −174.216 350.564i −0.764104 1.53756i
\(229\) −69.2157 + 39.9617i −0.302252 + 0.174505i −0.643454 0.765485i \(-0.722499\pi\)
0.341202 + 0.939990i \(0.389166\pi\)
\(230\) −39.1934 + 22.6283i −0.170406 + 0.0983840i
\(231\) −195.043 392.473i −0.844341 1.69902i
\(232\) −54.0786 31.2223i −0.233098 0.134579i
\(233\) 55.4387i 0.237934i 0.992898 + 0.118967i \(0.0379583\pi\)
−0.992898 + 0.118967i \(0.962042\pi\)
\(234\) 33.4636 7.59854i 0.143007 0.0324724i
\(235\) −38.6621 −0.164520
\(236\) 206.542 357.741i 0.875178 1.51585i
\(237\) 154.902 + 102.818i 0.653595 + 0.433829i
\(238\) −2.94602 5.10266i −0.0123782 0.0214397i
\(239\) 194.301 + 336.539i 0.812974 + 1.40811i 0.910774 + 0.412906i \(0.135486\pi\)
−0.0978002 + 0.995206i \(0.531181\pi\)
\(240\) 14.9933 240.013i 0.0624721 1.00005i
\(241\) 79.1067 + 45.6723i 0.328244 + 0.189512i 0.655061 0.755576i \(-0.272643\pi\)
−0.326817 + 0.945087i \(0.605976\pi\)
\(242\) 34.2683 0.141604
\(243\) −74.5777 + 231.273i −0.306904 + 0.951740i
\(244\) −41.5448 −0.170265
\(245\) −109.018 + 188.825i −0.444972 + 0.770713i
\(246\) 3.11290 49.8313i 0.0126541 0.202566i
\(247\) −278.925 + 331.730i −1.12925 + 1.34304i
\(248\) 51.9655 30.0023i 0.209539 0.120977i
\(249\) 83.1456 + 55.1886i 0.333918 + 0.221641i
\(250\) −16.7568 + 29.0237i −0.0670273 + 0.116095i
\(251\) 210.440i 0.838405i −0.907893 0.419203i \(-0.862310\pi\)
0.907893 0.419203i \(-0.137690\pi\)
\(252\) −41.5276 + 331.090i −0.164792 + 1.31385i
\(253\) 444.561i 1.75716i
\(254\) 2.34253 4.05738i 0.00922255 0.0159739i
\(255\) 15.1561 + 30.4978i 0.0594358 + 0.119599i
\(256\) −101.352 175.547i −0.395907 0.685730i
\(257\) 320.600 185.099i 1.24747 0.720229i 0.276868 0.960908i \(-0.410704\pi\)
0.970605 + 0.240679i \(0.0773702\pi\)
\(258\) −17.5976 + 8.74525i −0.0682076 + 0.0338963i
\(259\) −83.5328 + 144.683i −0.322521 + 0.558622i
\(260\) −256.032 + 92.8959i −0.984739 + 0.357292i
\(261\) −192.989 146.217i −0.739422 0.560218i
\(262\) 7.01540i 0.0267763i
\(263\) −404.705 233.657i −1.53880 0.888429i −0.998909 0.0466956i \(-0.985131\pi\)
−0.539894 0.841733i \(-0.681536\pi\)
\(264\) −89.4734 59.3887i −0.338914 0.224957i
\(265\) 186.750 107.820i 0.704717 0.406869i
\(266\) 46.3132 + 80.2168i 0.174110 + 0.301567i
\(267\) 13.8220 221.262i 0.0517678 0.828698i
\(268\) 263.020 + 151.855i 0.981417 + 0.566622i
\(269\) 12.1114i 0.0450239i −0.999747 0.0225119i \(-0.992834\pi\)
0.999747 0.0225119i \(-0.00716638\pi\)
\(270\) −7.88747 + 41.6490i −0.0292128 + 0.154255i
\(271\) 100.797i 0.371945i −0.982555 0.185973i \(-0.940456\pi\)
0.982555 0.185973i \(-0.0595435\pi\)
\(272\) 27.5035 + 15.8792i 0.101116 + 0.0583793i
\(273\) 354.464 104.107i 1.29840 0.381346i
\(274\) 12.5548 + 21.7455i 0.0458203 + 0.0793631i
\(275\) 28.1711 + 48.7938i 0.102440 + 0.177432i
\(276\) −187.185 + 282.008i −0.678208 + 1.02177i
\(277\) 3.55206 6.15235i 0.0128233 0.0222106i −0.859543 0.511064i \(-0.829251\pi\)
0.872366 + 0.488854i \(0.162585\pi\)
\(278\) −22.7883 −0.0819723
\(279\) 214.404 90.3512i 0.768472 0.323839i
\(280\) 117.696i 0.420343i
\(281\) 52.2789 90.5497i 0.186046 0.322241i −0.757883 0.652391i \(-0.773766\pi\)
0.943928 + 0.330150i \(0.107099\pi\)
\(282\) 5.69109 2.82824i 0.0201812 0.0100292i
\(283\) 29.0002 + 50.2298i 0.102474 + 0.177491i 0.912703 0.408623i \(-0.133991\pi\)
−0.810229 + 0.586113i \(0.800657\pi\)
\(284\) 130.748 + 226.463i 0.460382 + 0.797404i
\(285\) −238.263 479.443i −0.836011 1.68226i
\(286\) −10.2692 + 57.8980i −0.0359061 + 0.202440i
\(287\) 537.523i 1.87290i
\(288\) 47.8000 + 113.430i 0.165972 + 0.393853i
\(289\) 284.502 0.984438
\(290\) −36.5779 21.1183i −0.126131 0.0728216i
\(291\) 49.0016 73.8245i 0.168390 0.253692i
\(292\) −183.699 + 106.059i −0.629107 + 0.363215i
\(293\) 18.9537 + 32.8288i 0.0646885 + 0.112044i 0.896556 0.442931i \(-0.146061\pi\)
−0.831867 + 0.554975i \(0.812728\pi\)
\(294\) 2.23452 35.7701i 0.00760039 0.121667i
\(295\) 282.474 489.259i 0.957538 1.65850i
\(296\) 40.9366i 0.138299i
\(297\) −315.571 271.661i −1.06253 0.914683i
\(298\) 30.9724 0.103934
\(299\) 368.984 + 65.4454i 1.23406 + 0.218881i
\(300\) 2.67454 42.8140i 0.00891513 0.142713i
\(301\) −183.214 + 105.779i −0.608686 + 0.351425i
\(302\) 46.2275 26.6895i 0.153071 0.0883758i
\(303\) −138.033 + 207.957i −0.455556 + 0.686328i
\(304\) −432.372 249.630i −1.42227 0.821151i
\(305\) −56.8180 −0.186288
\(306\) −4.46199 3.38059i −0.0145817 0.0110477i
\(307\) 565.040i 1.84052i 0.391305 + 0.920261i \(0.372024\pi\)
−0.391305 + 0.920261i \(0.627976\pi\)
\(308\) −495.183 285.894i −1.60774 0.928227i
\(309\) 451.344 224.299i 1.46066 0.725887i
\(310\) 35.1486 20.2931i 0.113383 0.0654615i
\(311\) 448.481 258.930i 1.44206 0.832574i 0.444073 0.895991i \(-0.353533\pi\)
0.997987 + 0.0634169i \(0.0201998\pi\)
\(312\) 62.4641 65.5197i 0.200205 0.209999i
\(313\) −138.702 + 240.239i −0.443138 + 0.767538i −0.997920 0.0644575i \(-0.979468\pi\)
0.554782 + 0.831996i \(0.312802\pi\)
\(314\) −24.2506 −0.0772312
\(315\) −56.7945 + 452.809i −0.180300 + 1.43749i
\(316\) 242.562 0.767600
\(317\) 152.700 264.483i 0.481702 0.834332i −0.518077 0.855334i \(-0.673352\pi\)
0.999779 + 0.0210013i \(0.00668542\pi\)
\(318\) −19.6024 + 29.5325i −0.0616429 + 0.0928694i
\(319\) 359.309 207.447i 1.12636 0.650305i
\(320\) −149.584 259.088i −0.467451 0.809649i
\(321\) 375.693 + 23.4691i 1.17038 + 0.0731124i
\(322\) 40.0442 69.3585i 0.124361 0.215399i
\(323\) 70.7038 0.218897
\(324\) 85.7986 + 305.202i 0.264810 + 0.941980i
\(325\) −44.6458 + 16.1988i −0.137372 + 0.0498424i
\(326\) −27.3897 15.8134i −0.0840175 0.0485075i
\(327\) −8.79353 0.549321i −0.0268915 0.00167988i
\(328\) −65.8554 114.065i −0.200779 0.347759i
\(329\) 59.2520 34.2092i 0.180097 0.103979i
\(330\) −60.5183 40.1695i −0.183389 0.121726i
\(331\) 333.273 + 192.415i 1.00687 + 0.581314i 0.910273 0.414009i \(-0.135872\pi\)
0.0965936 + 0.995324i \(0.469205\pi\)
\(332\) 130.198 0.392163
\(333\) −19.7541 + 157.494i −0.0593215 + 0.472956i
\(334\) 20.5982 0.0616712
\(335\) 359.714 + 207.681i 1.07377 + 0.619944i
\(336\) 189.391 + 381.100i 0.563663 + 1.13423i
\(337\) −31.9085 55.2672i −0.0946841 0.163998i 0.814793 0.579752i \(-0.196851\pi\)
−0.909477 + 0.415755i \(0.863517\pi\)
\(338\) −46.5433 17.0467i −0.137702 0.0504340i
\(339\) −233.089 469.031i −0.687577 1.38357i
\(340\) 38.4790 + 22.2159i 0.113174 + 0.0653408i
\(341\) 398.683i 1.16916i
\(342\) 70.1451 + 53.1449i 0.205103 + 0.155394i
\(343\) 78.3161i 0.228327i
\(344\) −25.9193 + 44.8936i −0.0753468 + 0.130505i
\(345\) −256.001 + 385.684i −0.742031 + 1.11792i
\(346\) 39.2348 22.6522i 0.113395 0.0654688i
\(347\) −481.248 + 277.849i −1.38688 + 0.800717i −0.992963 0.118427i \(-0.962215\pi\)
−0.393920 + 0.919145i \(0.628881\pi\)
\(348\) −315.275 19.6949i −0.905963 0.0565944i
\(349\) 123.965 + 71.5710i 0.355199 + 0.205074i 0.666973 0.745082i \(-0.267590\pi\)
−0.311774 + 0.950156i \(0.600923\pi\)
\(350\) 10.1501i 0.0290003i
\(351\) 271.934 221.931i 0.774739 0.632281i
\(352\) −210.922 −0.599209
\(353\) −115.084 + 199.332i −0.326018 + 0.564680i −0.981718 0.190342i \(-0.939040\pi\)
0.655700 + 0.755022i \(0.272374\pi\)
\(354\) −5.78979 + 92.6830i −0.0163553 + 0.261816i
\(355\) 178.816 + 309.718i 0.503706 + 0.872445i
\(356\) −144.617 250.485i −0.406229 0.703609i
\(357\) −50.2129 33.3292i −0.140652 0.0933591i
\(358\) −41.5173 23.9700i −0.115970 0.0669553i
\(359\) −182.710 −0.508943 −0.254471 0.967080i \(-0.581901\pi\)
−0.254471 + 0.967080i \(0.581901\pi\)
\(360\) 43.4245 + 103.047i 0.120624 + 0.286240i
\(361\) −750.505 −2.07896
\(362\) 19.6060 33.9585i 0.0541601 0.0938080i
\(363\) 313.893 155.992i 0.864719 0.429729i
\(364\) 310.188 368.912i 0.852165 1.01349i
\(365\) −251.233 + 145.049i −0.688310 + 0.397396i
\(366\) 8.36365 4.15638i 0.0228515 0.0113562i
\(367\) 82.2966 142.542i 0.224242 0.388398i −0.731850 0.681466i \(-0.761343\pi\)
0.956092 + 0.293068i \(0.0946762\pi\)
\(368\) 431.679i 1.17304i
\(369\) −198.322 470.618i −0.537458 1.27539i
\(370\) 27.6888i 0.0748346i
\(371\) −190.804 + 330.482i −0.514296 + 0.890787i
\(372\) 167.868 252.905i 0.451258 0.679852i
\(373\) −241.992 419.143i −0.648772 1.12371i −0.983416 0.181362i \(-0.941949\pi\)
0.334644 0.942345i \(-0.391384\pi\)
\(374\) 8.30737 4.79626i 0.0222122 0.0128242i
\(375\) −21.3725 + 342.131i −0.0569934 + 0.912350i
\(376\) 8.38237 14.5187i 0.0222935 0.0386135i
\(377\) 119.285 + 328.764i 0.316406 + 0.872053i
\(378\) −24.7640 70.8086i −0.0655132 0.187324i
\(379\) 71.6797i 0.189128i −0.995519 0.0945642i \(-0.969854\pi\)
0.995519 0.0945642i \(-0.0301458\pi\)
\(380\) −604.912 349.246i −1.59187 0.919069i
\(381\) 2.98778 47.8284i 0.00784195 0.125534i
\(382\) 41.7548 24.1071i 0.109306 0.0631077i
\(383\) −20.3546 35.2552i −0.0531452 0.0920502i 0.838229 0.545318i \(-0.183591\pi\)
−0.891374 + 0.453268i \(0.850258\pi\)
\(384\) 177.711 + 117.957i 0.462789 + 0.307180i
\(385\) −677.228 390.998i −1.75903 1.01558i
\(386\) 10.5389i 0.0273029i
\(387\) −121.382 + 160.211i −0.313650 + 0.413981i
\(388\) 115.602i 0.297943i
\(389\) 66.9628 + 38.6610i 0.172141 + 0.0993855i 0.583595 0.812045i \(-0.301646\pi\)
−0.411454 + 0.911430i \(0.634979\pi\)
\(390\) 42.2497 44.3165i 0.108332 0.113632i
\(391\) −30.5666 52.9429i −0.0781754 0.135404i
\(392\) −47.2726 81.8786i −0.120593 0.208874i
\(393\) −31.9346 64.2602i −0.0812585 0.163512i
\(394\) −4.68376 + 8.11252i −0.0118877 + 0.0205901i
\(395\) 331.735 0.839836
\(396\) −539.030 67.6089i −1.36119 0.170730i
\(397\) 674.923i 1.70006i −0.526737 0.850029i \(-0.676585\pi\)
0.526737 0.850029i \(-0.323415\pi\)
\(398\) −9.25443 + 16.0291i −0.0232523 + 0.0402742i
\(399\) 789.376 + 523.955i 1.97839 + 1.31317i
\(400\) −27.3548 47.3798i −0.0683869 0.118450i
\(401\) −56.1904 97.3247i −0.140126 0.242705i 0.787418 0.616419i \(-0.211417\pi\)
−0.927544 + 0.373714i \(0.878084\pi\)
\(402\) −68.1427 4.25679i −0.169509 0.0105890i
\(403\) −330.905 58.6914i −0.821104 0.145636i
\(404\) 325.641i 0.806043i
\(405\) 117.341 + 417.404i 0.289731 + 1.03063i
\(406\) 74.7438 0.184098
\(407\) −235.551 135.995i −0.578749 0.334141i
\(408\) −14.7388 0.920714i −0.0361245 0.00225665i
\(409\) −340.599 + 196.645i −0.832762 + 0.480795i −0.854797 0.518962i \(-0.826319\pi\)
0.0220357 + 0.999757i \(0.492985\pi\)
\(410\) −44.5435 77.1516i −0.108643 0.188175i
\(411\) 213.987 + 142.036i 0.520650 + 0.345586i
\(412\) 328.778 569.459i 0.798004 1.38218i
\(413\) 999.758i 2.42072i
\(414\) 9.46975 75.5001i 0.0228738 0.182367i
\(415\) 178.063 0.429068
\(416\) 31.0505 175.064i 0.0746406 0.420827i
\(417\) −208.738 + 103.734i −0.500571 + 0.248763i
\(418\) −130.597 + 75.4000i −0.312432 + 0.180383i
\(419\) −452.106 + 261.023i −1.07901 + 0.622967i −0.930629 0.365963i \(-0.880740\pi\)
−0.148381 + 0.988930i \(0.547406\pi\)
\(420\) 264.969 + 533.181i 0.630878 + 1.26948i
\(421\) 520.275 + 300.381i 1.23581 + 0.713494i 0.968235 0.250044i \(-0.0804450\pi\)
0.267573 + 0.963538i \(0.413778\pi\)
\(422\) −15.1537 −0.0359093
\(423\) 39.2554 51.8125i 0.0928023 0.122488i
\(424\) 93.5064i 0.220534i
\(425\) 6.70980 + 3.87391i 0.0157878 + 0.00911507i
\(426\) −48.9785 32.5099i −0.114973 0.0763143i
\(427\) 87.0770 50.2739i 0.203927 0.117737i
\(428\) 425.311 245.553i 0.993717 0.573723i
\(429\) 169.492 + 577.084i 0.395085 + 1.34518i
\(430\) −17.5314 + 30.3653i −0.0407707 + 0.0706169i
\(431\) −530.893 −1.23177 −0.615885 0.787836i \(-0.711201\pi\)
−0.615885 + 0.787836i \(0.711201\pi\)
\(432\) 306.427 + 263.789i 0.709321 + 0.610622i
\(433\) −118.218 −0.273020 −0.136510 0.990639i \(-0.543589\pi\)
−0.136510 + 0.990639i \(0.543589\pi\)
\(434\) −35.9116 + 62.2007i −0.0827456 + 0.143320i
\(435\) −431.181 26.9353i −0.991220 0.0619203i
\(436\) −9.95490 + 5.74746i −0.0228323 + 0.0131823i
\(437\) 480.525 + 832.293i 1.09960 + 1.90456i
\(438\) 26.3710 39.7298i 0.0602077 0.0907072i
\(439\) −298.551 + 517.105i −0.680070 + 1.17792i 0.294889 + 0.955532i \(0.404717\pi\)
−0.974959 + 0.222385i \(0.928616\pi\)
\(440\) −191.615 −0.435488
\(441\) −142.360 337.821i −0.322812 0.766035i
\(442\) 2.75792 + 7.60115i 0.00623964 + 0.0171972i
\(443\) 311.260 + 179.706i 0.702620 + 0.405658i 0.808322 0.588740i \(-0.200376\pi\)
−0.105703 + 0.994398i \(0.533709\pi\)
\(444\) 92.1604 + 185.449i 0.207568 + 0.417678i
\(445\) −197.783 342.571i −0.444457 0.769822i
\(446\) 28.5111 16.4609i 0.0639262 0.0369078i
\(447\) 283.703 140.989i 0.634683 0.315411i
\(448\) 458.494 + 264.712i 1.02342 + 0.590874i
\(449\) −568.967 −1.26719 −0.633594 0.773666i \(-0.718421\pi\)
−0.633594 + 0.773666i \(0.718421\pi\)
\(450\) 3.74494 + 8.88675i 0.00832209 + 0.0197483i
\(451\) 875.113 1.94038
\(452\) −591.775 341.661i −1.30924 0.755888i
\(453\) 301.946 454.903i 0.666547 1.00420i
\(454\) −20.9654 36.3132i −0.0461794 0.0799850i
\(455\) 424.223 504.536i 0.932359 1.10887i
\(456\) 231.702 + 14.4742i 0.508119 + 0.0317416i
\(457\) 345.318 + 199.370i 0.755620 + 0.436257i 0.827721 0.561140i \(-0.189637\pi\)
−0.0721010 + 0.997397i \(0.522970\pi\)
\(458\) 23.4411i 0.0511815i
\(459\) −56.2599 10.6545i −0.122571 0.0232124i
\(460\) 603.943i 1.31292i
\(461\) 288.621 499.906i 0.626076 1.08440i −0.362256 0.932079i \(-0.617993\pi\)
0.988332 0.152317i \(-0.0486733\pi\)
\(462\) 128.291 + 8.01418i 0.277686 + 0.0173467i
\(463\) 456.842 263.758i 0.986700 0.569671i 0.0824134 0.996598i \(-0.473737\pi\)
0.904286 + 0.426927i \(0.140404\pi\)
\(464\) −348.897 + 201.436i −0.751934 + 0.434129i
\(465\) 229.581 345.881i 0.493724 0.743830i
\(466\) −14.0815 8.12994i −0.0302177 0.0174462i
\(467\) 263.576i 0.564404i −0.959355 0.282202i \(-0.908935\pi\)
0.959355 0.282202i \(-0.0910648\pi\)
\(468\) 135.468 437.440i 0.289461 0.934700i
\(469\) −735.046 −1.56726
\(470\) 5.66970 9.82020i 0.0120632 0.0208940i
\(471\) −222.132 + 110.390i −0.471618 + 0.234375i
\(472\) 122.487 + 212.153i 0.259506 + 0.449477i
\(473\) −172.213 298.282i −0.364087 0.630617i
\(474\) −48.8317 + 24.2673i −0.103020 + 0.0511969i
\(475\) −105.482 60.9001i −0.222067 0.128211i
\(476\) −78.6285 −0.165186
\(477\) −45.1218 + 359.745i −0.0945949 + 0.754183i
\(478\) −113.975 −0.238441
\(479\) 103.619 179.473i 0.216324 0.374683i −0.737358 0.675503i \(-0.763927\pi\)
0.953681 + 0.300819i \(0.0972600\pi\)
\(480\) 182.987 + 121.459i 0.381223 + 0.253040i
\(481\) 147.552 175.486i 0.306760 0.364835i
\(482\) −23.2016 + 13.3954i −0.0481361 + 0.0277914i
\(483\) 51.0744 817.599i 0.105744 1.69275i
\(484\) 228.653 396.038i 0.472423 0.818261i
\(485\) 158.101i 0.325982i
\(486\) −47.8069 52.8584i −0.0983680 0.108762i
\(487\) 266.418i 0.547059i 0.961864 + 0.273529i \(0.0881911\pi\)
−0.961864 + 0.273529i \(0.911809\pi\)
\(488\) 12.3188 21.3367i 0.0252434 0.0437228i
\(489\) −322.870 20.1693i −0.660266 0.0412460i
\(490\) −31.9744 55.3813i −0.0652539 0.113023i
\(491\) 277.257 160.074i 0.564678 0.326017i −0.190343 0.981718i \(-0.560960\pi\)
0.755021 + 0.655701i \(0.227627\pi\)
\(492\) −555.129 368.472i −1.12831 0.748926i
\(493\) 28.5268 49.4098i 0.0578637 0.100223i
\(494\) −43.3561 119.495i −0.0877654 0.241892i
\(495\) −737.195 92.4641i −1.48928 0.186796i
\(496\) 387.130i 0.780504i
\(497\) −548.092 316.441i −1.10280 0.636702i
\(498\) −26.2110 + 13.0258i −0.0526326 + 0.0261562i
\(499\) −695.936 + 401.799i −1.39466 + 0.805208i −0.993827 0.110943i \(-0.964613\pi\)
−0.400834 + 0.916151i \(0.631279\pi\)
\(500\) 223.617 + 387.317i 0.447235 + 0.774634i
\(501\) 188.677 93.7644i 0.376600 0.187155i
\(502\) 53.4518 + 30.8604i 0.106478 + 0.0614750i
\(503\) 548.156i 1.08977i −0.838510 0.544887i \(-0.816573\pi\)
0.838510 0.544887i \(-0.183427\pi\)
\(504\) −157.729 119.502i −0.312954 0.237107i
\(505\) 445.358i 0.881896i
\(506\) 112.919 + 65.1938i 0.223160 + 0.128841i
\(507\) −503.929 + 55.7228i −0.993942 + 0.109907i
\(508\) −31.2607 54.1451i −0.0615368 0.106585i
\(509\) −138.478 239.850i −0.272058 0.471218i 0.697331 0.716750i \(-0.254371\pi\)
−0.969389 + 0.245531i \(0.921038\pi\)
\(510\) −9.96907 0.622755i −0.0195472 0.00122109i
\(511\) 256.687 444.594i 0.502322 0.870047i
\(512\) 343.846 0.671575
\(513\) 884.439 + 167.495i 1.72405 + 0.326500i
\(514\) 108.577i 0.211239i
\(515\) 449.647 778.811i 0.873101 1.51225i
\(516\) −16.3498 + 261.727i −0.0316856 + 0.507223i
\(517\) 55.6941 + 96.4650i 0.107726 + 0.186586i
\(518\) −24.4997 42.4348i −0.0472968 0.0819204i
\(519\) 256.271 386.091i 0.493778 0.743913i
\(520\) 28.2082 159.039i 0.0542466 0.305845i
\(521\) 412.120i 0.791018i −0.918462 0.395509i \(-0.870568\pi\)
0.918462 0.395509i \(-0.129432\pi\)
\(522\) 65.4405 27.5771i 0.125365 0.0528297i
\(523\) −658.680 −1.25943 −0.629713 0.776828i \(-0.716827\pi\)
−0.629713 + 0.776828i \(0.716827\pi\)
\(524\) −81.0769 46.8098i −0.154727 0.0893316i
\(525\) 46.2041 + 92.9738i 0.0880078 + 0.177093i
\(526\) 118.698 68.5303i 0.225661 0.130286i
\(527\) 27.4121 + 47.4792i 0.0520154 + 0.0900933i
\(528\) −620.449 + 308.337i −1.17509 + 0.583972i
\(529\) 150.980 261.505i 0.285407 0.494339i
\(530\) 63.2462i 0.119332i
\(531\) 368.866 + 875.320i 0.694662 + 1.64844i
\(532\) 1236.09 2.32347
\(533\) −128.828 + 726.340i −0.241704 + 1.36274i
\(534\) 54.1739 + 35.9584i 0.101449 + 0.0673377i
\(535\) 581.669 335.827i 1.08723 0.627714i
\(536\) −155.980 + 90.0552i −0.291008 + 0.168013i
\(537\) −489.406 30.5726i −0.911370 0.0569322i
\(538\) 3.07631 + 1.77611i 0.00571805 + 0.00330132i
\(539\) 628.177 1.16545
\(540\) 428.708 + 369.055i 0.793904 + 0.683436i
\(541\) 799.766i 1.47831i −0.673535 0.739155i \(-0.735225\pi\)
0.673535 0.739155i \(-0.264775\pi\)
\(542\) 25.6025 + 14.7816i 0.0472372 + 0.0272724i
\(543\) 25.0065 400.303i 0.0460524 0.737207i
\(544\) −25.1187 + 14.5023i −0.0461741 + 0.0266586i
\(545\) −13.6146 + 7.86041i −0.0249810 + 0.0144228i
\(546\) −25.5379 + 105.301i −0.0467727 + 0.192859i
\(547\) −505.787 + 876.049i −0.924657 + 1.60155i −0.132545 + 0.991177i \(0.542315\pi\)
−0.792112 + 0.610376i \(0.791018\pi\)
\(548\) 335.083 0.611466
\(549\) 57.6898 76.1439i 0.105082 0.138696i
\(550\) −16.5249 −0.0300452
\(551\) −448.458 + 776.752i −0.813898 + 1.40971i
\(552\) −89.3311 179.756i −0.161832 0.325645i
\(553\) −508.404 + 293.527i −0.919357 + 0.530791i
\(554\) 1.04180 + 1.80445i 0.00188051 + 0.00325713i
\(555\) 126.041 + 253.626i 0.227102 + 0.456984i
\(556\) −152.053 + 263.364i −0.273477 + 0.473677i
\(557\) −164.150 −0.294704 −0.147352 0.989084i \(-0.547075\pi\)
−0.147352 + 0.989084i \(0.547075\pi\)
\(558\) −8.49247 + 67.7085i −0.0152195 + 0.121341i
\(559\) 272.925 99.0250i 0.488237 0.177147i
\(560\) 657.603 + 379.667i 1.17429 + 0.677978i
\(561\) 54.2615 81.7489i 0.0967228 0.145720i
\(562\) 15.3331 + 26.5578i 0.0272831 + 0.0472558i
\(563\) 244.075 140.917i 0.433526 0.250297i −0.267321 0.963607i \(-0.586139\pi\)
0.700848 + 0.713311i \(0.252805\pi\)
\(564\) 5.28755 84.6431i 0.00937509 0.150076i
\(565\) −809.331 467.267i −1.43244 0.827022i
\(566\) −17.0112 −0.0300551
\(567\) −549.161 535.870i −0.968538 0.945097i
\(568\) −155.077 −0.273023
\(569\) 773.477 + 446.567i 1.35936 + 0.784828i 0.989538 0.144273i \(-0.0460845\pi\)
0.369825 + 0.929102i \(0.379418\pi\)
\(570\) 156.720 + 9.79008i 0.274947 + 0.0171756i
\(571\) 179.759 + 311.352i 0.314814 + 0.545274i 0.979398 0.201939i \(-0.0647244\pi\)
−0.664584 + 0.747214i \(0.731391\pi\)
\(572\) 600.606 + 505.001i 1.05001 + 0.882868i
\(573\) 272.731 410.889i 0.475970 0.717084i
\(574\) 136.531 + 78.8264i 0.237859 + 0.137328i
\(575\) 105.313i 0.183153i
\(576\) 499.093 + 62.5997i 0.866481 + 0.108680i
\(577\) 455.976i 0.790253i −0.918627 0.395126i \(-0.870701\pi\)
0.918627 0.395126i \(-0.129299\pi\)
\(578\) −41.7215 + 72.2638i −0.0721826 + 0.125024i
\(579\) 47.9740 + 96.5353i 0.0828566 + 0.166728i
\(580\) −488.127 + 281.820i −0.841598 + 0.485897i
\(581\) −272.893 + 157.555i −0.469695 + 0.271178i
\(582\) 11.5655 + 23.2726i 0.0198720 + 0.0399873i
\(583\) −538.040 310.637i −0.922881 0.532826i
\(584\) 125.793i 0.215399i
\(585\) 185.270 598.257i 0.316700 1.02266i
\(586\) −11.1181 −0.0189728
\(587\) −382.389 + 662.318i −0.651430 + 1.12831i 0.331346 + 0.943509i \(0.392497\pi\)
−0.982776 + 0.184801i \(0.940836\pi\)
\(588\) −398.485 264.498i −0.677696 0.449826i
\(589\) −430.935 746.401i −0.731638 1.26723i
\(590\) 82.8480 + 143.497i 0.140420 + 0.243215i
\(591\) −5.97392 + 95.6304i −0.0101082 + 0.161811i
\(592\) 228.725 + 132.054i 0.386360 + 0.223065i
\(593\) −34.0539 −0.0574265 −0.0287133 0.999588i \(-0.509141\pi\)
−0.0287133 + 0.999588i \(0.509141\pi\)
\(594\) 115.280 40.3169i 0.194074 0.0678736i
\(595\) −107.535 −0.180731
\(596\) 206.661 357.948i 0.346747 0.600584i
\(597\) −11.8036 + 188.952i −0.0197715 + 0.316502i
\(598\) −70.7337 + 84.1248i −0.118284 + 0.140677i
\(599\) −584.137 + 337.251i −0.975186 + 0.563024i −0.900813 0.434206i \(-0.857029\pi\)
−0.0743729 + 0.997230i \(0.523696\pi\)
\(600\) 21.1955 + 14.0687i 0.0353259 + 0.0234479i
\(601\) −192.274 + 333.029i −0.319924 + 0.554124i −0.980472 0.196660i \(-0.936991\pi\)
0.660548 + 0.750784i \(0.270324\pi\)
\(602\) 62.0488i 0.103071i
\(603\) −643.556 + 271.199i −1.06726 + 0.449749i
\(604\) 712.335i 1.17936i
\(605\) 312.713 541.635i 0.516881 0.895264i
\(606\) −32.5791 65.5570i −0.0537609 0.108180i
\(607\) 567.487 + 982.915i 0.934904 + 1.61930i 0.774806 + 0.632200i \(0.217848\pi\)
0.160098 + 0.987101i \(0.448819\pi\)
\(608\) 394.881 227.984i 0.649475 0.374974i
\(609\) 684.643 340.239i 1.12421 0.558685i
\(610\) 8.33220 14.4318i 0.0136594 0.0236587i
\(611\) −88.2645 + 32.0249i −0.144459 + 0.0524140i
\(612\) −68.8417 + 29.0104i −0.112487 + 0.0474026i
\(613\) 201.546i 0.328787i 0.986395 + 0.164394i \(0.0525667\pi\)
−0.986395 + 0.164394i \(0.947433\pi\)
\(614\) −143.521 82.8617i −0.233747 0.134954i
\(615\) −759.213 503.934i −1.23449 0.819404i
\(616\) 293.661 169.545i 0.476722 0.275236i
\(617\) −153.384 265.670i −0.248597 0.430583i 0.714540 0.699595i \(-0.246636\pi\)
−0.963137 + 0.269012i \(0.913303\pi\)
\(618\) −9.21630 + 147.535i −0.0149131 + 0.238729i
\(619\) 785.415 + 453.460i 1.26885 + 0.732568i 0.974769 0.223214i \(-0.0716549\pi\)
0.294076 + 0.955782i \(0.404988\pi\)
\(620\) 541.616i 0.873575i
\(621\) −256.940 734.678i −0.413752 1.18306i
\(622\) 151.886i 0.244190i
\(623\) 606.230 + 350.007i 0.973082 + 0.561809i
\(624\) −164.580 560.361i −0.263750 0.898015i
\(625\) 351.493 + 608.805i 0.562390 + 0.974087i
\(626\) −40.6807 70.4610i −0.0649851 0.112557i
\(627\) −853.023 + 1285.14i −1.36048 + 2.04967i
\(628\) −161.810 + 280.264i −0.257660 + 0.446280i
\(629\) −37.4024 −0.0594632
\(630\) −106.685 80.8292i −0.169342 0.128300i
\(631\) 975.757i 1.54637i 0.634183 + 0.773183i \(0.281337\pi\)
−0.634183 + 0.773183i \(0.718663\pi\)
\(632\) −71.9239 + 124.576i −0.113804 + 0.197114i
\(633\) −138.806 + 68.9808i −0.219283 + 0.108974i
\(634\) 44.7860 + 77.5716i 0.0706403 + 0.122353i
\(635\) −42.7532 74.0507i −0.0673278 0.116615i
\(636\) 210.511 + 423.598i 0.330992 + 0.666035i
\(637\) −92.4761 + 521.384i −0.145174 + 0.818500i
\(638\) 121.686i 0.190731i
\(639\) −596.624 74.8328i −0.933684 0.117109i
\(640\) 380.582 0.594660
\(641\) −639.637 369.295i −0.997874 0.576123i −0.0902554 0.995919i \(-0.528768\pi\)
−0.907619 + 0.419796i \(0.862102\pi\)
\(642\) −61.0556 + 91.9846i −0.0951021 + 0.143278i
\(643\) −10.2718 + 5.93041i −0.0159748 + 0.00922303i −0.507966 0.861377i \(-0.669602\pi\)
0.491991 + 0.870600i \(0.336269\pi\)
\(644\) −534.384 925.580i −0.829789 1.43724i
\(645\) −22.3605 + 357.946i −0.0346674 + 0.554955i
\(646\) −10.3685 + 17.9588i −0.0160503 + 0.0278000i
\(647\) 752.487i 1.16304i −0.813532 0.581520i \(-0.802458\pi\)
0.813532 0.581520i \(-0.197542\pi\)
\(648\) −182.187 46.4329i −0.281153 0.0716558i
\(649\) −1627.65 −2.50794
\(650\) 2.43268 13.7156i 0.00374259 0.0211009i
\(651\) −45.8035 + 733.223i −0.0703587 + 1.12630i
\(652\) −365.512 + 211.028i −0.560601 + 0.323663i
\(653\) −201.227 + 116.178i −0.308157 + 0.177915i −0.646102 0.763251i \(-0.723602\pi\)
0.337944 + 0.941166i \(0.390268\pi\)
\(654\) 1.42908 2.15301i 0.00218513 0.00329206i
\(655\) −110.883 64.0186i −0.169288 0.0977383i
\(656\) −849.754 −1.29536
\(657\) 60.7019 483.962i 0.0923926 0.736624i
\(658\) 20.0667i 0.0304966i
\(659\) 974.227 + 562.470i 1.47834 + 0.853521i 0.999700 0.0244892i \(-0.00779593\pi\)
0.478642 + 0.878010i \(0.341129\pi\)
\(660\) −868.043 + 431.381i −1.31522 + 0.653608i
\(661\) −228.295 + 131.806i −0.345378 + 0.199404i −0.662648 0.748931i \(-0.730567\pi\)
0.317270 + 0.948335i \(0.397234\pi\)
\(662\) −97.7471 + 56.4343i −0.147654 + 0.0852482i
\(663\) 59.8632 + 57.0713i 0.0902914 + 0.0860804i
\(664\) −38.6061 + 66.8676i −0.0581416 + 0.100704i
\(665\) 1690.51 2.54212
\(666\) −37.1068 28.1137i −0.0557160 0.0422128i
\(667\) 775.508 1.16268
\(668\) 137.440 238.053i 0.205748 0.356367i
\(669\) 186.227 280.564i 0.278366 0.419379i
\(670\) −105.502 + 60.9118i −0.157466 + 0.0909132i
\(671\) 81.8482 + 141.765i 0.121980 + 0.211275i
\(672\) −387.909 24.2322i −0.577245 0.0360598i
\(673\) −270.310 + 468.190i −0.401649 + 0.695677i −0.993925 0.110059i \(-0.964896\pi\)
0.592276 + 0.805735i \(0.298230\pi\)
\(674\) 18.7172 0.0277703
\(675\) 74.7563 + 64.3543i 0.110750 + 0.0953397i
\(676\) −507.566 + 424.158i −0.750837 + 0.627452i
\(677\) 404.458 + 233.514i 0.597428 + 0.344925i 0.768029 0.640415i \(-0.221238\pi\)
−0.170601 + 0.985340i \(0.554571\pi\)
\(678\) 153.316 + 9.57746i 0.226130 + 0.0141260i
\(679\) 139.892 + 242.300i 0.206026 + 0.356848i
\(680\) −22.8194 + 13.1748i −0.0335580 + 0.0193747i
\(681\) −357.341 237.188i −0.524730 0.348294i
\(682\) −101.266 58.4658i −0.148483 0.0857269i
\(683\) 456.734 0.668717 0.334359 0.942446i \(-0.391480\pi\)
0.334359 + 0.942446i \(0.391480\pi\)
\(684\) 1082.23 456.060i 1.58221 0.666755i
\(685\) 458.271 0.669008
\(686\) −19.8924 11.4849i −0.0289976 0.0167418i
\(687\) −106.706 214.718i −0.155321 0.312544i
\(688\) 167.223 + 289.638i 0.243056 + 0.420986i
\(689\) 337.034 400.841i 0.489165 0.581772i
\(690\) −60.4221 121.584i −0.0875682 0.176208i
\(691\) −980.035 565.824i −1.41829 0.818847i −0.422137 0.906532i \(-0.638720\pi\)
−0.996148 + 0.0876845i \(0.972053\pi\)
\(692\) 604.581i 0.873672i
\(693\) 1211.61 510.581i 1.74836 0.736769i
\(694\) 162.983i 0.234846i
\(695\) −207.953 + 360.185i −0.299213 + 0.518253i
\(696\) 103.600 156.080i 0.148850 0.224253i
\(697\) 104.217 60.1699i 0.149523 0.0863270i
\(698\) −36.3581 + 20.9914i −0.0520890 + 0.0300736i
\(699\) −165.993 10.3694i −0.237471 0.0148346i
\(700\) 117.305 + 67.7260i 0.167578 + 0.0967514i
\(701\) 110.878i 0.158171i 0.996868 + 0.0790855i \(0.0252000\pi\)
−0.996868 + 0.0790855i \(0.974800\pi\)
\(702\) 16.4922 + 101.617i 0.0234931 + 0.144753i
\(703\) 587.987 0.836397
\(704\) −430.963 + 746.450i −0.612163 + 1.06030i
\(705\) 7.23143 115.761i 0.0102573 0.164200i
\(706\) −33.7536 58.4630i −0.0478097 0.0828088i
\(707\) −394.063 682.537i −0.557374 0.965399i
\(708\) 1032.50 + 685.333i 1.45834 + 0.967985i
\(709\) −23.1239 13.3506i −0.0326148 0.0188302i 0.483604 0.875287i \(-0.339328\pi\)
−0.516219 + 0.856457i \(0.672661\pi\)
\(710\) −104.891 −0.147734
\(711\) −336.826 + 444.571i −0.473735 + 0.625276i
\(712\) 171.527 0.240908
\(713\) −372.603 + 645.367i −0.522584 + 0.905142i
\(714\) 15.8292 7.86646i 0.0221698 0.0110175i
\(715\) 821.408 + 690.655i 1.14882 + 0.965951i
\(716\) −554.042 + 319.876i −0.773802 + 0.446755i
\(717\) −1043.99 + 518.821i −1.45606 + 0.723600i
\(718\) 26.7940 46.4086i 0.0373175 0.0646359i
\(719\) 236.651i 0.329139i −0.986365 0.164570i \(-0.947376\pi\)
0.986365 0.164570i \(-0.0526235\pi\)
\(720\) 715.833 + 89.7848i 0.994212 + 0.124701i
\(721\) 1591.43i 2.20726i
\(722\) 110.060 190.629i 0.152437 0.264029i
\(723\) −151.547 + 228.316i −0.209608 + 0.315789i
\(724\) −261.639 453.172i −0.361380 0.625928i
\(725\) −85.1175 + 49.1426i −0.117403 + 0.0677829i
\(726\) −6.40960 + 102.605i −0.00882865 + 0.141329i
\(727\) 390.231 675.900i 0.536769 0.929711i −0.462306 0.886720i \(-0.652978\pi\)
0.999075 0.0429910i \(-0.0136887\pi\)
\(728\) 97.4910 + 268.697i 0.133916 + 0.369089i
\(729\) −678.520 266.556i −0.930754 0.365646i
\(730\) 85.0845i 0.116554i
\(731\) −41.0178 23.6816i −0.0561118 0.0323962i
\(732\) 7.77060 124.392i 0.0106156 0.169934i
\(733\) 627.004 362.001i 0.855394 0.493862i −0.00707285 0.999975i \(-0.502251\pi\)
0.862467 + 0.506113i \(0.168918\pi\)
\(734\) 24.1372 + 41.8068i 0.0328844 + 0.0569575i
\(735\) −544.981 361.736i −0.741471 0.492158i
\(736\) −341.429 197.124i −0.463898 0.267832i
\(737\) 1196.69i 1.62373i
\(738\) 148.621 + 18.6411i 0.201383 + 0.0252589i
\(739\) 557.712i 0.754685i −0.926074 0.377342i \(-0.876838\pi\)
0.926074 0.377342i \(-0.123162\pi\)
\(740\) 319.999 + 184.752i 0.432432 + 0.249665i
\(741\) −941.085 897.195i −1.27002 1.21079i
\(742\) −55.9618 96.9286i −0.0754202 0.130632i
\(743\) 148.675 + 257.513i 0.200101 + 0.346586i 0.948561 0.316595i \(-0.102539\pi\)
−0.748459 + 0.663181i \(0.769206\pi\)
\(744\) 80.1121 + 161.205i 0.107678 + 0.216673i
\(745\) 282.637 489.541i 0.379378 0.657102i
\(746\) 141.950 0.190282
\(747\) −180.795 + 238.629i −0.242029 + 0.319450i
\(748\) 128.011i 0.171138i
\(749\) −594.295 + 1029.35i −0.793452 + 1.37430i
\(750\) −83.7674 55.6013i −0.111690 0.0741351i
\(751\) −189.152 327.620i −0.251866 0.436245i 0.712173 0.702004i \(-0.247711\pi\)
−0.964040 + 0.265758i \(0.914378\pi\)
\(752\) −54.0802 93.6697i −0.0719152 0.124561i
\(753\) 630.091 + 39.3610i 0.836774 + 0.0522723i
\(754\) −100.999 17.9139i −0.133951 0.0237584i
\(755\) 974.212i 1.29035i
\(756\) −983.570 186.268i −1.30102 0.246387i
\(757\) 521.787 0.689282 0.344641 0.938735i \(-0.388001\pi\)
0.344641 + 0.938735i \(0.388001\pi\)
\(758\) 18.2067 + 10.5116i 0.0240194 + 0.0138676i
\(759\) 1331.09 + 83.1515i 1.75374 + 0.109554i
\(760\) 358.735 207.115i 0.472019 0.272520i
\(761\) 489.973 + 848.658i 0.643854 + 1.11519i 0.984565 + 0.175020i \(0.0559990\pi\)
−0.340711 + 0.940168i \(0.610668\pi\)
\(762\) 11.7103 + 7.77281i 0.0153679 + 0.0102005i
\(763\) 13.9102 24.0931i 0.0182309 0.0315768i
\(764\) 643.413i 0.842163i
\(765\) −94.1502 + 39.6755i −0.123072 + 0.0518635i
\(766\) 11.9398 0.0155872
\(767\) 239.612 1350.94i 0.312402 1.76134i
\(768\) 544.573 270.630i 0.709080 0.352383i
\(769\) 1032.58 596.163i 1.34276 0.775245i 0.355551 0.934657i \(-0.384293\pi\)
0.987212 + 0.159412i \(0.0509598\pi\)
\(770\) 198.627 114.678i 0.257958 0.148932i
\(771\) 494.250 + 994.551i