Properties

Label 117.3.n.a.38.12
Level $117$
Weight $3$
Character 117.38
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(38,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.38");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 38.12
Character \(\chi\) \(=\) 117.38
Dual form 117.3.n.a.77.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.245962 + 0.426018i) q^{2} +(-2.80287 - 1.06954i) q^{3} +(1.87901 + 3.25453i) q^{4} +(1.35391 + 2.34503i) q^{5} +(1.14504 - 0.931009i) q^{6} +(-8.51494 - 4.91611i) q^{7} -3.81635 q^{8} +(6.71217 + 5.99556i) q^{9} -1.33204 q^{10} +(-7.77093 + 13.4596i) q^{11} +(-1.78576 - 11.1317i) q^{12} +(-12.6433 + 3.02429i) q^{13} +(4.18870 - 2.41835i) q^{14} +(-1.28672 - 8.02089i) q^{15} +(-6.57735 + 11.3923i) q^{16} +22.4699i q^{17} +(-4.20516 + 1.38483i) q^{18} -10.5454i q^{19} +(-5.08800 + 8.81267i) q^{20} +(18.6083 + 22.8863i) q^{21} +(-3.82270 - 6.62112i) q^{22} +(2.18641 - 1.26233i) q^{23} +(10.6967 + 4.08173i) q^{24} +(8.83387 - 15.3007i) q^{25} +(1.82137 - 6.13015i) q^{26} +(-12.4009 - 23.9837i) q^{27} -36.9496i q^{28} +(2.12707 + 1.22806i) q^{29} +(3.73353 + 1.42467i) q^{30} +(32.9508 - 19.0241i) q^{31} +(-10.8683 - 18.8244i) q^{32} +(36.1765 - 29.4143i) q^{33} +(-9.57260 - 5.52674i) q^{34} -26.6238i q^{35} +(-6.90053 + 33.1107i) q^{36} +10.3786i q^{37} +(4.49252 + 2.59376i) q^{38} +(38.6722 + 5.04584i) q^{39} +(-5.16698 - 8.94947i) q^{40} +(36.5879 + 63.3720i) q^{41} +(-14.3269 + 2.29834i) q^{42} +(-22.9633 + 39.7736i) q^{43} -58.4065 q^{44} +(-4.97214 + 23.8577i) q^{45} +1.24194i q^{46} +(13.6798 - 23.6942i) q^{47} +(30.6200 - 24.8964i) q^{48} +(23.8362 + 41.2855i) q^{49} +(4.34559 + 7.52679i) q^{50} +(24.0324 - 62.9803i) q^{51} +(-33.5995 - 35.4655i) q^{52} -0.0370030i q^{53} +(13.2676 + 0.616076i) q^{54} -42.0844 q^{55} +(32.4960 + 18.7616i) q^{56} +(-11.2787 + 29.5573i) q^{57} +(-1.04636 + 0.604114i) q^{58} +(32.9332 + 57.0420i) q^{59} +(23.6865 - 19.2590i) q^{60} +(40.6820 - 70.4633i) q^{61} +18.7168i q^{62} +(-27.6790 - 84.0496i) q^{63} -41.9261 q^{64} +(-24.2099 - 25.5544i) q^{65} +(3.63301 + 22.6467i) q^{66} +(-56.2009 + 32.4476i) q^{67} +(-73.1291 + 42.2211i) q^{68} +(-7.47835 + 1.19968i) q^{69} +(11.3422 + 6.54843i) q^{70} -29.5878 q^{71} +(-25.6160 - 22.8811i) q^{72} +28.3208i q^{73} +(-4.42149 - 2.55275i) q^{74} +(-41.1249 + 33.4378i) q^{75} +(34.3203 - 19.8148i) q^{76} +(132.338 - 76.4054i) q^{77} +(-11.6615 + 15.2340i) q^{78} +(-36.3943 + 63.0368i) q^{79} -35.6204 q^{80} +(9.10655 + 80.4865i) q^{81} -35.9969 q^{82} +(71.9367 - 124.598i) q^{83} +(-39.5190 + 103.565i) q^{84} +(-52.6927 + 30.4222i) q^{85} +(-11.2962 - 19.5656i) q^{86} +(-4.64844 - 5.71709i) q^{87} +(29.6566 - 51.3667i) q^{88} -80.5846 q^{89} +(-8.94086 - 7.98631i) q^{90} +(122.525 + 36.4043i) q^{91} +(8.21657 + 4.74384i) q^{92} +(-112.704 + 18.0801i) q^{93} +(6.72944 + 11.6557i) q^{94} +(24.7293 - 14.2775i) q^{95} +(10.3289 + 64.3863i) q^{96} +(97.7027 + 56.4087i) q^{97} -23.4512 q^{98} +(-132.858 + 43.7524i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 4 q^{3} - 50 q^{4} + 4 q^{9} + 8 q^{10} - 38 q^{12} - 6 q^{13} - 6 q^{14} - 90 q^{16} + 14 q^{22} + 138 q^{23} - 92 q^{25} - 76 q^{27} + 48 q^{29} + 186 q^{30} - 154 q^{36} + 324 q^{38} - 2 q^{39}+ \cdots + 504 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.245962 + 0.426018i −0.122981 + 0.213009i −0.920942 0.389700i \(-0.872579\pi\)
0.797961 + 0.602709i \(0.205912\pi\)
\(3\) −2.80287 1.06954i −0.934290 0.356513i
\(4\) 1.87901 + 3.25453i 0.469751 + 0.813633i
\(5\) 1.35391 + 2.34503i 0.270781 + 0.469007i 0.969062 0.246817i \(-0.0793846\pi\)
−0.698281 + 0.715824i \(0.746051\pi\)
\(6\) 1.14504 0.931009i 0.190840 0.155168i
\(7\) −8.51494 4.91611i −1.21642 0.702301i −0.252270 0.967657i \(-0.581177\pi\)
−0.964150 + 0.265356i \(0.914510\pi\)
\(8\) −3.81635 −0.477044
\(9\) 6.71217 + 5.99556i 0.745797 + 0.666173i
\(10\) −1.33204 −0.133204
\(11\) −7.77093 + 13.4596i −0.706448 + 1.22360i 0.259718 + 0.965684i \(0.416370\pi\)
−0.966166 + 0.257920i \(0.916963\pi\)
\(12\) −1.78576 11.1317i −0.148813 0.927642i
\(13\) −12.6433 + 3.02429i −0.972564 + 0.232637i
\(14\) 4.18870 2.41835i 0.299193 0.172739i
\(15\) −1.28672 8.02089i −0.0857813 0.534726i
\(16\) −6.57735 + 11.3923i −0.411084 + 0.712019i
\(17\) 22.4699i 1.32176i 0.750492 + 0.660880i \(0.229817\pi\)
−0.750492 + 0.660880i \(0.770183\pi\)
\(18\) −4.20516 + 1.38483i −0.233620 + 0.0769350i
\(19\) 10.5454i 0.555020i −0.960723 0.277510i \(-0.910491\pi\)
0.960723 0.277510i \(-0.0895091\pi\)
\(20\) −5.08800 + 8.81267i −0.254400 + 0.440633i
\(21\) 18.6083 + 22.8863i 0.886111 + 1.08982i
\(22\) −3.82270 6.62112i −0.173759 0.300960i
\(23\) 2.18641 1.26233i 0.0950615 0.0548838i −0.451716 0.892162i \(-0.649188\pi\)
0.546777 + 0.837278i \(0.315854\pi\)
\(24\) 10.6967 + 4.08173i 0.445697 + 0.170072i
\(25\) 8.83387 15.3007i 0.353355 0.612029i
\(26\) 1.82137 6.13015i 0.0700528 0.235775i
\(27\) −12.4009 23.9837i −0.459292 0.888286i
\(28\) 36.9496i 1.31963i
\(29\) 2.12707 + 1.22806i 0.0733472 + 0.0423470i 0.536225 0.844075i \(-0.319850\pi\)
−0.462878 + 0.886422i \(0.653183\pi\)
\(30\) 3.73353 + 1.42467i 0.124451 + 0.0474888i
\(31\) 32.9508 19.0241i 1.06293 0.613682i 0.136687 0.990614i \(-0.456354\pi\)
0.926241 + 0.376933i \(0.123021\pi\)
\(32\) −10.8683 18.8244i −0.339633 0.588261i
\(33\) 36.1765 29.4143i 1.09626 0.891344i
\(34\) −9.57260 5.52674i −0.281547 0.162551i
\(35\) 26.6238i 0.760680i
\(36\) −6.90053 + 33.1107i −0.191681 + 0.919741i
\(37\) 10.3786i 0.280504i 0.990116 + 0.140252i \(0.0447912\pi\)
−0.990116 + 0.140252i \(0.955209\pi\)
\(38\) 4.49252 + 2.59376i 0.118224 + 0.0682568i
\(39\) 38.6722 + 5.04584i 0.991595 + 0.129380i
\(40\) −5.16698 8.94947i −0.129174 0.223737i
\(41\) 36.5879 + 63.3720i 0.892387 + 1.54566i 0.837006 + 0.547194i \(0.184304\pi\)
0.0553805 + 0.998465i \(0.482363\pi\)
\(42\) −14.3269 + 2.29834i −0.341117 + 0.0547224i
\(43\) −22.9633 + 39.7736i −0.534030 + 0.924967i 0.465180 + 0.885216i \(0.345990\pi\)
−0.999210 + 0.0397508i \(0.987344\pi\)
\(44\) −58.4065 −1.32742
\(45\) −4.97214 + 23.8577i −0.110492 + 0.530171i
\(46\) 1.24194i 0.0269986i
\(47\) 13.6798 23.6942i 0.291060 0.504132i −0.683000 0.730418i \(-0.739325\pi\)
0.974061 + 0.226287i \(0.0726586\pi\)
\(48\) 30.6200 24.8964i 0.637916 0.518675i
\(49\) 23.8362 + 41.2855i 0.486453 + 0.842561i
\(50\) 4.34559 + 7.52679i 0.0869118 + 0.150536i
\(51\) 24.0324 62.9803i 0.471224 1.23491i
\(52\) −33.5995 35.4655i −0.646145 0.682028i
\(53\) 0.0370030i 0.000698170i −1.00000 0.000349085i \(-0.999889\pi\)
1.00000 0.000349085i \(-0.000111117\pi\)
\(54\) 13.2676 + 0.616076i 0.245697 + 0.0114088i
\(55\) −42.0844 −0.765172
\(56\) 32.4960 + 18.7616i 0.580286 + 0.335028i
\(57\) −11.2787 + 29.5573i −0.197872 + 0.518550i
\(58\) −1.04636 + 0.604114i −0.0180406 + 0.0104158i
\(59\) 32.9332 + 57.0420i 0.558190 + 0.966814i 0.997648 + 0.0685502i \(0.0218373\pi\)
−0.439458 + 0.898263i \(0.644829\pi\)
\(60\) 23.6865 19.2590i 0.394775 0.320983i
\(61\) 40.6820 70.4633i 0.666918 1.15514i −0.311843 0.950134i \(-0.600946\pi\)
0.978761 0.205003i \(-0.0657204\pi\)
\(62\) 18.7168i 0.301885i
\(63\) −27.6790 84.0496i −0.439349 1.33412i
\(64\) −41.9261 −0.655095
\(65\) −24.2099 25.5544i −0.372461 0.393145i
\(66\) 3.63301 + 22.6467i 0.0550455 + 0.343131i
\(67\) −56.2009 + 32.4476i −0.838819 + 0.484293i −0.856863 0.515545i \(-0.827590\pi\)
0.0180434 + 0.999837i \(0.494256\pi\)
\(68\) −73.1291 + 42.2211i −1.07543 + 0.620899i
\(69\) −7.47835 + 1.19968i −0.108382 + 0.0173867i
\(70\) 11.3422 + 6.54843i 0.162032 + 0.0935491i
\(71\) −29.5878 −0.416730 −0.208365 0.978051i \(-0.566814\pi\)
−0.208365 + 0.978051i \(0.566814\pi\)
\(72\) −25.6160 22.8811i −0.355778 0.317794i
\(73\) 28.3208i 0.387956i 0.981006 + 0.193978i \(0.0621390\pi\)
−0.981006 + 0.193978i \(0.937861\pi\)
\(74\) −4.42149 2.55275i −0.0597498 0.0344966i
\(75\) −41.1249 + 33.4378i −0.548332 + 0.445837i
\(76\) 34.3203 19.8148i 0.451583 0.260721i
\(77\) 132.338 76.4054i 1.71868 0.992278i
\(78\) −11.6615 + 15.2340i −0.149506 + 0.195308i
\(79\) −36.3943 + 63.0368i −0.460688 + 0.797935i −0.998995 0.0448138i \(-0.985731\pi\)
0.538308 + 0.842748i \(0.319064\pi\)
\(80\) −35.6204 −0.445256
\(81\) 9.10655 + 80.4865i 0.112427 + 0.993660i
\(82\) −35.9969 −0.438986
\(83\) 71.9367 124.598i 0.866708 1.50118i 0.00136586 0.999999i \(-0.499565\pi\)
0.865342 0.501182i \(-0.167101\pi\)
\(84\) −39.5190 + 103.565i −0.470464 + 1.23291i
\(85\) −52.6927 + 30.4222i −0.619915 + 0.357908i
\(86\) −11.2962 19.5656i −0.131351 0.227507i
\(87\) −4.64844 5.71709i −0.0534304 0.0657137i
\(88\) 29.6566 51.3667i 0.337007 0.583713i
\(89\) −80.5846 −0.905445 −0.452722 0.891652i \(-0.649547\pi\)
−0.452722 + 0.891652i \(0.649547\pi\)
\(90\) −8.94086 7.98631i −0.0993429 0.0887367i
\(91\) 122.525 + 36.4043i 1.34643 + 0.400047i
\(92\) 8.21657 + 4.74384i 0.0893105 + 0.0515635i
\(93\) −112.704 + 18.0801i −1.21187 + 0.194409i
\(94\) 6.72944 + 11.6557i 0.0715898 + 0.123997i
\(95\) 24.7293 14.2775i 0.260308 0.150289i
\(96\) 10.3289 + 64.3863i 0.107593 + 0.670690i
\(97\) 97.7027 + 56.4087i 1.00724 + 0.581533i 0.910384 0.413765i \(-0.135787\pi\)
0.0968606 + 0.995298i \(0.469120\pi\)
\(98\) −23.4512 −0.239298
\(99\) −132.858 + 43.7524i −1.34200 + 0.441944i
\(100\) 66.3956 0.663956
\(101\) −171.233 98.8613i −1.69538 0.978825i −0.950036 0.312139i \(-0.898954\pi\)
−0.745339 0.666686i \(-0.767712\pi\)
\(102\) 20.9197 + 25.7290i 0.205095 + 0.252245i
\(103\) 10.9095 + 18.8959i 0.105918 + 0.183455i 0.914113 0.405460i \(-0.132889\pi\)
−0.808195 + 0.588915i \(0.799555\pi\)
\(104\) 48.2513 11.5417i 0.463955 0.110978i
\(105\) −28.4752 + 74.6230i −0.271192 + 0.710696i
\(106\) 0.0157640 + 0.00910133i 0.000148717 + 8.58616e-5i
\(107\) 180.007i 1.68231i 0.540796 + 0.841154i \(0.318123\pi\)
−0.540796 + 0.841154i \(0.681877\pi\)
\(108\) 54.7545 85.4246i 0.506986 0.790968i
\(109\) 117.078i 1.07411i 0.843548 + 0.537055i \(0.180463\pi\)
−0.843548 + 0.537055i \(0.819537\pi\)
\(110\) 10.3512 17.9287i 0.0941015 0.162989i
\(111\) 11.1003 29.0900i 0.100003 0.262072i
\(112\) 112.011 64.6699i 1.00010 0.577409i
\(113\) −59.6664 + 34.4484i −0.528021 + 0.304853i −0.740210 0.672375i \(-0.765274\pi\)
0.212189 + 0.977229i \(0.431941\pi\)
\(114\) −9.81784 12.0749i −0.0861214 0.105920i
\(115\) 5.92040 + 3.41815i 0.0514818 + 0.0297230i
\(116\) 9.23016i 0.0795703i
\(117\) −102.996 55.5043i −0.880312 0.474395i
\(118\) −32.4013 −0.274587
\(119\) 110.464 191.330i 0.928273 1.60782i
\(120\) 4.91057 + 30.6105i 0.0409214 + 0.255087i
\(121\) −60.2747 104.399i −0.498138 0.862801i
\(122\) 20.0124 + 34.6626i 0.164036 + 0.284119i
\(123\) −34.7722 216.756i −0.282701 1.76224i
\(124\) 123.829 + 71.4929i 0.998624 + 0.576556i
\(125\) 115.536 0.924290
\(126\) 42.6146 + 8.88124i 0.338211 + 0.0704860i
\(127\) 70.8862 0.558159 0.279080 0.960268i \(-0.409971\pi\)
0.279080 + 0.960268i \(0.409971\pi\)
\(128\) 53.7852 93.1587i 0.420197 0.727803i
\(129\) 106.903 86.9201i 0.828702 0.673799i
\(130\) 16.8414 4.02846i 0.129549 0.0309882i
\(131\) −127.088 + 73.3745i −0.970140 + 0.560111i −0.899279 0.437376i \(-0.855908\pi\)
−0.0708610 + 0.997486i \(0.522575\pi\)
\(132\) 163.706 + 62.4680i 1.24020 + 0.473242i
\(133\) −51.8422 + 89.7933i −0.389791 + 0.675137i
\(134\) 31.9235i 0.238235i
\(135\) 39.4530 61.5522i 0.292244 0.455942i
\(136\) 85.7531i 0.630537i
\(137\) 34.9983 60.6188i 0.255462 0.442473i −0.709559 0.704646i \(-0.751106\pi\)
0.965021 + 0.262173i \(0.0844391\pi\)
\(138\) 1.32830 3.48099i 0.00962536 0.0252246i
\(139\) −76.5741 132.630i −0.550892 0.954174i −0.998210 0.0597988i \(-0.980954\pi\)
0.447318 0.894375i \(-0.352379\pi\)
\(140\) 86.6480 50.0262i 0.618914 0.357330i
\(141\) −63.6847 + 51.7806i −0.451664 + 0.367238i
\(142\) 7.27747 12.6049i 0.0512498 0.0887672i
\(143\) 57.5446 193.676i 0.402410 1.35438i
\(144\) −112.451 + 37.0322i −0.780913 + 0.257168i
\(145\) 6.65074i 0.0458672i
\(146\) −12.0652 6.96583i −0.0826382 0.0477112i
\(147\) −22.6533 141.212i −0.154104 0.960623i
\(148\) −33.7776 + 19.5015i −0.228227 + 0.131767i
\(149\) 16.2539 + 28.1526i 0.109087 + 0.188944i 0.915400 0.402544i \(-0.131874\pi\)
−0.806314 + 0.591488i \(0.798541\pi\)
\(150\) −4.12994 25.7444i −0.0275330 0.171629i
\(151\) −29.5608 17.0670i −0.195767 0.113026i 0.398912 0.916989i \(-0.369388\pi\)
−0.594680 + 0.803963i \(0.702721\pi\)
\(152\) 40.2448i 0.264769i
\(153\) −134.720 + 150.822i −0.880521 + 0.985765i
\(154\) 75.1713i 0.488125i
\(155\) 89.2245 + 51.5138i 0.575642 + 0.332347i
\(156\) 56.2434 + 135.341i 0.360535 + 0.867571i
\(157\) 110.354 + 191.138i 0.702889 + 1.21744i 0.967448 + 0.253070i \(0.0814401\pi\)
−0.264559 + 0.964369i \(0.585227\pi\)
\(158\) −17.9032 31.0093i −0.113312 0.196261i
\(159\) −0.0395762 + 0.103715i −0.000248907 + 0.000652294i
\(160\) 29.4292 50.9728i 0.183932 0.318580i
\(161\) −24.8229 −0.154180
\(162\) −36.5286 15.9170i −0.225485 0.0982533i
\(163\) 42.5714i 0.261174i −0.991437 0.130587i \(-0.958314\pi\)
0.991437 0.130587i \(-0.0416862\pi\)
\(164\) −137.498 + 238.153i −0.838400 + 1.45215i
\(165\) 117.957 + 45.0110i 0.714893 + 0.272794i
\(166\) 35.3874 + 61.2927i 0.213177 + 0.369233i
\(167\) 103.978 + 180.096i 0.622624 + 1.07842i 0.988995 + 0.147948i \(0.0472667\pi\)
−0.366371 + 0.930469i \(0.619400\pi\)
\(168\) −71.0159 87.3420i −0.422713 0.519893i
\(169\) 150.707 76.4741i 0.891760 0.452509i
\(170\) 29.9308i 0.176063i
\(171\) 63.2254 70.7824i 0.369739 0.413932i
\(172\) −172.593 −1.00345
\(173\) 47.0331 + 27.1546i 0.271867 + 0.156963i 0.629736 0.776809i \(-0.283163\pi\)
−0.357869 + 0.933772i \(0.616496\pi\)
\(174\) 3.57892 0.574135i 0.0205685 0.00329963i
\(175\) −150.440 + 86.8565i −0.859657 + 0.496323i
\(176\) −102.224 177.058i −0.580819 1.00601i
\(177\) −31.2989 195.105i −0.176830 1.10229i
\(178\) 19.8207 34.3305i 0.111352 0.192868i
\(179\) 82.5470i 0.461156i −0.973054 0.230578i \(-0.925938\pi\)
0.973054 0.230578i \(-0.0740617\pi\)
\(180\) −86.9884 + 28.6468i −0.483269 + 0.159149i
\(181\) 166.981 0.922544 0.461272 0.887259i \(-0.347393\pi\)
0.461272 + 0.887259i \(0.347393\pi\)
\(182\) −45.6453 + 43.2438i −0.250799 + 0.237603i
\(183\) −189.390 + 153.989i −1.03492 + 0.841468i
\(184\) −8.34412 + 4.81748i −0.0453485 + 0.0261820i
\(185\) −24.3383 + 14.0517i −0.131558 + 0.0759551i
\(186\) 20.0184 52.4609i 0.107626 0.282048i
\(187\) −302.437 174.612i −1.61731 0.933755i
\(188\) 102.818 0.546904
\(189\) −12.3137 + 265.184i −0.0651517 + 1.40309i
\(190\) 14.0468i 0.0739307i
\(191\) 61.1253 + 35.2907i 0.320028 + 0.184768i 0.651405 0.758730i \(-0.274180\pi\)
−0.331377 + 0.943498i \(0.607513\pi\)
\(192\) 117.513 + 44.8416i 0.612049 + 0.233550i
\(193\) 40.4093 23.3303i 0.209375 0.120883i −0.391646 0.920116i \(-0.628094\pi\)
0.601021 + 0.799233i \(0.294761\pi\)
\(194\) −48.0623 + 27.7488i −0.247744 + 0.143035i
\(195\) 40.5259 + 97.5193i 0.207825 + 0.500099i
\(196\) −89.5766 + 155.151i −0.457024 + 0.791588i
\(197\) −194.423 −0.986919 −0.493460 0.869769i \(-0.664268\pi\)
−0.493460 + 0.869769i \(0.664268\pi\)
\(198\) 14.0386 67.3613i 0.0709023 0.340209i
\(199\) −22.2689 −0.111904 −0.0559520 0.998433i \(-0.517819\pi\)
−0.0559520 + 0.998433i \(0.517819\pi\)
\(200\) −33.7131 + 58.3929i −0.168566 + 0.291964i
\(201\) 192.228 30.8374i 0.956357 0.153420i
\(202\) 84.2335 48.6322i 0.416998 0.240754i
\(203\) −12.0746 20.9138i −0.0594807 0.103024i
\(204\) 250.129 40.1259i 1.22612 0.196696i
\(205\) −99.0731 + 171.600i −0.483283 + 0.837071i
\(206\) −10.7333 −0.0521034
\(207\) 22.2440 + 4.63582i 0.107459 + 0.0223953i
\(208\) 48.7059 163.928i 0.234163 0.788117i
\(209\) 141.937 + 81.9474i 0.679125 + 0.392093i
\(210\) −24.7870 30.4854i −0.118033 0.145168i
\(211\) −96.7627 167.598i −0.458591 0.794303i 0.540296 0.841475i \(-0.318312\pi\)
−0.998887 + 0.0471724i \(0.984979\pi\)
\(212\) 0.120428 0.0695289i 0.000568054 0.000327966i
\(213\) 82.9308 + 31.6453i 0.389347 + 0.148570i
\(214\) −76.6863 44.2748i −0.358347 0.206892i
\(215\) −124.361 −0.578421
\(216\) 47.3261 + 91.5302i 0.219102 + 0.423751i
\(217\) −374.099 −1.72396
\(218\) −49.8773 28.7967i −0.228795 0.132095i
\(219\) 30.2902 79.3795i 0.138311 0.362464i
\(220\) −79.0769 136.965i −0.359441 0.622569i
\(221\) −67.9555 284.095i −0.307491 1.28550i
\(222\) 9.66260 + 11.8840i 0.0435252 + 0.0535314i
\(223\) 198.753 + 114.750i 0.891271 + 0.514575i 0.874358 0.485282i \(-0.161283\pi\)
0.0169128 + 0.999857i \(0.494616\pi\)
\(224\) 213.718i 0.954097i
\(225\) 151.031 49.7371i 0.671248 0.221054i
\(226\) 33.8920i 0.149964i
\(227\) −124.606 + 215.824i −0.548925 + 0.950766i 0.449423 + 0.893319i \(0.351629\pi\)
−0.998349 + 0.0574473i \(0.981704\pi\)
\(228\) −117.388 + 18.8315i −0.514860 + 0.0825944i
\(229\) −46.3299 + 26.7486i −0.202314 + 0.116806i −0.597734 0.801694i \(-0.703932\pi\)
0.395420 + 0.918500i \(0.370599\pi\)
\(230\) −2.91239 + 1.68147i −0.0126625 + 0.00731072i
\(231\) −452.645 + 72.6139i −1.95950 + 0.314346i
\(232\) −8.11764 4.68672i −0.0349898 0.0202014i
\(233\) 111.432i 0.478248i −0.970989 0.239124i \(-0.923140\pi\)
0.970989 0.239124i \(-0.0768602\pi\)
\(234\) 48.9790 30.2265i 0.209312 0.129173i
\(235\) 74.0849 0.315255
\(236\) −123.763 + 214.364i −0.524421 + 0.908324i
\(237\) 169.429 137.759i 0.714890 0.581262i
\(238\) 54.3401 + 94.1198i 0.228320 + 0.395461i
\(239\) 117.640 + 203.758i 0.492217 + 0.852545i 0.999960 0.00896368i \(-0.00285327\pi\)
−0.507743 + 0.861509i \(0.669520\pi\)
\(240\) 99.8395 + 38.0974i 0.415998 + 0.158739i
\(241\) −220.705 127.424i −0.915787 0.528730i −0.0334983 0.999439i \(-0.510665\pi\)
−0.882289 + 0.470709i \(0.843998\pi\)
\(242\) 59.3011 0.245046
\(243\) 60.5589 235.333i 0.249214 0.968449i
\(244\) 305.767 1.25314
\(245\) −64.5439 + 111.793i −0.263445 + 0.456299i
\(246\) 100.895 + 38.5000i 0.410140 + 0.156504i
\(247\) 31.8922 + 133.329i 0.129118 + 0.539792i
\(248\) −125.752 + 72.6027i −0.507063 + 0.292753i
\(249\) −334.892 + 272.293i −1.34495 + 1.09355i
\(250\) −28.4175 + 49.2206i −0.113670 + 0.196882i
\(251\) 222.888i 0.888002i 0.896026 + 0.444001i \(0.146441\pi\)
−0.896026 + 0.444001i \(0.853559\pi\)
\(252\) 221.533 248.012i 0.879100 0.984174i
\(253\) 39.2378i 0.155090i
\(254\) −17.4353 + 30.1988i −0.0686429 + 0.118893i
\(255\) 180.229 28.9125i 0.706779 0.113382i
\(256\) −57.3939 99.4092i −0.224195 0.388317i
\(257\) 203.969 117.762i 0.793654 0.458217i −0.0475931 0.998867i \(-0.515155\pi\)
0.841247 + 0.540650i \(0.181822\pi\)
\(258\) 10.7356 + 66.9215i 0.0416109 + 0.259386i
\(259\) 51.0224 88.3735i 0.196998 0.341210i
\(260\) 37.6771 126.809i 0.144912 0.487727i
\(261\) 6.91433 + 20.9960i 0.0264917 + 0.0804443i
\(262\) 72.1893i 0.275532i
\(263\) −45.2489 26.1244i −0.172049 0.0993325i 0.411503 0.911409i \(-0.365004\pi\)
−0.583552 + 0.812076i \(0.698337\pi\)
\(264\) −138.062 + 112.255i −0.522963 + 0.425210i
\(265\) 0.0867734 0.0500986i 0.000327447 0.000189051i
\(266\) −25.5024 44.1714i −0.0958737 0.166058i
\(267\) 225.868 + 86.1883i 0.845948 + 0.322803i
\(268\) −211.204 121.938i −0.788073 0.454994i
\(269\) 435.342i 1.61837i 0.587553 + 0.809186i \(0.300091\pi\)
−0.587553 + 0.809186i \(0.699909\pi\)
\(270\) 16.5184 + 31.9472i 0.0611794 + 0.118323i
\(271\) 535.820i 1.97720i −0.150574 0.988599i \(-0.548112\pi\)
0.150574 0.988599i \(-0.451888\pi\)
\(272\) −255.984 147.792i −0.941118 0.543355i
\(273\) −304.486 233.082i −1.11533 0.853779i
\(274\) 17.2165 + 29.8198i 0.0628339 + 0.108832i
\(275\) 137.295 + 237.802i 0.499254 + 0.864733i
\(276\) −17.9563 22.0843i −0.0650589 0.0800156i
\(277\) 13.4558 23.3061i 0.0485769 0.0841376i −0.840715 0.541479i \(-0.817865\pi\)
0.889291 + 0.457341i \(0.151198\pi\)
\(278\) 75.3372 0.270997
\(279\) 335.232 + 69.8650i 1.20155 + 0.250412i
\(280\) 101.606i 0.362877i
\(281\) 36.6045 63.4009i 0.130265 0.225626i −0.793514 0.608553i \(-0.791750\pi\)
0.923779 + 0.382927i \(0.125084\pi\)
\(282\) −6.39549 39.8669i −0.0226791 0.141372i
\(283\) 127.130 + 220.196i 0.449223 + 0.778077i 0.998336 0.0576712i \(-0.0183675\pi\)
−0.549113 + 0.835748i \(0.685034\pi\)
\(284\) −55.5957 96.2945i −0.195759 0.339065i
\(285\) −84.5833 + 13.5689i −0.296783 + 0.0476103i
\(286\) 68.3559 + 72.1520i 0.239006 + 0.252280i
\(287\) 719.479i 2.50690i
\(288\) 39.9130 191.514i 0.138587 0.664978i
\(289\) −215.897 −0.747049
\(290\) −2.83334 1.63583i −0.00977012 0.00564078i
\(291\) −213.517 262.603i −0.733735 0.902416i
\(292\) −92.1709 + 53.2149i −0.315654 + 0.182243i
\(293\) −21.1134 36.5695i −0.0720594 0.124810i 0.827744 0.561105i \(-0.189624\pi\)
−0.899804 + 0.436295i \(0.856290\pi\)
\(294\) 65.7306 + 25.0819i 0.223573 + 0.0853127i
\(295\) −89.1770 + 154.459i −0.302295 + 0.523590i
\(296\) 39.6085i 0.133812i
\(297\) 419.179 + 19.4643i 1.41138 + 0.0655365i
\(298\) −15.9914 −0.0536623
\(299\) −23.8259 + 22.5724i −0.0796853 + 0.0754928i
\(300\) −186.098 71.0127i −0.620328 0.236709i
\(301\) 391.062 225.780i 1.29921 0.750099i
\(302\) 14.5417 8.39564i 0.0481512 0.0278001i
\(303\) 374.208 + 460.236i 1.23501 + 1.51893i
\(304\) 120.136 + 69.3606i 0.395184 + 0.228160i
\(305\) 220.319 0.722356
\(306\) −31.1170 94.4895i −0.101690 0.308789i
\(307\) 136.458i 0.444490i 0.974991 + 0.222245i \(0.0713385\pi\)
−0.974991 + 0.222245i \(0.928662\pi\)
\(308\) 497.328 + 287.132i 1.61470 + 0.932248i
\(309\) −10.3681 64.6308i −0.0335539 0.209161i
\(310\) −43.8916 + 25.3409i −0.141586 + 0.0817447i
\(311\) 272.833 157.520i 0.877277 0.506496i 0.00751707 0.999972i \(-0.497607\pi\)
0.869759 + 0.493476i \(0.164274\pi\)
\(312\) −147.587 19.2567i −0.473034 0.0617201i
\(313\) 261.082 452.207i 0.834127 1.44475i −0.0606123 0.998161i \(-0.519305\pi\)
0.894739 0.446589i \(-0.147361\pi\)
\(314\) −108.571 −0.345768
\(315\) 159.624 178.703i 0.506744 0.567313i
\(316\) −273.541 −0.865635
\(317\) −41.1674 + 71.3040i −0.129866 + 0.224934i −0.923624 0.383299i \(-0.874788\pi\)
0.793759 + 0.608233i \(0.208121\pi\)
\(318\) −0.0344501 0.0423700i −0.000108334 0.000133239i
\(319\) −33.0586 + 19.0864i −0.103632 + 0.0598320i
\(320\) −56.7640 98.3181i −0.177387 0.307244i
\(321\) 192.524 504.536i 0.599765 1.57176i
\(322\) 6.10549 10.5750i 0.0189612 0.0328417i
\(323\) 236.954 0.733603
\(324\) −244.835 + 180.872i −0.755662 + 0.558247i
\(325\) −65.4158 + 220.168i −0.201279 + 0.677440i
\(326\) 18.1362 + 10.4709i 0.0556325 + 0.0321194i
\(327\) 125.219 328.154i 0.382934 1.00353i
\(328\) −139.632 241.850i −0.425707 0.737347i
\(329\) −232.966 + 134.503i −0.708104 + 0.408824i
\(330\) −48.1885 + 39.1810i −0.146026 + 0.118730i
\(331\) −130.559 75.3781i −0.394437 0.227728i 0.289644 0.957135i \(-0.406463\pi\)
−0.684081 + 0.729406i \(0.739797\pi\)
\(332\) 540.678 1.62855
\(333\) −62.2257 + 69.6632i −0.186864 + 0.209199i
\(334\) −102.299 −0.306283
\(335\) −152.182 87.8620i −0.454273 0.262275i
\(336\) −383.121 + 61.4607i −1.14024 + 0.182919i
\(337\) 120.680 + 209.024i 0.358100 + 0.620248i 0.987643 0.156718i \(-0.0500912\pi\)
−0.629543 + 0.776966i \(0.716758\pi\)
\(338\) −4.48889 + 83.0138i −0.0132807 + 0.245603i
\(339\) 204.081 32.7389i 0.602009 0.0965750i
\(340\) −198.020 114.327i −0.582411 0.336255i
\(341\) 591.341i 1.73414i
\(342\) 14.6036 + 44.3450i 0.0427005 + 0.129664i
\(343\) 13.0537i 0.0380573i
\(344\) 87.6359 151.790i 0.254756 0.441250i
\(345\) −12.9383 15.9127i −0.0375023 0.0461238i
\(346\) −23.1367 + 13.3580i −0.0668690 + 0.0386068i
\(347\) −449.622 + 259.590i −1.29574 + 0.748097i −0.979666 0.200637i \(-0.935699\pi\)
−0.316076 + 0.948734i \(0.602366\pi\)
\(348\) 9.87201 25.8709i 0.0283679 0.0743418i
\(349\) 313.905 + 181.233i 0.899442 + 0.519293i 0.877019 0.480456i \(-0.159529\pi\)
0.0224227 + 0.999749i \(0.492862\pi\)
\(350\) 85.4535i 0.244153i
\(351\) 229.322 + 265.730i 0.653339 + 0.757066i
\(352\) 337.826 0.959732
\(353\) 31.9628 55.3612i 0.0905462 0.156831i −0.817195 0.576361i \(-0.804472\pi\)
0.907741 + 0.419531i \(0.137805\pi\)
\(354\) 90.8165 + 34.6544i 0.256544 + 0.0978938i
\(355\) −40.0591 69.3844i −0.112843 0.195449i
\(356\) −151.419 262.265i −0.425334 0.736700i
\(357\) −514.253 + 418.128i −1.44048 + 1.17123i
\(358\) 35.1665 + 20.3034i 0.0982305 + 0.0567134i
\(359\) −359.930 −1.00259 −0.501295 0.865276i \(-0.667143\pi\)
−0.501295 + 0.865276i \(0.667143\pi\)
\(360\) 18.9754 91.0493i 0.0527095 0.252915i
\(361\) 249.795 0.691953
\(362\) −41.0708 + 71.1368i −0.113455 + 0.196510i
\(363\) 57.2836 + 357.083i 0.157806 + 0.983699i
\(364\) 111.746 + 467.165i 0.306995 + 1.28342i
\(365\) −66.4132 + 38.3437i −0.181954 + 0.105051i
\(366\) −19.0193 118.559i −0.0519654 0.323931i
\(367\) 73.7089 127.668i 0.200842 0.347868i −0.747958 0.663746i \(-0.768966\pi\)
0.948800 + 0.315878i \(0.102299\pi\)
\(368\) 33.2110i 0.0902474i
\(369\) −134.367 + 644.729i −0.364137 + 1.74723i
\(370\) 13.8247i 0.0373641i
\(371\) −0.181911 + 0.315079i −0.000490325 + 0.000849268i
\(372\) −270.613 332.826i −0.727455 0.894693i
\(373\) −285.025 493.678i −0.764143 1.32353i −0.940699 0.339243i \(-0.889829\pi\)
0.176556 0.984291i \(-0.443504\pi\)
\(374\) 148.776 85.8959i 0.397797 0.229668i
\(375\) −323.833 123.571i −0.863555 0.329521i
\(376\) −52.2071 + 90.4253i −0.138849 + 0.240493i
\(377\) −30.6073 9.09395i −0.0811864 0.0241219i
\(378\) −109.945 70.4710i −0.290859 0.186431i
\(379\) 333.547i 0.880071i 0.897980 + 0.440036i \(0.145034\pi\)
−0.897980 + 0.440036i \(0.854966\pi\)
\(380\) 92.9329 + 53.6548i 0.244560 + 0.141197i
\(381\) −198.685 75.8155i −0.521483 0.198991i
\(382\) −30.0690 + 17.3603i −0.0787146 + 0.0454459i
\(383\) −226.922 393.041i −0.592486 1.02622i −0.993896 0.110318i \(-0.964813\pi\)
0.401410 0.915898i \(-0.368520\pi\)
\(384\) −250.390 + 203.587i −0.652057 + 0.530173i
\(385\) 358.347 + 206.892i 0.930771 + 0.537381i
\(386\) 22.9535i 0.0594650i
\(387\) −392.598 + 129.289i −1.01447 + 0.334081i
\(388\) 423.969i 1.09270i
\(389\) −331.803 191.567i −0.852965 0.492460i 0.00868524 0.999962i \(-0.497235\pi\)
−0.861650 + 0.507503i \(0.830569\pi\)
\(390\) −51.5128 6.72124i −0.132084 0.0172340i
\(391\) 28.3644 + 49.1286i 0.0725432 + 0.125648i
\(392\) −90.9672 157.560i −0.232059 0.401938i
\(393\) 434.689 69.7333i 1.10608 0.177438i
\(394\) 47.8206 82.8278i 0.121372 0.210223i
\(395\) −197.098 −0.498983
\(396\) −392.034 350.180i −0.989986 0.884292i
\(397\) 114.607i 0.288682i −0.989528 0.144341i \(-0.953894\pi\)
0.989528 0.144341i \(-0.0461062\pi\)
\(398\) 5.47730 9.48696i 0.0137621 0.0238366i
\(399\) 241.344 196.232i 0.604873 0.491809i
\(400\) 116.207 + 201.276i 0.290517 + 0.503191i
\(401\) −168.468 291.795i −0.420119 0.727667i 0.575832 0.817568i \(-0.304678\pi\)
−0.995951 + 0.0899009i \(0.971345\pi\)
\(402\) −34.1434 + 89.4774i −0.0849338 + 0.222581i
\(403\) −359.073 + 340.181i −0.891000 + 0.844121i
\(404\) 743.044i 1.83922i
\(405\) −176.414 + 130.326i −0.435590 + 0.321793i
\(406\) 11.8795 0.0292600
\(407\) −139.693 80.6516i −0.343225 0.198161i
\(408\) −91.7162 + 240.355i −0.224795 + 0.589105i
\(409\) 537.500 310.326i 1.31418 0.758742i 0.331395 0.943492i \(-0.392481\pi\)
0.982786 + 0.184750i \(0.0591475\pi\)
\(410\) −48.7364 84.4139i −0.118869 0.205888i
\(411\) −162.930 + 132.475i −0.396423 + 0.322323i
\(412\) −40.9981 + 71.0108i −0.0995100 + 0.172356i
\(413\) 647.613i 1.56807i
\(414\) −7.44611 + 8.33610i −0.0179858 + 0.0201355i
\(415\) 389.582 0.938753
\(416\) 194.341 + 205.134i 0.467166 + 0.493110i
\(417\) 72.7741 + 453.644i 0.174518 + 1.08788i
\(418\) −69.8222 + 40.3119i −0.167039 + 0.0964398i
\(419\) 217.694 125.686i 0.519557 0.299966i −0.217196 0.976128i \(-0.569691\pi\)
0.736753 + 0.676162i \(0.236358\pi\)
\(420\) −296.368 + 47.5437i −0.705638 + 0.113199i
\(421\) 643.709 + 371.645i 1.52900 + 0.882768i 0.999404 + 0.0345179i \(0.0109896\pi\)
0.529595 + 0.848250i \(0.322344\pi\)
\(422\) 95.1997 0.225592
\(423\) 233.881 77.0212i 0.552911 0.182083i
\(424\) 0.141216i 0.000333058i
\(425\) 343.806 + 198.496i 0.808955 + 0.467050i
\(426\) −33.8793 + 27.5465i −0.0795289 + 0.0646632i
\(427\) −692.810 + 399.994i −1.62251 + 0.936755i
\(428\) −585.839 + 338.234i −1.36878 + 0.790267i
\(429\) −368.434 + 481.303i −0.858821 + 1.12192i
\(430\) 30.5880 52.9799i 0.0711348 0.123209i
\(431\) 649.249 1.50638 0.753189 0.657804i \(-0.228515\pi\)
0.753189 + 0.657804i \(0.228515\pi\)
\(432\) 354.794 + 16.4747i 0.821283 + 0.0381358i
\(433\) 245.607 0.567222 0.283611 0.958939i \(-0.408468\pi\)
0.283611 + 0.958939i \(0.408468\pi\)
\(434\) 92.0140 159.373i 0.212014 0.367219i
\(435\) 7.11322 18.6412i 0.0163522 0.0428532i
\(436\) −381.034 + 219.990i −0.873931 + 0.504564i
\(437\) −13.3117 23.0566i −0.0304616 0.0527610i
\(438\) 26.3669 + 32.4285i 0.0601984 + 0.0740377i
\(439\) 15.0625 26.0889i 0.0343108 0.0594281i −0.848360 0.529420i \(-0.822410\pi\)
0.882671 + 0.469992i \(0.155743\pi\)
\(440\) 160.609 0.365020
\(441\) −87.5369 + 420.026i −0.198496 + 0.952441i
\(442\) 137.744 + 40.9261i 0.311638 + 0.0925930i
\(443\) 152.079 + 87.8030i 0.343294 + 0.198201i 0.661728 0.749744i \(-0.269824\pi\)
−0.318434 + 0.947945i \(0.603157\pi\)
\(444\) 115.532 18.5338i 0.260207 0.0417427i
\(445\) −109.104 188.974i −0.245178 0.424660i
\(446\) −97.7715 + 56.4484i −0.219219 + 0.126566i
\(447\) −15.4473 96.2922i −0.0345577 0.215419i
\(448\) 356.998 + 206.113i 0.796871 + 0.460074i
\(449\) −126.404 −0.281523 −0.140762 0.990044i \(-0.544955\pi\)
−0.140762 + 0.990044i \(0.544955\pi\)
\(450\) −15.9589 + 76.5753i −0.0354643 + 0.170167i
\(451\) −1137.29 −2.52170
\(452\) −224.227 129.458i −0.496077 0.286410i
\(453\) 64.6014 + 79.4529i 0.142608 + 0.175393i
\(454\) −61.2966 106.169i −0.135015 0.233852i
\(455\) 80.5180 + 336.613i 0.176963 + 0.739809i
\(456\) 43.0434 112.801i 0.0943934 0.247371i
\(457\) −574.817 331.871i −1.25781 0.726194i −0.285158 0.958481i \(-0.592046\pi\)
−0.972647 + 0.232286i \(0.925379\pi\)
\(458\) 26.3165i 0.0574597i
\(459\) 538.912 278.647i 1.17410 0.607073i
\(460\) 25.6909i 0.0558497i
\(461\) 15.6227 27.0593i 0.0338887 0.0586969i −0.848584 0.529061i \(-0.822544\pi\)
0.882472 + 0.470364i \(0.155877\pi\)
\(462\) 80.3986 210.695i 0.174023 0.456051i
\(463\) 558.193 322.273i 1.20560 0.696053i 0.243805 0.969824i \(-0.421604\pi\)
0.961795 + 0.273771i \(0.0882710\pi\)
\(464\) −27.9810 + 16.1548i −0.0603038 + 0.0348164i
\(465\) −194.989 239.816i −0.419331 0.515732i
\(466\) 47.4720 + 27.4080i 0.101871 + 0.0588154i
\(467\) 594.979i 1.27405i 0.770845 + 0.637023i \(0.219834\pi\)
−0.770845 + 0.637023i \(0.780166\pi\)
\(468\) −12.8905 439.498i −0.0275439 0.939099i
\(469\) 638.063 1.36048
\(470\) −18.2221 + 31.5615i −0.0387703 + 0.0671522i
\(471\) −104.877 653.762i −0.222669 1.38803i
\(472\) −125.685 217.692i −0.266281 0.461212i
\(473\) −356.892 618.156i −0.754529 1.30688i
\(474\) 17.0148 + 106.063i 0.0358962 + 0.223762i
\(475\) −161.352 93.1565i −0.339688 0.196119i
\(476\) 830.254 1.74423
\(477\) 0.221854 0.248371i 0.000465102 0.000520693i
\(478\) −115.740 −0.242133
\(479\) 31.4715 54.5102i 0.0657025 0.113800i −0.831303 0.555820i \(-0.812405\pi\)
0.897005 + 0.442020i \(0.145738\pi\)
\(480\) −137.004 + 111.395i −0.285424 + 0.232072i
\(481\) −31.3880 131.220i −0.0652556 0.272808i
\(482\) 108.570 62.6828i 0.225249 0.130047i
\(483\) 69.5755 + 26.5491i 0.144049 + 0.0549671i
\(484\) 226.513 392.332i 0.468002 0.810604i
\(485\) 305.488i 0.629873i
\(486\) 85.3610 + 83.6821i 0.175640 + 0.172185i
\(487\) 143.450i 0.294558i 0.989095 + 0.147279i \(0.0470516\pi\)
−0.989095 + 0.147279i \(0.952948\pi\)
\(488\) −155.257 + 268.913i −0.318149 + 0.551051i
\(489\) −45.5317 + 119.322i −0.0931119 + 0.244012i
\(490\) −31.7507 54.9938i −0.0647973 0.112232i
\(491\) 824.274 475.895i 1.67877 0.969236i 0.716316 0.697776i \(-0.245827\pi\)
0.962450 0.271460i \(-0.0875063\pi\)
\(492\) 640.102 520.452i 1.30102 1.05783i
\(493\) −27.5945 + 47.7951i −0.0559726 + 0.0969474i
\(494\) −64.6447 19.2071i −0.130860 0.0388807i
\(495\) −282.478 252.320i −0.570663 0.509737i
\(496\) 500.513i 1.00910i
\(497\) 251.939 + 145.457i 0.506919 + 0.292670i
\(498\) −33.6313 209.644i −0.0675327 0.420971i
\(499\) 56.3465 32.5317i 0.112919 0.0651937i −0.442477 0.896780i \(-0.645900\pi\)
0.555396 + 0.831586i \(0.312567\pi\)
\(500\) 217.093 + 376.017i 0.434187 + 0.752033i
\(501\) −98.8184 615.993i −0.197242 1.22953i
\(502\) −94.9546 54.8221i −0.189153 0.109207i
\(503\) 493.047i 0.980213i 0.871662 + 0.490107i \(0.163042\pi\)
−0.871662 + 0.490107i \(0.836958\pi\)
\(504\) 105.633 + 320.763i 0.209589 + 0.636434i
\(505\) 535.396i 1.06019i
\(506\) −16.7160 9.65101i −0.0330356 0.0190731i
\(507\) −504.205 + 53.1597i −0.994488 + 0.104851i
\(508\) 133.196 + 230.702i 0.262196 + 0.454137i
\(509\) −288.131 499.058i −0.566073 0.980468i −0.996949 0.0780566i \(-0.975129\pi\)
0.430875 0.902411i \(-0.358205\pi\)
\(510\) −32.0121 + 83.8921i −0.0627689 + 0.164494i
\(511\) 139.228 241.150i 0.272462 0.471918i
\(512\) 486.749 0.950681
\(513\) −252.917 + 130.772i −0.493016 + 0.254916i
\(514\) 115.859i 0.225408i
\(515\) −29.5410 + 51.1664i −0.0573611 + 0.0993523i
\(516\) 483.755 + 184.594i 0.937509 + 0.357741i
\(517\) 212.610 + 368.252i 0.411238 + 0.712286i
\(518\) 25.0991 + 43.4730i 0.0484540 + 0.0839247i
\(519\) −102.785 126.414i −0.198044 0.243573i
\(520\) 92.3936 + 97.5246i 0.177680 + 0.187547i
\(521\) 501.004i 0.961620i −0.876825 0.480810i \(-0.840343\pi\)
0.876825 0.480810i \(-0.159657\pi\)
\(522\) −10.6453 2.21857i −0.0203933 0.00425014i
\(523\) −400.933 −0.766602 −0.383301 0.923624i \(-0.625213\pi\)
−0.383301 + 0.923624i \(0.625213\pi\)
\(524\) −477.599 275.742i −0.911449 0.526225i
\(525\) 514.560 82.5463i 0.980114 0.157231i
\(526\) 22.2590 12.8512i 0.0423175 0.0244320i
\(527\) 427.471 + 740.401i 0.811140 + 1.40494i
\(528\) 97.1514 + 605.602i 0.183999 + 1.14697i
\(529\) −261.313 + 452.607i −0.493976 + 0.855591i
\(530\) 0.0492894i 9.29988e-5i
\(531\) −120.945 + 580.329i −0.227769 + 1.09290i
\(532\) −389.647 −0.732419
\(533\) −654.247 690.581i −1.22748 1.29565i
\(534\) −92.2728 + 75.0250i −0.172795 + 0.140496i
\(535\) −422.123 + 243.713i −0.789014 + 0.455538i
\(536\) 214.482 123.831i 0.400153 0.231029i
\(537\) −88.2872 + 231.369i −0.164408 + 0.430854i
\(538\) −185.464 107.077i −0.344728 0.199029i
\(539\) −740.917 −1.37461
\(540\) 274.456 + 12.7442i 0.508252 + 0.0236004i
\(541\) 73.5254i 0.135906i 0.997689 + 0.0679532i \(0.0216469\pi\)
−0.997689 + 0.0679532i \(0.978353\pi\)
\(542\) 228.269 + 131.791i 0.421161 + 0.243158i
\(543\) −468.025 178.592i −0.861924 0.328899i
\(544\) 422.982 244.209i 0.777540 0.448913i
\(545\) −274.552 + 158.513i −0.503765 + 0.290849i
\(546\) 174.189 72.3873i 0.319027 0.132578i
\(547\) −20.0152 + 34.6674i −0.0365909 + 0.0633774i −0.883741 0.467976i \(-0.844983\pi\)
0.847150 + 0.531354i \(0.178317\pi\)
\(548\) 263.048 0.480015
\(549\) 695.532 229.051i 1.26691 0.417214i
\(550\) −135.077 −0.245595
\(551\) 12.9504 22.4308i 0.0235034 0.0407092i
\(552\) 28.5400 4.57842i 0.0517029 0.00829423i
\(553\) 619.791 357.837i 1.12078 0.647083i
\(554\) 6.61922 + 11.4648i 0.0119481 + 0.0206946i
\(555\) 83.2458 13.3544i 0.149992 0.0240620i
\(556\) 287.766 498.426i 0.517565 0.896449i
\(557\) −475.662 −0.853972 −0.426986 0.904258i \(-0.640425\pi\)
−0.426986 + 0.904258i \(0.640425\pi\)
\(558\) −112.218 + 125.631i −0.201107 + 0.225145i
\(559\) 170.046 572.318i 0.304196 1.02382i
\(560\) 303.306 + 175.114i 0.541618 + 0.312703i
\(561\) 660.938 + 812.884i 1.17814 + 1.44899i
\(562\) 18.0066 + 31.1884i 0.0320403 + 0.0554954i
\(563\) 494.852 285.703i 0.878955 0.507465i 0.00864136 0.999963i \(-0.497249\pi\)
0.870314 + 0.492498i \(0.163916\pi\)
\(564\) −288.186 109.968i −0.510967 0.194978i
\(565\) −161.565 93.2798i −0.285957 0.165097i
\(566\) −125.077 −0.220983
\(567\) 318.138 730.106i 0.561090 1.28767i
\(568\) 112.917 0.198798
\(569\) −334.478 193.111i −0.587835 0.339387i 0.176406 0.984318i \(-0.443553\pi\)
−0.764241 + 0.644931i \(0.776886\pi\)
\(570\) 15.0236 39.3715i 0.0263572 0.0690727i
\(571\) 440.436 + 762.858i 0.771342 + 1.33600i 0.936828 + 0.349791i \(0.113748\pi\)
−0.165486 + 0.986212i \(0.552919\pi\)
\(572\) 738.452 176.638i 1.29100 0.308808i
\(573\) −133.582 164.291i −0.233127 0.286721i
\(574\) 306.511 + 176.964i 0.533992 + 0.308300i
\(575\) 44.6050i 0.0775738i
\(576\) −281.415 251.370i −0.488568 0.436407i
\(577\) 583.864i 1.01190i −0.862564 0.505948i \(-0.831143\pi\)
0.862564 0.505948i \(-0.168857\pi\)
\(578\) 53.1025 91.9762i 0.0918728 0.159128i
\(579\) −138.215 + 22.1726i −0.238713 + 0.0382946i
\(580\) −21.6450 + 12.4968i −0.0373190 + 0.0215462i
\(581\) −1225.07 + 707.297i −2.10856 + 1.21738i
\(582\) 164.391 26.3717i 0.282458 0.0453123i
\(583\) 0.498047 + 0.287548i 0.000854284 + 0.000493221i
\(584\) 108.082i 0.185072i
\(585\) −9.28820 316.678i −0.0158773 0.541330i
\(586\) 20.7724 0.0354477
\(587\) −375.099 + 649.690i −0.639010 + 1.10680i 0.346640 + 0.937998i \(0.387322\pi\)
−0.985650 + 0.168800i \(0.946011\pi\)
\(588\) 417.012 339.063i 0.709204 0.576638i
\(589\) −200.617 347.478i −0.340605 0.589946i
\(590\) −43.8683 75.9821i −0.0743530 0.128783i
\(591\) 544.943 + 207.943i 0.922069 + 0.351849i
\(592\) −118.236 68.2639i −0.199724 0.115311i
\(593\) −1077.16 −1.81646 −0.908231 0.418469i \(-0.862567\pi\)
−0.908231 + 0.418469i \(0.862567\pi\)
\(594\) −111.394 + 173.790i −0.187532 + 0.292576i
\(595\) 598.234 1.00544
\(596\) −61.0823 + 105.798i −0.102487 + 0.177513i
\(597\) 62.4169 + 23.8175i 0.104551 + 0.0398952i
\(598\) −3.75597 15.7022i −0.00628089 0.0262579i
\(599\) −245.190 + 141.561i −0.409333 + 0.236329i −0.690503 0.723329i \(-0.742611\pi\)
0.281170 + 0.959658i \(0.409277\pi\)
\(600\) 156.947 127.610i 0.261578 0.212684i
\(601\) 66.0237 114.356i 0.109856 0.190277i −0.805856 0.592112i \(-0.798294\pi\)
0.915712 + 0.401835i \(0.131628\pi\)
\(602\) 222.133i 0.368992i
\(603\) −571.772 119.162i −0.948212 0.197615i
\(604\) 128.276i 0.212377i
\(605\) 163.213 282.693i 0.269773 0.467260i
\(606\) −288.110 + 46.2189i −0.475429 + 0.0762688i
\(607\) −120.206 208.203i −0.198033 0.343003i 0.749858 0.661599i \(-0.230122\pi\)
−0.947891 + 0.318596i \(0.896789\pi\)
\(608\) −198.510 + 114.610i −0.326497 + 0.188503i
\(609\) 11.4754 + 71.5329i 0.0188430 + 0.117460i
\(610\) −54.1900 + 93.8598i −0.0888360 + 0.153868i
\(611\) −101.301 + 340.945i −0.165795 + 0.558012i
\(612\) −743.994 155.054i −1.21568 0.253357i
\(613\) 822.777i 1.34221i −0.741360 0.671107i \(-0.765819\pi\)
0.741360 0.671107i \(-0.234181\pi\)
\(614\) −58.1338 33.5636i −0.0946804 0.0546638i
\(615\) 461.221 375.009i 0.749953 0.609771i
\(616\) −505.048 + 291.590i −0.819884 + 0.473360i
\(617\) 275.955 + 477.968i 0.447253 + 0.774665i 0.998206 0.0598711i \(-0.0190690\pi\)
−0.550953 + 0.834536i \(0.685736\pi\)
\(618\) 30.0841 + 11.4797i 0.0486797 + 0.0185755i
\(619\) −350.084 202.121i −0.565564 0.326529i 0.189812 0.981821i \(-0.439212\pi\)
−0.755376 + 0.655292i \(0.772546\pi\)
\(620\) 387.179i 0.624482i
\(621\) −57.3887 36.7844i −0.0924134 0.0592341i
\(622\) 154.976i 0.249157i
\(623\) 686.173 + 396.162i 1.10140 + 0.635895i
\(624\) −311.844 + 407.377i −0.499750 + 0.652848i
\(625\) −64.4216 111.581i −0.103074 0.178530i
\(626\) 128.432 + 222.451i 0.205163 + 0.355353i
\(627\) −310.185 381.495i −0.494713 0.608445i
\(628\) −414.710 + 718.298i −0.660366 + 1.14379i
\(629\) −233.207 −0.370758
\(630\) 36.8694 + 111.957i 0.0585229 + 0.177710i
\(631\) 443.670i 0.703123i 0.936165 + 0.351561i \(0.114349\pi\)
−0.936165 + 0.351561i \(0.885651\pi\)
\(632\) 138.893 240.571i 0.219768 0.380650i
\(633\) 91.9609 + 573.247i 0.145278 + 0.905603i
\(634\) −20.2512 35.0761i −0.0319420 0.0553251i
\(635\) 95.9733 + 166.231i 0.151139 + 0.261780i
\(636\) −0.411907 + 0.0660785i −0.000647652 + 0.000103897i
\(637\) −426.228 449.898i −0.669117 0.706277i
\(638\) 18.7781i 0.0294328i
\(639\) −198.599 177.395i −0.310796 0.277614i
\(640\) 291.281 0.455126
\(641\) 543.758 + 313.939i 0.848297 + 0.489764i 0.860076 0.510166i \(-0.170416\pi\)
−0.0117791 + 0.999931i \(0.503749\pi\)
\(642\) 167.588 + 206.116i 0.261041 + 0.321052i
\(643\) −618.928 + 357.338i −0.962563 + 0.555736i −0.896961 0.442110i \(-0.854230\pi\)
−0.0656022 + 0.997846i \(0.520897\pi\)
\(644\) −46.6424 80.7870i −0.0724261 0.125446i
\(645\) 348.567 + 133.008i 0.540413 + 0.206215i
\(646\) −58.2816 + 100.947i −0.0902192 + 0.156264i
\(647\) 50.9073i 0.0786820i −0.999226 0.0393410i \(-0.987474\pi\)
0.999226 0.0393410i \(-0.0125259\pi\)
\(648\) −34.7538 307.164i −0.0536324 0.474019i
\(649\) −1023.69 −1.57733
\(650\) −77.7059 82.0213i −0.119548 0.126187i
\(651\) 1048.55 + 400.113i 1.61068 + 0.614613i
\(652\) 138.550 79.9918i 0.212500 0.122687i
\(653\) 370.592 213.962i 0.567523 0.327659i −0.188637 0.982047i \(-0.560407\pi\)
0.756159 + 0.654388i \(0.227074\pi\)
\(654\) 109.001 + 134.059i 0.166668 + 0.204983i
\(655\) −344.131 198.684i −0.525391 0.303335i
\(656\) −962.604 −1.46738
\(657\) −169.799 + 190.094i −0.258446 + 0.289336i
\(658\) 132.331i 0.201110i
\(659\) 472.394 + 272.737i 0.716835 + 0.413865i 0.813587 0.581444i \(-0.197512\pi\)
−0.0967518 + 0.995309i \(0.530845\pi\)
\(660\) 75.1528 + 468.472i 0.113868 + 0.709806i
\(661\) 72.4148 41.8087i 0.109553 0.0632507i −0.444222 0.895917i \(-0.646520\pi\)
0.553776 + 0.832666i \(0.313187\pi\)
\(662\) 64.2249 37.0803i 0.0970165 0.0560125i
\(663\) −113.380 + 868.961i −0.171010 + 1.31065i
\(664\) −274.536 + 475.510i −0.413457 + 0.716129i
\(665\) −280.758 −0.422192
\(666\) −14.3726 43.6438i −0.0215806 0.0655312i
\(667\) 6.20088 0.00929667
\(668\) −390.751 + 676.801i −0.584957 + 1.01318i
\(669\) −434.350 534.205i −0.649253 0.798512i
\(670\) 74.8617 43.2214i 0.111734 0.0645096i
\(671\) 632.274 + 1095.13i 0.942287 + 1.63209i
\(672\) 228.580 599.024i 0.340148 0.891404i
\(673\) −65.7751 + 113.926i −0.0977341 + 0.169280i −0.910746 0.412966i \(-0.864493\pi\)
0.813012 + 0.582247i \(0.197826\pi\)
\(674\) −118.730 −0.176158
\(675\) −476.516 22.1268i −0.705949 0.0327804i
\(676\) 532.067 + 346.787i 0.787082 + 0.512998i
\(677\) 151.765 + 87.6217i 0.224173 + 0.129426i 0.607881 0.794028i \(-0.292020\pi\)
−0.383708 + 0.923454i \(0.625353\pi\)
\(678\) −36.2488 + 94.9948i −0.0534643 + 0.140110i
\(679\) −554.622 960.633i −0.816822 1.41478i
\(680\) 201.094 116.102i 0.295726 0.170738i
\(681\) 580.087 471.656i 0.851816 0.692593i
\(682\) −251.922 145.447i −0.369387 0.213266i
\(683\) −960.521 −1.40633 −0.703163 0.711029i \(-0.748230\pi\)
−0.703163 + 0.711029i \(0.748230\pi\)
\(684\) 349.165 + 72.7687i 0.510474 + 0.106387i
\(685\) 189.538 0.276697
\(686\) −5.56110 3.21070i −0.00810656 0.00468032i
\(687\) 158.466 25.4212i 0.230663 0.0370032i
\(688\) −302.075 523.209i −0.439063 0.760479i
\(689\) 0.111908 + 0.467841i 0.000162421 + 0.000679015i
\(690\) 9.96143 1.59802i 0.0144369 0.00231598i
\(691\) −398.707 230.194i −0.577000 0.333131i 0.182940 0.983124i \(-0.441438\pi\)
−0.759940 + 0.649993i \(0.774772\pi\)
\(692\) 204.094i 0.294934i
\(693\) 1346.37 + 280.594i 1.94281 + 0.404898i
\(694\) 255.397i 0.368007i
\(695\) 207.348 359.138i 0.298343 0.516745i
\(696\) 17.7401 + 21.8184i 0.0254886 + 0.0313483i
\(697\) −1423.96 + 822.126i −2.04299 + 1.17952i
\(698\) −154.417 + 89.1529i −0.221228 + 0.127726i
\(699\) −119.181 + 312.329i −0.170502 + 0.446822i
\(700\) −565.355 326.408i −0.807650 0.466297i
\(701\) 704.086i 1.00440i −0.864751 0.502201i \(-0.832524\pi\)
0.864751 0.502201i \(-0.167476\pi\)
\(702\) −169.610 + 32.3359i −0.241610 + 0.0460626i
\(703\) 109.447 0.155685
\(704\) 325.805 564.310i 0.462791 0.801577i
\(705\) −207.650 79.2367i −0.294540 0.112392i
\(706\) 15.7233 + 27.2335i 0.0222709 + 0.0385743i
\(707\) 972.026 + 1683.60i 1.37486 + 2.38133i
\(708\) 576.164 468.466i 0.813791 0.661676i
\(709\) 1153.90 + 666.202i 1.62750 + 0.939636i 0.984837 + 0.173484i \(0.0555026\pi\)
0.642660 + 0.766151i \(0.277831\pi\)
\(710\) 39.4121 0.0555099
\(711\) −622.226 + 204.910i −0.875142 + 0.288199i
\(712\) 307.539 0.431937
\(713\) 48.0294 83.1893i 0.0673624 0.116675i
\(714\) −51.6435 321.924i −0.0723298 0.450875i
\(715\) 532.087 127.275i 0.744178 0.178008i
\(716\) 268.652 155.106i 0.375212 0.216629i
\(717\) −111.802 696.929i −0.155930 0.972006i
\(718\) 88.5290 153.337i 0.123299 0.213561i
\(719\) 761.577i 1.05922i 0.848242 + 0.529608i \(0.177661\pi\)
−0.848242 + 0.529608i \(0.822339\pi\)
\(720\) −239.091 213.564i −0.332070 0.296617i
\(721\) 214.529i 0.297544i
\(722\) −61.4400 + 106.417i −0.0850970 + 0.147392i
\(723\) 482.322 + 593.205i 0.667112 + 0.820477i
\(724\) 313.757 + 543.444i 0.433367 + 0.750613i
\(725\) 37.5805 21.6971i 0.0518352 0.0299271i
\(726\) −166.213 63.4248i −0.228944 0.0873620i
\(727\) −482.133 + 835.078i −0.663181 + 1.14866i 0.316594 + 0.948561i \(0.397461\pi\)
−0.979775 + 0.200102i \(0.935873\pi\)
\(728\) −467.598 138.931i −0.642305 0.190840i
\(729\) −421.437 + 594.838i −0.578102 + 0.815964i
\(730\) 37.7243i 0.0516772i
\(731\) −893.709 515.983i −1.22258 0.705859i
\(732\) −857.025 327.030i −1.17080 0.446762i
\(733\) 884.929 510.914i 1.20727 0.697018i 0.245108 0.969496i \(-0.421177\pi\)
0.962162 + 0.272478i \(0.0878432\pi\)
\(734\) 36.2591 + 62.8027i 0.0493994 + 0.0855622i
\(735\) 300.476 244.310i 0.408810 0.332395i
\(736\) −47.5250 27.4386i −0.0645720 0.0372807i
\(737\) 1008.59i 1.36851i
\(738\) −241.617 215.821i −0.327395 0.292441i
\(739\) 791.607i 1.07119i 0.844476 + 0.535593i \(0.179912\pi\)
−0.844476 + 0.535593i \(0.820088\pi\)
\(740\) −91.4634 52.8064i −0.123599 0.0713600i
\(741\) 53.2103 407.813i 0.0718087 0.550355i
\(742\) −0.0894862 0.154995i −0.000120601 0.000208888i
\(743\) −186.552 323.118i −0.251080 0.434883i 0.712743 0.701425i \(-0.247452\pi\)
−0.963823 + 0.266542i \(0.914119\pi\)
\(744\) 430.117 68.9999i 0.578114 0.0927418i
\(745\) −44.0125 + 76.2319i −0.0590772 + 0.102325i
\(746\) 280.421 0.375900
\(747\) 1229.89 405.023i 1.64643 0.542199i
\(748\) 1312.39i 1.75453i
\(749\) 884.933 1532.75i 1.18149 2.04639i
\(750\) 132.294 107.565i 0.176392 0.143420i
\(751\) 446.787 + 773.858i 0.594923 + 1.03044i 0.993558 + 0.113327i \(0.0361507\pi\)
−0.398635 + 0.917110i \(0.630516\pi\)
\(752\) 179.954 + 311.690i 0.239301 + 0.414481i
\(753\) 238.388 624.728i 0.316584 0.829652i
\(754\) 11.4024 10.8025i 0.0151226 0.0143269i
\(755\) 92.4282i 0.122421i
\(756\) −886.187 + 458.207i −1.17221 + 0.606094i
\(757\) −121.247 −0.160168 −0.0800839 0.996788i \(-0.525519\pi\)
−0.0800839 + 0.996788i \(0.525519\pi\)
\(758\) −142.097 82.0398i −0.187463 0.108232i
\(759\) 41.9664 109.979i 0.0552917 0.144899i
\(760\) −94.3755 + 54.4877i −0.124178 + 0.0716944i
\(761\) −342.786 593.723i −0.450442 0.780189i 0.547971 0.836497i \(-0.315400\pi\)
−0.998413 + 0.0563086i \(0.982067\pi\)
\(762\) 81.1677 65.9957i 0.106519 0.0866085i
\(763\) 575.567 996.912i 0.754348 1.30657i
\(764\) 265.246i 0.347180i
\(765\) −536.081 111.724i −0.700759 0.146044i
\(766\) 223.257 0.291458
\(767\) −588.897 621.601i −0.767792 0.810432i
\(768\) 54.5458 + 340.016i 0.0710232 + 0.442729i
\(769\) 907.453 523.918i 1.18004 0.681298i 0.224019 0.974585i \(-0.428082\pi\)
0.956025 + 0.293287i \(0.0947490\pi\)
\(770\) −176.279 + 101.775i −0.228934 + 0.132175i
\(771\) −697.650 + 111.918i