Properties

Label 117.3.n.a.38.11
Level $117$
Weight $3$
Character 117.38
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(38,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.38");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 38.11
Character \(\chi\) \(=\) 117.38
Dual form 117.3.n.a.77.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.433498 + 0.750840i) q^{2} +(-0.162662 - 2.99559i) q^{3} +(1.62416 + 2.81313i) q^{4} +(-4.23652 - 7.33786i) q^{5} +(2.31972 + 1.17645i) q^{6} +(-3.54375 - 2.04598i) q^{7} -6.28426 q^{8} +(-8.94708 + 0.974539i) q^{9} +7.34608 q^{10} +(-2.60673 + 4.51499i) q^{11} +(8.16278 - 5.32290i) q^{12} +(5.26488 - 11.8862i) q^{13} +(3.07241 - 1.77386i) q^{14} +(-21.2921 + 13.8844i) q^{15} +(-3.77243 + 6.53403i) q^{16} -29.9878i q^{17} +(3.14682 - 7.14029i) q^{18} +3.71422i q^{19} +(13.7616 - 23.8357i) q^{20} +(-5.55248 + 10.9484i) q^{21} +(-2.26002 - 3.91448i) q^{22} +(15.2009 - 8.77627i) q^{23} +(1.02221 + 18.8250i) q^{24} +(-23.3961 + 40.5233i) q^{25} +(6.64230 + 9.10571i) q^{26} +(4.37467 + 26.6432i) q^{27} -13.2920i q^{28} +(7.85403 + 4.53453i) q^{29} +(-1.19493 - 22.0058i) q^{30} +(35.3345 - 20.4004i) q^{31} +(-15.8392 - 27.4343i) q^{32} +(13.9491 + 7.07427i) q^{33} +(22.5161 + 12.9997i) q^{34} +34.6714i q^{35} +(-17.2730 - 23.5865i) q^{36} +36.3463i q^{37} +(-2.78878 - 1.61011i) q^{38} +(-36.4625 - 13.8380i) q^{39} +(26.6234 + 46.1130i) q^{40} +(22.3968 + 38.7924i) q^{41} +(-5.81351 - 8.91514i) q^{42} +(7.68187 - 13.3054i) q^{43} -16.9350 q^{44} +(45.0555 + 61.5238i) q^{45} +15.2180i q^{46} +(-16.4364 + 28.4687i) q^{47} +(20.1869 + 10.2378i) q^{48} +(-16.1279 - 27.9344i) q^{49} +(-20.2844 - 35.1335i) q^{50} +(-89.8312 + 4.87789i) q^{51} +(41.9883 - 4.49427i) q^{52} +0.397357i q^{53} +(-21.9012 - 8.26511i) q^{54} +44.1738 q^{55} +(22.2698 + 12.8575i) q^{56} +(11.1263 - 0.604164i) q^{57} +(-6.80941 + 3.93141i) q^{58} +(-50.1902 - 86.9320i) q^{59} +(-73.6405 - 37.3468i) q^{60} +(-10.8878 + 18.8583i) q^{61} +35.3741i q^{62} +(33.7001 + 14.8521i) q^{63} -2.71439 q^{64} +(-109.524 + 11.7230i) q^{65} +(-11.3585 + 7.40683i) q^{66} +(70.7519 - 40.8486i) q^{67} +(84.3596 - 48.7050i) q^{68} +(-28.7627 - 44.1082i) q^{69} +(-26.0326 - 15.0300i) q^{70} +50.0834 q^{71} +(56.2258 - 6.12426i) q^{72} -135.863i q^{73} +(-27.2902 - 15.7560i) q^{74} +(125.197 + 63.4936i) q^{75} +(-10.4486 + 6.03249i) q^{76} +(18.4752 - 10.6667i) q^{77} +(26.1965 - 21.3787i) q^{78} +(39.5882 - 68.5688i) q^{79} +63.9278 q^{80} +(79.1005 - 17.4386i) q^{81} -38.8358 q^{82} +(-35.2829 + 61.1118i) q^{83} +(-39.8174 + 2.16211i) q^{84} +(-220.047 + 127.044i) q^{85} +(6.66015 + 11.5357i) q^{86} +(12.3060 - 24.2650i) q^{87} +(16.3814 - 28.3734i) q^{88} +46.8117 q^{89} +(-65.7260 + 7.15904i) q^{90} +(-42.9763 + 31.3497i) q^{91} +(49.3775 + 28.5081i) q^{92} +(-66.8587 - 102.529i) q^{93} +(-14.2503 - 24.6823i) q^{94} +(27.2544 - 15.7354i) q^{95} +(-79.6054 + 51.9102i) q^{96} +(-72.9925 - 42.1423i) q^{97} +27.9656 q^{98} +(18.9226 - 42.9363i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 4 q^{3} - 50 q^{4} + 4 q^{9} + 8 q^{10} - 38 q^{12} - 6 q^{13} - 6 q^{14} - 90 q^{16} + 14 q^{22} + 138 q^{23} - 92 q^{25} - 76 q^{27} + 48 q^{29} + 186 q^{30} - 154 q^{36} + 324 q^{38} - 2 q^{39}+ \cdots + 504 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.433498 + 0.750840i −0.216749 + 0.375420i −0.953812 0.300404i \(-0.902879\pi\)
0.737063 + 0.675824i \(0.236212\pi\)
\(3\) −0.162662 2.99559i −0.0542208 0.998529i
\(4\) 1.62416 + 2.81313i 0.406040 + 0.703282i
\(5\) −4.23652 7.33786i −0.847303 1.46757i −0.883606 0.468232i \(-0.844891\pi\)
0.0363024 0.999341i \(-0.488442\pi\)
\(6\) 2.31972 + 1.17645i 0.386620 + 0.196074i
\(7\) −3.54375 2.04598i −0.506249 0.292283i 0.225041 0.974349i \(-0.427748\pi\)
−0.731291 + 0.682066i \(0.761082\pi\)
\(8\) −6.28426 −0.785532
\(9\) −8.94708 + 0.974539i −0.994120 + 0.108282i
\(10\) 7.34608 0.734608
\(11\) −2.60673 + 4.51499i −0.236975 + 0.410454i −0.959845 0.280531i \(-0.909489\pi\)
0.722869 + 0.690985i \(0.242823\pi\)
\(12\) 8.16278 5.32290i 0.680231 0.443575i
\(13\) 5.26488 11.8862i 0.404991 0.914321i
\(14\) 3.07241 1.77386i 0.219458 0.126704i
\(15\) −21.2921 + 13.8844i −1.41947 + 0.925630i
\(16\) −3.77243 + 6.53403i −0.235777 + 0.408377i
\(17\) 29.9878i 1.76399i −0.471259 0.881995i \(-0.656200\pi\)
0.471259 0.881995i \(-0.343800\pi\)
\(18\) 3.14682 7.14029i 0.174823 0.396683i
\(19\) 3.71422i 0.195485i 0.995212 + 0.0977426i \(0.0311622\pi\)
−0.995212 + 0.0977426i \(0.968838\pi\)
\(20\) 13.7616 23.8357i 0.688078 1.19179i
\(21\) −5.55248 + 10.9484i −0.264404 + 0.521353i
\(22\) −2.26002 3.91448i −0.102728 0.177931i
\(23\) 15.2009 8.77627i 0.660911 0.381577i −0.131713 0.991288i \(-0.542048\pi\)
0.792624 + 0.609711i \(0.208714\pi\)
\(24\) 1.02221 + 18.8250i 0.0425922 + 0.784377i
\(25\) −23.3961 + 40.5233i −0.935846 + 1.62093i
\(26\) 6.64230 + 9.10571i 0.255473 + 0.350220i
\(27\) 4.37467 + 26.6432i 0.162025 + 0.986787i
\(28\) 13.2920i 0.474715i
\(29\) 7.85403 + 4.53453i 0.270829 + 0.156363i 0.629264 0.777192i \(-0.283356\pi\)
−0.358436 + 0.933554i \(0.616690\pi\)
\(30\) −1.19493 22.0058i −0.0398311 0.733528i
\(31\) 35.3345 20.4004i 1.13982 0.658077i 0.193436 0.981113i \(-0.438037\pi\)
0.946387 + 0.323036i \(0.104703\pi\)
\(32\) −15.8392 27.4343i −0.494975 0.857322i
\(33\) 13.9491 + 7.07427i 0.422699 + 0.214372i
\(34\) 22.5161 + 12.9997i 0.662237 + 0.382343i
\(35\) 34.6714i 0.990610i
\(36\) −17.2730 23.5865i −0.479805 0.655180i
\(37\) 36.3463i 0.982332i 0.871066 + 0.491166i \(0.163429\pi\)
−0.871066 + 0.491166i \(0.836571\pi\)
\(38\) −2.78878 1.61011i −0.0733891 0.0423712i
\(39\) −36.4625 13.8380i −0.934935 0.354820i
\(40\) 26.6234 + 46.1130i 0.665584 + 1.15283i
\(41\) 22.3968 + 38.7924i 0.546263 + 0.946156i 0.998526 + 0.0542713i \(0.0172836\pi\)
−0.452263 + 0.891885i \(0.649383\pi\)
\(42\) −5.81351 8.91514i −0.138417 0.212265i
\(43\) 7.68187 13.3054i 0.178648 0.309428i −0.762770 0.646670i \(-0.776161\pi\)
0.941418 + 0.337243i \(0.109494\pi\)
\(44\) −16.9350 −0.384886
\(45\) 45.0555 + 61.5238i 1.00123 + 1.36720i
\(46\) 15.2180i 0.330826i
\(47\) −16.4364 + 28.4687i −0.349711 + 0.605718i −0.986198 0.165570i \(-0.947054\pi\)
0.636487 + 0.771288i \(0.280387\pi\)
\(48\) 20.1869 + 10.2378i 0.420560 + 0.213287i
\(49\) −16.1279 27.9344i −0.329141 0.570089i
\(50\) −20.2844 35.1335i −0.405687 0.702671i
\(51\) −89.8312 + 4.87789i −1.76140 + 0.0956450i
\(52\) 41.9883 4.49427i 0.807467 0.0864283i
\(53\) 0.397357i 0.00749731i 0.999993 + 0.00374865i \(0.00119324\pi\)
−0.999993 + 0.00374865i \(0.998807\pi\)
\(54\) −21.9012 8.26511i −0.405578 0.153058i
\(55\) 44.1738 0.803161
\(56\) 22.2698 + 12.8575i 0.397675 + 0.229598i
\(57\) 11.1263 0.604164i 0.195198 0.0105994i
\(58\) −6.80941 + 3.93141i −0.117404 + 0.0677830i
\(59\) −50.1902 86.9320i −0.850682 1.47342i −0.880594 0.473872i \(-0.842856\pi\)
0.0299122 0.999553i \(-0.490477\pi\)
\(60\) −73.6405 37.3468i −1.22734 0.622446i
\(61\) −10.8878 + 18.8583i −0.178489 + 0.309152i −0.941363 0.337395i \(-0.890454\pi\)
0.762874 + 0.646547i \(0.223788\pi\)
\(62\) 35.3741i 0.570550i
\(63\) 33.7001 + 14.8521i 0.534922 + 0.235747i
\(64\) −2.71439 −0.0424123
\(65\) −109.524 + 11.7230i −1.68498 + 0.180354i
\(66\) −11.3585 + 7.40683i −0.172099 + 0.112225i
\(67\) 70.7519 40.8486i 1.05600 0.609681i 0.131676 0.991293i \(-0.457964\pi\)
0.924323 + 0.381612i \(0.124631\pi\)
\(68\) 84.3596 48.7050i 1.24058 0.716250i
\(69\) −28.7627 44.1082i −0.416851 0.639249i
\(70\) −26.0326 15.0300i −0.371895 0.214714i
\(71\) 50.0834 0.705400 0.352700 0.935736i \(-0.385264\pi\)
0.352700 + 0.935736i \(0.385264\pi\)
\(72\) 56.2258 6.12426i 0.780914 0.0850591i
\(73\) 135.863i 1.86114i −0.366118 0.930568i \(-0.619313\pi\)
0.366118 0.930568i \(-0.380687\pi\)
\(74\) −27.2902 15.7560i −0.368787 0.212919i
\(75\) 125.197 + 63.4936i 1.66929 + 0.846581i
\(76\) −10.4486 + 6.03249i −0.137481 + 0.0793748i
\(77\) 18.4752 10.6667i 0.239937 0.138528i
\(78\) 26.1965 21.3787i 0.335852 0.274087i
\(79\) 39.5882 68.5688i 0.501117 0.867960i −0.498882 0.866670i \(-0.666256\pi\)
0.999999 0.00129016i \(-0.000410670\pi\)
\(80\) 63.9278 0.799097
\(81\) 79.1005 17.4386i 0.976550 0.215291i
\(82\) −38.8358 −0.473608
\(83\) −35.2829 + 61.1118i −0.425095 + 0.736287i −0.996429 0.0844309i \(-0.973093\pi\)
0.571334 + 0.820718i \(0.306426\pi\)
\(84\) −39.8174 + 2.16211i −0.474016 + 0.0257394i
\(85\) −220.047 + 127.044i −2.58878 + 1.49463i
\(86\) 6.66015 + 11.5357i 0.0774436 + 0.134136i
\(87\) 12.3060 24.2650i 0.141448 0.278908i
\(88\) 16.3814 28.3734i 0.186152 0.322425i
\(89\) 46.8117 0.525974 0.262987 0.964799i \(-0.415292\pi\)
0.262987 + 0.964799i \(0.415292\pi\)
\(90\) −65.7260 + 7.15904i −0.730289 + 0.0795449i
\(91\) −42.9763 + 31.3497i −0.472267 + 0.344502i
\(92\) 49.3775 + 28.5081i 0.536712 + 0.309871i
\(93\) −66.8587 102.529i −0.718911 1.10246i
\(94\) −14.2503 24.6823i −0.151599 0.262577i
\(95\) 27.2544 15.7354i 0.286889 0.165635i
\(96\) −79.6054 + 51.9102i −0.829222 + 0.540731i
\(97\) −72.9925 42.1423i −0.752500 0.434456i 0.0740964 0.997251i \(-0.476393\pi\)
−0.826597 + 0.562795i \(0.809726\pi\)
\(98\) 27.9656 0.285364
\(99\) 18.9226 42.9363i 0.191137 0.433700i
\(100\) −151.996 −1.51996
\(101\) −108.398 62.5836i −1.07325 0.619640i −0.144181 0.989551i \(-0.546055\pi\)
−0.929067 + 0.369911i \(0.879388\pi\)
\(102\) 35.2791 69.5634i 0.345873 0.681994i
\(103\) −16.0190 27.7457i −0.155524 0.269376i 0.777726 0.628604i \(-0.216373\pi\)
−0.933250 + 0.359228i \(0.883040\pi\)
\(104\) −33.0859 + 74.6958i −0.318133 + 0.718229i
\(105\) 103.861 5.63973i 0.989153 0.0537117i
\(106\) −0.298352 0.172253i −0.00281464 0.00162503i
\(107\) 102.573i 0.958628i 0.877643 + 0.479314i \(0.159115\pi\)
−0.877643 + 0.479314i \(0.840885\pi\)
\(108\) −67.8456 + 55.5794i −0.628200 + 0.514624i
\(109\) 93.0071i 0.853276i 0.904422 + 0.426638i \(0.140302\pi\)
−0.904422 + 0.426638i \(0.859698\pi\)
\(110\) −19.1493 + 33.1675i −0.174084 + 0.301523i
\(111\) 108.878 5.91217i 0.980887 0.0532628i
\(112\) 26.7370 15.4366i 0.238724 0.137827i
\(113\) −110.583 + 63.8450i −0.978608 + 0.565000i −0.901850 0.432050i \(-0.857790\pi\)
−0.0767586 + 0.997050i \(0.524457\pi\)
\(114\) −4.36958 + 8.61595i −0.0383297 + 0.0755785i
\(115\) −128.798 74.3616i −1.11998 0.646623i
\(116\) 29.4592i 0.253958i
\(117\) −35.5218 + 111.477i −0.303605 + 0.952798i
\(118\) 87.0294 0.737537
\(119\) −61.3546 + 106.269i −0.515585 + 0.893019i
\(120\) 133.805 87.2535i 1.11504 0.727112i
\(121\) 46.9099 + 81.2504i 0.387685 + 0.671491i
\(122\) −9.43969 16.3500i −0.0773745 0.134017i
\(123\) 112.563 73.4016i 0.915145 0.596761i
\(124\) 114.778 + 66.2670i 0.925627 + 0.534411i
\(125\) 184.647 1.47718
\(126\) −25.7604 + 18.8650i −0.204448 + 0.149722i
\(127\) 203.258 1.60045 0.800227 0.599697i \(-0.204712\pi\)
0.800227 + 0.599697i \(0.204712\pi\)
\(128\) 64.5335 111.775i 0.504168 0.873244i
\(129\) −41.1070 20.8474i −0.318659 0.161608i
\(130\) 38.6762 87.3168i 0.297509 0.671668i
\(131\) 59.4628 34.3308i 0.453914 0.262067i −0.255568 0.966791i \(-0.582262\pi\)
0.709482 + 0.704724i \(0.248929\pi\)
\(132\) 2.75469 + 50.7302i 0.0208688 + 0.384320i
\(133\) 7.59923 13.1623i 0.0571371 0.0989643i
\(134\) 70.8312i 0.528591i
\(135\) 176.971 144.975i 1.31090 1.07389i
\(136\) 188.451i 1.38567i
\(137\) −10.1226 + 17.5329i −0.0738876 + 0.127977i −0.900602 0.434645i \(-0.856874\pi\)
0.826714 + 0.562622i \(0.190207\pi\)
\(138\) 45.5868 2.47539i 0.330339 0.0179376i
\(139\) −53.3805 92.4577i −0.384032 0.665163i 0.607602 0.794242i \(-0.292132\pi\)
−0.991634 + 0.129078i \(0.958798\pi\)
\(140\) −97.5349 + 56.3118i −0.696678 + 0.402227i
\(141\) 87.9542 + 44.6060i 0.623788 + 0.316354i
\(142\) −21.7111 + 37.6046i −0.152895 + 0.264821i
\(143\) 39.9418 + 54.7549i 0.279313 + 0.382901i
\(144\) 27.3845 62.1369i 0.190170 0.431506i
\(145\) 76.8424i 0.529947i
\(146\) 102.011 + 58.8963i 0.698708 + 0.403399i
\(147\) −81.0564 + 52.8564i −0.551404 + 0.359568i
\(148\) −102.247 + 59.0322i −0.690856 + 0.398866i
\(149\) −9.36666 16.2235i −0.0628635 0.108883i 0.832881 0.553452i \(-0.186690\pi\)
−0.895744 + 0.444570i \(0.853357\pi\)
\(150\) −101.946 + 66.4785i −0.679640 + 0.443190i
\(151\) 0.176520 + 0.101914i 0.00116901 + 0.000674927i 0.500584 0.865688i \(-0.333118\pi\)
−0.499415 + 0.866363i \(0.666452\pi\)
\(152\) 23.3411i 0.153560i
\(153\) 29.2243 + 268.304i 0.191009 + 1.75362i
\(154\) 18.4959i 0.120103i
\(155\) −299.391 172.853i −1.93155 1.11518i
\(156\) −20.2929 125.049i −0.130083 0.801593i
\(157\) −14.9419 25.8802i −0.0951714 0.164842i 0.814509 0.580151i \(-0.197007\pi\)
−0.909680 + 0.415310i \(0.863673\pi\)
\(158\) 34.3228 + 59.4489i 0.217233 + 0.376259i
\(159\) 1.19032 0.0646351i 0.00748628 0.000406510i
\(160\) −134.206 + 232.452i −0.838788 + 1.45282i
\(161\) −71.8244 −0.446114
\(162\) −21.1963 + 66.9514i −0.130842 + 0.413280i
\(163\) 224.330i 1.37626i −0.725588 0.688130i \(-0.758432\pi\)
0.725588 0.688130i \(-0.241568\pi\)
\(164\) −72.7520 + 126.010i −0.443609 + 0.768354i
\(165\) −7.18542 132.327i −0.0435480 0.801979i
\(166\) −30.5901 52.9837i −0.184278 0.319179i
\(167\) 55.4010 + 95.9573i 0.331742 + 0.574595i 0.982854 0.184388i \(-0.0590302\pi\)
−0.651111 + 0.758982i \(0.725697\pi\)
\(168\) 34.8933 68.8026i 0.207698 0.409539i
\(169\) −113.562 125.158i −0.671965 0.740583i
\(170\) 220.293i 1.29584i
\(171\) −3.61965 33.2314i −0.0211676 0.194336i
\(172\) 49.9063 0.290153
\(173\) 81.0760 + 46.8092i 0.468647 + 0.270574i 0.715673 0.698435i \(-0.246120\pi\)
−0.247026 + 0.969009i \(0.579453\pi\)
\(174\) 12.8845 + 19.7587i 0.0740490 + 0.113556i
\(175\) 165.820 95.7362i 0.947543 0.547064i
\(176\) −19.6674 34.0649i −0.111747 0.193551i
\(177\) −252.248 + 164.490i −1.42513 + 0.929321i
\(178\) −20.2928 + 35.1481i −0.114004 + 0.197461i
\(179\) 19.1155i 0.106790i −0.998573 0.0533951i \(-0.982996\pi\)
0.998573 0.0533951i \(-0.0170043\pi\)
\(180\) −99.8969 + 226.671i −0.554983 + 1.25928i
\(181\) −183.331 −1.01288 −0.506440 0.862275i \(-0.669039\pi\)
−0.506440 + 0.862275i \(0.669039\pi\)
\(182\) −4.90851 45.8584i −0.0269698 0.251969i
\(183\) 58.2626 + 29.5479i 0.318375 + 0.161464i
\(184\) −95.5267 + 55.1524i −0.519167 + 0.299741i
\(185\) 266.704 153.982i 1.44164 0.832333i
\(186\) 105.966 5.75404i 0.569711 0.0309357i
\(187\) 135.395 + 78.1702i 0.724036 + 0.418022i
\(188\) −106.782 −0.567987
\(189\) 39.0089 103.367i 0.206396 0.546917i
\(190\) 27.2850i 0.143605i
\(191\) 326.200 + 188.332i 1.70785 + 0.986030i 0.937212 + 0.348761i \(0.113398\pi\)
0.770642 + 0.637269i \(0.219936\pi\)
\(192\) 0.441529 + 8.13119i 0.00229963 + 0.0423499i
\(193\) 111.317 64.2686i 0.576770 0.332998i −0.183079 0.983098i \(-0.558606\pi\)
0.759849 + 0.650100i \(0.225273\pi\)
\(194\) 63.2842 36.5371i 0.326207 0.188336i
\(195\) 52.9327 + 326.181i 0.271450 + 1.67272i
\(196\) 52.3886 90.7397i 0.267289 0.462958i
\(197\) −207.729 −1.05446 −0.527232 0.849721i \(-0.676770\pi\)
−0.527232 + 0.849721i \(0.676770\pi\)
\(198\) 24.0354 + 32.8206i 0.121391 + 0.165761i
\(199\) −71.8150 −0.360879 −0.180440 0.983586i \(-0.557752\pi\)
−0.180440 + 0.983586i \(0.557752\pi\)
\(200\) 147.027 254.659i 0.735137 1.27330i
\(201\) −133.874 205.299i −0.666042 1.02139i
\(202\) 93.9806 54.2597i 0.465251 0.268613i
\(203\) −18.5551 32.1384i −0.0914045 0.158317i
\(204\) −159.622 244.784i −0.782462 1.19992i
\(205\) 189.769 328.689i 0.925702 1.60336i
\(206\) 27.7768 0.134839
\(207\) −127.451 + 93.3359i −0.615707 + 0.450898i
\(208\) 57.8033 + 79.2406i 0.277900 + 0.380964i
\(209\) −16.7697 9.68197i −0.0802376 0.0463252i
\(210\) −40.7890 + 80.4279i −0.194233 + 0.382990i
\(211\) 171.628 + 297.268i 0.813402 + 1.40885i 0.910470 + 0.413575i \(0.135720\pi\)
−0.0970681 + 0.995278i \(0.530946\pi\)
\(212\) −1.11782 + 0.645371i −0.00527272 + 0.00304420i
\(213\) −8.14669 150.029i −0.0382474 0.704363i
\(214\) −77.0161 44.4652i −0.359888 0.207782i
\(215\) −130.177 −0.605477
\(216\) −27.4916 167.433i −0.127276 0.775153i
\(217\) −166.955 −0.769380
\(218\) −69.8334 40.3184i −0.320337 0.184947i
\(219\) −406.989 + 22.0998i −1.85840 + 0.100912i
\(220\) 71.7453 + 124.267i 0.326115 + 0.564848i
\(221\) −356.441 157.882i −1.61285 0.714399i
\(222\) −42.7595 + 84.3132i −0.192610 + 0.379789i
\(223\) 162.357 + 93.7369i 0.728058 + 0.420345i 0.817711 0.575628i \(-0.195242\pi\)
−0.0896531 + 0.995973i \(0.528576\pi\)
\(224\) 129.627i 0.578691i
\(225\) 169.836 385.366i 0.754825 1.71274i
\(226\) 110.707i 0.489852i
\(227\) 6.75796 11.7051i 0.0297707 0.0515644i −0.850756 0.525561i \(-0.823856\pi\)
0.880527 + 0.473996i \(0.157189\pi\)
\(228\) 19.7704 + 30.3183i 0.0867124 + 0.132975i
\(229\) −276.011 + 159.355i −1.20529 + 0.695874i −0.961726 0.274011i \(-0.911649\pi\)
−0.243563 + 0.969885i \(0.578316\pi\)
\(230\) 111.667 64.4712i 0.485510 0.280310i
\(231\) −34.9581 53.6089i −0.151334 0.232073i
\(232\) −49.3567 28.4961i −0.212745 0.122828i
\(233\) 64.6139i 0.277313i 0.990341 + 0.138656i \(0.0442784\pi\)
−0.990341 + 0.138656i \(0.955722\pi\)
\(234\) −68.3031 74.9963i −0.291894 0.320497i
\(235\) 278.533 1.18525
\(236\) 163.034 282.383i 0.690821 1.19654i
\(237\) −211.843 107.436i −0.893854 0.453318i
\(238\) −53.1941 92.1350i −0.223505 0.387122i
\(239\) −20.1969 34.9820i −0.0845058 0.146368i 0.820675 0.571396i \(-0.193598\pi\)
−0.905181 + 0.425027i \(0.860264\pi\)
\(240\) −10.3986 191.501i −0.0433277 0.797922i
\(241\) 407.067 + 235.020i 1.68908 + 0.975188i 0.955226 + 0.295876i \(0.0956116\pi\)
0.733849 + 0.679312i \(0.237722\pi\)
\(242\) −81.3414 −0.336121
\(243\) −65.1054 234.116i −0.267924 0.963440i
\(244\) −70.7342 −0.289894
\(245\) −136.652 + 236.689i −0.557765 + 0.966077i
\(246\) 6.31713 + 116.336i 0.0256794 + 0.472911i
\(247\) 44.1479 + 19.5549i 0.178736 + 0.0791697i
\(248\) −222.051 + 128.201i −0.895368 + 0.516941i
\(249\) 188.805 + 95.7524i 0.758253 + 0.384548i
\(250\) −80.0440 + 138.640i −0.320176 + 0.554561i
\(251\) 78.9093i 0.314380i −0.987568 0.157190i \(-0.949757\pi\)
0.987568 0.157190i \(-0.0502434\pi\)
\(252\) 12.9536 + 118.925i 0.0514031 + 0.471923i
\(253\) 91.5095i 0.361698i
\(254\) −88.1117 + 152.614i −0.346897 + 0.600843i
\(255\) 416.365 + 638.503i 1.63280 + 2.50394i
\(256\) 50.5214 + 87.5057i 0.197349 + 0.341819i
\(257\) 145.387 83.9391i 0.565707 0.326611i −0.189726 0.981837i \(-0.560760\pi\)
0.755433 + 0.655226i \(0.227427\pi\)
\(258\) 33.4729 21.8275i 0.129740 0.0846026i
\(259\) 74.3639 128.802i 0.287119 0.497305i
\(260\) −210.863 289.064i −0.811010 1.11179i
\(261\) −74.6897 32.9167i −0.286167 0.126118i
\(262\) 59.5294i 0.227211i
\(263\) 148.389 + 85.6723i 0.564216 + 0.325750i 0.754836 0.655914i \(-0.227716\pi\)
−0.190620 + 0.981664i \(0.561050\pi\)
\(264\) −87.6595 44.4565i −0.332044 0.168396i
\(265\) 2.91575 1.68341i 0.0110028 0.00635249i
\(266\) 6.58850 + 11.4116i 0.0247688 + 0.0429008i
\(267\) −7.61451 140.229i −0.0285188 0.525200i
\(268\) 229.825 + 132.689i 0.857555 + 0.495110i
\(269\) 18.7954i 0.0698715i −0.999390 0.0349357i \(-0.988877\pi\)
0.999390 0.0349357i \(-0.0111227\pi\)
\(270\) 32.1367 + 195.723i 0.119025 + 0.724902i
\(271\) 268.245i 0.989835i −0.868940 0.494917i \(-0.835198\pi\)
0.868940 0.494917i \(-0.164802\pi\)
\(272\) 195.942 + 113.127i 0.720373 + 0.415908i
\(273\) 100.901 + 123.640i 0.369602 + 0.452893i
\(274\) −8.77625 15.2009i −0.0320301 0.0554778i
\(275\) −121.975 211.267i −0.443545 0.768243i
\(276\) 77.3667 152.552i 0.280314 0.552724i
\(277\) 83.6899 144.955i 0.302130 0.523304i −0.674488 0.738285i \(-0.735636\pi\)
0.976618 + 0.214981i \(0.0689691\pi\)
\(278\) 92.5613 0.332954
\(279\) −296.260 + 216.959i −1.06186 + 0.777630i
\(280\) 217.884i 0.778156i
\(281\) 196.532 340.403i 0.699401 1.21140i −0.269274 0.963064i \(-0.586784\pi\)
0.968675 0.248334i \(-0.0798830\pi\)
\(282\) −71.6199 + 46.7029i −0.253971 + 0.165613i
\(283\) 189.678 + 328.532i 0.670240 + 1.16089i 0.977836 + 0.209372i \(0.0671420\pi\)
−0.307596 + 0.951517i \(0.599525\pi\)
\(284\) 81.3435 + 140.891i 0.286421 + 0.496095i
\(285\) −51.5699 79.0835i −0.180947 0.277486i
\(286\) −58.4269 + 6.25379i −0.204290 + 0.0218664i
\(287\) 183.294i 0.638655i
\(288\) 168.450 + 230.021i 0.584897 + 0.798684i
\(289\) −610.270 −2.11166
\(290\) 57.6963 + 33.3110i 0.198953 + 0.114865i
\(291\) −114.368 + 225.510i −0.393016 + 0.774950i
\(292\) 382.200 220.663i 1.30890 0.755696i
\(293\) 220.439 + 381.812i 0.752352 + 1.30311i 0.946680 + 0.322175i \(0.104414\pi\)
−0.194328 + 0.980937i \(0.562253\pi\)
\(294\) −4.54896 83.7735i −0.0154727 0.284944i
\(295\) −425.263 + 736.578i −1.44157 + 2.49687i
\(296\) 228.409i 0.771654i
\(297\) −131.698 49.7002i −0.443426 0.167341i
\(298\) 16.2417 0.0545023
\(299\) −24.2851 226.887i −0.0812212 0.758820i
\(300\) 24.7241 + 455.318i 0.0824136 + 1.51773i
\(301\) −54.4452 + 31.4339i −0.180881 + 0.104432i
\(302\) −0.153042 + 0.0883590i −0.000506763 + 0.000292580i
\(303\) −169.842 + 334.896i −0.560536 + 1.10527i
\(304\) −24.2688 14.0116i −0.0798317 0.0460908i
\(305\) 184.506 0.604937
\(306\) −214.122 94.3662i −0.699744 0.308386i
\(307\) 218.522i 0.711797i −0.934525 0.355898i \(-0.884175\pi\)
0.934525 0.355898i \(-0.115825\pi\)
\(308\) 60.0133 + 34.6487i 0.194848 + 0.112496i
\(309\) −80.5090 + 52.4995i −0.260547 + 0.169901i
\(310\) 259.570 149.863i 0.837323 0.483429i
\(311\) −243.743 + 140.725i −0.783740 + 0.452493i −0.837754 0.546048i \(-0.816132\pi\)
0.0540140 + 0.998540i \(0.482798\pi\)
\(312\) 229.140 + 86.9614i 0.734422 + 0.278722i
\(313\) 18.0768 31.3099i 0.0577533 0.100032i −0.835703 0.549181i \(-0.814940\pi\)
0.893457 + 0.449150i \(0.148273\pi\)
\(314\) 25.9091 0.0825132
\(315\) −33.7886 310.207i −0.107265 0.984786i
\(316\) 257.190 0.813894
\(317\) −141.041 + 244.290i −0.444924 + 0.770631i −0.998047 0.0624684i \(-0.980103\pi\)
0.553123 + 0.833100i \(0.313436\pi\)
\(318\) −0.467469 + 0.921758i −0.00147003 + 0.00289861i
\(319\) −40.9467 + 23.6406i −0.128359 + 0.0741084i
\(320\) 11.4996 + 19.9178i 0.0359361 + 0.0622431i
\(321\) 307.267 16.6848i 0.957218 0.0519776i
\(322\) 31.1357 53.9286i 0.0966948 0.167480i
\(323\) 111.381 0.344834
\(324\) 177.529 + 194.197i 0.547928 + 0.599373i
\(325\) 358.489 + 491.441i 1.10304 + 1.51213i
\(326\) 168.436 + 97.2467i 0.516675 + 0.298303i
\(327\) 278.611 15.1288i 0.852021 0.0462653i
\(328\) −140.747 243.781i −0.429108 0.743236i
\(329\) 116.493 67.2573i 0.354082 0.204430i
\(330\) 102.471 + 51.9682i 0.310518 + 0.157479i
\(331\) −318.178 183.700i −0.961262 0.554985i −0.0647006 0.997905i \(-0.520609\pi\)
−0.896561 + 0.442920i \(0.853943\pi\)
\(332\) −229.220 −0.690423
\(333\) −35.4209 325.193i −0.106369 0.976556i
\(334\) −96.0648 −0.287619
\(335\) −599.483 346.112i −1.78950 1.03317i
\(336\) −50.5909 77.5822i −0.150568 0.230899i
\(337\) −145.856 252.630i −0.432807 0.749644i 0.564307 0.825565i \(-0.309144\pi\)
−0.997114 + 0.0759215i \(0.975810\pi\)
\(338\) 143.203 31.0111i 0.423677 0.0917488i
\(339\) 209.241 + 320.875i 0.617230 + 0.946534i
\(340\) −714.782 412.679i −2.10230 1.21376i
\(341\) 212.713i 0.623793i
\(342\) 26.5206 + 11.6880i 0.0775456 + 0.0341753i
\(343\) 332.496i 0.969376i
\(344\) −48.2749 + 83.6145i −0.140334 + 0.243065i
\(345\) −201.806 + 397.922i −0.584945 + 1.15340i
\(346\) −70.2925 + 40.5834i −0.203158 + 0.117293i
\(347\) 449.891 259.745i 1.29652 0.748543i 0.316715 0.948521i \(-0.397420\pi\)
0.979800 + 0.199978i \(0.0640869\pi\)
\(348\) 88.2475 4.79190i 0.253585 0.0137698i
\(349\) 208.012 + 120.096i 0.596022 + 0.344113i 0.767475 0.641079i \(-0.221513\pi\)
−0.171453 + 0.985192i \(0.554846\pi\)
\(350\) 166.006i 0.474302i
\(351\) 339.718 + 88.2753i 0.967858 + 0.251497i
\(352\) 165.154 0.469188
\(353\) 163.692 283.523i 0.463716 0.803180i −0.535426 0.844582i \(-0.679849\pi\)
0.999143 + 0.0414019i \(0.0131824\pi\)
\(354\) −14.1564 260.704i −0.0399899 0.736452i
\(355\) −212.179 367.505i −0.597688 1.03523i
\(356\) 76.0297 + 131.687i 0.213566 + 0.369908i
\(357\) 328.319 + 166.507i 0.919661 + 0.466406i
\(358\) 14.3526 + 8.28651i 0.0400912 + 0.0231467i
\(359\) 34.2625 0.0954387 0.0477194 0.998861i \(-0.484805\pi\)
0.0477194 + 0.998861i \(0.484805\pi\)
\(360\) −283.140 386.632i −0.786501 1.07398i
\(361\) 347.205 0.961786
\(362\) 79.4736 137.652i 0.219540 0.380255i
\(363\) 235.762 153.739i 0.649482 0.423524i
\(364\) −157.991 69.9808i −0.434041 0.192255i
\(365\) −996.944 + 575.586i −2.73135 + 1.57695i
\(366\) −47.4424 + 30.9369i −0.129624 + 0.0845272i
\(367\) −231.833 + 401.546i −0.631696 + 1.09413i 0.355509 + 0.934673i \(0.384308\pi\)
−0.987205 + 0.159457i \(0.949026\pi\)
\(368\) 132.431i 0.359868i
\(369\) −238.191 325.252i −0.645503 0.881442i
\(370\) 267.003i 0.721629i
\(371\) 0.812986 1.40813i 0.00219134 0.00379551i
\(372\) 179.838 354.606i 0.483437 0.953242i
\(373\) 220.601 + 382.092i 0.591424 + 1.02438i 0.994041 + 0.109008i \(0.0347674\pi\)
−0.402617 + 0.915369i \(0.631899\pi\)
\(374\) −117.387 + 67.7732i −0.313868 + 0.181212i
\(375\) −30.0351 553.126i −0.0800936 1.47500i
\(376\) 103.291 178.905i 0.274710 0.475811i
\(377\) 95.2486 69.4806i 0.252649 0.184299i
\(378\) 60.7021 + 74.0990i 0.160588 + 0.196029i
\(379\) 450.703i 1.18919i 0.804026 + 0.594594i \(0.202687\pi\)
−0.804026 + 0.594594i \(0.797313\pi\)
\(380\) 88.5311 + 51.1134i 0.232977 + 0.134509i
\(381\) −33.0624 608.876i −0.0867779 1.59810i
\(382\) −282.814 + 163.283i −0.740351 + 0.427442i
\(383\) 12.1335 + 21.0158i 0.0316801 + 0.0548716i 0.881431 0.472313i \(-0.156581\pi\)
−0.849751 + 0.527185i \(0.823248\pi\)
\(384\) −345.330 175.134i −0.899296 0.456078i
\(385\) −156.541 90.3789i −0.406600 0.234750i
\(386\) 111.441i 0.288708i
\(387\) −55.7637 + 126.531i −0.144092 + 0.326953i
\(388\) 273.783i 0.705626i
\(389\) 225.254 + 130.050i 0.579058 + 0.334320i 0.760759 0.649034i \(-0.224827\pi\)
−0.181701 + 0.983354i \(0.558160\pi\)
\(390\) −267.856 101.655i −0.686811 0.260653i
\(391\) −263.181 455.844i −0.673098 1.16584i
\(392\) 101.352 + 175.547i 0.258551 + 0.447823i
\(393\) −112.513 172.542i −0.286294 0.439037i
\(394\) 90.0502 155.972i 0.228554 0.395867i
\(395\) −670.865 −1.69839
\(396\) 151.519 16.5038i 0.382623 0.0416763i
\(397\) 167.017i 0.420698i −0.977626 0.210349i \(-0.932540\pi\)
0.977626 0.210349i \(-0.0674600\pi\)
\(398\) 31.1316 53.9216i 0.0782202 0.135481i
\(399\) −40.6648 20.6231i −0.101917 0.0516871i
\(400\) −176.520 305.742i −0.441301 0.764356i
\(401\) 112.408 + 194.696i 0.280319 + 0.485526i 0.971463 0.237190i \(-0.0762265\pi\)
−0.691144 + 0.722717i \(0.742893\pi\)
\(402\) 212.181 11.5216i 0.527813 0.0286606i
\(403\) −56.4507 527.398i −0.140076 1.30868i
\(404\) 406.583i 1.00639i
\(405\) −463.073 506.550i −1.14339 1.25074i
\(406\) 32.1744 0.0792473
\(407\) −164.103 94.7450i −0.403202 0.232789i
\(408\) 564.522 30.6540i 1.38363 0.0751322i
\(409\) −327.809 + 189.261i −0.801490 + 0.462740i −0.843992 0.536356i \(-0.819800\pi\)
0.0425020 + 0.999096i \(0.486467\pi\)
\(410\) 164.529 + 284.972i 0.401290 + 0.695054i
\(411\) 54.1678 + 27.4712i 0.131795 + 0.0668399i
\(412\) 52.0348 90.1269i 0.126298 0.218755i
\(413\) 410.753i 0.994560i
\(414\) −14.8305 136.156i −0.0358225 0.328880i
\(415\) 597.907 1.44074
\(416\) −409.480 + 43.8292i −0.984327 + 0.105359i
\(417\) −268.282 + 174.945i −0.643362 + 0.419533i
\(418\) 14.5392 8.39422i 0.0347828 0.0200819i
\(419\) 231.060 133.402i 0.551455 0.318383i −0.198254 0.980151i \(-0.563527\pi\)
0.749709 + 0.661768i \(0.230194\pi\)
\(420\) 184.552 + 283.015i 0.439410 + 0.673844i
\(421\) 181.446 + 104.758i 0.430987 + 0.248831i 0.699767 0.714371i \(-0.253287\pi\)
−0.268780 + 0.963202i \(0.586620\pi\)
\(422\) −297.601 −0.705216
\(423\) 119.314 270.730i 0.282067 0.640024i
\(424\) 2.49710i 0.00588938i
\(425\) 1215.21 + 701.600i 2.85931 + 1.65082i
\(426\) 116.180 + 58.9205i 0.272722 + 0.138311i
\(427\) 77.1673 44.5526i 0.180720 0.104339i
\(428\) −288.551 + 166.595i −0.674186 + 0.389241i
\(429\) 157.526 128.556i 0.367194 0.299664i
\(430\) 56.4316 97.7425i 0.131236 0.227308i
\(431\) 260.189 0.603686 0.301843 0.953358i \(-0.402398\pi\)
0.301843 + 0.953358i \(0.402398\pi\)
\(432\) −190.591 71.9254i −0.441183 0.166494i
\(433\) −843.669 −1.94843 −0.974214 0.225627i \(-0.927557\pi\)
−0.974214 + 0.225627i \(0.927557\pi\)
\(434\) 72.3748 125.357i 0.166762 0.288841i
\(435\) −230.188 + 12.4994i −0.529168 + 0.0287342i
\(436\) −261.641 + 151.058i −0.600093 + 0.346464i
\(437\) 32.5970 + 56.4597i 0.0745927 + 0.129198i
\(438\) 159.836 315.164i 0.364921 0.719553i
\(439\) 98.7471 171.035i 0.224936 0.389601i −0.731364 0.681987i \(-0.761116\pi\)
0.956300 + 0.292386i \(0.0944492\pi\)
\(440\) −277.600 −0.630909
\(441\) 171.521 + 234.214i 0.388936 + 0.531097i
\(442\) 273.060 199.188i 0.617784 0.450652i
\(443\) −139.549 80.5687i −0.315009 0.181871i 0.334157 0.942518i \(-0.391549\pi\)
−0.649166 + 0.760647i \(0.724882\pi\)
\(444\) 193.468 + 296.687i 0.435738 + 0.668213i
\(445\) −198.319 343.498i −0.445660 0.771905i
\(446\) −140.763 + 81.2694i −0.315612 + 0.182218i
\(447\) −47.0754 + 30.6976i −0.105314 + 0.0686747i
\(448\) 9.61910 + 5.55359i 0.0214712 + 0.0123964i
\(449\) 752.642 1.67626 0.838131 0.545469i \(-0.183648\pi\)
0.838131 + 0.545469i \(0.183648\pi\)
\(450\) 215.725 + 294.575i 0.479388 + 0.654610i
\(451\) −233.530 −0.517804
\(452\) −359.208 207.389i −0.794708 0.458825i
\(453\) 0.276579 0.545360i 0.000610550 0.00120388i
\(454\) 5.85912 + 10.1483i 0.0129055 + 0.0223531i
\(455\) 412.110 + 182.540i 0.905736 + 0.401188i
\(456\) −69.9204 + 3.79672i −0.153334 + 0.00832615i
\(457\) 26.9151 + 15.5394i 0.0588952 + 0.0340031i 0.529158 0.848523i \(-0.322508\pi\)
−0.470263 + 0.882526i \(0.655841\pi\)
\(458\) 276.320i 0.603320i
\(459\) 798.973 131.187i 1.74068 0.285810i
\(460\) 483.101i 1.05022i
\(461\) 89.1379 154.391i 0.193358 0.334905i −0.753003 0.658017i \(-0.771396\pi\)
0.946361 + 0.323112i \(0.104729\pi\)
\(462\) 55.4060 3.00858i 0.119926 0.00651209i
\(463\) −102.557 + 59.2113i −0.221505 + 0.127886i −0.606647 0.794971i \(-0.707486\pi\)
0.385142 + 0.922857i \(0.374153\pi\)
\(464\) −59.2575 + 34.2123i −0.127710 + 0.0737334i
\(465\) −469.097 + 924.967i −1.00881 + 1.98918i
\(466\) −48.5147 28.0100i −0.104109 0.0601073i
\(467\) 832.894i 1.78350i −0.452529 0.891750i \(-0.649478\pi\)
0.452529 0.891750i \(-0.350522\pi\)
\(468\) −371.293 + 81.1298i −0.793361 + 0.173354i
\(469\) −334.302 −0.712798
\(470\) −120.743 + 209.134i −0.256901 + 0.444965i
\(471\) −75.0958 + 48.9695i −0.159439 + 0.103969i
\(472\) 315.408 + 546.303i 0.668238 + 1.15742i
\(473\) 40.0491 + 69.3671i 0.0846705 + 0.146654i
\(474\) 172.501 112.487i 0.363927 0.237315i
\(475\) −150.513 86.8984i −0.316868 0.182944i
\(476\) −398.599 −0.837392
\(477\) −0.387240 3.55519i −0.000811824 0.00745322i
\(478\) 35.0212 0.0732661
\(479\) −29.1233 + 50.4430i −0.0608002 + 0.105309i −0.894823 0.446420i \(-0.852699\pi\)
0.834023 + 0.551729i \(0.186032\pi\)
\(480\) 718.159 + 364.215i 1.49617 + 0.758781i
\(481\) 432.018 + 191.359i 0.898167 + 0.397835i
\(482\) −352.925 + 203.762i −0.732210 + 0.422742i
\(483\) 11.6831 + 215.156i 0.0241887 + 0.445458i
\(484\) −152.378 + 263.927i −0.314831 + 0.545304i
\(485\) 714.145i 1.47246i
\(486\) 204.007 + 52.6050i 0.419767 + 0.108241i
\(487\) 753.906i 1.54806i −0.633148 0.774031i \(-0.718238\pi\)
0.633148 0.774031i \(-0.281762\pi\)
\(488\) 68.4219 118.510i 0.140209 0.242849i
\(489\) −672.001 + 36.4901i −1.37423 + 0.0746219i
\(490\) −118.477 205.208i −0.241790 0.418792i
\(491\) −211.650 + 122.196i −0.431058 + 0.248872i −0.699797 0.714341i \(-0.746726\pi\)
0.268739 + 0.963213i \(0.413393\pi\)
\(492\) 389.308 + 197.438i 0.791277 + 0.401296i
\(493\) 135.981 235.525i 0.275823 0.477739i
\(494\) −33.8206 + 24.6710i −0.0684628 + 0.0499412i
\(495\) −395.227 + 43.0491i −0.798438 + 0.0869679i
\(496\) 307.836i 0.620637i
\(497\) −177.483 102.470i −0.357109 0.206177i
\(498\) −153.741 + 100.254i −0.308717 + 0.201313i
\(499\) 394.606 227.826i 0.790793 0.456565i −0.0494486 0.998777i \(-0.515746\pi\)
0.840242 + 0.542212i \(0.182413\pi\)
\(500\) 299.896 + 519.435i 0.599792 + 1.03887i
\(501\) 278.437 181.567i 0.555762 0.362409i
\(502\) 59.2483 + 34.2070i 0.118024 + 0.0681414i
\(503\) 107.616i 0.213948i 0.994262 + 0.106974i \(0.0341162\pi\)
−0.994262 + 0.106974i \(0.965884\pi\)
\(504\) −211.780 93.3342i −0.420198 0.185187i
\(505\) 1060.55i 2.10009i
\(506\) −68.7090 39.6692i −0.135789 0.0783975i
\(507\) −356.451 + 360.544i −0.703059 + 0.711132i
\(508\) 330.123 + 571.790i 0.649848 + 1.12557i
\(509\) −20.8864 36.1762i −0.0410341 0.0710732i 0.844779 0.535115i \(-0.179732\pi\)
−0.885813 + 0.464042i \(0.846399\pi\)
\(510\) −659.907 + 35.8334i −1.29394 + 0.0702616i
\(511\) −277.973 + 481.464i −0.543979 + 0.942199i
\(512\) 428.664 0.837234
\(513\) −98.9588 + 16.2485i −0.192902 + 0.0316735i
\(514\) 145.550i 0.283171i
\(515\) −135.729 + 235.090i −0.263552 + 0.456486i
\(516\) −8.11789 149.499i −0.0157323 0.289726i
\(517\) −85.6907 148.421i −0.165746 0.287081i
\(518\) 64.4731 + 111.671i 0.124465 + 0.215581i
\(519\) 127.033 250.484i 0.244765 0.482629i
\(520\) 688.276 73.6705i 1.32361 0.141674i
\(521\) 551.285i 1.05813i −0.848582 0.529065i \(-0.822543\pi\)
0.848582 0.529065i \(-0.177457\pi\)
\(522\) 57.0930 41.8107i 0.109374 0.0800971i
\(523\) −405.935 −0.776167 −0.388083 0.921624i \(-0.626863\pi\)
−0.388083 + 0.921624i \(0.626863\pi\)
\(524\) 193.154 + 111.518i 0.368615 + 0.212820i
\(525\) −313.759 481.156i −0.597636 0.916487i
\(526\) −128.652 + 74.2775i −0.244586 + 0.141212i
\(527\) −611.764 1059.61i −1.16084 2.01064i
\(528\) −98.8453 + 64.4565i −0.187207 + 0.122077i
\(529\) −110.454 + 191.312i −0.208798 + 0.361649i
\(530\) 2.91902i 0.00550758i
\(531\) 533.775 + 728.876i 1.00523 + 1.37265i
\(532\) 49.3694 0.0927997
\(533\) 579.010 61.9750i 1.08632 0.116276i
\(534\) 108.590 + 55.0715i 0.203352 + 0.103130i
\(535\) 752.668 434.553i 1.40686 0.812249i
\(536\) −444.623 + 256.703i −0.829521 + 0.478924i
\(537\) −57.2620 + 3.10937i −0.106633 + 0.00579025i
\(538\) 14.1124 + 8.14777i 0.0262311 + 0.0151446i
\(539\) 168.164 0.311993
\(540\) 695.263 + 262.379i 1.28752 + 0.485887i
\(541\) 214.662i 0.396788i −0.980122 0.198394i \(-0.936428\pi\)
0.980122 0.198394i \(-0.0635725\pi\)
\(542\) 201.409 + 116.284i 0.371604 + 0.214546i
\(543\) 29.8211 + 549.184i 0.0549191 + 1.01139i
\(544\) −822.695 + 474.983i −1.51231 + 0.873131i
\(545\) 682.473 394.026i 1.25224 0.722984i
\(546\) −136.574 + 22.1633i −0.250136 + 0.0405921i
\(547\) 178.594 309.334i 0.326497 0.565509i −0.655317 0.755354i \(-0.727465\pi\)
0.981814 + 0.189844i \(0.0607984\pi\)
\(548\) −65.7629 −0.120005
\(549\) 79.0361 179.337i 0.143964 0.326661i
\(550\) 211.503 0.384552
\(551\) −16.8422 + 29.1716i −0.0305666 + 0.0529430i
\(552\) 180.752 + 277.187i 0.327450 + 0.502151i
\(553\) −280.581 + 161.994i −0.507380 + 0.292936i
\(554\) 72.5588 + 125.675i 0.130973 + 0.226851i
\(555\) −504.648 773.888i −0.909276 1.39439i
\(556\) 173.397 300.332i 0.311865 0.540166i
\(557\) −207.167 −0.371934 −0.185967 0.982556i \(-0.559542\pi\)
−0.185967 + 0.982556i \(0.559542\pi\)
\(558\) −34.4734 316.495i −0.0617803 0.567195i
\(559\) −117.706 161.359i −0.210565 0.288657i
\(560\) −226.544 130.795i −0.404543 0.233563i
\(561\) 212.142 418.302i 0.378150 0.745637i
\(562\) 170.392 + 295.128i 0.303189 + 0.525138i
\(563\) 524.862 303.029i 0.932259 0.538240i 0.0447336 0.998999i \(-0.485756\pi\)
0.887525 + 0.460759i \(0.152423\pi\)
\(564\) 17.3693 + 319.873i 0.0307967 + 0.567151i
\(565\) 936.971 + 540.961i 1.65836 + 0.957452i
\(566\) −328.900 −0.581095
\(567\) −315.991 100.041i −0.557304 0.176438i
\(568\) −314.737 −0.554115
\(569\) −601.199 347.102i −1.05659 0.610021i −0.132102 0.991236i \(-0.542172\pi\)
−0.924486 + 0.381215i \(0.875506\pi\)
\(570\) 81.7345 4.43824i 0.143394 0.00778638i
\(571\) 39.3922 + 68.2293i 0.0689881 + 0.119491i 0.898456 0.439063i \(-0.144690\pi\)
−0.829468 + 0.558554i \(0.811356\pi\)
\(572\) −89.1606 + 201.292i −0.155875 + 0.351909i
\(573\) 511.103 1007.79i 0.891978 1.75880i
\(574\) 137.624 + 79.4575i 0.239764 + 0.138428i
\(575\) 821.324i 1.42839i
\(576\) 24.2859 2.64528i 0.0421629 0.00459249i
\(577\) 688.316i 1.19292i −0.802642 0.596461i \(-0.796573\pi\)
0.802642 0.596461i \(-0.203427\pi\)
\(578\) 264.551 458.215i 0.457700 0.792760i
\(579\) −210.629 323.004i −0.363781 0.557866i
\(580\) 216.167 124.804i 0.372702 0.215180i
\(581\) 250.067 144.376i 0.430409 0.248497i
\(582\) −119.744 183.630i −0.205746 0.315516i
\(583\) −1.79406 1.03580i −0.00307730 0.00177668i
\(584\) 853.798i 1.46198i
\(585\) 968.494 211.622i 1.65555 0.361747i
\(586\) −382.239 −0.652286
\(587\) −527.268 + 913.256i −0.898242 + 1.55580i −0.0685028 + 0.997651i \(0.521822\pi\)
−0.829740 + 0.558151i \(0.811511\pi\)
\(588\) −280.340 142.175i −0.476769 0.241794i
\(589\) 75.7715 + 131.240i 0.128644 + 0.222819i
\(590\) −368.701 638.610i −0.624918 1.08239i
\(591\) 33.7898 + 622.272i 0.0571739 + 1.05291i
\(592\) −237.488 137.114i −0.401162 0.231611i
\(593\) 93.4687 0.157620 0.0788100 0.996890i \(-0.474888\pi\)
0.0788100 + 0.996890i \(0.474888\pi\)
\(594\) 94.4074 77.3389i 0.158935 0.130200i
\(595\) 1039.72 1.74743
\(596\) 30.4259 52.6992i 0.0510501 0.0884214i
\(597\) 11.6816 + 215.128i 0.0195672 + 0.360348i
\(598\) 180.883 + 80.1208i 0.302481 + 0.133981i
\(599\) 211.509 122.115i 0.353103 0.203864i −0.312948 0.949770i \(-0.601317\pi\)
0.666051 + 0.745906i \(0.267983\pi\)
\(600\) −786.769 399.010i −1.31128 0.665017i
\(601\) −341.955 + 592.283i −0.568976 + 0.985496i 0.427691 + 0.903925i \(0.359327\pi\)
−0.996668 + 0.0815711i \(0.974006\pi\)
\(602\) 54.5062i 0.0905418i
\(603\) −593.215 + 434.427i −0.983772 + 0.720442i
\(604\) 0.662099i 0.00109619i
\(605\) 397.469 688.437i 0.656974 1.13791i
\(606\) −177.827 272.701i −0.293444 0.450002i
\(607\) 262.238 + 454.210i 0.432024 + 0.748287i 0.997047 0.0767876i \(-0.0244663\pi\)
−0.565024 + 0.825075i \(0.691133\pi\)
\(608\) 101.897 58.8302i 0.167594 0.0967603i
\(609\) −93.2552 + 60.8112i −0.153128 + 0.0998542i
\(610\) −79.9828 + 138.534i −0.131119 + 0.227105i
\(611\) 251.848 + 345.251i 0.412191 + 0.565058i
\(612\) −707.307 + 517.980i −1.15573 + 0.846372i
\(613\) 51.1328i 0.0834140i 0.999130 + 0.0417070i \(0.0132796\pi\)
−0.999130 + 0.0417070i \(0.986720\pi\)
\(614\) 164.075 + 94.7286i 0.267223 + 0.154281i
\(615\) −1015.49 515.004i −1.65120 0.837404i
\(616\) −116.103 + 67.0320i −0.188479 + 0.108818i
\(617\) −374.413 648.502i −0.606828 1.05106i −0.991760 0.128112i \(-0.959108\pi\)
0.384932 0.922945i \(-0.374225\pi\)
\(618\) −4.51824 83.2078i −0.00731107 0.134640i
\(619\) 185.367 + 107.022i 0.299462 + 0.172894i 0.642201 0.766536i \(-0.278021\pi\)
−0.342739 + 0.939431i \(0.611355\pi\)
\(620\) 1122.96i 1.81123i
\(621\) 300.327 + 366.609i 0.483619 + 0.590353i
\(622\) 244.016i 0.392309i
\(623\) −165.889 95.7759i −0.266274 0.153733i
\(624\) 227.970 186.044i 0.365336 0.298148i
\(625\) −197.356 341.830i −0.315769 0.546929i
\(626\) 15.6725 + 27.1455i 0.0250359 + 0.0433635i
\(627\) −26.2754 + 51.8099i −0.0419065 + 0.0826314i
\(628\) 48.5361 84.0670i 0.0772868 0.133865i
\(629\) 1089.95 1.73282
\(630\) 247.563 + 109.104i 0.392958 + 0.173182i
\(631\) 448.257i 0.710392i 0.934792 + 0.355196i \(0.115586\pi\)
−0.934792 + 0.355196i \(0.884414\pi\)
\(632\) −248.783 + 430.904i −0.393644 + 0.681811i
\(633\) 862.575 562.480i 1.36268 0.888594i
\(634\) −122.282 211.798i −0.192874 0.334067i
\(635\) −861.105 1491.48i −1.35607 2.34878i
\(636\) 2.11509 + 3.24354i 0.00332562 + 0.00509990i
\(637\) −416.944 + 44.6281i −0.654543 + 0.0700599i
\(638\) 40.9925i 0.0642516i
\(639\) −448.101 + 48.8083i −0.701253 + 0.0763822i
\(640\) −1093.59 −1.70873
\(641\) −400.143 231.023i −0.624249 0.360410i 0.154273 0.988028i \(-0.450697\pi\)
−0.778521 + 0.627618i \(0.784030\pi\)
\(642\) −120.672 + 237.941i −0.187962 + 0.370625i
\(643\) −477.862 + 275.894i −0.743176 + 0.429073i −0.823223 0.567718i \(-0.807826\pi\)
0.0800471 + 0.996791i \(0.474493\pi\)
\(644\) −116.654 202.051i −0.181140 0.313744i
\(645\) 21.1750 + 389.958i 0.0328294 + 0.604586i
\(646\) −48.2836 + 83.6296i −0.0747424 + 0.129458i
\(647\) 901.778i 1.39378i −0.717176 0.696892i \(-0.754566\pi\)
0.717176 0.696892i \(-0.245434\pi\)
\(648\) −497.088 + 109.588i −0.767112 + 0.169118i
\(649\) 523.330 0.806363
\(650\) −524.398 + 56.1296i −0.806766 + 0.0863532i
\(651\) 27.1574 + 500.129i 0.0417164 + 0.768248i
\(652\) 631.069 364.348i 0.967898 0.558816i
\(653\) 519.216 299.770i 0.795124 0.459065i −0.0466391 0.998912i \(-0.514851\pi\)
0.841763 + 0.539847i \(0.181518\pi\)
\(654\) −109.418 + 215.750i −0.167306 + 0.329894i
\(655\) −503.830 290.886i −0.769206 0.444101i
\(656\) −337.961 −0.515185
\(657\) 132.404 + 1215.58i 0.201528 + 1.85019i
\(658\) 116.624i 0.177239i
\(659\) 147.756 + 85.3071i 0.224213 + 0.129449i 0.607899 0.794014i \(-0.292012\pi\)
−0.383687 + 0.923463i \(0.625346\pi\)
\(660\) 360.581 235.133i 0.546335 0.356262i
\(661\) −529.951 + 305.967i −0.801741 + 0.462885i −0.844079 0.536218i \(-0.819852\pi\)
0.0423387 + 0.999103i \(0.486519\pi\)
\(662\) 275.859 159.267i 0.416705 0.240585i
\(663\) −414.971 + 1093.43i −0.625898 + 1.64922i
\(664\) 221.727 384.042i 0.333926 0.578377i
\(665\) −128.777 −0.193650
\(666\) 259.523 + 114.375i 0.389674 + 0.171734i
\(667\) 159.185 0.238658
\(668\) −179.960 + 311.700i −0.269401 + 0.466617i
\(669\) 254.388 501.602i 0.380250 0.749779i
\(670\) 519.749 300.077i 0.775745 0.447877i
\(671\) −56.7632 98.3168i −0.0845950 0.146523i
\(672\) 388.309 21.0854i 0.577840 0.0313771i
\(673\) −272.015 + 471.143i −0.404182 + 0.700064i −0.994226 0.107307i \(-0.965777\pi\)
0.590044 + 0.807371i \(0.299111\pi\)
\(674\) 252.913 0.375242
\(675\) −1182.02 446.073i −1.75115 0.660849i
\(676\) 167.644 522.742i 0.247994 0.773287i
\(677\) 56.2001 + 32.4471i 0.0830134 + 0.0479278i 0.540932 0.841066i \(-0.318072\pi\)
−0.457919 + 0.888994i \(0.651405\pi\)
\(678\) −331.631 + 18.0078i −0.489132 + 0.0265602i
\(679\) 172.445 + 298.683i 0.253969 + 0.439886i
\(680\) 1382.83 798.377i 2.03357 1.17408i
\(681\) −36.1630 18.3401i −0.0531028 0.0269311i
\(682\) −159.714 92.2107i −0.234184 0.135206i
\(683\) −923.328 −1.35187 −0.675936 0.736961i \(-0.736260\pi\)
−0.675936 + 0.736961i \(0.736260\pi\)
\(684\) 87.6053 64.1557i 0.128078 0.0937948i
\(685\) 171.538 0.250421
\(686\) −249.651 144.136i −0.363923 0.210111i
\(687\) 522.259 + 800.894i 0.760202 + 1.16579i
\(688\) 57.9586 + 100.387i 0.0842421 + 0.145912i
\(689\) 4.72306 + 2.09204i 0.00685494 + 0.00303634i
\(690\) −211.293 324.022i −0.306222 0.469598i
\(691\) 308.875 + 178.329i 0.446997 + 0.258074i 0.706561 0.707652i \(-0.250246\pi\)
−0.259564 + 0.965726i \(0.583579\pi\)
\(692\) 304.103i 0.439455i
\(693\) −154.904 + 113.440i −0.223527 + 0.163694i
\(694\) 450.395i 0.648984i
\(695\) −452.295 + 783.397i −0.650784 + 1.12719i
\(696\) −77.3341 + 152.488i −0.111112 + 0.219091i
\(697\) 1163.30 671.632i 1.66901 0.963603i
\(698\) −180.345 + 104.122i −0.258374 + 0.149172i
\(699\) 193.557 10.5103i 0.276905 0.0150361i
\(700\) 538.636 + 310.982i 0.769480 + 0.444260i
\(701\) 433.680i 0.618660i −0.950955 0.309330i \(-0.899895\pi\)
0.950955 0.309330i \(-0.100105\pi\)
\(702\) −213.548 + 216.807i −0.304199 + 0.308842i
\(703\) −134.998 −0.192031
\(704\) 7.07568 12.2554i 0.0100507 0.0174083i
\(705\) −45.3068 834.370i −0.0642650 1.18350i
\(706\) 141.920 + 245.813i 0.201020 + 0.348177i
\(707\) 256.090 + 443.561i 0.362221 + 0.627385i
\(708\) −872.422 442.449i −1.23223 0.624928i
\(709\) −446.829 257.977i −0.630224 0.363860i 0.150615 0.988593i \(-0.451875\pi\)
−0.780839 + 0.624732i \(0.785208\pi\)
\(710\) 367.917 0.518193
\(711\) −287.376 + 652.071i −0.404186 + 0.917118i
\(712\) −294.177 −0.413170
\(713\) 358.079 620.211i 0.502214 0.869861i
\(714\) −267.346 + 174.335i −0.374434 + 0.244166i
\(715\) 232.570 525.058i 0.325272 0.734346i
\(716\) 53.7742 31.0465i 0.0751036 0.0433611i
\(717\) −101.506 + 66.1918i −0.141571 + 0.0923177i
\(718\) −14.8527 + 25.7257i −0.0206862 + 0.0358296i
\(719\) 1091.62i 1.51825i 0.650943 + 0.759127i \(0.274374\pi\)
−0.650943 + 0.759127i \(0.725626\pi\)
\(720\) −571.967 + 62.3001i −0.794399 + 0.0865279i
\(721\) 131.098i 0.181828i
\(722\) −150.512 + 260.695i −0.208466 + 0.361074i
\(723\) 637.809 1257.63i 0.882171 1.73947i
\(724\) −297.759 515.734i −0.411269 0.712339i
\(725\) −367.508 + 212.181i −0.506908 + 0.292663i
\(726\) 13.2312 + 243.665i 0.0182248 + 0.335627i
\(727\) −31.8859 + 55.2279i −0.0438595 + 0.0759669i −0.887122 0.461535i \(-0.847299\pi\)
0.843262 + 0.537502i \(0.180632\pi\)
\(728\) 270.074 197.010i 0.370981 0.270618i
\(729\) −690.725 + 233.111i −0.947496 + 0.319768i
\(730\) 998.060i 1.36721i
\(731\) −399.000 230.363i −0.545827 0.315134i
\(732\) 11.5058 + 211.891i 0.0157183 + 0.289468i
\(733\) 323.537 186.794i 0.441387 0.254835i −0.262799 0.964851i \(-0.584646\pi\)
0.704186 + 0.710016i \(0.251312\pi\)
\(734\) −200.998 348.138i −0.273839 0.474303i
\(735\) 731.250 + 370.854i 0.994898 + 0.504563i
\(736\) −481.542 278.018i −0.654268 0.377742i
\(737\) 425.926i 0.577918i
\(738\) 347.468 37.8470i 0.470823 0.0512833i
\(739\) 713.612i 0.965646i −0.875718 0.482823i \(-0.839611\pi\)
0.875718 0.482823i \(-0.160389\pi\)
\(740\) 866.340 + 500.181i 1.17073 + 0.675921i
\(741\) 51.3972 135.430i 0.0693620 0.182766i
\(742\) 0.704855 + 1.22084i 0.000949939 + 0.00164534i
\(743\) 96.9877 + 167.988i 0.130535 + 0.226094i 0.923883 0.382675i \(-0.124997\pi\)
−0.793348 + 0.608769i \(0.791664\pi\)
\(744\) 420.158 + 644.320i 0.564728 + 0.866022i
\(745\) −79.3640 + 137.462i −0.106529 + 0.184513i
\(746\) −382.520 −0.512762
\(747\) 256.123 581.157i 0.342869 0.777988i
\(748\) 507.843i 0.678935i
\(749\) 209.863 363.493i 0.280191 0.485305i
\(750\) 428.329 + 217.227i 0.571106 + 0.289636i
\(751\) 16.7860 + 29.0742i 0.0223516 + 0.0387140i 0.876985 0.480518i \(-0.159551\pi\)
−0.854633 + 0.519232i \(0.826218\pi\)
\(752\) −124.010 214.792i −0.164908 0.285628i
\(753\) −236.380 + 12.8356i −0.313917 + 0.0170459i
\(754\) 10.8788 + 101.636i 0.0144281 + 0.134796i
\(755\) 1.72704i 0.00228747i
\(756\) 354.142 58.1482i 0.468442 0.0769155i
\(757\) 940.856 1.24287 0.621437 0.783464i \(-0.286549\pi\)
0.621437 + 0.783464i \(0.286549\pi\)
\(758\) −338.406 195.379i −0.446445 0.257755i
\(759\) 274.125 14.8852i 0.361166 0.0196115i
\(760\) −171.274 + 98.8850i −0.225360 + 0.130112i
\(761\) 310.037 + 536.999i 0.407407 + 0.705649i 0.994598 0.103799i \(-0.0330998\pi\)
−0.587192 + 0.809448i \(0.699766\pi\)
\(762\) 471.501 + 239.122i 0.618768 + 0.313808i
\(763\) 190.291 329.593i 0.249398 0.431970i
\(764\) 1223.52i 1.60147i
\(765\) 1844.97 1351.12i 2.41172 1.76617i
\(766\) −21.0394 −0.0274665
\(767\) −1297.53 + 138.883i −1.69170 + 0.181073i
\(768\) 253.913 165.575i 0.330616 0.215593i
\(769\) −485.507 + 280.307i −0.631348 + 0.364509i −0.781274 0.624188i \(-0.785430\pi\)
0.149926 + 0.988697i \(0.452097\pi\)
\(770\) 135.720 78.3581i 0.176260 0.101764i
\(771\) −275.096 421.865i −0.356804 0.547166i