Properties

Label 117.3.n.a.38.10
Level $117$
Weight $3$
Character 117.38
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(38,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.38");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 38.10
Character \(\chi\) \(=\) 117.38
Dual form 117.3.n.a.77.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.641309 + 1.11078i) q^{2} +(2.61442 + 1.47132i) q^{3} +(1.17745 + 2.03940i) q^{4} +(-0.763734 - 1.32283i) q^{5} +(-3.31097 + 1.96048i) q^{6} +(5.50560 + 3.17866i) q^{7} -8.15090 q^{8} +(4.67043 + 7.69331i) q^{9} +1.95916 q^{10} +(4.76900 - 8.26015i) q^{11} +(0.0777368 + 7.06425i) q^{12} +(-12.3440 - 4.07742i) q^{13} +(-7.06158 + 4.07700i) q^{14} +(-0.0504229 - 4.58213i) q^{15} +(0.517455 - 0.896258i) q^{16} -5.91142i q^{17} +(-11.5408 + 0.254026i) q^{18} +28.1819i q^{19} +(1.79851 - 3.11511i) q^{20} +(9.71714 + 16.4109i) q^{21} +(6.11681 + 10.5946i) q^{22} +(2.58138 - 1.49036i) q^{23} +(-21.3099 - 11.9926i) q^{24} +(11.3334 - 19.6301i) q^{25} +(12.4454 - 11.0966i) q^{26} +(0.891147 + 26.9853i) q^{27} +14.9708i q^{28} +(-23.3655 - 13.4901i) q^{29} +(5.12207 + 2.88255i) q^{30} +(40.4659 - 23.3630i) q^{31} +(-15.6381 - 27.0860i) q^{32} +(24.6215 - 14.5788i) q^{33} +(6.56629 + 3.79105i) q^{34} -9.71060i q^{35} +(-10.1905 + 18.5833i) q^{36} -16.0478i q^{37} +(-31.3039 - 18.0733i) q^{38} +(-26.2733 - 28.8221i) q^{39} +(6.22512 + 10.7822i) q^{40} +(-0.217120 - 0.376063i) q^{41} +(-24.4605 + 0.269170i) q^{42} +(24.2584 - 42.0167i) q^{43} +22.4610 q^{44} +(6.60995 - 12.0538i) q^{45} +3.82312i q^{46} +(41.9845 - 72.7193i) q^{47} +(2.67153 - 1.58186i) q^{48} +(-4.29226 - 7.43442i) q^{49} +(14.5364 + 25.1779i) q^{50} +(8.69760 - 15.4550i) q^{51} +(-6.21892 - 29.9753i) q^{52} +67.8592i q^{53} +(-30.5462 - 16.3160i) q^{54} -14.5690 q^{55} +(-44.8756 - 25.9089i) q^{56} +(-41.4646 + 73.6795i) q^{57} +(29.9689 - 17.3026i) q^{58} +(26.9800 + 46.7307i) q^{59} +(9.28541 - 5.49804i) q^{60} +(-1.50215 + 2.60180i) q^{61} +59.9315i q^{62} +(1.25908 + 57.2020i) q^{63} +44.2550 q^{64} +(4.03382 + 19.4431i) q^{65} +(0.403841 + 36.6986i) q^{66} +(-18.4220 + 10.6359i) q^{67} +(12.0557 - 6.96038i) q^{68} +(8.94161 - 0.0983958i) q^{69} +(10.7863 + 6.22749i) q^{70} -105.408 q^{71} +(-38.0682 - 62.7074i) q^{72} +15.3294i q^{73} +(17.8256 + 10.2916i) q^{74} +(58.5125 - 34.6462i) q^{75} +(-57.4741 + 33.1827i) q^{76} +(52.5124 - 30.3181i) q^{77} +(48.8643 - 10.6999i) q^{78} +(-37.8643 + 65.5828i) q^{79} -1.58079 q^{80} +(-37.3742 + 71.8622i) q^{81} +0.556964 q^{82} +(-19.0458 + 32.9882i) q^{83} +(-22.0269 + 39.1400i) q^{84} +(-7.81979 + 4.51476i) q^{85} +(31.1142 + 53.8914i) q^{86} +(-41.2390 - 69.6468i) q^{87} +(-38.8716 + 67.3277i) q^{88} -73.4436 q^{89} +(9.15011 + 15.0724i) q^{90} +(-55.0004 - 61.6861i) q^{91} +(6.07887 + 3.50964i) q^{92} +(140.169 - 1.54246i) q^{93} +(53.8500 + 93.2710i) q^{94} +(37.2798 - 21.5235i) q^{95} +(-1.03245 - 93.8229i) q^{96} +(-53.3827 - 30.8205i) q^{97} +11.0107 q^{98} +(85.8213 - 1.88903i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - 4 q^{3} - 50 q^{4} + 4 q^{9} + 8 q^{10} - 38 q^{12} - 6 q^{13} - 6 q^{14} - 90 q^{16} + 14 q^{22} + 138 q^{23} - 92 q^{25} - 76 q^{27} + 48 q^{29} + 186 q^{30} - 154 q^{36} + 324 q^{38} - 2 q^{39}+ \cdots + 504 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.641309 + 1.11078i −0.320654 + 0.555390i −0.980623 0.195903i \(-0.937236\pi\)
0.659969 + 0.751293i \(0.270569\pi\)
\(3\) 2.61442 + 1.47132i 0.871475 + 0.490440i
\(4\) 1.17745 + 2.03940i 0.294362 + 0.509849i
\(5\) −0.763734 1.32283i −0.152747 0.264565i 0.779489 0.626415i \(-0.215479\pi\)
−0.932236 + 0.361850i \(0.882145\pi\)
\(6\) −3.31097 + 1.96048i −0.551828 + 0.326746i
\(7\) 5.50560 + 3.17866i 0.786514 + 0.454094i 0.838734 0.544542i \(-0.183296\pi\)
−0.0522199 + 0.998636i \(0.516630\pi\)
\(8\) −8.15090 −1.01886
\(9\) 4.67043 + 7.69331i 0.518937 + 0.854813i
\(10\) 1.95916 0.195916
\(11\) 4.76900 8.26015i 0.433546 0.750923i −0.563630 0.826027i \(-0.690596\pi\)
0.997176 + 0.0751042i \(0.0239290\pi\)
\(12\) 0.0777368 + 7.06425i 0.00647807 + 0.588688i
\(13\) −12.3440 4.07742i −0.949539 0.313648i
\(14\) −7.06158 + 4.07700i −0.504398 + 0.291214i
\(15\) −0.0504229 4.58213i −0.00336153 0.305475i
\(16\) 0.517455 0.896258i 0.0323409 0.0560161i
\(17\) 5.91142i 0.347731i −0.984769 0.173865i \(-0.944374\pi\)
0.984769 0.173865i \(-0.0556258\pi\)
\(18\) −11.5408 + 0.254026i −0.641153 + 0.0141125i
\(19\) 28.1819i 1.48326i 0.670810 + 0.741629i \(0.265947\pi\)
−0.670810 + 0.741629i \(0.734053\pi\)
\(20\) 1.79851 3.11511i 0.0899256 0.155756i
\(21\) 9.71714 + 16.4109i 0.462721 + 0.781470i
\(22\) 6.11681 + 10.5946i 0.278037 + 0.481574i
\(23\) 2.58138 1.49036i 0.112234 0.0647982i −0.442832 0.896604i \(-0.646026\pi\)
0.555066 + 0.831806i \(0.312693\pi\)
\(24\) −21.3099 11.9926i −0.887912 0.499691i
\(25\) 11.3334 19.6301i 0.453337 0.785202i
\(26\) 12.4454 11.0966i 0.478671 0.426792i
\(27\) 0.891147 + 26.9853i 0.0330054 + 0.999455i
\(28\) 14.9708i 0.534671i
\(29\) −23.3655 13.4901i −0.805706 0.465174i 0.0397567 0.999209i \(-0.487342\pi\)
−0.845462 + 0.534035i \(0.820675\pi\)
\(30\) 5.12207 + 2.88255i 0.170736 + 0.0960850i
\(31\) 40.4659 23.3630i 1.30535 0.753645i 0.324034 0.946045i \(-0.394961\pi\)
0.981316 + 0.192401i \(0.0616273\pi\)
\(32\) −15.6381 27.0860i −0.488690 0.846437i
\(33\) 24.6215 14.5788i 0.746107 0.441782i
\(34\) 6.56629 + 3.79105i 0.193126 + 0.111501i
\(35\) 9.71060i 0.277446i
\(36\) −10.1905 + 18.5833i −0.283071 + 0.516203i
\(37\) 16.0478i 0.433725i −0.976202 0.216863i \(-0.930418\pi\)
0.976202 0.216863i \(-0.0695824\pi\)
\(38\) −31.3039 18.0733i −0.823786 0.475613i
\(39\) −26.2733 28.8221i −0.673674 0.739029i
\(40\) 6.22512 + 10.7822i 0.155628 + 0.269556i
\(41\) −0.217120 0.376063i −0.00529561 0.00917227i 0.863365 0.504579i \(-0.168352\pi\)
−0.868661 + 0.495407i \(0.835019\pi\)
\(42\) −24.4605 + 0.269170i −0.582394 + 0.00640881i
\(43\) 24.2584 42.0167i 0.564148 0.977134i −0.432980 0.901404i \(-0.642538\pi\)
0.997128 0.0757301i \(-0.0241287\pi\)
\(44\) 22.4610 0.510477
\(45\) 6.60995 12.0538i 0.146888 0.267863i
\(46\) 3.82312i 0.0831113i
\(47\) 41.9845 72.7193i 0.893287 1.54722i 0.0573761 0.998353i \(-0.481727\pi\)
0.835911 0.548866i \(-0.184940\pi\)
\(48\) 2.67153 1.58186i 0.0556569 0.0329553i
\(49\) −4.29226 7.43442i −0.0875972 0.151723i
\(50\) 14.5364 + 25.1779i 0.290729 + 0.503557i
\(51\) 8.69760 15.4550i 0.170541 0.303039i
\(52\) −6.21892 29.9753i −0.119595 0.576448i
\(53\) 67.8592i 1.28036i 0.768224 + 0.640181i \(0.221141\pi\)
−0.768224 + 0.640181i \(0.778859\pi\)
\(54\) −30.5462 16.3160i −0.565670 0.302149i
\(55\) −14.5690 −0.264891
\(56\) −44.8756 25.9089i −0.801349 0.462659i
\(57\) −41.4646 + 73.6795i −0.727450 + 1.29262i
\(58\) 29.9689 17.3026i 0.516706 0.298320i
\(59\) 26.9800 + 46.7307i 0.457288 + 0.792046i 0.998817 0.0486363i \(-0.0154875\pi\)
−0.541529 + 0.840682i \(0.682154\pi\)
\(60\) 9.28541 5.49804i 0.154757 0.0916340i
\(61\) −1.50215 + 2.60180i −0.0246254 + 0.0426525i −0.878075 0.478522i \(-0.841173\pi\)
0.853450 + 0.521175i \(0.174506\pi\)
\(62\) 59.9315i 0.966638i
\(63\) 1.25908 + 57.2020i 0.0199854 + 0.907968i
\(64\) 44.2550 0.691485
\(65\) 4.03382 + 19.4431i 0.0620587 + 0.299124i
\(66\) 0.403841 + 36.6986i 0.00611880 + 0.556040i
\(67\) −18.4220 + 10.6359i −0.274955 + 0.158745i −0.631137 0.775671i \(-0.717411\pi\)
0.356183 + 0.934416i \(0.384078\pi\)
\(68\) 12.0557 6.96038i 0.177290 0.102359i
\(69\) 8.94161 0.0983958i 0.129589 0.00142603i
\(70\) 10.7863 + 6.22749i 0.154090 + 0.0889642i
\(71\) −105.408 −1.48462 −0.742310 0.670057i \(-0.766270\pi\)
−0.742310 + 0.670057i \(0.766270\pi\)
\(72\) −38.0682 62.7074i −0.528725 0.870936i
\(73\) 15.3294i 0.209992i 0.994473 + 0.104996i \(0.0334830\pi\)
−0.994473 + 0.104996i \(0.966517\pi\)
\(74\) 17.8256 + 10.2916i 0.240886 + 0.139076i
\(75\) 58.5125 34.6462i 0.780167 0.461949i
\(76\) −57.4741 + 33.1827i −0.756238 + 0.436614i
\(77\) 52.5124 30.3181i 0.681979 0.393741i
\(78\) 48.8643 10.6999i 0.626465 0.137179i
\(79\) −37.8643 + 65.5828i −0.479294 + 0.830162i −0.999718 0.0237459i \(-0.992441\pi\)
0.520424 + 0.853908i \(0.325774\pi\)
\(80\) −1.58079 −0.0197599
\(81\) −37.3742 + 71.8622i −0.461410 + 0.887187i
\(82\) 0.556964 0.00679224
\(83\) −19.0458 + 32.9882i −0.229467 + 0.397449i −0.957650 0.287934i \(-0.907032\pi\)
0.728183 + 0.685383i \(0.240365\pi\)
\(84\) −22.0269 + 39.1400i −0.262224 + 0.465953i
\(85\) −7.81979 + 4.51476i −0.0919975 + 0.0531148i
\(86\) 31.1142 + 53.8914i 0.361793 + 0.626644i
\(87\) −41.2390 69.6468i −0.474012 0.800538i
\(88\) −38.8716 + 67.3277i −0.441723 + 0.765087i
\(89\) −73.4436 −0.825209 −0.412604 0.910910i \(-0.635381\pi\)
−0.412604 + 0.910910i \(0.635381\pi\)
\(90\) 9.15011 + 15.0724i 0.101668 + 0.167471i
\(91\) −55.0004 61.6861i −0.604400 0.677869i
\(92\) 6.07887 + 3.50964i 0.0660747 + 0.0381482i
\(93\) 140.169 1.54246i 1.50720 0.0165856i
\(94\) 53.8500 + 93.2710i 0.572873 + 0.992244i
\(95\) 37.2798 21.5235i 0.392419 0.226563i
\(96\) −1.03245 93.8229i −0.0107547 0.977322i
\(97\) −53.3827 30.8205i −0.550337 0.317737i 0.198921 0.980016i \(-0.436256\pi\)
−0.749258 + 0.662278i \(0.769590\pi\)
\(98\) 11.0107 0.112354
\(99\) 85.8213 1.88903i 0.866881 0.0190811i
\(100\) 53.3780 0.533780
\(101\) 26.3652 + 15.2219i 0.261041 + 0.150712i 0.624809 0.780777i \(-0.285177\pi\)
−0.363768 + 0.931490i \(0.618510\pi\)
\(102\) 11.5892 + 19.5725i 0.113620 + 0.191887i
\(103\) −49.7692 86.2028i −0.483196 0.836920i 0.516618 0.856216i \(-0.327191\pi\)
−0.999814 + 0.0192959i \(0.993858\pi\)
\(104\) 100.615 + 33.2347i 0.967449 + 0.319564i
\(105\) 14.2874 25.3876i 0.136071 0.241787i
\(106\) −75.3766 43.5187i −0.711100 0.410554i
\(107\) 147.476i 1.37828i 0.724628 + 0.689140i \(0.242011\pi\)
−0.724628 + 0.689140i \(0.757989\pi\)
\(108\) −53.9844 + 33.5911i −0.499856 + 0.311029i
\(109\) 51.9537i 0.476639i −0.971187 0.238320i \(-0.923403\pi\)
0.971187 0.238320i \(-0.0765966\pi\)
\(110\) 9.34323 16.1829i 0.0849384 0.147118i
\(111\) 23.6115 41.9558i 0.212716 0.377981i
\(112\) 5.69780 3.28962i 0.0508732 0.0293716i
\(113\) 129.729 74.8990i 1.14804 0.662823i 0.199633 0.979871i \(-0.436025\pi\)
0.948409 + 0.317048i \(0.102692\pi\)
\(114\) −55.2500 93.3093i −0.484649 0.818503i
\(115\) −3.94297 2.27648i −0.0342867 0.0197955i
\(116\) 63.5353i 0.547718i
\(117\) −26.2829 114.010i −0.224640 0.974442i
\(118\) −69.2100 −0.586526
\(119\) 18.7904 32.5459i 0.157902 0.273495i
\(120\) 0.410992 + 37.3484i 0.00342493 + 0.311237i
\(121\) 15.0132 + 26.0037i 0.124076 + 0.214906i
\(122\) −1.92668 3.33711i −0.0157925 0.0273534i
\(123\) −0.0143346 1.30264i −0.000116541 0.0105906i
\(124\) 95.2928 + 55.0173i 0.768490 + 0.443688i
\(125\) −72.8096 −0.582477
\(126\) −64.3462 35.2856i −0.510685 0.280044i
\(127\) −199.708 −1.57250 −0.786252 0.617906i \(-0.787981\pi\)
−0.786252 + 0.617906i \(0.787981\pi\)
\(128\) 34.1712 59.1863i 0.266963 0.462393i
\(129\) 125.242 74.1577i 0.970867 0.574866i
\(130\) −24.1839 7.98832i −0.186030 0.0614486i
\(131\) −98.4809 + 56.8580i −0.751763 + 0.434030i −0.826330 0.563186i \(-0.809576\pi\)
0.0745678 + 0.997216i \(0.476242\pi\)
\(132\) 58.7225 + 33.0473i 0.444868 + 0.250358i
\(133\) −89.5806 + 155.158i −0.673539 + 1.16660i
\(134\) 27.2836i 0.203609i
\(135\) 35.0163 21.7884i 0.259380 0.161396i
\(136\) 48.1834i 0.354290i
\(137\) −50.6445 + 87.7189i −0.369668 + 0.640284i −0.989514 0.144440i \(-0.953862\pi\)
0.619845 + 0.784724i \(0.287195\pi\)
\(138\) −5.62504 + 9.99526i −0.0407612 + 0.0724294i
\(139\) −13.9512 24.1642i −0.100368 0.173843i 0.811468 0.584397i \(-0.198669\pi\)
−0.911836 + 0.410554i \(0.865335\pi\)
\(140\) 19.8038 11.4337i 0.141455 0.0816694i
\(141\) 216.759 128.346i 1.53730 0.910258i
\(142\) 67.5991 117.085i 0.476050 0.824542i
\(143\) −92.5488 + 82.5182i −0.647194 + 0.577050i
\(144\) 9.31193 0.204966i 0.0646662 0.00142338i
\(145\) 41.2113i 0.284216i
\(146\) −17.0276 9.83089i −0.116627 0.0673349i
\(147\) −0.283382 25.7520i −0.00192777 0.175184i
\(148\) 32.7279 18.8955i 0.221134 0.127672i
\(149\) 135.912 + 235.407i 0.912162 + 1.57991i 0.811004 + 0.585040i \(0.198921\pi\)
0.101157 + 0.994870i \(0.467745\pi\)
\(150\) 0.959718 + 87.2134i 0.00639812 + 0.581422i
\(151\) −72.5363 41.8788i −0.480373 0.277343i 0.240199 0.970724i \(-0.422787\pi\)
−0.720572 + 0.693380i \(0.756121\pi\)
\(152\) 229.708i 1.51124i
\(153\) 45.4784 27.6089i 0.297245 0.180450i
\(154\) 77.7729i 0.505019i
\(155\) −61.8103 35.6862i −0.398776 0.230234i
\(156\) 27.8444 87.5182i 0.178490 0.561014i
\(157\) −30.2181 52.3394i −0.192472 0.333372i 0.753597 0.657337i \(-0.228317\pi\)
−0.946069 + 0.323965i \(0.894984\pi\)
\(158\) −48.5654 84.1177i −0.307376 0.532390i
\(159\) −99.8426 + 177.413i −0.627941 + 1.11580i
\(160\) −23.8867 + 41.3730i −0.149292 + 0.258581i
\(161\) 18.9494 0.117698
\(162\) −55.8546 87.6003i −0.344781 0.540743i
\(163\) 304.325i 1.86703i −0.358543 0.933513i \(-0.616726\pi\)
0.358543 0.933513i \(-0.383274\pi\)
\(164\) 0.511294 0.885588i 0.00311765 0.00539993i
\(165\) −38.0896 21.4357i −0.230846 0.129913i
\(166\) −24.4284 42.3113i −0.147159 0.254887i
\(167\) −124.037 214.839i −0.742739 1.28646i −0.951244 0.308440i \(-0.900193\pi\)
0.208505 0.978021i \(-0.433140\pi\)
\(168\) −79.2034 133.763i −0.471449 0.796210i
\(169\) 135.749 + 100.664i 0.803250 + 0.595642i
\(170\) 11.5814i 0.0681259i
\(171\) −216.812 + 131.622i −1.26791 + 0.769717i
\(172\) 114.252 0.664254
\(173\) 1.94606 + 1.12356i 0.0112489 + 0.00649456i 0.505614 0.862760i \(-0.331266\pi\)
−0.494365 + 0.869254i \(0.664599\pi\)
\(174\) 103.809 1.14234i 0.596605 0.00656519i
\(175\) 124.795 72.0501i 0.713111 0.411715i
\(176\) −4.93549 8.54851i −0.0280425 0.0485711i
\(177\) 1.78126 + 161.870i 0.0100636 + 0.914521i
\(178\) 47.1000 81.5796i 0.264607 0.458312i
\(179\) 352.455i 1.96902i 0.175316 + 0.984512i \(0.443905\pi\)
−0.175316 + 0.984512i \(0.556095\pi\)
\(180\) 32.3654 0.712400i 0.179808 0.00395778i
\(181\) 65.7252 0.363123 0.181561 0.983380i \(-0.441885\pi\)
0.181561 + 0.983380i \(0.441885\pi\)
\(182\) 103.792 21.5335i 0.570285 0.118316i
\(183\) −7.75534 + 4.59206i −0.0423789 + 0.0250932i
\(184\) −21.0405 + 12.1478i −0.114351 + 0.0660205i
\(185\) −21.2285 + 12.2563i −0.114749 + 0.0662501i
\(186\) −88.1785 + 156.686i −0.474078 + 0.842400i
\(187\) −48.8293 28.1916i −0.261119 0.150757i
\(188\) 197.738 1.05180
\(189\) −80.8707 + 151.403i −0.427887 + 0.801073i
\(190\) 55.2128i 0.290594i
\(191\) −216.394 124.935i −1.13295 0.654110i −0.188276 0.982116i \(-0.560290\pi\)
−0.944675 + 0.328007i \(0.893623\pi\)
\(192\) 115.701 + 65.1133i 0.602611 + 0.339132i
\(193\) −192.811 + 111.320i −0.999022 + 0.576785i −0.907959 0.419060i \(-0.862360\pi\)
−0.0910629 + 0.995845i \(0.529026\pi\)
\(194\) 68.4695 39.5309i 0.352936 0.203768i
\(195\) −18.0609 + 56.7674i −0.0926198 + 0.291115i
\(196\) 10.1078 17.5073i 0.0515705 0.0893227i
\(197\) 130.336 0.661604 0.330802 0.943700i \(-0.392681\pi\)
0.330802 + 0.943700i \(0.392681\pi\)
\(198\) −52.9396 + 96.5399i −0.267372 + 0.487575i
\(199\) 237.077 1.19134 0.595670 0.803229i \(-0.296887\pi\)
0.595670 + 0.803229i \(0.296887\pi\)
\(200\) −92.3775 + 160.003i −0.461888 + 0.800013i
\(201\) −63.8117 + 0.702200i −0.317471 + 0.00349353i
\(202\) −33.8164 + 19.5239i −0.167408 + 0.0966531i
\(203\) −85.7606 148.542i −0.422466 0.731732i
\(204\) 41.7598 0.459535i 0.204705 0.00225262i
\(205\) −0.331644 + 0.574424i −0.00161778 + 0.00280207i
\(206\) 127.670 0.619756
\(207\) 23.5219 + 12.8987i 0.113633 + 0.0623127i
\(208\) −10.0419 + 8.95354i −0.0482783 + 0.0430458i
\(209\) 232.787 + 134.400i 1.11381 + 0.643060i
\(210\) 19.0374 + 32.1515i 0.0906543 + 0.153102i
\(211\) 95.3287 + 165.114i 0.451795 + 0.782532i 0.998498 0.0547951i \(-0.0174506\pi\)
−0.546703 + 0.837327i \(0.684117\pi\)
\(212\) −138.392 + 79.9005i −0.652791 + 0.376889i
\(213\) −275.581 155.089i −1.29381 0.728118i
\(214\) −163.813 94.5776i −0.765482 0.441951i
\(215\) −74.1078 −0.344688
\(216\) −7.26364 219.954i −0.0336280 1.01831i
\(217\) 297.052 1.36890
\(218\) 57.7091 + 33.3183i 0.264720 + 0.152836i
\(219\) −22.5545 + 40.0776i −0.102989 + 0.183003i
\(220\) −17.1542 29.7120i −0.0779737 0.135054i
\(221\) −24.1034 + 72.9707i −0.109065 + 0.330184i
\(222\) 31.4614 + 53.1338i 0.141718 + 0.239342i
\(223\) 107.197 + 61.8903i 0.480705 + 0.277535i 0.720710 0.693237i \(-0.243816\pi\)
−0.240006 + 0.970772i \(0.577149\pi\)
\(224\) 198.833i 0.887646i
\(225\) 203.952 4.48923i 0.906454 0.0199521i
\(226\) 192.133i 0.850148i
\(227\) 83.2671 144.223i 0.366815 0.635343i −0.622250 0.782818i \(-0.713781\pi\)
0.989066 + 0.147476i \(0.0471148\pi\)
\(228\) −199.084 + 2.19077i −0.873176 + 0.00960864i
\(229\) −231.335 + 133.561i −1.01020 + 0.583237i −0.911249 0.411855i \(-0.864881\pi\)
−0.0989474 + 0.995093i \(0.531548\pi\)
\(230\) 5.05733 2.91985i 0.0219884 0.0126950i
\(231\) 181.897 2.00164i 0.787434 0.00866513i
\(232\) 190.449 + 109.956i 0.820903 + 0.473948i
\(233\) 1.80691i 0.00775499i 0.999992 + 0.00387750i \(0.00123425\pi\)
−0.999992 + 0.00387750i \(0.998766\pi\)
\(234\) 143.495 + 43.9209i 0.613227 + 0.187696i
\(235\) −128.260 −0.545787
\(236\) −63.5350 + 110.046i −0.269216 + 0.466296i
\(237\) −195.487 + 115.751i −0.824838 + 0.488400i
\(238\) 24.1009 + 41.7440i 0.101264 + 0.175395i
\(239\) 146.044 + 252.956i 0.611063 + 1.05839i 0.991062 + 0.133405i \(0.0425913\pi\)
−0.379998 + 0.924987i \(0.624075\pi\)
\(240\) −4.13286 2.32585i −0.0172203 0.00969105i
\(241\) 244.389 + 141.098i 1.01406 + 0.585469i 0.912378 0.409348i \(-0.134244\pi\)
0.101684 + 0.994817i \(0.467577\pi\)
\(242\) −38.5125 −0.159142
\(243\) −203.444 + 132.889i −0.837219 + 0.546867i
\(244\) −7.07480 −0.0289951
\(245\) −6.55629 + 11.3558i −0.0267604 + 0.0463503i
\(246\) 1.45614 + 0.819473i 0.00591927 + 0.00333119i
\(247\) 114.910 347.878i 0.465221 1.40841i
\(248\) −329.833 + 190.429i −1.32997 + 0.767860i
\(249\) −98.3300 + 58.2228i −0.394900 + 0.233827i
\(250\) 46.6934 80.8754i 0.186774 0.323502i
\(251\) 156.171i 0.622195i −0.950378 0.311098i \(-0.899303\pi\)
0.950378 0.311098i \(-0.100697\pi\)
\(252\) −115.175 + 69.9201i −0.457044 + 0.277461i
\(253\) 28.4301i 0.112372i
\(254\) 128.074 221.832i 0.504230 0.873353i
\(255\) −27.0869 + 0.298071i −0.106223 + 0.00116891i
\(256\) 132.339 + 229.217i 0.516948 + 0.895380i
\(257\) −119.335 + 68.8983i −0.464340 + 0.268087i −0.713867 0.700281i \(-0.753058\pi\)
0.249528 + 0.968368i \(0.419725\pi\)
\(258\) 2.05421 + 186.674i 0.00796205 + 0.723543i
\(259\) 51.0106 88.3529i 0.196952 0.341131i
\(260\) −34.9025 + 31.1197i −0.134240 + 0.119691i
\(261\) −5.34348 242.762i −0.0204731 0.930123i
\(262\) 145.854i 0.556695i
\(263\) −348.259 201.068i −1.32418 0.764516i −0.339787 0.940502i \(-0.610355\pi\)
−0.984393 + 0.175987i \(0.943688\pi\)
\(264\) −200.688 + 118.830i −0.760180 + 0.450115i
\(265\) 89.7659 51.8264i 0.338739 0.195571i
\(266\) −114.898 199.009i −0.431946 0.748153i
\(267\) −192.013 108.059i −0.719149 0.404716i
\(268\) −43.3817 25.0465i −0.161872 0.0934569i
\(269\) 449.323i 1.67035i −0.549986 0.835174i \(-0.685367\pi\)
0.549986 0.835174i \(-0.314633\pi\)
\(270\) 1.74590 + 52.8684i 0.00646628 + 0.195809i
\(271\) 2.53296i 0.00934670i 0.999989 + 0.00467335i \(0.00148758\pi\)
−0.999989 + 0.00467335i \(0.998512\pi\)
\(272\) −5.29816 3.05889i −0.0194785 0.0112459i
\(273\) −53.0344 242.197i −0.194265 0.887168i
\(274\) −64.9576 112.510i −0.237071 0.410620i
\(275\) −108.098 187.232i −0.393084 0.680842i
\(276\) 10.7289 + 18.1196i 0.0388730 + 0.0656509i
\(277\) 33.6096 58.2134i 0.121334 0.210157i −0.798960 0.601384i \(-0.794616\pi\)
0.920294 + 0.391227i \(0.127949\pi\)
\(278\) 35.7881 0.128734
\(279\) 368.732 + 202.202i 1.32162 + 0.724737i
\(280\) 79.1501i 0.282679i
\(281\) 85.9968 148.951i 0.306039 0.530074i −0.671453 0.741047i \(-0.734330\pi\)
0.977492 + 0.210972i \(0.0676630\pi\)
\(282\) 3.55526 + 323.081i 0.0126073 + 1.14568i
\(283\) −179.573 311.030i −0.634534 1.09904i −0.986614 0.163075i \(-0.947859\pi\)
0.352080 0.935970i \(-0.385475\pi\)
\(284\) −124.112 214.969i −0.437015 0.756932i
\(285\) 129.133 1.42101i 0.453099 0.00498601i
\(286\) −32.3072 155.721i −0.112962 0.544479i
\(287\) 2.76060i 0.00961882i
\(288\) 135.344 246.812i 0.469946 0.856986i
\(289\) 254.055 0.879083
\(290\) −45.7766 26.4291i −0.157850 0.0911350i
\(291\) −94.2181 159.121i −0.323773 0.546807i
\(292\) −31.2628 + 18.0496i −0.107064 + 0.0618136i
\(293\) 41.9881 + 72.7256i 0.143304 + 0.248210i 0.928739 0.370734i \(-0.120894\pi\)
−0.785435 + 0.618944i \(0.787561\pi\)
\(294\) 28.7865 + 16.2002i 0.0979134 + 0.0551028i
\(295\) 41.2111 71.3797i 0.139699 0.241965i
\(296\) 130.804i 0.441906i
\(297\) 227.153 + 121.332i 0.764823 + 0.408525i
\(298\) −348.646 −1.16995
\(299\) −37.9414 + 7.87164i −0.126894 + 0.0263265i
\(300\) 139.553 + 78.5361i 0.465176 + 0.261787i
\(301\) 267.114 154.218i 0.887421 0.512353i
\(302\) 93.0363 53.7145i 0.308067 0.177863i
\(303\) 46.5334 + 78.5882i 0.153576 + 0.259367i
\(304\) 25.2583 + 14.5829i 0.0830864 + 0.0479699i
\(305\) 4.58897 0.0150458
\(306\) 1.50165 + 68.2223i 0.00490736 + 0.222949i
\(307\) 355.975i 1.15953i 0.814785 + 0.579764i \(0.196855\pi\)
−0.814785 + 0.579764i \(0.803145\pi\)
\(308\) 123.661 + 71.3958i 0.401497 + 0.231804i
\(309\) −3.28584 298.597i −0.0106338 0.966334i
\(310\) 79.2790 45.7718i 0.255739 0.147651i
\(311\) −29.6195 + 17.1008i −0.0952397 + 0.0549866i −0.546863 0.837222i \(-0.684178\pi\)
0.451624 + 0.892209i \(0.350845\pi\)
\(312\) 214.151 + 234.926i 0.686381 + 0.752968i
\(313\) −72.6374 + 125.812i −0.232068 + 0.401954i −0.958417 0.285373i \(-0.907883\pi\)
0.726348 + 0.687327i \(0.241216\pi\)
\(314\) 77.5166 0.246868
\(315\) 74.7067 45.3527i 0.237164 0.143977i
\(316\) −178.333 −0.564344
\(317\) 35.8311 62.0613i 0.113032 0.195777i −0.803959 0.594684i \(-0.797277\pi\)
0.916991 + 0.398907i \(0.130610\pi\)
\(318\) −133.036 224.679i −0.418353 0.706539i
\(319\) −222.860 + 128.668i −0.698620 + 0.403349i
\(320\) −33.7991 58.5417i −0.105622 0.182943i
\(321\) −216.984 + 385.565i −0.675964 + 1.20114i
\(322\) −12.1524 + 21.0486i −0.0377404 + 0.0653682i
\(323\) 166.595 0.515775
\(324\) −190.562 + 8.39303i −0.588153 + 0.0259044i
\(325\) −219.940 + 196.102i −0.676738 + 0.603392i
\(326\) 338.038 + 195.166i 1.03693 + 0.598670i
\(327\) 76.4405 135.829i 0.233763 0.415379i
\(328\) 1.76972 + 3.06525i 0.00539550 + 0.00934527i
\(329\) 462.299 266.909i 1.40517 0.811272i
\(330\) 48.2375 28.5622i 0.146174 0.0865521i
\(331\) 358.154 + 206.781i 1.08204 + 0.624715i 0.931445 0.363881i \(-0.118549\pi\)
0.150592 + 0.988596i \(0.451882\pi\)
\(332\) −89.7015 −0.270185
\(333\) 123.461 74.9503i 0.370754 0.225076i
\(334\) 318.185 0.952649
\(335\) 28.1390 + 16.2460i 0.0839969 + 0.0484956i
\(336\) 19.7365 0.217186i 0.0587397 0.000646387i
\(337\) 86.6599 + 150.099i 0.257151 + 0.445398i 0.965478 0.260486i \(-0.0838829\pi\)
−0.708327 + 0.705885i \(0.750550\pi\)
\(338\) −198.872 + 86.2310i −0.588379 + 0.255121i
\(339\) 449.367 4.94494i 1.32556 0.0145868i
\(340\) −18.4148 10.6318i −0.0541611 0.0312699i
\(341\) 445.673i 1.30696i
\(342\) −7.15893 325.241i −0.0209325 0.950996i
\(343\) 366.083i 1.06730i
\(344\) −197.728 + 342.474i −0.574789 + 0.995564i
\(345\) −6.95918 11.7531i −0.0201715 0.0340668i
\(346\) −2.49605 + 1.44110i −0.00721402 + 0.00416502i
\(347\) −370.144 + 213.703i −1.06670 + 0.615859i −0.927278 0.374375i \(-0.877857\pi\)
−0.139421 + 0.990233i \(0.544524\pi\)
\(348\) 93.4808 166.108i 0.268623 0.477322i
\(349\) −392.043 226.346i −1.12333 0.648557i −0.181084 0.983468i \(-0.557961\pi\)
−0.942250 + 0.334911i \(0.891294\pi\)
\(350\) 184.826i 0.528073i
\(351\) 99.0302 336.740i 0.282137 0.959374i
\(352\) −298.312 −0.847479
\(353\) −96.4367 + 167.033i −0.273192 + 0.473182i −0.969677 0.244389i \(-0.921413\pi\)
0.696486 + 0.717571i \(0.254746\pi\)
\(354\) −180.944 101.830i −0.511142 0.287656i
\(355\) 80.5037 + 139.437i 0.226771 + 0.392779i
\(356\) −86.4759 149.781i −0.242910 0.420732i
\(357\) 97.0116 57.4421i 0.271741 0.160902i
\(358\) −391.500 226.033i −1.09358 0.631376i
\(359\) −18.1458 −0.0505454 −0.0252727 0.999681i \(-0.508045\pi\)
−0.0252727 + 0.999681i \(0.508045\pi\)
\(360\) −53.8770 + 98.2494i −0.149658 + 0.272915i
\(361\) −433.220 −1.20005
\(362\) −42.1502 + 73.0062i −0.116437 + 0.201675i
\(363\) 0.991196 + 90.0739i 0.00273057 + 0.248138i
\(364\) 61.0423 184.800i 0.167699 0.507691i
\(365\) 20.2782 11.7076i 0.0555566 0.0320756i
\(366\) −0.127203 11.5594i −0.000347548 0.0315831i
\(367\) 223.747 387.541i 0.609665 1.05597i −0.381631 0.924315i \(-0.624637\pi\)
0.991296 0.131655i \(-0.0420292\pi\)
\(368\) 3.08477i 0.00838254i
\(369\) 1.87913 3.42675i 0.00509249 0.00928658i
\(370\) 31.4402i 0.0849736i
\(371\) −215.701 + 373.605i −0.581405 + 1.00702i
\(372\) 168.188 + 284.045i 0.452117 + 0.763562i
\(373\) 355.982 + 616.580i 0.954376 + 1.65303i 0.735789 + 0.677211i \(0.236812\pi\)
0.218588 + 0.975817i \(0.429855\pi\)
\(374\) 62.6293 36.1590i 0.167458 0.0966819i
\(375\) −190.355 107.126i −0.507614 0.285670i
\(376\) −342.211 + 592.727i −0.910136 + 1.57640i
\(377\) 233.419 + 261.792i 0.619148 + 0.694409i
\(378\) −116.312 186.925i −0.307704 0.494512i
\(379\) 633.425i 1.67131i 0.549257 + 0.835653i \(0.314911\pi\)
−0.549257 + 0.835653i \(0.685089\pi\)
\(380\) 87.7899 + 50.6855i 0.231026 + 0.133383i
\(381\) −522.122 293.835i −1.37040 0.771220i
\(382\) 277.550 160.244i 0.726571 0.419486i
\(383\) −48.4518 83.9210i −0.126506 0.219115i 0.795815 0.605540i \(-0.207043\pi\)
−0.922321 + 0.386425i \(0.873710\pi\)
\(384\) 176.420 104.461i 0.459428 0.272035i
\(385\) −80.2111 46.3099i −0.208340 0.120285i
\(386\) 285.561i 0.739795i
\(387\) 436.545 9.60887i 1.12802 0.0248291i
\(388\) 145.158i 0.374118i
\(389\) 534.942 + 308.849i 1.37517 + 0.793956i 0.991574 0.129543i \(-0.0413512\pi\)
0.383599 + 0.923500i \(0.374685\pi\)
\(390\) −51.4735 56.4671i −0.131983 0.144787i
\(391\) −8.81015 15.2596i −0.0225323 0.0390272i
\(392\) 34.9858 + 60.5971i 0.0892494 + 0.154585i
\(393\) −341.127 + 3.75385i −0.868008 + 0.00955178i
\(394\) −83.5856 + 144.774i −0.212146 + 0.367448i
\(395\) 115.673 0.292843
\(396\) 104.902 + 172.799i 0.264905 + 0.436362i
\(397\) 207.827i 0.523493i −0.965137 0.261747i \(-0.915702\pi\)
0.965137 0.261747i \(-0.0842985\pi\)
\(398\) −152.039 + 263.340i −0.382008 + 0.661658i
\(399\) −462.489 + 273.848i −1.15912 + 0.686335i
\(400\) −11.7291 20.3153i −0.0293227 0.0507883i
\(401\) 226.908 + 393.017i 0.565856 + 0.980091i 0.996969 + 0.0777935i \(0.0247875\pi\)
−0.431114 + 0.902298i \(0.641879\pi\)
\(402\) 40.1430 71.3310i 0.0998582 0.177440i
\(403\) −594.772 + 123.396i −1.47586 + 0.306194i
\(404\) 71.6921i 0.177456i
\(405\) 123.605 5.44402i 0.305198 0.0134420i
\(406\) 219.996 0.541862
\(407\) −132.558 76.5321i −0.325694 0.188040i
\(408\) −70.8932 + 125.972i −0.173758 + 0.308755i
\(409\) −494.383 + 285.432i −1.20876 + 0.697878i −0.962488 0.271323i \(-0.912539\pi\)
−0.246272 + 0.969201i \(0.579206\pi\)
\(410\) −0.425372 0.736767i −0.00103749 0.00179699i
\(411\) −261.469 + 154.820i −0.636178 + 0.376691i
\(412\) 117.201 202.998i 0.284469 0.492714i
\(413\) 343.041i 0.830607i
\(414\) −29.4125 + 17.8556i −0.0710446 + 0.0431295i
\(415\) 58.1836 0.140201
\(416\) 82.5958 + 398.113i 0.198548 + 0.957002i
\(417\) −0.921079 83.7021i −0.00220882 0.200724i
\(418\) −298.577 + 172.383i −0.714298 + 0.412400i
\(419\) 620.074 358.000i 1.47989 0.854416i 0.480151 0.877186i \(-0.340582\pi\)
0.999741 + 0.0227704i \(0.00724866\pi\)
\(420\) 68.5981 0.754871i 0.163329 0.00179731i
\(421\) −148.999 86.0245i −0.353916 0.204334i 0.312492 0.949920i \(-0.398836\pi\)
−0.666409 + 0.745586i \(0.732169\pi\)
\(422\) −244.541 −0.579480
\(423\) 755.538 16.6303i 1.78614 0.0393150i
\(424\) 553.113i 1.30451i
\(425\) −116.042 66.9966i −0.273039 0.157639i
\(426\) 349.002 206.650i 0.819254 0.485094i
\(427\) −16.5405 + 9.54964i −0.0387364 + 0.0223645i
\(428\) −300.762 + 173.645i −0.702715 + 0.405713i
\(429\) −363.373 + 79.5686i −0.847022 + 0.185475i
\(430\) 47.5260 82.3174i 0.110526 0.191436i
\(431\) −285.388 −0.662153 −0.331076 0.943604i \(-0.607412\pi\)
−0.331076 + 0.943604i \(0.607412\pi\)
\(432\) 24.6469 + 13.1650i 0.0570530 + 0.0304745i
\(433\) 159.813 0.369082 0.184541 0.982825i \(-0.440920\pi\)
0.184541 + 0.982825i \(0.440920\pi\)
\(434\) −190.502 + 329.959i −0.438944 + 0.760274i
\(435\) −60.6350 + 107.744i −0.139391 + 0.247687i
\(436\) 105.954 61.1727i 0.243014 0.140304i
\(437\) 42.0012 + 72.7482i 0.0961125 + 0.166472i
\(438\) −30.0530 50.7552i −0.0686141 0.115879i
\(439\) 93.6335 162.178i 0.213288 0.369426i −0.739454 0.673208i \(-0.764916\pi\)
0.952742 + 0.303782i \(0.0982494\pi\)
\(440\) 118.750 0.269887
\(441\) 37.1486 67.7436i 0.0842372 0.153614i
\(442\) −65.5966 73.5703i −0.148409 0.166449i
\(443\) 541.940 + 312.889i 1.22334 + 0.706296i 0.965629 0.259926i \(-0.0836981\pi\)
0.257712 + 0.966222i \(0.417031\pi\)
\(444\) 113.366 1.24751i 0.255329 0.00280970i
\(445\) 56.0914 + 97.1531i 0.126048 + 0.218322i
\(446\) −137.493 + 79.3815i −0.308280 + 0.177986i
\(447\) 8.97312 + 815.423i 0.0200741 + 1.82421i
\(448\) 243.650 + 140.672i 0.543862 + 0.313999i
\(449\) 437.533 0.974460 0.487230 0.873274i \(-0.338007\pi\)
0.487230 + 0.873274i \(0.338007\pi\)
\(450\) −125.810 + 229.425i −0.279577 + 0.509833i
\(451\) −4.14178 −0.00918356
\(452\) 305.497 + 176.379i 0.675879 + 0.390219i
\(453\) −128.023 216.213i −0.282612 0.477292i
\(454\) 106.800 + 184.983i 0.235242 + 0.407451i
\(455\) −39.5942 + 119.868i −0.0870203 + 0.263446i
\(456\) 337.974 600.554i 0.741171 1.31700i
\(457\) −518.150 299.154i −1.13381 0.654604i −0.188918 0.981993i \(-0.560498\pi\)
−0.944890 + 0.327388i \(0.893831\pi\)
\(458\) 342.616i 0.748070i
\(459\) 159.521 5.26794i 0.347541 0.0114770i
\(460\) 10.7217i 0.0233081i
\(461\) 146.252 253.316i 0.317250 0.549493i −0.662663 0.748917i \(-0.730574\pi\)
0.979913 + 0.199425i \(0.0639073\pi\)
\(462\) −114.429 + 203.331i −0.247682 + 0.440111i
\(463\) 675.611 390.064i 1.45920 0.842471i 0.460231 0.887799i \(-0.347767\pi\)
0.998972 + 0.0453276i \(0.0144332\pi\)
\(464\) −24.1811 + 13.9610i −0.0521145 + 0.0300883i
\(465\) −109.093 184.242i −0.234608 0.396219i
\(466\) −2.00708 1.15879i −0.00430704 0.00248667i
\(467\) 441.322i 0.945015i 0.881327 + 0.472508i \(0.156651\pi\)
−0.881327 + 0.472508i \(0.843349\pi\)
\(468\) 201.564 187.842i 0.430693 0.401371i
\(469\) −135.232 −0.288341
\(470\) 82.2542 142.468i 0.175009 0.303124i
\(471\) −1.99505 181.298i −0.00423577 0.384921i
\(472\) −219.911 380.897i −0.465913 0.806986i
\(473\) −231.377 400.756i −0.489168 0.847264i
\(474\) −3.20636 291.375i −0.00676447 0.614714i
\(475\) 553.212 + 319.397i 1.16466 + 0.672416i
\(476\) 88.4987 0.185922
\(477\) −522.062 + 316.931i −1.09447 + 0.664426i
\(478\) −374.637 −0.783760
\(479\) 220.584 382.062i 0.460509 0.797625i −0.538477 0.842640i \(-0.681000\pi\)
0.998986 + 0.0450152i \(0.0143336\pi\)
\(480\) −123.323 + 73.0215i −0.256923 + 0.152128i
\(481\) −65.4338 + 198.095i −0.136037 + 0.411839i
\(482\) −313.458 + 180.975i −0.650327 + 0.375466i
\(483\) 49.5417 + 27.8806i 0.102571 + 0.0577238i
\(484\) −35.3546 + 61.2359i −0.0730466 + 0.126520i
\(485\) 94.1547i 0.194133i
\(486\) −17.1395 311.204i −0.0352664 0.640338i
\(487\) 331.192i 0.680066i −0.940414 0.340033i \(-0.889562\pi\)
0.940414 0.340033i \(-0.110438\pi\)
\(488\) 12.2439 21.2070i 0.0250899 0.0434570i
\(489\) 447.760 795.635i 0.915665 1.62707i
\(490\) −8.40922 14.5652i −0.0171617 0.0297249i
\(491\) −262.207 + 151.385i −0.534026 + 0.308320i −0.742654 0.669675i \(-0.766433\pi\)
0.208628 + 0.977995i \(0.433100\pi\)
\(492\) 2.63972 1.56302i 0.00536529 0.00317688i
\(493\) −79.7454 + 138.123i −0.161755 + 0.280169i
\(494\) 312.723 + 350.736i 0.633042 + 0.709992i
\(495\) −68.0435 112.084i −0.137462 0.226432i
\(496\) 48.3572i 0.0974943i
\(497\) −580.334 335.056i −1.16767 0.674157i
\(498\) −1.61280 146.562i −0.00323856 0.294301i
\(499\) −329.683 + 190.343i −0.660688 + 0.381448i −0.792539 0.609821i \(-0.791241\pi\)
0.131851 + 0.991270i \(0.457908\pi\)
\(500\) −85.7294 148.488i −0.171459 0.296975i
\(501\) −8.18913 744.179i −0.0163456 1.48539i
\(502\) 173.471 + 100.154i 0.345561 + 0.199510i
\(503\) 766.223i 1.52331i −0.647985 0.761654i \(-0.724388\pi\)
0.647985 0.761654i \(-0.275612\pi\)
\(504\) −10.2627 466.247i −0.0203624 0.925094i
\(505\) 46.5021i 0.0920833i
\(506\) 31.5796 + 18.2325i 0.0624102 + 0.0360326i
\(507\) 206.798 + 462.908i 0.407885 + 0.913033i
\(508\) −235.146 407.284i −0.462885 0.801740i
\(509\) 239.507 + 414.839i 0.470545 + 0.815008i 0.999433 0.0336839i \(-0.0107240\pi\)
−0.528887 + 0.848692i \(0.677391\pi\)
\(510\) 17.0400 30.2787i 0.0334117 0.0593700i
\(511\) −48.7270 + 84.3976i −0.0953561 + 0.165162i
\(512\) −66.1098 −0.129121
\(513\) −760.497 + 25.1142i −1.48245 + 0.0489556i
\(514\) 176.740i 0.343853i
\(515\) −76.0209 + 131.672i −0.147613 + 0.255674i
\(516\) 298.703 + 168.101i 0.578881 + 0.325777i
\(517\) −400.448 693.597i −0.774561 1.34158i
\(518\) 65.4270 + 113.323i 0.126307 + 0.218770i
\(519\) 3.43471 + 5.80074i 0.00661795 + 0.0111768i
\(520\) −32.8792 158.478i −0.0632293 0.304766i
\(521\) 794.176i 1.52433i −0.647382 0.762165i \(-0.724136\pi\)
0.647382 0.762165i \(-0.275864\pi\)
\(522\) 273.082 + 149.750i 0.523146 + 0.286878i
\(523\) 788.966 1.50854 0.754270 0.656564i \(-0.227991\pi\)
0.754270 + 0.656564i \(0.227991\pi\)
\(524\) −231.912 133.894i −0.442580 0.255524i
\(525\) 432.275 4.75686i 0.823380 0.00906068i
\(526\) 446.683 257.893i 0.849208 0.490291i
\(527\) −138.108 239.211i −0.262065 0.453911i
\(528\) −0.325848 29.6111i −0.000617137 0.0560817i
\(529\) −260.058 + 450.433i −0.491602 + 0.851480i
\(530\) 132.947i 0.250843i
\(531\) −233.506 + 425.818i −0.439748 + 0.801917i
\(532\) −421.906 −0.793056
\(533\) 1.14676 + 5.52742i 0.00215153 + 0.0103704i
\(534\) 243.169 143.984i 0.455373 0.269634i
\(535\) 195.085 112.632i 0.364645 0.210528i
\(536\) 150.155 86.6923i 0.280141 0.161739i
\(537\) −518.575 + 921.468i −0.965689 + 1.71596i
\(538\) 499.099 + 288.155i 0.927694 + 0.535604i
\(539\) −81.8792 −0.151910
\(540\) 85.6650 + 45.7573i 0.158639 + 0.0847358i
\(541\) 151.515i 0.280064i 0.990147 + 0.140032i \(0.0447206\pi\)
−0.990147 + 0.140032i \(0.955279\pi\)
\(542\) −2.81356 1.62441i −0.00519106 0.00299706i
\(543\) 171.834 + 96.7029i 0.316452 + 0.178090i
\(544\) −160.117 + 92.4434i −0.294332 + 0.169933i
\(545\) −68.7257 + 39.6788i −0.126102 + 0.0728051i
\(546\) 303.039 + 96.4134i 0.555016 + 0.176581i
\(547\) 288.796 500.209i 0.527963 0.914458i −0.471506 0.881863i \(-0.656289\pi\)
0.999469 0.0325954i \(-0.0103773\pi\)
\(548\) −238.525 −0.435264
\(549\) −27.0321 + 0.595009i −0.0492389 + 0.00108381i
\(550\) 277.297 0.504177
\(551\) 380.175 658.483i 0.689974 1.19507i
\(552\) −72.8822 + 0.802014i −0.132033 + 0.00145292i
\(553\) −416.931 + 240.715i −0.753944 + 0.435290i
\(554\) 43.1082 + 74.6656i 0.0778126 + 0.134775i
\(555\) −73.5332 + 0.809178i −0.132492 + 0.00145798i
\(556\) 32.8536 56.9040i 0.0590891 0.102345i
\(557\) −977.285 −1.75455 −0.877275 0.479988i \(-0.840641\pi\)
−0.877275 + 0.479988i \(0.840641\pi\)
\(558\) −461.072 + 279.906i −0.826294 + 0.501624i
\(559\) −470.766 + 419.743i −0.842157 + 0.750883i
\(560\) −8.70320 5.02480i −0.0155414 0.00897285i
\(561\) −86.1815 145.548i −0.153621 0.259444i
\(562\) 110.301 + 191.047i 0.196265 + 0.339941i
\(563\) 394.123 227.547i 0.700041 0.404169i −0.107322 0.994224i \(-0.534227\pi\)
0.807363 + 0.590055i \(0.200894\pi\)
\(564\) 516.971 + 290.936i 0.916615 + 0.515844i
\(565\) −198.157 114.406i −0.350720 0.202488i
\(566\) 460.647 0.813864
\(567\) −434.193 + 276.844i −0.765772 + 0.488262i
\(568\) 859.170 1.51262
\(569\) −389.346 224.789i −0.684263 0.395060i 0.117196 0.993109i \(-0.462609\pi\)
−0.801459 + 0.598049i \(0.795943\pi\)
\(570\) −81.2357 + 144.350i −0.142519 + 0.253245i
\(571\) −146.524 253.787i −0.256610 0.444461i 0.708722 0.705488i \(-0.249272\pi\)
−0.965331 + 0.261027i \(0.915939\pi\)
\(572\) −277.259 91.5830i −0.484718 0.160110i
\(573\) −381.925 645.017i −0.666536 1.12568i
\(574\) 3.06642 + 1.77040i 0.00534219 + 0.00308432i
\(575\) 67.5635i 0.117502i
\(576\) 206.690 + 340.468i 0.358837 + 0.591090i
\(577\) 528.656i 0.916215i 0.888897 + 0.458108i \(0.151473\pi\)
−0.888897 + 0.458108i \(0.848527\pi\)
\(578\) −162.928 + 282.199i −0.281882 + 0.488234i
\(579\) −667.877 + 7.34949i −1.15350 + 0.0126934i
\(580\) −84.0461 + 48.5241i −0.144907 + 0.0836622i
\(581\) −209.717 + 121.080i −0.360958 + 0.208399i
\(582\) 237.171 2.60989i 0.407510 0.00448435i
\(583\) 560.527 + 323.621i 0.961453 + 0.555095i
\(584\) 124.948i 0.213953i
\(585\) −130.742 + 121.841i −0.223490 + 0.208275i
\(586\) −107.709 −0.183804
\(587\) 334.347 579.106i 0.569586 0.986552i −0.427020 0.904242i \(-0.640437\pi\)
0.996607 0.0823105i \(-0.0262299\pi\)
\(588\) 52.1849 30.8995i 0.0887498 0.0525502i
\(589\) 658.413 + 1140.41i 1.11785 + 1.93617i
\(590\) 52.8581 + 91.5528i 0.0895899 + 0.155174i
\(591\) 340.753 + 191.766i 0.576571 + 0.324477i
\(592\) −14.3830 8.30403i −0.0242956 0.0140271i
\(593\) 705.106 1.18905 0.594525 0.804077i \(-0.297340\pi\)
0.594525 + 0.804077i \(0.297340\pi\)
\(594\) −280.448 + 174.505i −0.472134 + 0.293780i
\(595\) −57.4035 −0.0964764
\(596\) −320.058 + 554.357i −0.537011 + 0.930130i
\(597\) 619.819 + 348.816i 1.03822 + 0.584281i
\(598\) 15.5885 47.1927i 0.0260677 0.0789175i
\(599\) 126.070 72.7864i 0.210467 0.121513i −0.391061 0.920365i \(-0.627892\pi\)
0.601528 + 0.798851i \(0.294559\pi\)
\(600\) −476.929 + 282.398i −0.794882 + 0.470663i
\(601\) 203.611 352.664i 0.338787 0.586796i −0.645418 0.763829i \(-0.723317\pi\)
0.984205 + 0.177034i \(0.0566502\pi\)
\(602\) 395.606i 0.657153i
\(603\) −167.864 92.0516i −0.278381 0.152656i
\(604\) 197.240i 0.326557i
\(605\) 22.9322 39.7198i 0.0379045 0.0656526i
\(606\) −117.136 + 1.28900i −0.193294 + 0.00212706i
\(607\) −2.73734 4.74122i −0.00450963 0.00781091i 0.863762 0.503900i \(-0.168102\pi\)
−0.868271 + 0.496089i \(0.834769\pi\)
\(608\) 763.334 440.711i 1.25548 0.724854i
\(609\) −5.66204 514.532i −0.00929728 0.844880i
\(610\) −2.94295 + 5.09734i −0.00482450 + 0.00835629i
\(611\) −814.764 + 726.459i −1.33349 + 1.18897i
\(612\) 109.854 + 60.2406i 0.179500 + 0.0984324i
\(613\) 49.4537i 0.0806749i −0.999186 0.0403374i \(-0.987157\pi\)
0.999186 0.0403374i \(-0.0128433\pi\)
\(614\) −395.410 228.290i −0.643990 0.371808i
\(615\) −1.71222 + 1.01383i −0.00278410 + 0.00164851i
\(616\) −428.023 + 247.119i −0.694843 + 0.401168i
\(617\) −24.5895 42.5902i −0.0398533 0.0690279i 0.845411 0.534117i \(-0.179356\pi\)
−0.885264 + 0.465089i \(0.846022\pi\)
\(618\) 333.783 + 187.843i 0.540102 + 0.303953i
\(619\) 73.8390 + 42.6310i 0.119288 + 0.0688707i 0.558457 0.829534i \(-0.311394\pi\)
−0.439169 + 0.898404i \(0.644727\pi\)
\(620\) 168.074i 0.271088i
\(621\) 42.5182 + 68.3311i 0.0684673 + 0.110034i
\(622\) 43.8677i 0.0705268i
\(623\) −404.351 233.452i −0.649038 0.374722i
\(624\) −39.4273 + 8.63349i −0.0631848 + 0.0138357i
\(625\) −227.728 394.437i −0.364365 0.631099i
\(626\) −93.1660 161.368i −0.148828 0.257777i
\(627\) 410.859 + 693.882i 0.655277 + 1.10667i
\(628\) 71.1605 123.254i 0.113313 0.196264i
\(629\) −94.8655 −0.150820
\(630\) 2.46674 + 112.068i 0.00391546 + 0.177885i
\(631\) 520.845i 0.825428i 0.910861 + 0.412714i \(0.135419\pi\)
−0.910861 + 0.412714i \(0.864581\pi\)
\(632\) 308.628 534.559i 0.488335 0.845821i
\(633\) 6.29375 + 571.938i 0.00994273 + 0.903535i
\(634\) 45.9576 + 79.6009i 0.0724883 + 0.125553i
\(635\) 152.524 + 264.179i 0.240195 + 0.416030i
\(636\) −479.374 + 5.27515i −0.753733 + 0.00829427i
\(637\) 22.6705 + 109.272i 0.0355894 + 0.171541i
\(638\) 330.064i 0.517342i
\(639\) −492.301 810.937i −0.770424 1.26907i
\(640\) −104.391 −0.163111
\(641\) −412.228 238.000i −0.643101 0.371295i 0.142707 0.989765i \(-0.454419\pi\)
−0.785808 + 0.618470i \(0.787753\pi\)
\(642\) −289.123 488.288i −0.450348 0.760573i
\(643\) −835.538 + 482.398i −1.29944 + 0.750230i −0.980307 0.197480i \(-0.936724\pi\)
−0.319130 + 0.947711i \(0.603391\pi\)
\(644\) 22.3119 + 38.6453i 0.0346458 + 0.0600082i
\(645\) −193.749 109.036i −0.300386 0.169049i
\(646\) −106.839 + 185.050i −0.165385 + 0.286456i
\(647\) 1163.49i 1.79829i 0.437653 + 0.899144i \(0.355810\pi\)
−0.437653 + 0.899144i \(0.644190\pi\)
\(648\) 304.633 585.741i 0.470113 0.903921i
\(649\) 514.671 0.793021
\(650\) −76.7772 370.067i −0.118119 0.569334i
\(651\) 776.619 + 437.059i 1.19296 + 0.671365i
\(652\) 620.640 358.327i 0.951902 0.549581i
\(653\) 430.864 248.759i 0.659822 0.380948i −0.132387 0.991198i \(-0.542264\pi\)
0.792209 + 0.610250i \(0.208931\pi\)
\(654\) 101.854 + 172.017i 0.155740 + 0.263023i
\(655\) 150.426 + 86.8488i 0.229659 + 0.132594i
\(656\) −0.449399 −0.000685060
\(657\) −117.934 + 71.5950i −0.179504 + 0.108973i
\(658\) 684.683i 1.04055i
\(659\) −492.112 284.121i −0.746756 0.431140i 0.0777643 0.996972i \(-0.475222\pi\)
−0.824521 + 0.565832i \(0.808555\pi\)
\(660\) −1.13255 102.919i −0.00171598 0.155938i
\(661\) 489.391 282.550i 0.740380 0.427459i −0.0818275 0.996647i \(-0.526076\pi\)
0.822207 + 0.569188i \(0.192742\pi\)
\(662\) −459.375 + 265.220i −0.693920 + 0.400635i
\(663\) −170.380 + 155.312i −0.256983 + 0.234257i
\(664\) 155.240 268.884i 0.233795 0.404945i
\(665\) 273.663 0.411524
\(666\) 4.07656 + 185.204i 0.00612096 + 0.278084i
\(667\) −80.4201 −0.120570
\(668\) 292.095 505.923i 0.437267 0.757369i
\(669\) 189.198 + 319.529i 0.282808 + 0.477622i
\(670\) −36.0915 + 20.8374i −0.0538679 + 0.0311007i
\(671\) 14.3275 + 24.8160i 0.0213525 + 0.0369836i
\(672\) 292.547 519.833i 0.435337 0.773561i
\(673\) −174.406 + 302.079i −0.259146 + 0.448855i −0.966013 0.258492i \(-0.916775\pi\)
0.706867 + 0.707346i \(0.250108\pi\)
\(674\) −222.303 −0.329826
\(675\) 539.823 + 288.342i 0.799737 + 0.427174i
\(676\) −45.4555 + 395.372i −0.0672419 + 0.584871i
\(677\) 19.5304 + 11.2759i 0.0288484 + 0.0166557i 0.514355 0.857577i \(-0.328031\pi\)
−0.485506 + 0.874233i \(0.661365\pi\)
\(678\) −282.690 + 502.318i −0.416947 + 0.740882i
\(679\) −195.936 339.370i −0.288565 0.499809i
\(680\) 63.7383 36.7993i 0.0937327 0.0541166i
\(681\) 429.894 254.547i 0.631268 0.373784i
\(682\) 495.044 + 285.814i 0.725871 + 0.419082i
\(683\) −827.260 −1.21122 −0.605608 0.795763i \(-0.707070\pi\)
−0.605608 + 0.795763i \(0.707070\pi\)
\(684\) −523.713 287.189i −0.765663 0.419867i
\(685\) 154.716 0.225863
\(686\) 406.637 + 234.772i 0.592766 + 0.342234i
\(687\) −801.319 + 8.81792i −1.16640 + 0.0128354i
\(688\) −25.1052 43.4835i −0.0364902 0.0632028i
\(689\) 276.691 837.654i 0.401583 1.21575i
\(690\) 17.5180 0.192773i 0.0253885 0.000279381i
\(691\) −177.380 102.410i −0.256700 0.148206i 0.366128 0.930564i \(-0.380683\pi\)
−0.622828 + 0.782358i \(0.714017\pi\)
\(692\) 5.29172i 0.00764700i
\(693\) 478.502 + 262.396i 0.690479 + 0.378638i
\(694\) 548.198i 0.789911i
\(695\) −21.3100 + 36.9100i −0.0306619 + 0.0531079i
\(696\) 336.135 + 567.684i 0.482953 + 0.815638i
\(697\) −2.22307 + 1.28349i −0.00318948 + 0.00184145i
\(698\) 502.842 290.316i 0.720404 0.415925i
\(699\) −2.65855 + 4.72404i −0.00380336 + 0.00675828i
\(700\) 293.878 + 169.670i 0.419825 + 0.242386i
\(701\) 181.050i 0.258274i −0.991627 0.129137i \(-0.958779\pi\)
0.991627 0.129137i \(-0.0412208\pi\)
\(702\) 310.535 + 325.955i 0.442358 + 0.464324i
\(703\) 452.258 0.643326
\(704\) 211.052 365.553i 0.299790 0.519252i
\(705\) −335.326 188.712i −0.475640 0.267676i
\(706\) −123.691 214.240i −0.175200 0.303456i
\(707\) 96.7707 + 167.612i 0.136875 + 0.237075i
\(708\) −328.020 + 194.226i −0.463305 + 0.274331i
\(709\) 51.9677 + 30.0036i 0.0732972 + 0.0423181i 0.536201 0.844091i \(-0.319859\pi\)
−0.462904 + 0.886409i \(0.653192\pi\)
\(710\) −206.511 −0.290860
\(711\) −681.392 + 14.9982i −0.958357 + 0.0210946i
\(712\) 598.631 0.840774
\(713\) 69.6385 120.617i 0.0976697 0.169169i
\(714\) 1.59118 + 144.597i 0.00222854 + 0.202516i
\(715\) 179.840 + 59.4040i 0.251524 + 0.0830825i
\(716\) −718.796 + 414.997i −1.00391 + 0.579605i
\(717\) 9.64205 + 876.212i 0.0134478 + 1.22205i
\(718\) 11.6371 20.1560i 0.0162076 0.0280724i
\(719\) 437.875i 0.609005i 0.952511 + 0.304503i \(0.0984903\pi\)
−0.952511 + 0.304503i \(0.901510\pi\)
\(720\) −7.38298 12.1615i −0.0102541 0.0168910i
\(721\) 632.797i 0.877666i
\(722\) 277.828 481.211i 0.384803 0.666498i
\(723\) 431.336 + 728.465i 0.596592 + 1.00756i
\(724\) 77.3879 + 134.040i 0.106889 + 0.185138i
\(725\) −529.621 + 305.777i −0.730512 + 0.421761i
\(726\) −100.688 56.6642i −0.138689 0.0780499i
\(727\) 347.346 601.621i 0.477780 0.827539i −0.521896 0.853009i \(-0.674775\pi\)
0.999676 + 0.0254704i \(0.00810836\pi\)
\(728\) 448.303 + 502.797i 0.615800 + 0.690655i
\(729\) −727.412 + 48.0957i −0.997821 + 0.0659749i
\(730\) 30.0327i 0.0411407i
\(731\) −248.379 143.402i −0.339779 0.196172i
\(732\) −18.4965 10.4093i −0.0252685 0.0142204i
\(733\) −625.465 + 361.112i −0.853295 + 0.492650i −0.861761 0.507314i \(-0.830638\pi\)
0.00846655 + 0.999964i \(0.497305\pi\)
\(734\) 286.982 + 497.067i 0.390983 + 0.677203i
\(735\) −33.8490 + 20.0426i −0.0460531 + 0.0272688i
\(736\) −80.7357 46.6128i −0.109695 0.0633326i
\(737\) 202.891i 0.275293i
\(738\) 2.60126 + 4.28490i 0.00352474 + 0.00580610i
\(739\) 480.571i 0.650298i −0.945663 0.325149i \(-0.894585\pi\)
0.945663 0.325149i \(-0.105415\pi\)
\(740\) −49.9908 28.8622i −0.0675552 0.0390030i
\(741\) 812.262 740.431i 1.09617 0.999232i
\(742\) −276.662 479.193i −0.372860 0.645812i
\(743\) 657.788 + 1139.32i 0.885314 + 1.53341i 0.845353 + 0.534207i \(0.179390\pi\)
0.0399605 + 0.999201i \(0.487277\pi\)
\(744\) −1142.51 + 12.5724i −1.53563 + 0.0168984i
\(745\) 207.601 359.576i 0.278660 0.482653i
\(746\) −913.178 −1.22410
\(747\) −342.741 + 7.54413i −0.458823 + 0.0100992i
\(748\) 132.776i 0.177508i
\(749\) −468.776 + 811.943i −0.625869 + 1.08404i
\(750\) 241.070 142.742i 0.321427 0.190322i
\(751\) −12.7475 22.0793i −0.0169740 0.0293999i 0.857414 0.514628i \(-0.172070\pi\)
−0.874388 + 0.485228i \(0.838737\pi\)
\(752\) −43.4501 75.2578i −0.0577794 0.100077i
\(753\) 229.778 408.297i 0.305150 0.542227i
\(754\) −440.487 + 91.3871i −0.584200 + 0.121203i
\(755\) 127.937i 0.169453i
\(756\) −403.991 + 13.3412i −0.534380 + 0.0176471i
\(757\) −226.199 −0.298810 −0.149405 0.988776i \(-0.547736\pi\)
−0.149405 + 0.988776i \(0.547736\pi\)
\(758\) −703.596 406.221i −0.928226 0.535912i
\(759\) 41.8298 74.3284i 0.0551118 0.0979293i
\(760\) −303.864 + 175.436i −0.399820 + 0.230836i
\(761\) −112.781 195.343i −0.148202 0.256693i 0.782361 0.622825i \(-0.214015\pi\)
−0.930563 + 0.366132i \(0.880682\pi\)
\(762\) 661.226 391.523i 0.867751 0.513810i
\(763\) 165.143 286.036i 0.216439 0.374883i
\(764\) 588.417i 0.770179i
\(765\) −71.2552 39.0742i −0.0931441 0.0510774i
\(766\) 124.290 0.162259
\(767\) −142.500 686.853i −0.185789 0.895506i
\(768\) 8.73720 + 793.984i 0.0113766 + 1.03383i
\(769\) 994.900 574.406i 1.29376 0.746951i 0.314439 0.949278i \(-0.398183\pi\)
0.979318 + 0.202326i \(0.0648502\pi\)
\(770\) 102.880 59.3979i 0.133611 0.0771401i
\(771\) −413.365 + 4.54877i