Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [117,3,Mod(38,117)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(117, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([1, 3]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("117.38");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 117 = 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 117.n (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.18801909302\) |
Analytic rank: | \(0\) |
Dimension: | \(52\) |
Relative dimension: | \(26\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
38.1 | −1.92341 | + | 3.33144i | −2.97788 | − | 0.363638i | −5.39901 | − | 9.35136i | 0.506509 | + | 0.877299i | 6.93912 | − | 9.22121i | −3.89680 | − | 2.24982i | 26.1508 | 8.73553 | + | 2.16574i | −3.89690 | ||||
38.2 | −1.77860 | + | 3.08062i | 2.89850 | − | 0.773763i | −4.32683 | − | 7.49428i | −4.26663 | − | 7.39002i | −2.77159 | + | 10.3054i | 7.99720 | + | 4.61719i | 16.5540 | 7.80258 | − | 4.48550i | 30.3545 | ||||
38.3 | −1.68517 | + | 2.91881i | 2.36131 | + | 1.85046i | −3.67962 | − | 6.37330i | 3.61500 | + | 6.26136i | −9.38036 | + | 3.77386i | −2.20723 | − | 1.27434i | 11.3218 | 2.15158 | + | 8.73903i | −24.3676 | ||||
38.4 | −1.55290 | + | 2.68970i | 0.846137 | − | 2.87820i | −2.82298 | − | 4.88955i | 0.611466 | + | 1.05909i | 6.42753 | + | 6.74541i | −8.52943 | − | 4.92447i | 5.11202 | −7.56810 | − | 4.87071i | −3.79817 | ||||
38.5 | −1.38552 | + | 2.39980i | 0.210571 | + | 2.99260i | −1.83936 | − | 3.18586i | −2.12220 | − | 3.67577i | −7.47339 | − | 3.64100i | −4.71279 | − | 2.72093i | −0.890291 | −8.91132 | + | 1.26031i | 11.7615 | ||||
38.6 | −1.33789 | + | 2.31729i | −1.30160 | − | 2.70293i | −1.57990 | − | 2.73646i | 0.194524 | + | 0.336926i | 8.00488 | + | 0.600028i | 8.30078 | + | 4.79246i | −2.24820 | −5.61166 | + | 7.03628i | −1.04101 | ||||
38.7 | −1.11386 | + | 1.92926i | −2.21197 | + | 2.02662i | −0.481371 | − | 0.833760i | 4.12144 | + | 7.13855i | −1.44605 | − | 6.52485i | 8.40220 | + | 4.85102i | −6.76616 | 0.785636 | − | 8.96564i | −18.3629 | ||||
38.8 | −1.04133 | + | 1.80365i | −2.79053 | + | 1.10134i | −0.168757 | − | 0.292296i | −2.59043 | − | 4.48676i | 0.919442 | − | 6.17999i | −1.68126 | − | 0.970675i | −7.62775 | 6.57409 | − | 6.14666i | 10.7900 | ||||
38.9 | −0.647986 | + | 1.12234i | 2.50362 | − | 1.65285i | 1.16023 | + | 2.00957i | 2.25417 | + | 3.90433i | 0.232759 | + | 3.88094i | 0.162124 | + | 0.0936021i | −8.19114 | 3.53618 | − | 8.27620i | −5.84268 | ||||
38.10 | −0.641309 | + | 1.11078i | 2.61442 | + | 1.47132i | 1.17745 | + | 2.03940i | −0.763734 | − | 1.32283i | −3.31097 | + | 1.96048i | 5.50560 | + | 3.17866i | −8.15090 | 4.67043 | + | 7.69331i | 1.95916 | ||||
38.11 | −0.433498 | + | 0.750840i | −0.162662 | − | 2.99559i | 1.62416 | + | 2.81313i | −4.23652 | − | 7.33786i | 2.31972 | + | 1.17645i | −3.54375 | − | 2.04598i | −6.28426 | −8.94708 | + | 0.974539i | 7.34608 | ||||
38.12 | −0.245962 | + | 0.426018i | −2.80287 | − | 1.06954i | 1.87901 | + | 3.25453i | 1.35391 | + | 2.34503i | 1.14504 | − | 0.931009i | −8.51494 | − | 4.91611i | −3.81635 | 6.71217 | + | 5.99556i | −1.33204 | ||||
38.13 | −0.146647 | + | 0.254001i | −0.187042 | + | 2.99416i | 1.95699 | + | 3.38960i | 2.67644 | + | 4.63573i | −0.733091 | − | 0.486595i | −8.20362 | − | 4.73636i | −2.32113 | −8.93003 | − | 1.12007i | −1.56997 | ||||
38.14 | 0.146647 | − | 0.254001i | −0.187042 | + | 2.99416i | 1.95699 | + | 3.38960i | −2.67644 | − | 4.63573i | 0.733091 | + | 0.486595i | 8.20362 | + | 4.73636i | 2.32113 | −8.93003 | − | 1.12007i | −1.56997 | ||||
38.15 | 0.245962 | − | 0.426018i | −2.80287 | − | 1.06954i | 1.87901 | + | 3.25453i | −1.35391 | − | 2.34503i | −1.14504 | + | 0.931009i | 8.51494 | + | 4.91611i | 3.81635 | 6.71217 | + | 5.99556i | −1.33204 | ||||
38.16 | 0.433498 | − | 0.750840i | −0.162662 | − | 2.99559i | 1.62416 | + | 2.81313i | 4.23652 | + | 7.33786i | −2.31972 | − | 1.17645i | 3.54375 | + | 2.04598i | 6.28426 | −8.94708 | + | 0.974539i | 7.34608 | ||||
38.17 | 0.641309 | − | 1.11078i | 2.61442 | + | 1.47132i | 1.17745 | + | 2.03940i | 0.763734 | + | 1.32283i | 3.31097 | − | 1.96048i | −5.50560 | − | 3.17866i | 8.15090 | 4.67043 | + | 7.69331i | 1.95916 | ||||
38.18 | 0.647986 | − | 1.12234i | 2.50362 | − | 1.65285i | 1.16023 | + | 2.00957i | −2.25417 | − | 3.90433i | −0.232759 | − | 3.88094i | −0.162124 | − | 0.0936021i | 8.19114 | 3.53618 | − | 8.27620i | −5.84268 | ||||
38.19 | 1.04133 | − | 1.80365i | −2.79053 | + | 1.10134i | −0.168757 | − | 0.292296i | 2.59043 | + | 4.48676i | −0.919442 | + | 6.17999i | 1.68126 | + | 0.970675i | 7.62775 | 6.57409 | − | 6.14666i | 10.7900 | ||||
38.20 | 1.11386 | − | 1.92926i | −2.21197 | + | 2.02662i | −0.481371 | − | 0.833760i | −4.12144 | − | 7.13855i | 1.44605 | + | 6.52485i | −8.40220 | − | 4.85102i | 6.76616 | 0.785636 | − | 8.96564i | −18.3629 | ||||
See all 52 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.d | odd | 6 | 1 | inner |
13.b | even | 2 | 1 | inner |
117.n | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 117.3.n.a | ✓ | 52 |
3.b | odd | 2 | 1 | 351.3.n.a | 52 | ||
9.c | even | 3 | 1 | 351.3.n.a | 52 | ||
9.d | odd | 6 | 1 | inner | 117.3.n.a | ✓ | 52 |
13.b | even | 2 | 1 | inner | 117.3.n.a | ✓ | 52 |
39.d | odd | 2 | 1 | 351.3.n.a | 52 | ||
117.n | odd | 6 | 1 | inner | 117.3.n.a | ✓ | 52 |
117.t | even | 6 | 1 | 351.3.n.a | 52 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
117.3.n.a | ✓ | 52 | 1.a | even | 1 | 1 | trivial |
117.3.n.a | ✓ | 52 | 9.d | odd | 6 | 1 | inner |
117.3.n.a | ✓ | 52 | 13.b | even | 2 | 1 | inner |
117.3.n.a | ✓ | 52 | 117.n | odd | 6 | 1 | inner |
351.3.n.a | 52 | 3.b | odd | 2 | 1 | ||
351.3.n.a | 52 | 9.c | even | 3 | 1 | ||
351.3.n.a | 52 | 39.d | odd | 2 | 1 | ||
351.3.n.a | 52 | 117.t | even | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(117, [\chi])\).