Properties

Label 117.3.n.a
Level $117$
Weight $3$
Character orbit 117.n
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(38,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.38");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.n (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 52 q - 4 q^{3} - 50 q^{4} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 52 q - 4 q^{3} - 50 q^{4} + 4 q^{9} + 8 q^{10} - 38 q^{12} - 6 q^{13} - 6 q^{14} - 90 q^{16} + 14 q^{22} + 138 q^{23} - 92 q^{25} - 76 q^{27} + 48 q^{29} + 186 q^{30} - 154 q^{36} + 324 q^{38} - 2 q^{39} - 68 q^{40} - 216 q^{42} + 62 q^{43} + 230 q^{48} + 70 q^{49} + 90 q^{51} - 4 q^{52} + 92 q^{55} - 276 q^{56} + 12 q^{61} + 12 q^{64} - 588 q^{65} + 762 q^{66} - 144 q^{68} - 414 q^{69} + 342 q^{74} - 620 q^{75} - 510 q^{77} - 162 q^{78} - 24 q^{79} + 532 q^{81} - 292 q^{82} - 330 q^{87} - 62 q^{88} + 258 q^{90} + 264 q^{91} - 396 q^{92} - 160 q^{94} + 504 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
38.1 −1.92341 + 3.33144i −2.97788 0.363638i −5.39901 9.35136i 0.506509 + 0.877299i 6.93912 9.22121i −3.89680 2.24982i 26.1508 8.73553 + 2.16574i −3.89690
38.2 −1.77860 + 3.08062i 2.89850 0.773763i −4.32683 7.49428i −4.26663 7.39002i −2.77159 + 10.3054i 7.99720 + 4.61719i 16.5540 7.80258 4.48550i 30.3545
38.3 −1.68517 + 2.91881i 2.36131 + 1.85046i −3.67962 6.37330i 3.61500 + 6.26136i −9.38036 + 3.77386i −2.20723 1.27434i 11.3218 2.15158 + 8.73903i −24.3676
38.4 −1.55290 + 2.68970i 0.846137 2.87820i −2.82298 4.88955i 0.611466 + 1.05909i 6.42753 + 6.74541i −8.52943 4.92447i 5.11202 −7.56810 4.87071i −3.79817
38.5 −1.38552 + 2.39980i 0.210571 + 2.99260i −1.83936 3.18586i −2.12220 3.67577i −7.47339 3.64100i −4.71279 2.72093i −0.890291 −8.91132 + 1.26031i 11.7615
38.6 −1.33789 + 2.31729i −1.30160 2.70293i −1.57990 2.73646i 0.194524 + 0.336926i 8.00488 + 0.600028i 8.30078 + 4.79246i −2.24820 −5.61166 + 7.03628i −1.04101
38.7 −1.11386 + 1.92926i −2.21197 + 2.02662i −0.481371 0.833760i 4.12144 + 7.13855i −1.44605 6.52485i 8.40220 + 4.85102i −6.76616 0.785636 8.96564i −18.3629
38.8 −1.04133 + 1.80365i −2.79053 + 1.10134i −0.168757 0.292296i −2.59043 4.48676i 0.919442 6.17999i −1.68126 0.970675i −7.62775 6.57409 6.14666i 10.7900
38.9 −0.647986 + 1.12234i 2.50362 1.65285i 1.16023 + 2.00957i 2.25417 + 3.90433i 0.232759 + 3.88094i 0.162124 + 0.0936021i −8.19114 3.53618 8.27620i −5.84268
38.10 −0.641309 + 1.11078i 2.61442 + 1.47132i 1.17745 + 2.03940i −0.763734 1.32283i −3.31097 + 1.96048i 5.50560 + 3.17866i −8.15090 4.67043 + 7.69331i 1.95916
38.11 −0.433498 + 0.750840i −0.162662 2.99559i 1.62416 + 2.81313i −4.23652 7.33786i 2.31972 + 1.17645i −3.54375 2.04598i −6.28426 −8.94708 + 0.974539i 7.34608
38.12 −0.245962 + 0.426018i −2.80287 1.06954i 1.87901 + 3.25453i 1.35391 + 2.34503i 1.14504 0.931009i −8.51494 4.91611i −3.81635 6.71217 + 5.99556i −1.33204
38.13 −0.146647 + 0.254001i −0.187042 + 2.99416i 1.95699 + 3.38960i 2.67644 + 4.63573i −0.733091 0.486595i −8.20362 4.73636i −2.32113 −8.93003 1.12007i −1.56997
38.14 0.146647 0.254001i −0.187042 + 2.99416i 1.95699 + 3.38960i −2.67644 4.63573i 0.733091 + 0.486595i 8.20362 + 4.73636i 2.32113 −8.93003 1.12007i −1.56997
38.15 0.245962 0.426018i −2.80287 1.06954i 1.87901 + 3.25453i −1.35391 2.34503i −1.14504 + 0.931009i 8.51494 + 4.91611i 3.81635 6.71217 + 5.99556i −1.33204
38.16 0.433498 0.750840i −0.162662 2.99559i 1.62416 + 2.81313i 4.23652 + 7.33786i −2.31972 1.17645i 3.54375 + 2.04598i 6.28426 −8.94708 + 0.974539i 7.34608
38.17 0.641309 1.11078i 2.61442 + 1.47132i 1.17745 + 2.03940i 0.763734 + 1.32283i 3.31097 1.96048i −5.50560 3.17866i 8.15090 4.67043 + 7.69331i 1.95916
38.18 0.647986 1.12234i 2.50362 1.65285i 1.16023 + 2.00957i −2.25417 3.90433i −0.232759 3.88094i −0.162124 0.0936021i 8.19114 3.53618 8.27620i −5.84268
38.19 1.04133 1.80365i −2.79053 + 1.10134i −0.168757 0.292296i 2.59043 + 4.48676i −0.919442 + 6.17999i 1.68126 + 0.970675i 7.62775 6.57409 6.14666i 10.7900
38.20 1.11386 1.92926i −2.21197 + 2.02662i −0.481371 0.833760i −4.12144 7.13855i 1.44605 + 6.52485i −8.40220 4.85102i 6.76616 0.785636 8.96564i −18.3629
See all 52 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 38.26
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.d odd 6 1 inner
13.b even 2 1 inner
117.n odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 117.3.n.a 52
3.b odd 2 1 351.3.n.a 52
9.c even 3 1 351.3.n.a 52
9.d odd 6 1 inner 117.3.n.a 52
13.b even 2 1 inner 117.3.n.a 52
39.d odd 2 1 351.3.n.a 52
117.n odd 6 1 inner 117.3.n.a 52
117.t even 6 1 351.3.n.a 52
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
117.3.n.a 52 1.a even 1 1 trivial
117.3.n.a 52 9.d odd 6 1 inner
117.3.n.a 52 13.b even 2 1 inner
117.3.n.a 52 117.n odd 6 1 inner
351.3.n.a 52 3.b odd 2 1
351.3.n.a 52 9.c even 3 1
351.3.n.a 52 39.d odd 2 1
351.3.n.a 52 117.t even 6 1

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(117, [\chi])\).