Properties

Label 117.3.k.a.29.8
Level $117$
Weight $3$
Character 117.29
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(29,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.29");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 29.8
Character \(\chi\) \(=\) 117.29
Dual form 117.3.k.a.113.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.86232i q^{2} +(2.37269 - 1.83585i) q^{3} +0.531747 q^{4} +(0.895843 - 0.517215i) q^{5} +(-3.41894 - 4.41872i) q^{6} +(2.55841 + 4.43129i) q^{7} -8.43958i q^{8} +(2.25933 - 8.71180i) q^{9} +(-0.963222 - 1.66835i) q^{10} +9.70050i q^{11} +(1.26167 - 0.976206i) q^{12} +(-5.56216 + 11.7500i) q^{13} +(8.25251 - 4.76459i) q^{14} +(1.17603 - 2.87182i) q^{15} -13.5903 q^{16} +(-26.8136 - 15.4808i) q^{17} +(-16.2242 - 4.20760i) q^{18} +(-0.305781 + 0.529628i) q^{19} +(0.476361 - 0.275027i) q^{20} +(14.2055 + 5.81725i) q^{21} +18.0655 q^{22} +(23.3898 + 13.5041i) q^{23} +(-15.4938 - 20.0245i) q^{24} +(-11.9650 + 20.7239i) q^{25} +(21.8823 + 10.3585i) q^{26} +(-10.6328 - 24.8182i) q^{27} +(1.36043 + 2.35633i) q^{28} -20.6407i q^{29} +(-5.34826 - 2.19015i) q^{30} +(1.09962 + 1.90460i) q^{31} -8.44886i q^{32} +(17.8086 + 23.0163i) q^{33} +(-28.8303 + 49.9356i) q^{34} +(4.58386 + 2.64650i) q^{35} +(1.20139 - 4.63247i) q^{36} +(30.6351 + 53.0616i) q^{37} +(0.986339 + 0.569463i) q^{38} +(8.37392 + 38.0904i) q^{39} +(-4.36508 - 7.56054i) q^{40} +(30.6838 + 17.7153i) q^{41} +(10.8336 - 26.4552i) q^{42} +(-0.628105 - 1.08791i) q^{43} +5.15821i q^{44} +(-2.48187 - 8.97296i) q^{45} +(25.1491 - 43.5595i) q^{46} +(17.3684 + 10.0277i) q^{47} +(-32.2455 + 24.9496i) q^{48} +(11.4091 - 19.7611i) q^{49} +(38.5947 + 22.2827i) q^{50} +(-92.0408 + 12.4944i) q^{51} +(-2.95766 + 6.24802i) q^{52} +39.4824i q^{53} +(-46.2195 + 19.8018i) q^{54} +(5.01725 + 8.69013i) q^{55} +(37.3983 - 21.5919i) q^{56} +(0.246793 + 1.81801i) q^{57} -38.4397 q^{58} -5.72404i q^{59} +(0.625350 - 1.52708i) q^{60} +(-55.5554 - 96.2247i) q^{61} +(3.54699 - 2.04785i) q^{62} +(44.3848 - 12.2766i) q^{63} -70.0956 q^{64} +(1.09446 + 13.4030i) q^{65} +(42.8638 - 33.1655i) q^{66} +(-3.05129 + 5.28499i) q^{67} +(-14.2580 - 8.23188i) q^{68} +(80.2884 - 10.8990i) q^{69} +(4.92863 - 8.53664i) q^{70} +(-77.5112 - 44.7511i) q^{71} +(-73.5240 - 19.0678i) q^{72} +85.2365 q^{73} +(98.8180 - 57.0526i) q^{74} +(9.65681 + 71.1374i) q^{75} +(-0.162598 + 0.281628i) q^{76} +(-42.9858 + 24.8179i) q^{77} +(70.9367 - 15.5950i) q^{78} +(13.6252 - 23.5995i) q^{79} +(-12.1747 + 7.02909i) q^{80} +(-70.7909 - 39.3656i) q^{81} +(32.9917 - 57.1432i) q^{82} +(-128.236 - 74.0368i) q^{83} +(7.55373 + 3.09330i) q^{84} -32.0277 q^{85} +(-2.02604 + 1.16974i) q^{86} +(-37.8932 - 48.9740i) q^{87} +81.8682 q^{88} +(-42.7999 + 24.7105i) q^{89} +(-16.7106 + 4.62205i) q^{90} +(-66.2980 + 5.41374i) q^{91} +(12.4375 + 7.18078i) q^{92} +(6.10562 + 2.50029i) q^{93} +(18.6748 - 32.3457i) q^{94} +0.632618i q^{95} +(-15.5108 - 20.0465i) q^{96} +(36.6052 + 63.4021i) q^{97} +(-36.8016 - 21.2474i) q^{98} +(84.5088 + 21.9166i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - q^{3} - 98 q^{4} - 6 q^{5} + 12 q^{6} - q^{7} - 3 q^{9} - 6 q^{10} - 39 q^{12} + 4 q^{13} - 6 q^{14} - 25 q^{15} + 166 q^{16} + 34 q^{18} + 5 q^{19} + 21 q^{20} - 91 q^{21} + 30 q^{22} - 75 q^{23}+ \cdots + 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.86232i 0.931162i −0.885005 0.465581i \(-0.845845\pi\)
0.885005 0.465581i \(-0.154155\pi\)
\(3\) 2.37269 1.83585i 0.790897 0.611949i
\(4\) 0.531747 0.132937
\(5\) 0.895843 0.517215i 0.179169 0.103443i −0.407733 0.913101i \(-0.633681\pi\)
0.586902 + 0.809658i \(0.300347\pi\)
\(6\) −3.41894 4.41872i −0.569824 0.736454i
\(7\) 2.55841 + 4.43129i 0.365487 + 0.633042i 0.988854 0.148887i \(-0.0475691\pi\)
−0.623367 + 0.781929i \(0.714236\pi\)
\(8\) 8.43958i 1.05495i
\(9\) 2.25933 8.71180i 0.251036 0.967978i
\(10\) −0.963222 1.66835i −0.0963222 0.166835i
\(11\) 9.70050i 0.881864i 0.897541 + 0.440932i \(0.145352\pi\)
−0.897541 + 0.440932i \(0.854648\pi\)
\(12\) 1.26167 0.976206i 0.105139 0.0813505i
\(13\) −5.56216 + 11.7500i −0.427858 + 0.903846i
\(14\) 8.25251 4.76459i 0.589465 0.340328i
\(15\) 1.17603 2.87182i 0.0784020 0.191455i
\(16\) −13.5903 −0.849391
\(17\) −26.8136 15.4808i −1.57727 0.910637i −0.995238 0.0974709i \(-0.968925\pi\)
−0.582031 0.813166i \(-0.697742\pi\)
\(18\) −16.2242 4.20760i −0.901344 0.233756i
\(19\) −0.305781 + 0.529628i −0.0160937 + 0.0278752i −0.873960 0.485998i \(-0.838456\pi\)
0.857866 + 0.513873i \(0.171790\pi\)
\(20\) 0.476361 0.275027i 0.0238181 0.0137514i
\(21\) 14.2055 + 5.81725i 0.676452 + 0.277012i
\(22\) 18.0655 0.821159
\(23\) 23.3898 + 13.5041i 1.01695 + 0.587136i 0.913219 0.407469i \(-0.133589\pi\)
0.103731 + 0.994605i \(0.466922\pi\)
\(24\) −15.4938 20.0245i −0.645575 0.834355i
\(25\) −11.9650 + 20.7239i −0.478599 + 0.828958i
\(26\) 21.8823 + 10.3585i 0.841627 + 0.398405i
\(27\) −10.6328 24.8182i −0.393809 0.919192i
\(28\) 1.36043 + 2.35633i 0.0485866 + 0.0841545i
\(29\) 20.6407i 0.711748i −0.934534 0.355874i \(-0.884183\pi\)
0.934534 0.355874i \(-0.115817\pi\)
\(30\) −5.34826 2.19015i −0.178275 0.0730050i
\(31\) 1.09962 + 1.90460i 0.0354717 + 0.0614388i 0.883216 0.468966i \(-0.155373\pi\)
−0.847745 + 0.530405i \(0.822040\pi\)
\(32\) 8.44886i 0.264027i
\(33\) 17.8086 + 23.0163i 0.539656 + 0.697464i
\(34\) −28.8303 + 49.9356i −0.847951 + 1.46869i
\(35\) 4.58386 + 2.64650i 0.130968 + 0.0756141i
\(36\) 1.20139 4.63247i 0.0333720 0.128680i
\(37\) 30.6351 + 53.0616i 0.827977 + 1.43410i 0.899623 + 0.436668i \(0.143842\pi\)
−0.0716456 + 0.997430i \(0.522825\pi\)
\(38\) 0.986339 + 0.569463i 0.0259563 + 0.0149859i
\(39\) 8.37392 + 38.0904i 0.214716 + 0.976677i
\(40\) −4.36508 7.56054i −0.109127 0.189013i
\(41\) 30.6838 + 17.7153i 0.748386 + 0.432081i 0.825110 0.564972i \(-0.191113\pi\)
−0.0767246 + 0.997052i \(0.524446\pi\)
\(42\) 10.8336 26.4552i 0.257943 0.629887i
\(43\) −0.628105 1.08791i −0.0146071 0.0253002i 0.858629 0.512597i \(-0.171316\pi\)
−0.873237 + 0.487297i \(0.837983\pi\)
\(44\) 5.15821i 0.117232i
\(45\) −2.48187 8.97296i −0.0551527 0.199399i
\(46\) 25.1491 43.5595i 0.546719 0.946945i
\(47\) 17.3684 + 10.0277i 0.369541 + 0.213355i 0.673258 0.739408i \(-0.264894\pi\)
−0.303717 + 0.952762i \(0.598228\pi\)
\(48\) −32.2455 + 24.9496i −0.671781 + 0.519784i
\(49\) 11.4091 19.7611i 0.232838 0.403288i
\(50\) 38.5947 + 22.2827i 0.771894 + 0.445653i
\(51\) −92.0408 + 12.4944i −1.80472 + 0.244989i
\(52\) −2.95766 + 6.24802i −0.0568781 + 0.120154i
\(53\) 39.4824i 0.744952i 0.928042 + 0.372476i \(0.121491\pi\)
−0.928042 + 0.372476i \(0.878509\pi\)
\(54\) −46.2195 + 19.8018i −0.855917 + 0.366700i
\(55\) 5.01725 + 8.69013i 0.0912227 + 0.158002i
\(56\) 37.3983 21.5919i 0.667826 0.385570i
\(57\) 0.246793 + 1.81801i 0.00432970 + 0.0318949i
\(58\) −38.4397 −0.662753
\(59\) 5.72404i 0.0970177i −0.998823 0.0485089i \(-0.984553\pi\)
0.998823 0.0485089i \(-0.0154469\pi\)
\(60\) 0.625350 1.52708i 0.0104225 0.0254514i
\(61\) −55.5554 96.2247i −0.910744 1.57745i −0.813016 0.582241i \(-0.802176\pi\)
−0.0977275 0.995213i \(-0.531157\pi\)
\(62\) 3.54699 2.04785i 0.0572095 0.0330299i
\(63\) 44.3848 12.2766i 0.704521 0.194867i
\(64\) −70.0956 −1.09524
\(65\) 1.09446 + 13.4030i 0.0168378 + 0.206200i
\(66\) 42.8638 33.1655i 0.649452 0.502507i
\(67\) −3.05129 + 5.28499i −0.0455416 + 0.0788804i −0.887898 0.460041i \(-0.847835\pi\)
0.842356 + 0.538921i \(0.181168\pi\)
\(68\) −14.2580 8.23188i −0.209677 0.121057i
\(69\) 80.2884 10.8990i 1.16360 0.157957i
\(70\) 4.92863 8.53664i 0.0704090 0.121952i
\(71\) −77.5112 44.7511i −1.09171 0.630298i −0.157677 0.987491i \(-0.550400\pi\)
−0.934030 + 0.357193i \(0.883734\pi\)
\(72\) −73.5240 19.0678i −1.02117 0.264830i
\(73\) 85.2365 1.16762 0.583812 0.811889i \(-0.301561\pi\)
0.583812 + 0.811889i \(0.301561\pi\)
\(74\) 98.8180 57.0526i 1.33538 0.770981i
\(75\) 9.65681 + 71.1374i 0.128757 + 0.948499i
\(76\) −0.162598 + 0.281628i −0.00213945 + 0.00370563i
\(77\) −42.9858 + 24.8179i −0.558257 + 0.322310i
\(78\) 70.9367 15.5950i 0.909444 0.199935i
\(79\) 13.6252 23.5995i 0.172471 0.298728i −0.766812 0.641871i \(-0.778158\pi\)
0.939283 + 0.343143i \(0.111492\pi\)
\(80\) −12.1747 + 7.02909i −0.152184 + 0.0878636i
\(81\) −70.7909 39.3656i −0.873961 0.485995i
\(82\) 32.9917 57.1432i 0.402337 0.696869i
\(83\) −128.236 74.0368i −1.54501 0.892010i −0.998511 0.0545484i \(-0.982628\pi\)
−0.546496 0.837462i \(-0.684039\pi\)
\(84\) 7.55373 + 3.09330i 0.0899253 + 0.0368250i
\(85\) −32.0277 −0.376796
\(86\) −2.02604 + 1.16974i −0.0235586 + 0.0136016i
\(87\) −37.8932 48.9740i −0.435554 0.562920i
\(88\) 81.8682 0.930321
\(89\) −42.7999 + 24.7105i −0.480898 + 0.277646i −0.720790 0.693153i \(-0.756221\pi\)
0.239893 + 0.970799i \(0.422888\pi\)
\(90\) −16.7106 + 4.62205i −0.185673 + 0.0513561i
\(91\) −66.2980 + 5.41374i −0.728549 + 0.0594917i
\(92\) 12.4375 + 7.18078i 0.135190 + 0.0780519i
\(93\) 6.10562 + 2.50029i 0.0656519 + 0.0268849i
\(94\) 18.6748 32.3457i 0.198668 0.344103i
\(95\) 0.632618i 0.00665914i
\(96\) −15.5108 20.0465i −0.161571 0.208818i
\(97\) 36.6052 + 63.4021i 0.377373 + 0.653630i 0.990679 0.136216i \(-0.0434940\pi\)
−0.613306 + 0.789846i \(0.710161\pi\)
\(98\) −36.8016 21.2474i −0.375527 0.216810i
\(99\) 84.5088 + 21.9166i 0.853625 + 0.221380i
\(100\) −6.36234 + 11.0199i −0.0636234 + 0.110199i
\(101\) 41.6526i 0.412402i −0.978510 0.206201i \(-0.933890\pi\)
0.978510 0.206201i \(-0.0661101\pi\)
\(102\) 23.2687 + 171.410i 0.228124 + 1.68049i
\(103\) −42.1951 73.0840i −0.409661 0.709554i 0.585191 0.810896i \(-0.301020\pi\)
−0.994852 + 0.101342i \(0.967686\pi\)
\(104\) 99.1651 + 46.9423i 0.953510 + 0.451368i
\(105\) 15.7347 2.13596i 0.149854 0.0203425i
\(106\) 73.5291 0.693671
\(107\) −98.1933 + 56.6919i −0.917695 + 0.529831i −0.882899 0.469563i \(-0.844411\pi\)
−0.0347958 + 0.999394i \(0.511078\pi\)
\(108\) −5.65398 13.1970i −0.0523517 0.122194i
\(109\) 45.3665 0.416206 0.208103 0.978107i \(-0.433271\pi\)
0.208103 + 0.978107i \(0.433271\pi\)
\(110\) 16.1838 9.34374i 0.147126 0.0849431i
\(111\) 170.101 + 69.6574i 1.53244 + 0.627544i
\(112\) −34.7694 60.2224i −0.310441 0.537700i
\(113\) 73.3260i 0.648902i 0.945902 + 0.324451i \(0.105180\pi\)
−0.945902 + 0.324451i \(0.894820\pi\)
\(114\) 3.38573 0.459608i 0.0296994 0.00403165i
\(115\) 27.9382 0.242940
\(116\) 10.9756i 0.0946174i
\(117\) 89.7969 + 75.0035i 0.767495 + 0.641055i
\(118\) −10.6600 −0.0903392
\(119\) 158.425i 1.33130i
\(120\) −24.2370 9.92521i −0.201975 0.0827100i
\(121\) 26.9002 0.222316
\(122\) −179.202 + 103.462i −1.46887 + 0.848050i
\(123\) 105.326 14.2978i 0.856308 0.116243i
\(124\) 0.584721 + 1.01277i 0.00471549 + 0.00816747i
\(125\) 50.6146i 0.404917i
\(126\) −22.8630 82.6590i −0.181452 0.656024i
\(127\) −63.9418 110.750i −0.503479 0.872051i −0.999992 0.00402161i \(-0.998720\pi\)
0.496513 0.868029i \(-0.334613\pi\)
\(128\) 96.7452i 0.755822i
\(129\) −3.48754 1.42817i −0.0270352 0.0110711i
\(130\) 24.9607 2.03824i 0.192005 0.0156787i
\(131\) −57.6724 + 33.2972i −0.440248 + 0.254177i −0.703703 0.710495i \(-0.748471\pi\)
0.263455 + 0.964672i \(0.415138\pi\)
\(132\) 9.46969 + 12.2388i 0.0717401 + 0.0927185i
\(133\) −3.12925 −0.0235282
\(134\) 9.84236 + 5.68249i 0.0734505 + 0.0424066i
\(135\) −22.3617 16.7337i −0.165642 0.123954i
\(136\) −130.652 + 226.296i −0.960675 + 1.66394i
\(137\) −168.227 + 97.1257i −1.22793 + 0.708947i −0.966597 0.256301i \(-0.917496\pi\)
−0.261335 + 0.965248i \(0.584163\pi\)
\(138\) −20.2976 149.523i −0.147084 1.08350i
\(139\) 240.784 1.73226 0.866130 0.499819i \(-0.166600\pi\)
0.866130 + 0.499819i \(0.166600\pi\)
\(140\) 2.43746 + 1.40727i 0.0174104 + 0.0100519i
\(141\) 59.6192 8.09324i 0.422832 0.0573988i
\(142\) −83.3411 + 144.351i −0.586909 + 1.01656i
\(143\) −113.981 53.9557i −0.797069 0.377313i
\(144\) −30.7049 + 118.396i −0.213228 + 0.822192i
\(145\) −10.6757 18.4908i −0.0736254 0.127523i
\(146\) 158.738i 1.08725i
\(147\) −9.20816 67.8324i −0.0626405 0.461445i
\(148\) 16.2901 + 28.2154i 0.110069 + 0.190644i
\(149\) 20.0621i 0.134645i −0.997731 0.0673223i \(-0.978554\pi\)
0.997731 0.0673223i \(-0.0214456\pi\)
\(150\) 132.481 17.9841i 0.883206 0.119894i
\(151\) 105.409 182.574i 0.698075 1.20910i −0.271058 0.962563i \(-0.587373\pi\)
0.969133 0.246539i \(-0.0792933\pi\)
\(152\) 4.46984 + 2.58066i 0.0294068 + 0.0169781i
\(153\) −195.447 + 198.618i −1.27743 + 1.29816i
\(154\) 46.2189 + 80.0535i 0.300123 + 0.519828i
\(155\) 1.97018 + 1.13748i 0.0127108 + 0.00733860i
\(156\) 4.45281 + 20.2544i 0.0285436 + 0.129836i
\(157\) 22.5433 + 39.0461i 0.143588 + 0.248701i 0.928845 0.370468i \(-0.120803\pi\)
−0.785257 + 0.619170i \(0.787469\pi\)
\(158\) −43.9500 25.3745i −0.278164 0.160598i
\(159\) 72.4837 + 93.6797i 0.455873 + 0.589180i
\(160\) −4.36988 7.56885i −0.0273117 0.0473053i
\(161\) 138.196i 0.858362i
\(162\) −73.3116 + 131.836i −0.452541 + 0.813800i
\(163\) 7.69510 13.3283i 0.0472092 0.0817688i −0.841455 0.540327i \(-0.818301\pi\)
0.888664 + 0.458558i \(0.151634\pi\)
\(164\) 16.3160 + 9.42006i 0.0994879 + 0.0574394i
\(165\) 27.8581 + 11.4081i 0.168837 + 0.0691399i
\(166\) −137.881 + 238.816i −0.830606 + 1.43865i
\(167\) 76.5775 + 44.2121i 0.458548 + 0.264743i 0.711434 0.702753i \(-0.248046\pi\)
−0.252886 + 0.967496i \(0.581380\pi\)
\(168\) 49.0951 119.888i 0.292233 0.713622i
\(169\) −107.125 130.711i −0.633875 0.773436i
\(170\) 59.6459i 0.350858i
\(171\) 3.92315 + 3.86051i 0.0229424 + 0.0225761i
\(172\) −0.333993 0.578493i −0.00194182 0.00336333i
\(173\) 145.259 83.8653i 0.839647 0.484771i −0.0174970 0.999847i \(-0.505570\pi\)
0.857144 + 0.515076i \(0.172236\pi\)
\(174\) −91.2055 + 70.5694i −0.524169 + 0.405571i
\(175\) −122.445 −0.699687
\(176\) 131.832i 0.749047i
\(177\) −10.5085 13.5814i −0.0593699 0.0767310i
\(178\) 46.0190 + 79.7073i 0.258534 + 0.447794i
\(179\) 227.604 131.407i 1.27153 0.734118i 0.296254 0.955109i \(-0.404263\pi\)
0.975276 + 0.220991i \(0.0709292\pi\)
\(180\) −1.31973 4.77134i −0.00733182 0.0265075i
\(181\) −268.017 −1.48076 −0.740378 0.672191i \(-0.765353\pi\)
−0.740378 + 0.672191i \(0.765353\pi\)
\(182\) 10.0822 + 123.468i 0.0553964 + 0.678397i
\(183\) −308.470 126.320i −1.68563 0.690275i
\(184\) 113.969 197.400i 0.619398 1.07283i
\(185\) 54.8885 + 31.6899i 0.296695 + 0.171297i
\(186\) 4.65636 11.3707i 0.0250342 0.0611326i
\(187\) 150.172 260.105i 0.803058 1.39094i
\(188\) 9.23562 + 5.33219i 0.0491256 + 0.0283627i
\(189\) 82.7735 110.612i 0.437955 0.585251i
\(190\) 1.17814 0.00620074
\(191\) −76.4195 + 44.1208i −0.400102 + 0.230999i −0.686528 0.727103i \(-0.740866\pi\)
0.286426 + 0.958102i \(0.407533\pi\)
\(192\) −166.315 + 128.685i −0.866225 + 0.670233i
\(193\) −50.9639 + 88.2721i −0.264062 + 0.457368i −0.967317 0.253569i \(-0.918396\pi\)
0.703256 + 0.710937i \(0.251729\pi\)
\(194\) 118.075 68.1708i 0.608635 0.351396i
\(195\) 27.2026 + 29.7919i 0.139501 + 0.152779i
\(196\) 6.06674 10.5079i 0.0309528 0.0536118i
\(197\) 134.270 77.5206i 0.681572 0.393506i −0.118875 0.992909i \(-0.537929\pi\)
0.800447 + 0.599404i \(0.204596\pi\)
\(198\) 40.8159 157.383i 0.206141 0.794863i
\(199\) 178.909 309.879i 0.899038 1.55718i 0.0703119 0.997525i \(-0.477601\pi\)
0.828726 0.559654i \(-0.189066\pi\)
\(200\) 174.902 + 100.979i 0.874508 + 0.504897i
\(201\) 2.46266 + 18.1413i 0.0122521 + 0.0902554i
\(202\) −77.5707 −0.384014
\(203\) 91.4650 52.8073i 0.450567 0.260135i
\(204\) −48.9424 + 6.64387i −0.239914 + 0.0325680i
\(205\) 36.6505 0.178783
\(206\) −136.106 + 78.5810i −0.660710 + 0.381461i
\(207\) 170.491 173.257i 0.823626 0.836992i
\(208\) 75.5911 159.685i 0.363419 0.767719i
\(209\) −5.13766 2.96623i −0.0245821 0.0141925i
\(210\) −3.97785 29.3030i −0.0189421 0.139538i
\(211\) −36.1067 + 62.5387i −0.171122 + 0.296392i −0.938812 0.344429i \(-0.888073\pi\)
0.767690 + 0.640821i \(0.221406\pi\)
\(212\) 20.9947i 0.0990314i
\(213\) −266.066 + 36.1182i −1.24914 + 0.169569i
\(214\) 105.579 + 182.868i 0.493359 + 0.854523i
\(215\) −1.12537 0.649731i −0.00523427 0.00302200i
\(216\) −209.455 + 89.7368i −0.969700 + 0.415448i
\(217\) −5.62657 + 9.74550i −0.0259289 + 0.0449102i
\(218\) 84.4871i 0.387556i
\(219\) 202.240 156.481i 0.923470 0.714526i
\(220\) 2.66790 + 4.62095i 0.0121268 + 0.0210043i
\(221\) 331.041 228.953i 1.49792 1.03599i
\(222\) 129.725 316.783i 0.584346 1.42695i
\(223\) −253.078 −1.13488 −0.567439 0.823415i \(-0.692066\pi\)
−0.567439 + 0.823415i \(0.692066\pi\)
\(224\) 37.4394 21.6156i 0.167140 0.0964984i
\(225\) 153.510 + 151.059i 0.682267 + 0.671372i
\(226\) 136.557 0.604233
\(227\) 70.3266 40.6031i 0.309809 0.178868i −0.337032 0.941493i \(-0.609423\pi\)
0.646841 + 0.762625i \(0.276090\pi\)
\(228\) 0.131231 + 0.966722i 0.000575575 + 0.00424001i
\(229\) 212.394 + 367.878i 0.927486 + 1.60645i 0.787514 + 0.616297i \(0.211368\pi\)
0.139971 + 0.990156i \(0.455299\pi\)
\(230\) 52.0299i 0.226217i
\(231\) −56.4302 + 137.800i −0.244287 + 0.596539i
\(232\) −174.199 −0.750857
\(233\) 58.9981i 0.253211i −0.991953 0.126605i \(-0.959592\pi\)
0.991953 0.126605i \(-0.0404082\pi\)
\(234\) 139.681 167.231i 0.596927 0.714662i
\(235\) 20.7459 0.0882803
\(236\) 3.04374i 0.0128972i
\(237\) −10.9967 81.0081i −0.0463998 0.341806i
\(238\) −295.039 −1.23966
\(239\) −195.018 + 112.594i −0.815975 + 0.471103i −0.849027 0.528350i \(-0.822811\pi\)
0.0330514 + 0.999454i \(0.489477\pi\)
\(240\) −15.9826 + 39.0288i −0.0665940 + 0.162620i
\(241\) −125.529 217.423i −0.520867 0.902168i −0.999706 0.0242653i \(-0.992275\pi\)
0.478838 0.877903i \(-0.341058\pi\)
\(242\) 50.0969i 0.207012i
\(243\) −240.234 + 36.5588i −0.988618 + 0.150448i
\(244\) −29.5414 51.1672i −0.121071 0.209702i
\(245\) 23.6038i 0.0963420i
\(246\) −26.6272 196.151i −0.108241 0.797361i
\(247\) −4.52233 6.53880i −0.0183090 0.0264729i
\(248\) 16.0741 9.28036i 0.0648147 0.0374208i
\(249\) −440.184 + 59.7544i −1.76781 + 0.239977i
\(250\) 94.2608 0.377043
\(251\) −91.3518 52.7420i −0.363951 0.210127i 0.306861 0.951754i \(-0.400721\pi\)
−0.670813 + 0.741627i \(0.734055\pi\)
\(252\) 23.6015 6.52804i 0.0936567 0.0259049i
\(253\) −130.997 + 226.893i −0.517774 + 0.896811i
\(254\) −206.253 + 119.080i −0.812021 + 0.468820i
\(255\) −75.9918 + 58.7979i −0.298007 + 0.230580i
\(256\) −100.211 −0.391450
\(257\) 57.0764 + 32.9531i 0.222087 + 0.128222i 0.606916 0.794766i \(-0.292406\pi\)
−0.384829 + 0.922988i \(0.625740\pi\)
\(258\) −2.65972 + 6.49493i −0.0103090 + 0.0251741i
\(259\) −156.754 + 271.507i −0.605230 + 1.04829i
\(260\) 0.581974 + 7.12699i 0.00223836 + 0.0274115i
\(261\) −179.818 46.6341i −0.688956 0.178675i
\(262\) 62.0102 + 107.405i 0.236680 + 0.409942i
\(263\) 274.690i 1.04445i 0.852808 + 0.522225i \(0.174898\pi\)
−0.852808 + 0.522225i \(0.825102\pi\)
\(264\) 194.248 150.298i 0.735788 0.569309i
\(265\) 20.4209 + 35.3701i 0.0770600 + 0.133472i
\(266\) 5.82768i 0.0219086i
\(267\) −56.1862 + 137.205i −0.210435 + 0.513875i
\(268\) −1.62251 + 2.81027i −0.00605415 + 0.0104861i
\(269\) 264.200 + 152.536i 0.982157 + 0.567048i 0.902921 0.429808i \(-0.141419\pi\)
0.0792360 + 0.996856i \(0.474752\pi\)
\(270\) −31.1636 + 41.6447i −0.115421 + 0.154240i
\(271\) −115.783 200.541i −0.427242 0.740005i 0.569385 0.822071i \(-0.307181\pi\)
−0.996627 + 0.0820661i \(0.973848\pi\)
\(272\) 364.404 + 210.388i 1.33972 + 0.773487i
\(273\) −147.366 + 134.558i −0.539801 + 0.492887i
\(274\) 180.880 + 313.293i 0.660145 + 1.14340i
\(275\) −201.033 116.066i −0.731028 0.422059i
\(276\) 42.6931 5.79553i 0.154685 0.0209983i
\(277\) 143.454 + 248.470i 0.517885 + 0.897003i 0.999784 + 0.0207766i \(0.00661386\pi\)
−0.481899 + 0.876227i \(0.660053\pi\)
\(278\) 448.418i 1.61302i
\(279\) 19.0769 5.27657i 0.0683761 0.0189124i
\(280\) 22.3353 38.6859i 0.0797690 0.138164i
\(281\) 94.4645 + 54.5391i 0.336173 + 0.194089i 0.658578 0.752512i \(-0.271158\pi\)
−0.322406 + 0.946602i \(0.604491\pi\)
\(282\) −15.0722 111.030i −0.0534476 0.393725i
\(283\) 180.826 313.199i 0.638960 1.10671i −0.346702 0.937975i \(-0.612698\pi\)
0.985661 0.168735i \(-0.0539683\pi\)
\(284\) −41.2163 23.7963i −0.145128 0.0837897i
\(285\) 1.16139 + 1.50101i 0.00407505 + 0.00526669i
\(286\) −100.483 + 212.269i −0.351339 + 0.742201i
\(287\) 181.292i 0.631680i
\(288\) −73.6048 19.0888i −0.255572 0.0662804i
\(289\) 334.812 + 579.912i 1.15852 + 2.00662i
\(290\) −34.4359 + 19.8816i −0.118744 + 0.0685572i
\(291\) 203.249 + 83.2320i 0.698452 + 0.286021i
\(292\) 45.3242 0.155220
\(293\) 334.721i 1.14239i 0.820814 + 0.571196i \(0.193520\pi\)
−0.820814 + 0.571196i \(0.806480\pi\)
\(294\) −126.326 + 17.1486i −0.429680 + 0.0583285i
\(295\) −2.96056 5.12784i −0.0100358 0.0173825i
\(296\) 447.818 258.548i 1.51290 0.873473i
\(297\) 240.749 103.144i 0.810603 0.347286i
\(298\) −37.3621 −0.125376
\(299\) −288.771 + 199.718i −0.965791 + 0.667955i
\(300\) 5.13498 + 37.8271i 0.0171166 + 0.126090i
\(301\) 3.21390 5.56664i 0.0106774 0.0184938i
\(302\) −340.013 196.306i −1.12587 0.650022i
\(303\) −76.4679 98.8289i −0.252369 0.326168i
\(304\) 4.15564 7.19778i 0.0136699 0.0236769i
\(305\) −99.5377 57.4681i −0.326353 0.188420i
\(306\) 369.892 + 363.985i 1.20880 + 1.18949i
\(307\) −538.966 −1.75559 −0.877795 0.479036i \(-0.840986\pi\)
−0.877795 + 0.479036i \(0.840986\pi\)
\(308\) −22.8576 + 13.1968i −0.0742129 + 0.0428468i
\(309\) −234.287 95.9421i −0.758211 0.310492i
\(310\) 2.11836 3.66911i 0.00683343 0.0118358i
\(311\) 437.572 252.632i 1.40698 0.812323i 0.411888 0.911234i \(-0.364869\pi\)
0.995096 + 0.0989114i \(0.0315360\pi\)
\(312\) 321.467 70.6724i 1.03034 0.226514i
\(313\) −130.184 + 225.485i −0.415923 + 0.720400i −0.995525 0.0944999i \(-0.969875\pi\)
0.579602 + 0.814900i \(0.303208\pi\)
\(314\) 72.7166 41.9829i 0.231581 0.133704i
\(315\) 33.4122 33.9544i 0.106070 0.107792i
\(316\) 7.24515 12.5490i 0.0229277 0.0397119i
\(317\) −378.081 218.285i −1.19269 0.688597i −0.233771 0.972292i \(-0.575107\pi\)
−0.958915 + 0.283694i \(0.908440\pi\)
\(318\) 174.462 134.988i 0.548622 0.424491i
\(319\) 200.225 0.627665
\(320\) −62.7946 + 36.2545i −0.196233 + 0.113295i
\(321\) −128.905 + 314.780i −0.401572 + 0.980625i
\(322\) 257.366 0.799275
\(323\) 16.3982 9.46749i 0.0507683 0.0293111i
\(324\) −37.6428 20.9325i −0.116182 0.0646066i
\(325\) −176.955 255.858i −0.544478 0.787256i
\(326\) −24.8216 14.3308i −0.0761400 0.0439595i
\(327\) 107.641 83.2859i 0.329176 0.254697i
\(328\) 149.510 258.959i 0.455823 0.789508i
\(329\) 102.620i 0.311914i
\(330\) 21.2456 51.8809i 0.0643805 0.157215i
\(331\) 178.365 + 308.937i 0.538866 + 0.933344i 0.998965 + 0.0454763i \(0.0144805\pi\)
−0.460099 + 0.887868i \(0.652186\pi\)
\(332\) −68.1889 39.3689i −0.205388 0.118581i
\(333\) 531.477 147.004i 1.59603 0.441452i
\(334\) 82.3372 142.612i 0.246519 0.426983i
\(335\) 6.31269i 0.0188438i
\(336\) −193.056 79.0579i −0.574573 0.235291i
\(337\) −7.01618 12.1524i −0.0208195 0.0360605i 0.855428 0.517922i \(-0.173294\pi\)
−0.876247 + 0.481861i \(0.839961\pi\)
\(338\) −243.426 + 199.501i −0.720194 + 0.590240i
\(339\) 134.615 + 173.980i 0.397095 + 0.513215i
\(340\) −17.0306 −0.0500900
\(341\) −18.4756 + 10.6669i −0.0541807 + 0.0312812i
\(342\) 7.18951 7.30619i 0.0210220 0.0213631i
\(343\) 367.481 1.07137
\(344\) −9.18151 + 5.30095i −0.0266904 + 0.0154097i
\(345\) 66.2886 51.2902i 0.192141 0.148667i
\(346\) −156.184 270.519i −0.451400 0.781848i
\(347\) 51.5693i 0.148615i 0.997235 + 0.0743073i \(0.0236746\pi\)
−0.997235 + 0.0743073i \(0.976325\pi\)
\(348\) −20.1496 26.0418i −0.0579011 0.0748327i
\(349\) −101.719 −0.291459 −0.145729 0.989325i \(-0.546553\pi\)
−0.145729 + 0.989325i \(0.546553\pi\)
\(350\) 228.033i 0.651522i
\(351\) 350.755 + 13.1068i 0.999303 + 0.0373412i
\(352\) 81.9582 0.232836
\(353\) 306.151i 0.867284i −0.901085 0.433642i \(-0.857228\pi\)
0.901085 0.433642i \(-0.142772\pi\)
\(354\) −25.2930 + 19.5702i −0.0714490 + 0.0552830i
\(355\) −92.5838 −0.260799
\(356\) −22.7587 + 13.1397i −0.0639289 + 0.0369094i
\(357\) −290.845 375.894i −0.814691 1.05292i
\(358\) −244.723 423.872i −0.683583 1.18400i
\(359\) 401.590i 1.11864i 0.828953 + 0.559318i \(0.188937\pi\)
−0.828953 + 0.559318i \(0.811063\pi\)
\(360\) −75.7280 + 20.9460i −0.210356 + 0.0581832i
\(361\) 180.313 + 312.311i 0.499482 + 0.865128i
\(362\) 499.134i 1.37882i
\(363\) 63.8259 49.3847i 0.175829 0.136046i
\(364\) −35.2537 + 2.87874i −0.0968509 + 0.00790863i
\(365\) 76.3585 44.0856i 0.209201 0.120782i
\(366\) −235.250 + 574.471i −0.642758 + 1.56959i
\(367\) −168.708 −0.459694 −0.229847 0.973227i \(-0.573823\pi\)
−0.229847 + 0.973227i \(0.573823\pi\)
\(368\) −317.874 183.525i −0.863788 0.498708i
\(369\) 223.657 227.287i 0.606117 0.615953i
\(370\) 59.0169 102.220i 0.159505 0.276271i
\(371\) −174.958 + 101.012i −0.471586 + 0.272270i
\(372\) 3.24665 + 1.32952i 0.00872754 + 0.00357399i
\(373\) −217.640 −0.583486 −0.291743 0.956497i \(-0.594235\pi\)
−0.291743 + 0.956497i \(0.594235\pi\)
\(374\) −484.401 279.669i −1.29519 0.747778i
\(375\) 92.9207 + 120.093i 0.247789 + 0.320248i
\(376\) 84.6294 146.582i 0.225078 0.389847i
\(377\) 242.528 + 114.807i 0.643311 + 0.304527i
\(378\) −205.996 154.151i −0.544963 0.407807i
\(379\) 316.884 + 548.859i 0.836105 + 1.44818i 0.893127 + 0.449804i \(0.148506\pi\)
−0.0570221 + 0.998373i \(0.518161\pi\)
\(380\) 0.336393i 0.000885244i
\(381\) −355.035 145.389i −0.931851 0.381599i
\(382\) 82.1673 + 142.318i 0.215098 + 0.372560i
\(383\) 691.711i 1.80603i −0.429605 0.903017i \(-0.641347\pi\)
0.429605 0.903017i \(-0.358653\pi\)
\(384\) 177.609 + 229.547i 0.462525 + 0.597778i
\(385\) −25.6723 + 44.4658i −0.0666814 + 0.115496i
\(386\) 164.391 + 94.9114i 0.425884 + 0.245884i
\(387\) −10.8968 + 3.01398i −0.0281570 + 0.00778806i
\(388\) 19.4647 + 33.7139i 0.0501668 + 0.0868914i
\(389\) 205.719 + 118.772i 0.528842 + 0.305327i 0.740545 0.672007i \(-0.234568\pi\)
−0.211703 + 0.977334i \(0.567901\pi\)
\(390\) 55.4821 50.6601i 0.142262 0.129898i
\(391\) −418.110 724.188i −1.06934 1.85214i
\(392\) −166.776 96.2879i −0.425448 0.245632i
\(393\) −75.7103 + 184.882i −0.192647 + 0.470437i
\(394\) −144.369 250.054i −0.366418 0.634654i
\(395\) 28.1886i 0.0713635i
\(396\) 44.9373 + 11.6541i 0.113478 + 0.0294295i
\(397\) 175.974 304.795i 0.443258 0.767746i −0.554671 0.832070i \(-0.687156\pi\)
0.997929 + 0.0643240i \(0.0204891\pi\)
\(398\) −577.095 333.186i −1.44999 0.837150i
\(399\) −7.42475 + 5.74483i −0.0186084 + 0.0143981i
\(400\) 162.607 281.644i 0.406518 0.704110i
\(401\) −360.251 207.991i −0.898381 0.518681i −0.0217068 0.999764i \(-0.506910\pi\)
−0.876675 + 0.481084i \(0.840243\pi\)
\(402\) 33.7851 4.58628i 0.0840425 0.0114087i
\(403\) −28.4953 + 2.32687i −0.0707081 + 0.00577386i
\(404\) 22.1487i 0.0548234i
\(405\) −83.7780 + 1.34870i −0.206859 + 0.00333012i
\(406\) −98.3444 170.338i −0.242228 0.419551i
\(407\) −514.725 + 297.176i −1.26468 + 0.730163i
\(408\) 105.448 + 776.786i 0.258450 + 1.90389i
\(409\) −212.893 −0.520522 −0.260261 0.965538i \(-0.583809\pi\)
−0.260261 + 0.965538i \(0.583809\pi\)
\(410\) 68.2551i 0.166476i
\(411\) −220.842 + 539.288i −0.537329 + 1.31214i
\(412\) −22.4371 38.8622i −0.0544590 0.0943257i
\(413\) 25.3649 14.6444i 0.0614163 0.0354587i
\(414\) −322.661 317.509i −0.779375 0.766929i
\(415\) −153.172 −0.369089
\(416\) 99.2741 + 46.9939i 0.238640 + 0.112966i
\(417\) 571.307 442.043i 1.37004 1.06006i
\(418\) −5.52408 + 9.56799i −0.0132155 + 0.0228899i
\(419\) −12.9141 7.45599i −0.0308214 0.0177947i 0.484510 0.874786i \(-0.338998\pi\)
−0.515332 + 0.856991i \(0.672331\pi\)
\(420\) 8.36685 1.13579i 0.0199211 0.00270426i
\(421\) 381.610 660.969i 0.906438 1.57000i 0.0874627 0.996168i \(-0.472124\pi\)
0.818975 0.573829i \(-0.194543\pi\)
\(422\) 116.467 + 67.2425i 0.275989 + 0.159342i
\(423\) 126.600 128.655i 0.299291 0.304148i
\(424\) 333.215 0.785885
\(425\) 641.648 370.456i 1.50976 0.871660i
\(426\) 67.2638 + 495.502i 0.157896 + 1.16315i
\(427\) 284.267 492.364i 0.665730 1.15308i
\(428\) −52.2140 + 30.1458i −0.121995 + 0.0704340i
\(429\) −369.496 + 81.2313i −0.861296 + 0.189350i
\(430\) −1.21001 + 2.09580i −0.00281398 + 0.00487395i
\(431\) −107.703 + 62.1822i −0.249890 + 0.144274i −0.619714 0.784828i \(-0.712751\pi\)
0.369824 + 0.929102i \(0.379418\pi\)
\(432\) 144.503 + 337.286i 0.334498 + 0.780754i
\(433\) −5.70944 + 9.88903i −0.0131858 + 0.0228384i −0.872543 0.488537i \(-0.837531\pi\)
0.859357 + 0.511376i \(0.170864\pi\)
\(434\) 18.1493 + 10.4785i 0.0418187 + 0.0241440i
\(435\) −59.2764 24.2741i −0.136268 0.0558025i
\(436\) 24.1235 0.0553291
\(437\) −14.3043 + 8.25861i −0.0327330 + 0.0188984i
\(438\) −291.419 376.636i −0.665340 0.859901i
\(439\) 171.523 0.390714 0.195357 0.980732i \(-0.437413\pi\)
0.195357 + 0.980732i \(0.437413\pi\)
\(440\) 73.3410 42.3435i 0.166684 0.0962352i
\(441\) −146.378 144.040i −0.331923 0.326622i
\(442\) −426.384 616.506i −0.964670 1.39481i
\(443\) 654.843 + 378.074i 1.47820 + 0.853440i 0.999696 0.0246449i \(-0.00784551\pi\)
0.478505 + 0.878085i \(0.341179\pi\)
\(444\) 90.4506 + 37.0401i 0.203718 + 0.0834237i
\(445\) −25.5613 + 44.2735i −0.0574411 + 0.0994910i
\(446\) 471.313i 1.05676i
\(447\) −36.8309 47.6011i −0.0823957 0.106490i
\(448\) −179.333 310.614i −0.400297 0.693335i
\(449\) 7.33065 + 4.23235i 0.0163266 + 0.00942618i 0.508141 0.861274i \(-0.330333\pi\)
−0.491814 + 0.870700i \(0.663666\pi\)
\(450\) 281.320 285.886i 0.625156 0.635301i
\(451\) −171.847 + 297.649i −0.381036 + 0.659975i
\(452\) 38.9908i 0.0862629i
\(453\) −85.0748 626.708i −0.187803 1.38346i
\(454\) −75.6161 130.971i −0.166555 0.288482i
\(455\) −56.5925 + 39.1402i −0.124379 + 0.0860223i
\(456\) 15.3433 2.08283i 0.0336475 0.00456760i
\(457\) 722.488 1.58094 0.790468 0.612504i \(-0.209838\pi\)
0.790468 + 0.612504i \(0.209838\pi\)
\(458\) 685.107 395.547i 1.49587 0.863640i
\(459\) −99.1015 + 830.070i −0.215907 + 1.80843i
\(460\) 14.8560 0.0322957
\(461\) 335.189 193.521i 0.727090 0.419786i −0.0902664 0.995918i \(-0.528772\pi\)
0.817357 + 0.576132i \(0.195439\pi\)
\(462\) 256.629 + 105.091i 0.555475 + 0.227471i
\(463\) 131.549 + 227.850i 0.284124 + 0.492116i 0.972396 0.233336i \(-0.0749641\pi\)
−0.688273 + 0.725452i \(0.741631\pi\)
\(464\) 280.512i 0.604553i
\(465\) 6.76287 0.918051i 0.0145438 0.00197430i
\(466\) −109.874 −0.235780
\(467\) 859.088i 1.83959i 0.392402 + 0.919794i \(0.371644\pi\)
−0.392402 + 0.919794i \(0.628356\pi\)
\(468\) 47.7492 + 39.8829i 0.102028 + 0.0852198i
\(469\) −31.2258 −0.0665795
\(470\) 38.6355i 0.0822033i
\(471\) 125.171 + 51.2584i 0.265756 + 0.108829i
\(472\) −48.3086 −0.102349
\(473\) 10.5533 6.09294i 0.0223114 0.0128815i
\(474\) −150.863 + 20.4795i −0.318277 + 0.0432057i
\(475\) −7.31732 12.6740i −0.0154049 0.0266821i
\(476\) 84.2421i 0.176979i
\(477\) 343.963 + 89.2038i 0.721097 + 0.187010i
\(478\) 209.686 + 363.187i 0.438674 + 0.759805i
\(479\) 527.810i 1.10190i −0.834539 0.550950i \(-0.814266\pi\)
0.834539 0.550950i \(-0.185734\pi\)
\(480\) −24.2636 9.93612i −0.0505492 0.0207002i
\(481\) −793.872 + 64.8258i −1.65046 + 0.134773i
\(482\) −404.911 + 233.776i −0.840065 + 0.485012i
\(483\) 253.707 + 327.897i 0.525274 + 0.678876i
\(484\) 14.3041 0.0295539
\(485\) 65.5850 + 37.8655i 0.135227 + 0.0780733i
\(486\) 68.0843 + 447.394i 0.140091 + 0.920564i
\(487\) 224.140 388.222i 0.460246 0.797170i −0.538727 0.842481i \(-0.681094\pi\)
0.998973 + 0.0453105i \(0.0144277\pi\)
\(488\) −812.097 + 468.864i −1.66413 + 0.960787i
\(489\) −6.21064 45.7510i −0.0127007 0.0935603i
\(490\) −43.9579 −0.0897101
\(491\) −717.213 414.083i −1.46072 0.843347i −0.461674 0.887049i \(-0.652751\pi\)
−0.999045 + 0.0437029i \(0.986085\pi\)
\(492\) 56.0067 7.60283i 0.113835 0.0154529i
\(493\) −319.535 + 553.451i −0.648144 + 1.12262i
\(494\) −12.1774 + 8.42204i −0.0246505 + 0.0170487i
\(495\) 87.0422 24.0754i 0.175843 0.0486372i
\(496\) −14.9442 25.8840i −0.0301293 0.0521856i
\(497\) 457.967i 0.921462i
\(498\) 111.282 + 819.765i 0.223458 + 1.64611i
\(499\) 278.506 + 482.386i 0.558128 + 0.966706i 0.997653 + 0.0684755i \(0.0218135\pi\)
−0.439525 + 0.898230i \(0.644853\pi\)
\(500\) 26.9142i 0.0538283i
\(501\) 262.861 35.6831i 0.524673 0.0712237i
\(502\) −98.2227 + 170.127i −0.195663 + 0.338898i
\(503\) −592.859 342.287i −1.17865 0.680491i −0.222945 0.974831i \(-0.571567\pi\)
−0.955701 + 0.294340i \(0.904900\pi\)
\(504\) −103.609 374.590i −0.205574 0.743233i
\(505\) −21.5434 37.3142i −0.0426601 0.0738895i
\(506\) 422.549 + 243.959i 0.835077 + 0.482132i
\(507\) −494.139 113.471i −0.974633 0.223809i
\(508\) −34.0009 58.8912i −0.0669308 0.115928i
\(509\) 773.262 + 446.443i 1.51918 + 0.877098i 0.999745 + 0.0225881i \(0.00719062\pi\)
0.519434 + 0.854510i \(0.326143\pi\)
\(510\) 109.501 + 141.521i 0.214707 + 0.277493i
\(511\) 218.070 + 377.708i 0.426751 + 0.739155i
\(512\) 573.607i 1.12033i
\(513\) 16.3957 + 1.95748i 0.0319605 + 0.00381574i
\(514\) 61.3693 106.295i 0.119396 0.206799i
\(515\) −75.6003 43.6479i −0.146797 0.0847531i
\(516\) −1.85449 0.759425i −0.00359397 0.00147175i
\(517\) −97.2735 + 168.483i −0.188150 + 0.325885i
\(518\) 505.634 + 291.928i 0.976127 + 0.563567i
\(519\) 190.691 465.660i 0.367420 0.897225i
\(520\) 113.116 9.23677i 0.217530 0.0177630i
\(521\) 293.279i 0.562916i −0.959574 0.281458i \(-0.909182\pi\)
0.959574 0.281458i \(-0.0908180\pi\)
\(522\) −86.8478 + 334.879i −0.166375 + 0.641530i
\(523\) −136.808 236.958i −0.261583 0.453075i 0.705080 0.709128i \(-0.250911\pi\)
−0.966663 + 0.256053i \(0.917578\pi\)
\(524\) −30.6671 + 17.7057i −0.0585251 + 0.0337895i
\(525\) −290.525 + 224.791i −0.553380 + 0.428173i
\(526\) 511.562 0.972552
\(527\) 68.0923i 0.129207i
\(528\) −242.024 312.797i −0.458379 0.592419i
\(529\) 100.223 + 173.591i 0.189457 + 0.328150i
\(530\) 65.8705 38.0304i 0.124284 0.0717554i
\(531\) −49.8667 12.9325i −0.0939110 0.0243550i
\(532\) −1.66397 −0.00312776
\(533\) −378.823 + 261.999i −0.710737 + 0.491556i
\(534\) 255.519 + 104.637i 0.478501 + 0.195949i
\(535\) −58.6439 + 101.574i −0.109615 + 0.189858i
\(536\) 44.6031 + 25.7516i 0.0832147 + 0.0480440i
\(537\) 298.790 729.634i 0.556406 1.35872i
\(538\) 284.072 492.026i 0.528014 0.914547i
\(539\) 191.693 + 110.674i 0.355645 + 0.205332i
\(540\) −11.8908 8.89811i −0.0220199 0.0164780i
\(541\) −312.038 −0.576780 −0.288390 0.957513i \(-0.593120\pi\)
−0.288390 + 0.957513i \(0.593120\pi\)
\(542\) −373.473 + 215.625i −0.689065 + 0.397832i
\(543\) −635.921 + 492.038i −1.17113 + 0.906147i
\(544\) −130.795 + 226.544i −0.240433 + 0.416442i
\(545\) 40.6412 23.4642i 0.0745711 0.0430536i
\(546\) 250.591 + 274.443i 0.458958 + 0.502643i
\(547\) −359.443 + 622.574i −0.657117 + 1.13816i 0.324241 + 0.945975i \(0.394891\pi\)
−0.981358 + 0.192186i \(0.938442\pi\)
\(548\) −89.4540 + 51.6463i −0.163237 + 0.0942451i
\(549\) −963.808 + 266.584i −1.75557 + 0.485581i
\(550\) −216.153 + 374.388i −0.393006 + 0.680706i
\(551\) 10.9319 + 6.31153i 0.0198401 + 0.0114547i
\(552\) −91.9834 677.601i −0.166637 1.22754i
\(553\) 139.435 0.252143
\(554\) 462.732 267.158i 0.835256 0.482235i
\(555\) 188.411 25.5766i 0.339480 0.0460840i
\(556\) 128.036 0.230281
\(557\) 222.259 128.322i 0.399029 0.230380i −0.287036 0.957920i \(-0.592670\pi\)
0.686065 + 0.727540i \(0.259336\pi\)
\(558\) −9.82669 35.5274i −0.0176105 0.0636692i
\(559\) 16.2766 1.32911i 0.0291173 0.00237765i
\(560\) −62.2959 35.9666i −0.111243 0.0642260i
\(561\) −121.202 892.842i −0.216047 1.59152i
\(562\) 101.570 175.924i 0.180729 0.313031i
\(563\) 381.735i 0.678038i 0.940780 + 0.339019i \(0.110095\pi\)
−0.940780 + 0.339019i \(0.889905\pi\)
\(564\) 31.7023 4.30355i 0.0562098 0.00763041i
\(565\) 37.9253 + 65.6885i 0.0671244 + 0.116263i
\(566\) −583.278 336.756i −1.03053 0.594975i
\(567\) −6.67134 414.409i −0.0117660 0.730879i
\(568\) −377.681 + 654.162i −0.664931 + 1.15169i
\(569\) 273.544i 0.480745i −0.970681 0.240372i \(-0.922730\pi\)
0.970681 0.240372i \(-0.0772695\pi\)
\(570\) 2.79536 2.16289i 0.00490414 0.00379454i
\(571\) 411.408 + 712.580i 0.720504 + 1.24795i 0.960798 + 0.277250i \(0.0894230\pi\)
−0.240293 + 0.970700i \(0.577244\pi\)
\(572\) −60.6090 28.6908i −0.105960 0.0501587i
\(573\) −100.321 + 244.980i −0.175080 + 0.427538i
\(574\) 337.625 0.588196
\(575\) −559.718 + 323.153i −0.973422 + 0.562006i
\(576\) −158.369 + 610.658i −0.274946 + 1.06017i
\(577\) −1072.92 −1.85948 −0.929738 0.368221i \(-0.879967\pi\)
−0.929738 + 0.368221i \(0.879967\pi\)
\(578\) 1079.98 623.529i 1.86848 1.07877i
\(579\) 41.1325 + 303.004i 0.0710405 + 0.523324i
\(580\) −5.67676 9.83243i −0.00978751 0.0169525i
\(581\) 757.666i 1.30407i
\(582\) 155.005 378.516i 0.266332 0.650372i
\(583\) −383.000 −0.656946
\(584\) 719.361i 1.23178i
\(585\) 119.237 + 20.7470i 0.203824 + 0.0354650i
\(586\) 623.358 1.06375
\(587\) 212.275i 0.361627i −0.983517 0.180813i \(-0.942127\pi\)
0.983517 0.180813i \(-0.0578730\pi\)
\(588\) −4.89641 36.0696i −0.00832722 0.0613429i
\(589\) −1.34497 −0.00228349
\(590\) −9.54971 + 5.51353i −0.0161859 + 0.00934496i
\(591\) 176.264 430.431i 0.298248 0.728310i
\(592\) −416.340 721.121i −0.703276 1.21811i
\(593\) 437.862i 0.738384i 0.929353 + 0.369192i \(0.120366\pi\)
−0.929353 + 0.369192i \(0.879634\pi\)
\(594\) −192.088 448.353i −0.323380 0.754803i
\(595\) −81.9399 141.924i −0.137714 0.238528i
\(596\) 10.6679i 0.0178992i
\(597\) −144.395 1063.70i −0.241868 1.78173i
\(598\) 371.941 + 537.786i 0.621974 + 0.899308i
\(599\) 738.737 426.510i 1.23328 0.712037i 0.265571 0.964091i \(-0.414439\pi\)
0.967713 + 0.252054i \(0.0811061\pi\)
\(600\) 600.370 81.4995i 1.00062 0.135832i
\(601\) −582.456 −0.969144 −0.484572 0.874751i \(-0.661025\pi\)
−0.484572 + 0.874751i \(0.661025\pi\)
\(602\) −10.3669 5.98533i −0.0172207 0.00994240i
\(603\) 39.1479 + 38.5227i 0.0649219 + 0.0638851i
\(604\) 56.0511 97.0834i 0.0927998 0.160734i
\(605\) 24.0984 13.9132i 0.0398320 0.0229970i
\(606\) −184.051 + 142.408i −0.303715 + 0.234997i
\(607\) 653.869 1.07721 0.538607 0.842557i \(-0.318951\pi\)
0.538607 + 0.842557i \(0.318951\pi\)
\(608\) 4.47476 + 2.58350i 0.00735979 + 0.00424918i
\(609\) 120.072 293.211i 0.197163 0.481464i
\(610\) −107.024 + 185.372i −0.175450 + 0.303888i
\(611\) −214.431 + 148.304i −0.350951 + 0.242723i
\(612\) −103.928 + 105.615i −0.169817 + 0.172573i
\(613\) 447.367 + 774.862i 0.729799 + 1.26405i 0.956968 + 0.290194i \(0.0937199\pi\)
−0.227168 + 0.973855i \(0.572947\pi\)
\(614\) 1003.73i 1.63474i
\(615\) 86.9603 67.2847i 0.141399 0.109406i
\(616\) 209.452 + 362.782i 0.340020 + 0.588932i
\(617\) 1121.77i 1.81810i 0.416684 + 0.909051i \(0.363192\pi\)
−0.416684 + 0.909051i \(0.636808\pi\)
\(618\) −178.675 + 436.319i −0.289119 + 0.706017i
\(619\) 275.899 477.870i 0.445717 0.772004i −0.552385 0.833589i \(-0.686282\pi\)
0.998102 + 0.0615852i \(0.0196156\pi\)
\(620\) 1.04764 + 0.604853i 0.00168974 + 0.000975569i
\(621\) 86.4475 724.081i 0.139207 1.16599i
\(622\) −470.484 814.902i −0.756405 1.31013i
\(623\) −218.999 126.439i −0.351524 0.202952i
\(624\) −113.804 517.658i −0.182378 0.829580i
\(625\) −272.946 472.756i −0.436713 0.756410i
\(626\) 419.927 + 242.445i 0.670809 + 0.387292i
\(627\) −17.6356 + 2.39401i −0.0281270 + 0.00381820i
\(628\) 11.9873 + 20.7627i 0.0190881 + 0.0330616i
\(629\) 1897.03i 3.01595i
\(630\) −63.2341 62.2243i −0.100372 0.0987688i
\(631\) 79.6513 137.960i 0.126230 0.218637i −0.795983 0.605319i \(-0.793046\pi\)
0.922213 + 0.386682i \(0.126379\pi\)
\(632\) −199.170 114.991i −0.315143 0.181948i
\(633\) 29.1414 + 214.672i 0.0460369 + 0.339134i
\(634\) −406.518 + 704.110i −0.641196 + 1.11058i
\(635\) −114.564 66.1433i −0.180415 0.104163i
\(636\) 38.5430 + 49.8139i 0.0606022 + 0.0783237i
\(637\) 168.734 + 243.971i 0.264888 + 0.383000i
\(638\) 372.884i 0.584458i
\(639\) −564.986 + 574.155i −0.884172 + 0.898521i
\(640\) 50.0381 + 86.6685i 0.0781845 + 0.135420i
\(641\) 240.198 138.678i 0.374724 0.216347i −0.300796 0.953688i \(-0.597252\pi\)
0.675520 + 0.737341i \(0.263919\pi\)
\(642\) 586.223 + 240.062i 0.913121 + 0.373929i
\(643\) 345.928 0.537991 0.268995 0.963141i \(-0.413308\pi\)
0.268995 + 0.963141i \(0.413308\pi\)
\(644\) 73.4855i 0.114108i
\(645\) −3.86296 + 0.524391i −0.00598908 + 0.000813010i
\(646\) −17.6315 30.5387i −0.0272934 0.0472735i
\(647\) −447.421 + 258.319i −0.691531 + 0.399256i −0.804185 0.594378i \(-0.797398\pi\)
0.112654 + 0.993634i \(0.464065\pi\)
\(648\) −332.229 + 597.446i −0.512700 + 0.921984i
\(649\) 55.5261 0.0855564
\(650\) −476.491 + 329.548i −0.733063 + 0.506997i
\(651\) 4.54115 + 33.4526i 0.00697565 + 0.0513865i
\(652\) 4.09185 7.08729i 0.00627584 0.0108701i
\(653\) 65.1556 + 37.6176i 0.0997789 + 0.0576074i 0.549059 0.835784i \(-0.314986\pi\)
−0.449280 + 0.893391i \(0.648320\pi\)
\(654\) −155.105 200.462i −0.237164 0.306517i
\(655\) −34.4436 + 59.6581i −0.0525857 + 0.0910811i
\(656\) −417.001 240.756i −0.635672 0.367006i
\(657\) 192.577 742.563i 0.293116 1.13023i
\(658\) 191.111 0.290442
\(659\) −215.753 + 124.565i −0.327395 + 0.189022i −0.654684 0.755903i \(-0.727198\pi\)
0.327289 + 0.944924i \(0.393865\pi\)
\(660\) 14.8135 + 6.06621i 0.0224446 + 0.00919123i
\(661\) −251.738 + 436.024i −0.380845 + 0.659643i −0.991183 0.132498i \(-0.957700\pi\)
0.610338 + 0.792141i \(0.291033\pi\)
\(662\) 575.341 332.173i 0.869095 0.501772i
\(663\) 365.136 1150.98i 0.550733 1.73601i
\(664\) −624.840 + 1082.25i −0.941024 + 1.62990i
\(665\) −2.80332 + 1.61850i −0.00421551 + 0.00243383i
\(666\) −273.768 989.783i −0.411064 1.48616i
\(667\) 278.735 482.782i 0.417893 0.723812i
\(668\) 40.7199 + 23.5096i 0.0609579 + 0.0351940i
\(669\) −600.476 + 464.612i −0.897572 + 0.694488i
\(670\) 11.7563 0.0175467
\(671\) 933.428 538.915i 1.39110 0.803152i
\(672\) 49.1491 120.020i 0.0731386 0.178602i
\(673\) 465.144 0.691150 0.345575 0.938391i \(-0.387684\pi\)
0.345575 + 0.938391i \(0.387684\pi\)
\(674\) −22.6317 + 13.0664i −0.0335782 + 0.0193864i
\(675\) 641.553 + 76.5945i 0.950448 + 0.113473i
\(676\) −56.9633 69.5050i −0.0842652 0.102818i
\(677\) 562.294 + 324.641i 0.830567 + 0.479528i 0.854047 0.520196i \(-0.174141\pi\)
−0.0234796 + 0.999724i \(0.507474\pi\)
\(678\) 324.007 250.697i 0.477886 0.369760i
\(679\) −187.302 + 324.417i −0.275850 + 0.477786i
\(680\) 270.300i 0.397500i
\(681\) 92.3222 225.447i 0.135569 0.331054i
\(682\) 19.8652 + 34.4076i 0.0291279 + 0.0504510i
\(683\) 715.727 + 413.225i 1.04792 + 0.605015i 0.922066 0.387034i \(-0.126500\pi\)
0.125852 + 0.992049i \(0.459834\pi\)
\(684\) 2.08612 + 2.05281i 0.00304989 + 0.00300119i
\(685\) −100.470 + 174.019i −0.146671 + 0.254042i
\(686\) 684.368i 0.997621i
\(687\) 1179.31 + 482.936i 1.71661 + 0.702964i
\(688\) 8.53611 + 14.7850i 0.0124071 + 0.0214898i
\(689\) −463.919 219.608i −0.673322 0.318734i
\(690\) −95.5190 123.451i −0.138433 0.178914i
\(691\) −494.329 −0.715382 −0.357691 0.933840i \(-0.616436\pi\)
−0.357691 + 0.933840i \(0.616436\pi\)
\(692\) 77.2410 44.5951i 0.111620 0.0644438i
\(693\) 119.089 + 430.555i 0.171846 + 0.621292i
\(694\) 96.0388 0.138384
\(695\) 215.705 124.537i 0.310367 0.179190i
\(696\) −413.320 + 319.803i −0.593851 + 0.459486i
\(697\) −548.495 950.022i −0.786938 1.36302i
\(698\) 189.434i 0.271395i
\(699\) −108.312 139.984i −0.154952 0.200264i
\(700\) −65.1099 −0.0930141
\(701\) 788.764i 1.12520i 0.826730 + 0.562599i \(0.190198\pi\)
−0.826730 + 0.562599i \(0.809802\pi\)
\(702\) 24.4090 653.220i 0.0347707 0.930513i
\(703\) −37.4706 −0.0533010
\(704\) 679.962i 0.965856i
\(705\) 49.2235 38.0862i 0.0698206 0.0540230i
\(706\) −570.153 −0.807582
\(707\) 184.575 106.565i 0.261068 0.150728i
\(708\) −5.58785 7.22186i −0.00789244 0.0102004i
\(709\) −11.7312 20.3191i −0.0165461 0.0286587i 0.857634 0.514261i \(-0.171934\pi\)
−0.874180 + 0.485602i \(0.838600\pi\)
\(710\) 172.421i 0.242847i
\(711\) −174.810 172.019i −0.245866 0.241939i
\(712\) 208.547 + 361.213i 0.292902 + 0.507322i
\(713\) 59.3978i 0.0833069i
\(714\) −700.037 + 541.647i −0.980444 + 0.758609i
\(715\) −130.016 + 10.6168i −0.181840 + 0.0148487i
\(716\) 121.028 69.8753i 0.169033 0.0975912i
\(717\) −256.013 + 625.174i −0.357061 + 0.871930i
\(718\) 747.892 1.04163
\(719\) −276.402 159.581i −0.384425 0.221948i 0.295317 0.955399i \(-0.404575\pi\)
−0.679742 + 0.733451i \(0.737908\pi\)
\(720\) 33.7293 + 121.945i 0.0468462 + 0.169368i
\(721\) 215.905 373.958i 0.299452 0.518665i
\(722\) 581.625 335.801i 0.805575 0.465099i
\(723\) −696.996 285.425i −0.964033 0.394778i
\(724\) −142.517 −0.196847
\(725\) 427.757 + 246.965i 0.590009 + 0.340642i
\(726\) −91.9703 118.865i −0.126681 0.163725i
\(727\) 329.091 570.002i 0.452669 0.784046i −0.545882 0.837862i \(-0.683805\pi\)
0.998551 + 0.0538162i \(0.0171385\pi\)
\(728\) 45.6898 + 559.527i 0.0627606 + 0.768581i
\(729\) −502.885 + 527.776i −0.689829 + 0.723973i
\(730\) −82.1017 142.204i −0.112468 0.194800i
\(731\) 38.8944i 0.0532071i
\(732\) −164.028 67.1705i −0.224082 0.0917629i
\(733\) 231.565 + 401.082i 0.315913 + 0.547178i 0.979631 0.200805i \(-0.0643557\pi\)
−0.663718 + 0.747983i \(0.731022\pi\)
\(734\) 314.189i 0.428050i
\(735\) −43.3330 56.0045i −0.0589564 0.0761966i
\(736\) 114.095 197.618i 0.155020 0.268502i
\(737\) −51.2670 29.5990i −0.0695618 0.0401615i
\(738\) −423.281 416.522i −0.573552 0.564393i
\(739\) −498.613 863.622i −0.674713 1.16864i −0.976553 0.215278i \(-0.930934\pi\)
0.301840 0.953359i \(-0.402399\pi\)
\(740\) 29.1868 + 16.8510i 0.0394416 + 0.0227716i
\(741\) −22.7343 7.21225i −0.0306806 0.00973313i
\(742\) 188.118 + 325.829i 0.253528 + 0.439123i
\(743\) −111.800 64.5478i −0.150471 0.0868745i 0.422874 0.906188i \(-0.361021\pi\)
−0.573345 + 0.819314i \(0.694355\pi\)
\(744\) 21.1014 51.5289i 0.0283622 0.0692593i
\(745\) −10.3764 17.9724i −0.0139280 0.0241241i
\(746\) 405.317i 0.543320i
\(747\) −934.720 + 949.889i −1.25130 + 1.27161i
\(748\) 79.8534 138.310i 0.106756 0.184907i
\(749\) −502.437 290.082i −0.670811 0.387293i
\(750\) 223.652 173.049i 0.298203 0.230731i
\(751\) −177.897 + 308.126i −0.236880 + 0.410288i −0.959817 0.280626i \(-0.909458\pi\)
0.722938 + 0.690913i \(0.242791\pi\)
\(752\) −236.042 136.279i −0.313885 0.181222i
\(753\) −313.576 + 42.5675i −0.416435 + 0.0565306i
\(754\) 213.807 451.666i 0.283564 0.599027i
\(755\) 218.077i 0.288844i
\(756\) 44.0146 58.8178i 0.0582203 0.0778013i
\(757\) 134.999 + 233.825i 0.178334 + 0.308884i 0.941310 0.337543i \(-0.109596\pi\)
−0.762976 + 0.646427i \(0.776263\pi\)
\(758\) 1022.15 590.141i 1.34849 0.778550i
\(759\) 105.726 + 778.838i 0.139297 + 1.02614i
\(760\) 5.33903 0.00702504
\(761\) 1215.03i 1.59662i 0.602245 + 0.798311i \(0.294273\pi\)
−0.602245 + 0.798311i \(0.705727\pi\)
\(762\) −270.762 + 661.191i −0.355331 + 0.867704i
\(763\) 116.066 + 201.032i 0.152118 + 0.263476i
\(764\) −40.6358 + 23.4611i −0.0531882 + 0.0307082i
\(765\) −72.3610 + 279.019i −0.0945896 + 0.364730i
\(766\) −1288.19 −1.68171
\(767\) 67.2575 + 31.8380i 0.0876891 + 0.0415098i
\(768\) −237.770 + 183.972i −0.309597 + 0.239547i
\(769\) 158.059 273.767i 0.205539 0.356004i −0.744765 0.667326i \(-0.767439\pi\)
0.950304 + 0.311323i \(0.100772\pi\)