Properties

Label 117.3.k.a.29.7
Level $117$
Weight $3$
Character 117.29
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(29,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.29");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 29.7
Character \(\chi\) \(=\) 117.29
Dual form 117.3.k.a.113.20

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.44466i q^{2} +(-2.12872 + 2.11389i) q^{3} -1.97636 q^{4} +(2.73246 - 1.57759i) q^{5} +(5.16775 + 5.20400i) q^{6} +(-3.82542 - 6.62581i) q^{7} -4.94710i q^{8} +(0.0628969 - 8.99978i) q^{9} +(-3.85666 - 6.67994i) q^{10} -6.15061i q^{11} +(4.20712 - 4.17782i) q^{12} +(-12.9012 + 1.59941i) q^{13} +(-16.1979 + 9.35184i) q^{14} +(-2.48179 + 9.13437i) q^{15} -19.9994 q^{16} +(18.6707 + 10.7795i) q^{17} +(-22.0014 - 0.153762i) q^{18} +(15.0726 - 26.1066i) q^{19} +(-5.40033 + 3.11788i) q^{20} +(22.1495 + 6.01798i) q^{21} -15.0362 q^{22} +(7.11157 + 4.10586i) q^{23} +(10.4577 + 10.5310i) q^{24} +(-7.52244 + 13.0293i) q^{25} +(3.91002 + 31.5391i) q^{26} +(18.8907 + 19.2910i) q^{27} +(7.56041 + 13.0950i) q^{28} -4.21916i q^{29} +(22.3304 + 6.06713i) q^{30} +(-25.9263 - 44.9057i) q^{31} +29.1034i q^{32} +(13.0017 + 13.0929i) q^{33} +(26.3523 - 45.6435i) q^{34} +(-20.9056 - 12.0698i) q^{35} +(-0.124307 + 17.7868i) q^{36} +(22.3585 + 38.7261i) q^{37} +(-63.8217 - 36.8475i) q^{38} +(24.0821 - 30.6766i) q^{39} +(-7.80448 - 13.5178i) q^{40} +(47.9389 + 27.6775i) q^{41} +(14.7119 - 54.1480i) q^{42} +(25.7507 + 44.6016i) q^{43} +12.1558i q^{44} +(-14.0261 - 24.6908i) q^{45} +(10.0374 - 17.3854i) q^{46} +(24.2699 + 14.0122i) q^{47} +(42.5732 - 42.2767i) q^{48} +(-4.76761 + 8.25775i) q^{49} +(31.8521 + 18.3898i) q^{50} +(-62.5314 + 16.5213i) q^{51} +(25.4975 - 3.16102i) q^{52} -0.382421i q^{53} +(47.1599 - 46.1813i) q^{54} +(-9.70312 - 16.8063i) q^{55} +(-32.7786 + 18.9247i) q^{56} +(23.1011 + 87.4356i) q^{57} -10.3144 q^{58} -47.9620i q^{59} +(4.90492 - 18.0528i) q^{60} +(25.6786 + 44.4766i) q^{61} +(-109.779 + 63.3811i) q^{62} +(-59.8715 + 34.0112i) q^{63} -8.84980 q^{64} +(-32.7289 + 24.7231i) q^{65} +(32.0078 - 31.7848i) q^{66} +(-12.9554 + 22.4394i) q^{67} +(-36.9001 - 21.3043i) q^{68} +(-23.8179 + 6.29287i) q^{69} +(-29.5067 + 51.1071i) q^{70} +(7.07732 + 4.08609i) q^{71} +(-44.5229 - 0.311158i) q^{72} -24.8357 q^{73} +(94.6722 - 54.6590i) q^{74} +(-11.5293 - 43.6373i) q^{75} +(-29.7890 + 51.5961i) q^{76} +(-40.7528 + 23.5286i) q^{77} +(-74.9938 - 58.8726i) q^{78} +(8.23711 - 14.2671i) q^{79} +(-54.6477 + 31.5508i) q^{80} +(-80.9921 - 1.13212i) q^{81} +(67.6622 - 117.194i) q^{82} +(-39.7129 - 22.9283i) q^{83} +(-43.7755 - 11.8937i) q^{84} +68.0225 q^{85} +(109.036 - 62.9518i) q^{86} +(8.91887 + 8.98142i) q^{87} -30.4277 q^{88} +(70.5240 - 40.7171i) q^{89} +(-60.3605 + 34.2890i) q^{90} +(59.9500 + 79.3628i) q^{91} +(-14.0550 - 8.11468i) q^{92} +(150.116 + 40.7862i) q^{93} +(34.2551 - 59.3316i) q^{94} -95.1136i q^{95} +(-61.5216 - 61.9530i) q^{96} +(-23.4733 - 40.6570i) q^{97} +(20.1874 + 11.6552i) q^{98} +(-55.3541 - 0.386854i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - q^{3} - 98 q^{4} - 6 q^{5} + 12 q^{6} - q^{7} - 3 q^{9} - 6 q^{10} - 39 q^{12} + 4 q^{13} - 6 q^{14} - 25 q^{15} + 166 q^{16} + 34 q^{18} + 5 q^{19} + 21 q^{20} - 91 q^{21} + 30 q^{22} - 75 q^{23}+ \cdots + 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.44466i 1.22233i −0.791503 0.611165i \(-0.790701\pi\)
0.791503 0.611165i \(-0.209299\pi\)
\(3\) −2.12872 + 2.11389i −0.709573 + 0.704632i
\(4\) −1.97636 −0.494091
\(5\) 2.73246 1.57759i 0.546492 0.315517i −0.201214 0.979547i \(-0.564489\pi\)
0.747706 + 0.664030i \(0.231155\pi\)
\(6\) 5.16775 + 5.20400i 0.861292 + 0.867333i
\(7\) −3.82542 6.62581i −0.546488 0.946545i −0.998512 0.0545390i \(-0.982631\pi\)
0.452024 0.892006i \(-0.350702\pi\)
\(8\) 4.94710i 0.618388i
\(9\) 0.0628969 8.99978i 0.00698855 0.999976i
\(10\) −3.85666 6.67994i −0.385666 0.667994i
\(11\) 6.15061i 0.559146i −0.960124 0.279573i \(-0.909807\pi\)
0.960124 0.279573i \(-0.0901930\pi\)
\(12\) 4.20712 4.17782i 0.350594 0.348152i
\(13\) −12.9012 + 1.59941i −0.992403 + 0.123032i
\(14\) −16.1979 + 9.35184i −1.15699 + 0.667989i
\(15\) −2.48179 + 9.13437i −0.165453 + 0.608958i
\(16\) −19.9994 −1.24997
\(17\) 18.6707 + 10.7795i 1.09828 + 0.634090i 0.935768 0.352617i \(-0.114708\pi\)
0.162508 + 0.986707i \(0.448042\pi\)
\(18\) −22.0014 0.153762i −1.22230 0.00854231i
\(19\) 15.0726 26.1066i 0.793297 1.37403i −0.130618 0.991433i \(-0.541696\pi\)
0.923915 0.382598i \(-0.124971\pi\)
\(20\) −5.40033 + 3.11788i −0.270017 + 0.155894i
\(21\) 22.1495 + 6.01798i 1.05474 + 0.286570i
\(22\) −15.0362 −0.683461
\(23\) 7.11157 + 4.10586i 0.309199 + 0.178516i 0.646568 0.762857i \(-0.276204\pi\)
−0.337369 + 0.941372i \(0.609537\pi\)
\(24\) 10.4577 + 10.5310i 0.435736 + 0.438792i
\(25\) −7.52244 + 13.0293i −0.300898 + 0.521170i
\(26\) 3.91002 + 31.5391i 0.150386 + 1.21304i
\(27\) 18.8907 + 19.2910i 0.699656 + 0.714480i
\(28\) 7.56041 + 13.0950i 0.270015 + 0.467679i
\(29\) 4.21916i 0.145488i −0.997351 0.0727442i \(-0.976824\pi\)
0.997351 0.0727442i \(-0.0231757\pi\)
\(30\) 22.3304 + 6.06713i 0.744348 + 0.202238i
\(31\) −25.9263 44.9057i −0.836333 1.44857i −0.892940 0.450175i \(-0.851362\pi\)
0.0566070 0.998397i \(-0.481972\pi\)
\(32\) 29.1034i 0.909482i
\(33\) 13.0017 + 13.0929i 0.393992 + 0.396755i
\(34\) 26.3523 45.6435i 0.775067 1.34246i
\(35\) −20.9056 12.0698i −0.597303 0.344853i
\(36\) −0.124307 + 17.7868i −0.00345298 + 0.494079i
\(37\) 22.3585 + 38.7261i 0.604285 + 1.04665i 0.992164 + 0.124942i \(0.0398744\pi\)
−0.387879 + 0.921710i \(0.626792\pi\)
\(38\) −63.8217 36.8475i −1.67952 0.969671i
\(39\) 24.0821 30.6766i 0.617490 0.786578i
\(40\) −7.80448 13.5178i −0.195112 0.337944i
\(41\) 47.9389 + 27.6775i 1.16924 + 0.675062i 0.953501 0.301389i \(-0.0974502\pi\)
0.215740 + 0.976451i \(0.430784\pi\)
\(42\) 14.7119 54.1480i 0.350284 1.28924i
\(43\) 25.7507 + 44.6016i 0.598854 + 1.03725i 0.992991 + 0.118194i \(0.0377103\pi\)
−0.394137 + 0.919052i \(0.628956\pi\)
\(44\) 12.1558i 0.276269i
\(45\) −14.0261 24.6908i −0.311690 0.548684i
\(46\) 10.0374 17.3854i 0.218205 0.377943i
\(47\) 24.2699 + 14.0122i 0.516380 + 0.298132i 0.735452 0.677577i \(-0.236970\pi\)
−0.219072 + 0.975709i \(0.570303\pi\)
\(48\) 42.5732 42.2767i 0.886942 0.880765i
\(49\) −4.76761 + 8.25775i −0.0972982 + 0.168525i
\(50\) 31.8521 + 18.3898i 0.637042 + 0.367796i
\(51\) −62.5314 + 16.5213i −1.22611 + 0.323947i
\(52\) 25.4975 3.16102i 0.490337 0.0607889i
\(53\) 0.382421i 0.00721549i −0.999993 0.00360774i \(-0.998852\pi\)
0.999993 0.00360774i \(-0.00114838\pi\)
\(54\) 47.1599 46.1813i 0.873331 0.855210i
\(55\) −9.70312 16.8063i −0.176420 0.305569i
\(56\) −32.7786 + 18.9247i −0.585332 + 0.337942i
\(57\) 23.1011 + 87.4356i 0.405283 + 1.53396i
\(58\) −10.3144 −0.177835
\(59\) 47.9620i 0.812914i −0.913670 0.406457i \(-0.866764\pi\)
0.913670 0.406457i \(-0.133236\pi\)
\(60\) 4.90492 18.0528i 0.0817486 0.300881i
\(61\) 25.6786 + 44.4766i 0.420960 + 0.729124i 0.996034 0.0889776i \(-0.0283600\pi\)
−0.575074 + 0.818102i \(0.695027\pi\)
\(62\) −109.779 + 63.3811i −1.77063 + 1.02228i
\(63\) −59.8715 + 34.0112i −0.950341 + 0.539860i
\(64\) −8.84980 −0.138278
\(65\) −32.7289 + 24.7231i −0.503521 + 0.380356i
\(66\) 32.0078 31.7848i 0.484966 0.481589i
\(67\) −12.9554 + 22.4394i −0.193364 + 0.334916i −0.946363 0.323105i \(-0.895273\pi\)
0.752999 + 0.658022i \(0.228606\pi\)
\(68\) −36.9001 21.3043i −0.542648 0.313298i
\(69\) −23.8179 + 6.29287i −0.345187 + 0.0912010i
\(70\) −29.5067 + 51.1071i −0.421524 + 0.730101i
\(71\) 7.07732 + 4.08609i 0.0996806 + 0.0575506i 0.549012 0.835815i \(-0.315004\pi\)
−0.449331 + 0.893365i \(0.648338\pi\)
\(72\) −44.5229 0.311158i −0.618373 0.00432163i
\(73\) −24.8357 −0.340215 −0.170107 0.985426i \(-0.554411\pi\)
−0.170107 + 0.985426i \(0.554411\pi\)
\(74\) 94.6722 54.6590i 1.27935 0.738635i
\(75\) −11.5293 43.6373i −0.153724 0.581830i
\(76\) −29.7890 + 51.5961i −0.391961 + 0.678896i
\(77\) −40.7528 + 23.5286i −0.529257 + 0.305567i
\(78\) −74.9938 58.8726i −0.961458 0.754777i
\(79\) 8.23711 14.2671i 0.104267 0.180596i −0.809171 0.587573i \(-0.800084\pi\)
0.913439 + 0.406977i \(0.133417\pi\)
\(80\) −54.6477 + 31.5508i −0.683096 + 0.394386i
\(81\) −80.9921 1.13212i −0.999902 0.0139768i
\(82\) 67.6622 117.194i 0.825149 1.42920i
\(83\) −39.7129 22.9283i −0.478469 0.276244i 0.241309 0.970448i \(-0.422423\pi\)
−0.719778 + 0.694204i \(0.755757\pi\)
\(84\) −43.7755 11.8937i −0.521137 0.141592i
\(85\) 68.0225 0.800265
\(86\) 109.036 62.9518i 1.26786 0.731997i
\(87\) 8.91887 + 8.98142i 0.102516 + 0.103235i
\(88\) −30.4277 −0.345769
\(89\) 70.5240 40.7171i 0.792405 0.457495i −0.0484035 0.998828i \(-0.515413\pi\)
0.840809 + 0.541333i \(0.182080\pi\)
\(90\) −60.3605 + 34.2890i −0.670672 + 0.380989i
\(91\) 59.9500 + 79.3628i 0.658791 + 0.872118i
\(92\) −14.0550 8.11468i −0.152772 0.0882030i
\(93\) 150.116 + 40.7862i 1.61415 + 0.438561i
\(94\) 34.2551 59.3316i 0.364416 0.631187i
\(95\) 95.1136i 1.00120i
\(96\) −61.5216 61.9530i −0.640850 0.645344i
\(97\) −23.4733 40.6570i −0.241993 0.419144i 0.719289 0.694711i \(-0.244468\pi\)
−0.961282 + 0.275567i \(0.911134\pi\)
\(98\) 20.1874 + 11.6552i 0.205994 + 0.118931i
\(99\) −55.3541 0.386854i −0.559133 0.00390762i
\(100\) 14.8671 25.7505i 0.148671 0.257505i
\(101\) 36.9184i 0.365529i −0.983157 0.182764i \(-0.941495\pi\)
0.983157 0.182764i \(-0.0585045\pi\)
\(102\) 40.3889 + 152.868i 0.395970 + 1.49871i
\(103\) −34.9957 60.6143i −0.339764 0.588488i 0.644624 0.764500i \(-0.277014\pi\)
−0.984388 + 0.176011i \(0.943680\pi\)
\(104\) 7.91247 + 63.8238i 0.0760814 + 0.613690i
\(105\) 70.0165 18.4989i 0.666824 0.176180i
\(106\) −0.934889 −0.00881971
\(107\) 97.4131 56.2415i 0.910403 0.525621i 0.0298423 0.999555i \(-0.490500\pi\)
0.880561 + 0.473933i \(0.157166\pi\)
\(108\) −37.3349 38.1260i −0.345693 0.353018i
\(109\) −206.693 −1.89627 −0.948133 0.317875i \(-0.897031\pi\)
−0.948133 + 0.317875i \(0.897031\pi\)
\(110\) −41.0857 + 23.7208i −0.373506 + 0.215644i
\(111\) −129.458 35.1735i −1.16629 0.316878i
\(112\) 76.5062 + 132.513i 0.683091 + 1.18315i
\(113\) 173.223i 1.53295i −0.642276 0.766473i \(-0.722010\pi\)
0.642276 0.766473i \(-0.277990\pi\)
\(114\) 213.750 56.4744i 1.87500 0.495390i
\(115\) 25.9094 0.225299
\(116\) 8.33860i 0.0718845i
\(117\) 13.5829 + 116.209i 0.116093 + 0.993238i
\(118\) −117.251 −0.993650
\(119\) 164.945i 1.38609i
\(120\) 45.1887 + 12.2777i 0.376572 + 0.102314i
\(121\) 83.1700 0.687355
\(122\) 108.730 62.7753i 0.891230 0.514552i
\(123\) −160.556 + 42.4201i −1.30533 + 0.344879i
\(124\) 51.2398 + 88.7500i 0.413225 + 0.715726i
\(125\) 126.349i 1.01079i
\(126\) 83.1457 + 146.365i 0.659887 + 1.16163i
\(127\) 82.2784 + 142.510i 0.647862 + 1.12213i 0.983633 + 0.180186i \(0.0576699\pi\)
−0.335771 + 0.941944i \(0.608997\pi\)
\(128\) 138.048i 1.07850i
\(129\) −149.099 40.5099i −1.15581 0.314030i
\(130\) 60.4397 + 80.0110i 0.464921 + 0.615469i
\(131\) 143.908 83.0856i 1.09854 0.634241i 0.162701 0.986675i \(-0.447979\pi\)
0.935836 + 0.352435i \(0.114646\pi\)
\(132\) −25.6962 25.8764i −0.194668 0.196033i
\(133\) −230.637 −1.73411
\(134\) 54.8567 + 31.6715i 0.409378 + 0.236355i
\(135\) 82.0512 + 22.9101i 0.607787 + 0.169704i
\(136\) 53.3274 92.3658i 0.392114 0.679161i
\(137\) 164.457 94.9496i 1.20042 0.693063i 0.239771 0.970829i \(-0.422928\pi\)
0.960648 + 0.277767i \(0.0895943\pi\)
\(138\) 15.3839 + 58.2267i 0.111478 + 0.421932i
\(139\) 3.92118 0.0282099 0.0141050 0.999901i \(-0.495510\pi\)
0.0141050 + 0.999901i \(0.495510\pi\)
\(140\) 41.3170 + 23.8544i 0.295122 + 0.170389i
\(141\) −81.2841 + 21.4759i −0.576483 + 0.152311i
\(142\) 9.98911 17.3016i 0.0703459 0.121843i
\(143\) 9.83737 + 79.3505i 0.0687928 + 0.554898i
\(144\) −1.25790 + 179.991i −0.00873544 + 1.24993i
\(145\) −6.65610 11.5287i −0.0459041 0.0795083i
\(146\) 60.7148i 0.415855i
\(147\) −7.30710 27.6567i −0.0497082 0.188141i
\(148\) −44.1886 76.5369i −0.298572 0.517141i
\(149\) 275.096i 1.84628i 0.384462 + 0.923141i \(0.374387\pi\)
−0.384462 + 0.923141i \(0.625613\pi\)
\(150\) −106.678 + 28.1852i −0.711189 + 0.187901i
\(151\) −10.8588 + 18.8080i −0.0719127 + 0.124556i −0.899740 0.436427i \(-0.856244\pi\)
0.827827 + 0.560984i \(0.189577\pi\)
\(152\) −129.152 74.5659i −0.849684 0.490565i
\(153\) 98.1877 167.354i 0.641750 1.09382i
\(154\) 57.5195 + 99.6268i 0.373503 + 0.646927i
\(155\) −141.685 81.8021i −0.914099 0.527755i
\(156\) −47.5950 + 60.6280i −0.305096 + 0.388641i
\(157\) 31.9519 + 55.3422i 0.203515 + 0.352498i 0.949659 0.313287i \(-0.101430\pi\)
−0.746144 + 0.665785i \(0.768097\pi\)
\(158\) −34.8782 20.1369i −0.220748 0.127449i
\(159\) 0.808398 + 0.814067i 0.00508426 + 0.00511992i
\(160\) 45.9132 + 79.5239i 0.286957 + 0.497024i
\(161\) 62.8266i 0.390227i
\(162\) −2.76764 + 197.998i −0.0170842 + 1.22221i
\(163\) −88.7596 + 153.736i −0.544537 + 0.943166i 0.454098 + 0.890952i \(0.349961\pi\)
−0.998636 + 0.0522150i \(0.983372\pi\)
\(164\) −94.7447 54.7009i −0.577712 0.333542i
\(165\) 56.1820 + 15.2645i 0.340497 + 0.0925123i
\(166\) −56.0518 + 97.0846i −0.337662 + 0.584847i
\(167\) −55.2953 31.9247i −0.331109 0.191166i 0.325224 0.945637i \(-0.394560\pi\)
−0.656334 + 0.754471i \(0.727894\pi\)
\(168\) 29.7716 109.576i 0.177212 0.652238i
\(169\) 163.884 41.2688i 0.969726 0.244194i
\(170\) 166.292i 0.978188i
\(171\) −234.006 137.293i −1.36845 0.802880i
\(172\) −50.8928 88.1489i −0.295888 0.512493i
\(173\) 212.899 122.917i 1.23063 0.710505i 0.263469 0.964668i \(-0.415133\pi\)
0.967161 + 0.254163i \(0.0818001\pi\)
\(174\) 21.9565 21.8036i 0.126187 0.125308i
\(175\) 115.106 0.657748
\(176\) 123.009i 0.698913i
\(177\) 101.387 + 102.098i 0.572805 + 0.576822i
\(178\) −99.5394 172.407i −0.559210 0.968580i
\(179\) −101.540 + 58.6239i −0.567260 + 0.327508i −0.756054 0.654509i \(-0.772876\pi\)
0.188794 + 0.982017i \(0.439542\pi\)
\(180\) 27.7206 + 48.7979i 0.154003 + 0.271100i
\(181\) 260.434 1.43886 0.719431 0.694564i \(-0.244403\pi\)
0.719431 + 0.694564i \(0.244403\pi\)
\(182\) 194.015 146.557i 1.06602 0.805260i
\(183\) −148.681 40.3964i −0.812466 0.220745i
\(184\) 20.3121 35.1817i 0.110392 0.191205i
\(185\) 122.188 + 70.5450i 0.660473 + 0.381325i
\(186\) 99.7083 366.982i 0.536066 1.97302i
\(187\) 66.3007 114.836i 0.354549 0.614097i
\(188\) −47.9661 27.6932i −0.255139 0.147304i
\(189\) 55.5536 198.962i 0.293934 1.05271i
\(190\) −232.520 −1.22379
\(191\) −302.794 + 174.818i −1.58531 + 0.915280i −0.591246 + 0.806491i \(0.701364\pi\)
−0.994065 + 0.108789i \(0.965303\pi\)
\(192\) 18.8387 18.7075i 0.0981184 0.0974351i
\(193\) 148.706 257.567i 0.770499 1.33454i −0.166791 0.985992i \(-0.553341\pi\)
0.937290 0.348551i \(-0.113326\pi\)
\(194\) −99.3924 + 57.3843i −0.512332 + 0.295795i
\(195\) 17.4085 121.814i 0.0892744 0.624688i
\(196\) 9.42254 16.3203i 0.0480742 0.0832669i
\(197\) −301.201 + 173.899i −1.52894 + 0.882734i −0.529534 + 0.848289i \(0.677633\pi\)
−0.999407 + 0.0344457i \(0.989033\pi\)
\(198\) −0.945728 + 135.322i −0.00477640 + 0.683445i
\(199\) 32.5912 56.4496i 0.163775 0.283666i −0.772445 0.635082i \(-0.780966\pi\)
0.936220 + 0.351416i \(0.114300\pi\)
\(200\) 64.4571 + 37.2143i 0.322285 + 0.186072i
\(201\) −19.8561 75.1535i −0.0987866 0.373898i
\(202\) −90.2529 −0.446797
\(203\) −27.9554 + 16.1401i −0.137711 + 0.0795077i
\(204\) 123.585 32.6520i 0.605808 0.160059i
\(205\) 174.655 0.851975
\(206\) −148.181 + 85.5525i −0.719327 + 0.415304i
\(207\) 37.3992 63.7443i 0.180672 0.307943i
\(208\) 258.018 31.9874i 1.24047 0.153786i
\(209\) −160.571 92.7060i −0.768284 0.443569i
\(210\) −45.2235 171.167i −0.215350 0.815079i
\(211\) 46.6252 80.7573i 0.220973 0.382736i −0.734131 0.679008i \(-0.762410\pi\)
0.955104 + 0.296272i \(0.0957435\pi\)
\(212\) 0.755803i 0.00356511i
\(213\) −23.7032 + 6.26257i −0.111283 + 0.0294017i
\(214\) −137.491 238.142i −0.642483 1.11281i
\(215\) 140.726 + 81.2480i 0.654538 + 0.377898i
\(216\) 95.4344 93.4543i 0.441826 0.432659i
\(217\) −198.358 + 343.566i −0.914092 + 1.58325i
\(218\) 505.294i 2.31786i
\(219\) 52.8682 52.5000i 0.241407 0.239726i
\(220\) 19.1769 + 33.2153i 0.0871677 + 0.150979i
\(221\) −258.116 109.207i −1.16794 0.494150i
\(222\) −85.9872 + 316.481i −0.387330 + 1.42559i
\(223\) −246.243 −1.10423 −0.552115 0.833768i \(-0.686179\pi\)
−0.552115 + 0.833768i \(0.686179\pi\)
\(224\) 192.834 111.333i 0.860865 0.497021i
\(225\) 116.787 + 68.5198i 0.519055 + 0.304533i
\(226\) −423.471 −1.87377
\(227\) −164.409 + 94.9215i −0.724268 + 0.418156i −0.816322 0.577598i \(-0.803990\pi\)
0.0920534 + 0.995754i \(0.470657\pi\)
\(228\) −45.6562 172.804i −0.200247 0.757914i
\(229\) 21.0010 + 36.3747i 0.0917072 + 0.158842i 0.908230 0.418472i \(-0.137434\pi\)
−0.816522 + 0.577314i \(0.804101\pi\)
\(230\) 63.3397i 0.275390i
\(231\) 37.0142 136.233i 0.160235 0.589753i
\(232\) −20.8726 −0.0899683
\(233\) 151.808i 0.651536i 0.945450 + 0.325768i \(0.105623\pi\)
−0.945450 + 0.325768i \(0.894377\pi\)
\(234\) 284.091 33.2056i 1.21407 0.141904i
\(235\) 88.4219 0.376263
\(236\) 94.7902i 0.401654i
\(237\) 12.6246 + 47.7830i 0.0532685 + 0.201616i
\(238\) −403.234 −1.69426
\(239\) 171.028 98.7429i 0.715597 0.413150i −0.0975330 0.995232i \(-0.531095\pi\)
0.813130 + 0.582082i \(0.197762\pi\)
\(240\) 49.6344 182.682i 0.206810 0.761176i
\(241\) 4.05145 + 7.01731i 0.0168110 + 0.0291175i 0.874309 0.485371i \(-0.161315\pi\)
−0.857498 + 0.514488i \(0.827982\pi\)
\(242\) 203.322i 0.840175i
\(243\) 174.803 168.799i 0.719352 0.694645i
\(244\) −50.7502 87.9018i −0.207992 0.360253i
\(245\) 30.0853i 0.122797i
\(246\) 103.703 + 392.505i 0.421556 + 1.59555i
\(247\) −152.700 + 360.915i −0.618221 + 1.46119i
\(248\) −222.153 + 128.260i −0.895779 + 0.517178i
\(249\) 133.006 35.1411i 0.534159 0.141129i
\(250\) 308.879 1.23552
\(251\) 95.8522 + 55.3403i 0.381881 + 0.220479i 0.678636 0.734474i \(-0.262571\pi\)
−0.296755 + 0.954954i \(0.595905\pi\)
\(252\) 118.328 67.2184i 0.469555 0.266740i
\(253\) 25.2536 43.7405i 0.0998165 0.172887i
\(254\) 348.390 201.143i 1.37161 0.791901i
\(255\) −144.801 + 143.792i −0.567847 + 0.563892i
\(256\) 302.082 1.18001
\(257\) −435.380 251.367i −1.69408 0.978080i −0.951157 0.308708i \(-0.900103\pi\)
−0.742927 0.669372i \(-0.766563\pi\)
\(258\) −99.0329 + 364.497i −0.383849 + 1.41278i
\(259\) 171.061 296.287i 0.660469 1.14397i
\(260\) 64.6842 48.8619i 0.248785 0.187930i
\(261\) −37.9716 0.265372i −0.145485 0.00101675i
\(262\) −203.116 351.807i −0.775252 1.34278i
\(263\) 201.900i 0.767681i 0.923399 + 0.383840i \(0.125399\pi\)
−0.923399 + 0.383840i \(0.874601\pi\)
\(264\) 64.7721 64.3210i 0.245349 0.243640i
\(265\) −0.603302 1.04495i −0.00227661 0.00394321i
\(266\) 563.828i 2.11965i
\(267\) −64.0543 + 235.756i −0.239904 + 0.882980i
\(268\) 25.6045 44.3484i 0.0955393 0.165479i
\(269\) 241.432 + 139.391i 0.897515 + 0.518180i 0.876393 0.481596i \(-0.159943\pi\)
0.0211218 + 0.999777i \(0.493276\pi\)
\(270\) 56.0074 200.587i 0.207435 0.742916i
\(271\) −58.8505 101.932i −0.217161 0.376133i 0.736778 0.676135i \(-0.236346\pi\)
−0.953939 + 0.300001i \(0.903013\pi\)
\(272\) −373.403 215.584i −1.37281 0.792590i
\(273\) −295.381 42.2131i −1.08198 0.154627i
\(274\) −232.119 402.043i −0.847151 1.46731i
\(275\) 80.1379 + 46.2676i 0.291410 + 0.168246i
\(276\) 47.0728 12.4370i 0.170554 0.0450616i
\(277\) −55.1523 95.5265i −0.199106 0.344861i 0.749133 0.662420i \(-0.230470\pi\)
−0.948239 + 0.317558i \(0.897137\pi\)
\(278\) 9.58595i 0.0344818i
\(279\) −405.772 + 230.507i −1.45438 + 0.826189i
\(280\) −59.7108 + 103.422i −0.213253 + 0.369365i
\(281\) −15.0724 8.70203i −0.0536383 0.0309681i 0.472941 0.881094i \(-0.343192\pi\)
−0.526579 + 0.850126i \(0.676526\pi\)
\(282\) 52.5012 + 198.712i 0.186174 + 0.704652i
\(283\) −246.465 + 426.889i −0.870900 + 1.50844i −0.00983293 + 0.999952i \(0.503130\pi\)
−0.861067 + 0.508491i \(0.830203\pi\)
\(284\) −13.9874 8.07561i −0.0492513 0.0284352i
\(285\) 201.060 + 202.470i 0.705474 + 0.710422i
\(286\) 193.985 24.0490i 0.678269 0.0840875i
\(287\) 423.512i 1.47565i
\(288\) 261.924 + 1.83052i 0.909460 + 0.00635596i
\(289\) 87.8963 + 152.241i 0.304140 + 0.526785i
\(290\) −28.1837 + 16.2719i −0.0971853 + 0.0561100i
\(291\) 135.913 + 36.9272i 0.467054 + 0.126898i
\(292\) 49.0843 0.168097
\(293\) 346.112i 1.18127i 0.806938 + 0.590636i \(0.201123\pi\)
−0.806938 + 0.590636i \(0.798877\pi\)
\(294\) −67.6112 + 17.8634i −0.229970 + 0.0607598i
\(295\) −75.6641 131.054i −0.256489 0.444251i
\(296\) 191.582 110.610i 0.647237 0.373682i
\(297\) 118.651 116.189i 0.399499 0.391210i
\(298\) 672.516 2.25677
\(299\) −98.3150 41.5964i −0.328813 0.139118i
\(300\) 22.7861 + 86.2431i 0.0759536 + 0.287477i
\(301\) 197.014 341.239i 0.654533 1.13368i
\(302\) 45.9792 + 26.5461i 0.152249 + 0.0879011i
\(303\) 78.0416 + 78.5889i 0.257563 + 0.259369i
\(304\) −301.444 + 522.117i −0.991594 + 1.71749i
\(305\) 140.331 + 81.0203i 0.460102 + 0.265640i
\(306\) −409.124 240.036i −1.33701 0.784430i
\(307\) 446.987 1.45598 0.727992 0.685586i \(-0.240454\pi\)
0.727992 + 0.685586i \(0.240454\pi\)
\(308\) 80.5423 46.5011i 0.261501 0.150978i
\(309\) 202.628 + 55.0537i 0.655755 + 0.178167i
\(310\) −199.978 + 346.372i −0.645091 + 1.11733i
\(311\) 76.2524 44.0243i 0.245184 0.141557i −0.372373 0.928083i \(-0.621456\pi\)
0.617557 + 0.786526i \(0.288122\pi\)
\(312\) −151.760 119.137i −0.486411 0.381849i
\(313\) −171.445 + 296.951i −0.547747 + 0.948726i 0.450681 + 0.892685i \(0.351181\pi\)
−0.998428 + 0.0560413i \(0.982152\pi\)
\(314\) 135.293 78.1114i 0.430869 0.248763i
\(315\) −109.941 + 187.387i −0.349019 + 0.594878i
\(316\) −16.2795 + 28.1969i −0.0515174 + 0.0892308i
\(317\) 290.108 + 167.494i 0.915166 + 0.528371i 0.882090 0.471081i \(-0.156136\pi\)
0.0330763 + 0.999453i \(0.489470\pi\)
\(318\) 1.99012 1.97626i 0.00625823 0.00621465i
\(319\) −25.9504 −0.0813493
\(320\) −24.1817 + 13.9613i −0.0755678 + 0.0436291i
\(321\) −88.4767 + 325.644i −0.275628 + 1.01447i
\(322\) −153.590 −0.476986
\(323\) 562.833 324.952i 1.74252 1.00604i
\(324\) 160.070 + 2.23747i 0.494043 + 0.00690578i
\(325\) 76.2096 180.125i 0.234491 0.554231i
\(326\) 375.833 + 216.987i 1.15286 + 0.665604i
\(327\) 439.991 436.927i 1.34554 1.33617i
\(328\) 136.924 237.159i 0.417450 0.723045i
\(329\) 214.410i 0.651702i
\(330\) 37.3166 137.346i 0.113081 0.416199i
\(331\) 27.4099 + 47.4753i 0.0828092 + 0.143430i 0.904456 0.426568i \(-0.140277\pi\)
−0.821646 + 0.569998i \(0.806944\pi\)
\(332\) 78.4872 + 45.3146i 0.236407 + 0.136490i
\(333\) 349.933 198.786i 1.05085 0.596955i
\(334\) −78.0451 + 135.178i −0.233668 + 0.404725i
\(335\) 81.7530i 0.244039i
\(336\) −442.978 120.356i −1.31839 0.358203i
\(337\) −93.3550 161.696i −0.277018 0.479809i 0.693624 0.720337i \(-0.256013\pi\)
−0.970642 + 0.240528i \(0.922679\pi\)
\(338\) −100.888 400.640i −0.298486 1.18533i
\(339\) 366.175 + 368.743i 1.08016 + 1.08774i
\(340\) −134.437 −0.395404
\(341\) −276.198 + 159.463i −0.809964 + 0.467633i
\(342\) −335.634 + 572.064i −0.981385 + 1.67270i
\(343\) −301.938 −0.880287
\(344\) 220.649 127.391i 0.641420 0.370324i
\(345\) −55.1539 + 54.7698i −0.159866 + 0.158753i
\(346\) −300.491 520.466i −0.868471 1.50424i
\(347\) 156.844i 0.452000i 0.974127 + 0.226000i \(0.0725650\pi\)
−0.974127 + 0.226000i \(0.927435\pi\)
\(348\) −17.6269 17.7505i −0.0506521 0.0510073i
\(349\) −21.9346 −0.0628499 −0.0314250 0.999506i \(-0.510005\pi\)
−0.0314250 + 0.999506i \(0.510005\pi\)
\(350\) 281.395i 0.803985i
\(351\) −274.568 218.663i −0.782244 0.622972i
\(352\) 179.004 0.508534
\(353\) 535.408i 1.51674i 0.651827 + 0.758368i \(0.274003\pi\)
−0.651827 + 0.758368i \(0.725997\pi\)
\(354\) 249.594 247.856i 0.705067 0.700157i
\(355\) 25.7847 0.0726329
\(356\) −139.381 + 80.4717i −0.391520 + 0.226044i
\(357\) 348.676 + 351.121i 0.976683 + 0.983532i
\(358\) 143.316 + 248.230i 0.400323 + 0.693380i
\(359\) 100.858i 0.280941i 0.990085 + 0.140471i \(0.0448615\pi\)
−0.990085 + 0.140471i \(0.955138\pi\)
\(360\) −122.148 + 69.3884i −0.339299 + 0.192746i
\(361\) −273.869 474.355i −0.758641 1.31400i
\(362\) 636.673i 1.75876i
\(363\) −177.046 + 175.813i −0.487729 + 0.484332i
\(364\) −118.483 156.850i −0.325503 0.430906i
\(365\) −67.8625 + 39.1804i −0.185925 + 0.107344i
\(366\) −98.7554 + 363.475i −0.269824 + 0.993101i
\(367\) −573.781 −1.56344 −0.781718 0.623632i \(-0.785656\pi\)
−0.781718 + 0.623632i \(0.785656\pi\)
\(368\) −142.227 82.1150i −0.386487 0.223139i
\(369\) 252.107 429.699i 0.683217 1.16450i
\(370\) 172.459 298.707i 0.466104 0.807317i
\(371\) −2.53385 + 1.46292i −0.00682978 + 0.00394318i
\(372\) −296.683 80.6083i −0.797536 0.216689i
\(373\) −292.915 −0.785294 −0.392647 0.919689i \(-0.628441\pi\)
−0.392647 + 0.919689i \(0.628441\pi\)
\(374\) −280.735 162.083i −0.750629 0.433376i
\(375\) −267.088 268.961i −0.712233 0.717228i
\(376\) 69.3199 120.066i 0.184361 0.319323i
\(377\) 6.74819 + 54.4324i 0.0178997 + 0.144383i
\(378\) −486.395 135.810i −1.28676 0.359285i
\(379\) 111.262 + 192.712i 0.293568 + 0.508475i 0.974651 0.223731i \(-0.0718238\pi\)
−0.681082 + 0.732207i \(0.738491\pi\)
\(380\) 187.979i 0.494682i
\(381\) −476.400 129.437i −1.25039 0.339729i
\(382\) 427.372 + 740.230i 1.11877 + 1.93777i
\(383\) 567.525i 1.48179i −0.671622 0.740894i \(-0.734402\pi\)
0.671622 0.740894i \(-0.265598\pi\)
\(384\) −291.820 293.866i −0.759948 0.765277i
\(385\) −74.2369 + 128.582i −0.192823 + 0.333980i
\(386\) −629.663 363.536i −1.63125 0.941804i
\(387\) 403.024 228.946i 1.04141 0.591590i
\(388\) 46.3918 + 80.3529i 0.119566 + 0.207095i
\(389\) 192.834 + 111.333i 0.495718 + 0.286203i 0.726944 0.686697i \(-0.240940\pi\)
−0.231225 + 0.972900i \(0.574273\pi\)
\(390\) −297.794 42.5579i −0.763574 0.109123i
\(391\) 88.5185 + 153.319i 0.226390 + 0.392119i
\(392\) 40.8519 + 23.5859i 0.104214 + 0.0601681i
\(393\) −130.707 + 481.073i −0.332587 + 1.22410i
\(394\) 425.123 + 736.335i 1.07899 + 1.86887i
\(395\) 51.9790i 0.131592i
\(396\) 109.400 + 0.764565i 0.276262 + 0.00193072i
\(397\) 54.6826 94.7131i 0.137740 0.238572i −0.788901 0.614520i \(-0.789350\pi\)
0.926641 + 0.375948i \(0.122683\pi\)
\(398\) −138.000 79.6744i −0.346734 0.200187i
\(399\) 490.961 487.541i 1.23048 1.22191i
\(400\) 150.445 260.578i 0.376112 0.651444i
\(401\) 143.236 + 82.6971i 0.357196 + 0.206227i 0.667850 0.744296i \(-0.267215\pi\)
−0.310654 + 0.950523i \(0.600548\pi\)
\(402\) −183.725 + 48.5415i −0.457027 + 0.120750i
\(403\) 406.305 + 537.872i 1.00820 + 1.33467i
\(404\) 72.9641i 0.180604i
\(405\) −223.094 + 124.679i −0.550848 + 0.307848i
\(406\) 39.4570 + 68.3415i 0.0971846 + 0.168329i
\(407\) 238.189 137.519i 0.585232 0.337884i
\(408\) 81.7325 + 309.350i 0.200325 + 0.758210i
\(409\) 45.5352 0.111333 0.0556665 0.998449i \(-0.482272\pi\)
0.0556665 + 0.998449i \(0.482272\pi\)
\(410\) 426.972i 1.04139i
\(411\) −149.370 + 549.767i −0.363432 + 1.33763i
\(412\) 69.1642 + 119.796i 0.167874 + 0.290767i
\(413\) −317.787 + 183.474i −0.769460 + 0.444248i
\(414\) −155.833 91.4283i −0.376408 0.220841i
\(415\) −144.685 −0.348639
\(416\) −46.5484 375.470i −0.111895 0.902572i
\(417\) −8.34709 + 8.28896i −0.0200170 + 0.0198776i
\(418\) −226.635 + 392.543i −0.542188 + 0.939097i
\(419\) −339.027 195.737i −0.809134 0.467154i 0.0375209 0.999296i \(-0.488054\pi\)
−0.846655 + 0.532142i \(0.821387\pi\)
\(420\) −138.378 + 36.5605i −0.329472 + 0.0870489i
\(421\) 111.844 193.719i 0.265662 0.460140i −0.702075 0.712103i \(-0.747743\pi\)
0.967737 + 0.251963i \(0.0810762\pi\)
\(422\) −197.424 113.983i −0.467830 0.270102i
\(423\) 127.633 217.542i 0.301734 0.514284i
\(424\) −1.89188 −0.00446197
\(425\) −280.898 + 162.177i −0.660937 + 0.381592i
\(426\) 15.3098 + 57.9463i 0.0359386 + 0.136024i
\(427\) 196.462 340.283i 0.460099 0.796915i
\(428\) −192.524 + 111.154i −0.449822 + 0.259705i
\(429\) −188.680 148.120i −0.439813 0.345268i
\(430\) 198.624 344.026i 0.461915 0.800061i
\(431\) −210.330 + 121.434i −0.488006 + 0.281750i −0.723747 0.690066i \(-0.757582\pi\)
0.235741 + 0.971816i \(0.424248\pi\)
\(432\) −377.803 385.809i −0.874545 0.893075i
\(433\) −31.9975 + 55.4212i −0.0738972 + 0.127994i −0.900606 0.434636i \(-0.856877\pi\)
0.826709 + 0.562630i \(0.190210\pi\)
\(434\) 839.902 + 484.918i 1.93526 + 1.11732i
\(435\) 38.5394 + 10.4711i 0.0885964 + 0.0240714i
\(436\) 408.500 0.936927
\(437\) 214.380 123.772i 0.490573 0.283232i
\(438\) −128.345 129.245i −0.293024 0.295079i
\(439\) −243.386 −0.554411 −0.277205 0.960811i \(-0.589408\pi\)
−0.277205 + 0.960811i \(0.589408\pi\)
\(440\) −83.1425 + 48.0023i −0.188960 + 0.109096i
\(441\) 74.0181 + 43.4269i 0.167841 + 0.0984736i
\(442\) −266.974 + 631.006i −0.604014 + 1.42761i
\(443\) −8.10700 4.68058i −0.0183002 0.0105656i 0.490822 0.871260i \(-0.336697\pi\)
−0.509122 + 0.860694i \(0.670030\pi\)
\(444\) 255.856 + 69.5155i 0.576252 + 0.156567i
\(445\) 128.469 222.516i 0.288695 0.500035i
\(446\) 601.981i 1.34973i
\(447\) −581.524 585.602i −1.30095 1.31007i
\(448\) 33.8542 + 58.6371i 0.0755673 + 0.130886i
\(449\) −351.048 202.678i −0.781844 0.451398i 0.0552392 0.998473i \(-0.482408\pi\)
−0.837083 + 0.547075i \(0.815741\pi\)
\(450\) 167.508 285.505i 0.372239 0.634456i
\(451\) 170.234 294.854i 0.377459 0.653777i
\(452\) 342.352i 0.757415i
\(453\) −16.6428 62.9914i −0.0367391 0.139054i
\(454\) 232.051 + 401.924i 0.511125 + 0.885295i
\(455\) 289.013 + 122.279i 0.635193 + 0.268746i
\(456\) 432.553 114.284i 0.948581 0.250622i
\(457\) 9.69301 0.0212101 0.0106050 0.999944i \(-0.496624\pi\)
0.0106050 + 0.999944i \(0.496624\pi\)
\(458\) 88.9238 51.3402i 0.194157 0.112097i
\(459\) 144.755 + 563.808i 0.315370 + 1.22834i
\(460\) −51.2064 −0.111318
\(461\) −295.284 + 170.483i −0.640530 + 0.369810i −0.784819 0.619725i \(-0.787244\pi\)
0.144289 + 0.989536i \(0.453911\pi\)
\(462\) −333.043 90.4872i −0.720873 0.195860i
\(463\) 235.726 + 408.289i 0.509127 + 0.881834i 0.999944 + 0.0105715i \(0.00336507\pi\)
−0.490817 + 0.871263i \(0.663302\pi\)
\(464\) 84.3809i 0.181855i
\(465\) 474.529 125.374i 1.02049 0.269622i
\(466\) 371.119 0.796392
\(467\) 766.744i 1.64185i −0.571036 0.820925i \(-0.693458\pi\)
0.571036 0.820925i \(-0.306542\pi\)
\(468\) −26.8448 229.671i −0.0573607 0.490750i
\(469\) 198.239 0.422684
\(470\) 216.161i 0.459918i
\(471\) −185.004 50.2653i −0.392790 0.106720i
\(472\) −237.273 −0.502697
\(473\) 274.327 158.383i 0.579972 0.334847i
\(474\) 116.813 30.8629i 0.246441 0.0651117i
\(475\) 226.766 + 392.771i 0.477403 + 0.826885i
\(476\) 325.991i 0.684854i
\(477\) −3.44170 0.0240531i −0.00721531 5.04258e-5i
\(478\) −241.393 418.105i −0.505006 0.874696i
\(479\) 226.151i 0.472132i 0.971737 + 0.236066i \(0.0758581\pi\)
−0.971737 + 0.236066i \(0.924142\pi\)
\(480\) −265.841 72.2286i −0.553836 0.150476i
\(481\) −350.392 463.854i −0.728465 0.964354i
\(482\) 17.1549 9.90441i 0.0355912 0.0205486i
\(483\) 132.809 + 133.740i 0.274966 + 0.276895i
\(484\) −164.374 −0.339616
\(485\) −128.280 74.0623i −0.264494 0.152706i
\(486\) −412.656 427.333i −0.849086 0.879286i
\(487\) 313.254 542.572i 0.643232 1.11411i −0.341475 0.939891i \(-0.610926\pi\)
0.984707 0.174220i \(-0.0557403\pi\)
\(488\) 220.030 127.035i 0.450882 0.260317i
\(489\) −136.038 514.890i −0.278196 1.05294i
\(490\) 73.5483 0.150099
\(491\) 336.641 + 194.360i 0.685623 + 0.395845i 0.801970 0.597364i \(-0.203785\pi\)
−0.116347 + 0.993209i \(0.537119\pi\)
\(492\) 317.317 83.8375i 0.644953 0.170401i
\(493\) 45.4806 78.7747i 0.0922527 0.159786i
\(494\) 882.314 + 373.301i 1.78606 + 0.755670i
\(495\) −151.863 + 86.2689i −0.306794 + 0.174281i
\(496\) 518.512 + 898.089i 1.04539 + 1.81066i
\(497\) 62.5240i 0.125803i
\(498\) −85.9080 325.154i −0.172506 0.652919i
\(499\) 16.1707 + 28.0084i 0.0324062 + 0.0561291i 0.881774 0.471673i \(-0.156350\pi\)
−0.849367 + 0.527802i \(0.823016\pi\)
\(500\) 249.711i 0.499421i
\(501\) 185.194 48.9296i 0.369648 0.0976638i
\(502\) 135.288 234.326i 0.269498 0.466785i
\(503\) 431.726 + 249.257i 0.858302 + 0.495541i 0.863443 0.504446i \(-0.168303\pi\)
−0.00514126 + 0.999987i \(0.501637\pi\)
\(504\) 168.257 + 296.190i 0.333843 + 0.587680i
\(505\) −58.2419 100.878i −0.115331 0.199758i
\(506\) −106.931 61.7364i −0.211325 0.122009i
\(507\) −261.625 + 434.283i −0.516025 + 0.856574i
\(508\) −162.612 281.652i −0.320102 0.554434i
\(509\) 793.208 + 457.959i 1.55837 + 0.899723i 0.997414 + 0.0718741i \(0.0228980\pi\)
0.560952 + 0.827849i \(0.310435\pi\)
\(510\) 351.524 + 353.989i 0.689262 + 0.694096i
\(511\) 95.0068 + 164.557i 0.185923 + 0.322029i
\(512\) 186.295i 0.363857i
\(513\) 788.354 202.406i 1.53675 0.394553i
\(514\) −614.506 + 1064.36i −1.19554 + 2.07073i
\(515\) −191.249 110.417i −0.371356 0.214403i
\(516\) 294.674 + 80.0623i 0.571073 + 0.155159i
\(517\) 86.1836 149.274i 0.166699 0.288732i
\(518\) −724.321 418.187i −1.39830 0.807311i
\(519\) −193.368 + 711.703i −0.372578 + 1.37130i
\(520\) 122.308 + 161.913i 0.235208 + 0.311372i
\(521\) 62.7872i 0.120513i −0.998183 0.0602564i \(-0.980808\pi\)
0.998183 0.0602564i \(-0.0191918\pi\)
\(522\) −0.648746 + 92.8276i −0.00124281 + 0.177831i
\(523\) 77.4887 + 134.214i 0.148162 + 0.256624i 0.930548 0.366169i \(-0.119331\pi\)
−0.782386 + 0.622794i \(0.785998\pi\)
\(524\) −284.415 + 164.207i −0.542777 + 0.313373i
\(525\) −245.028 + 243.322i −0.466720 + 0.463470i
\(526\) 493.577 0.938359
\(527\) 1117.89i 2.12124i
\(528\) −260.028 261.851i −0.492477 0.495930i
\(529\) −230.784 399.729i −0.436264 0.755632i
\(530\) −2.55455 + 1.47487i −0.00481990 + 0.00278277i
\(531\) −431.647 3.01666i −0.812895 0.00568109i
\(532\) 455.822 0.856807
\(533\) −662.739 280.400i −1.24341 0.526079i
\(534\) 576.343 + 156.591i 1.07929 + 0.293242i
\(535\) 177.452 307.355i 0.331685 0.574496i
\(536\) 111.010 + 64.0916i 0.207108 + 0.119574i
\(537\) 92.2246 339.438i 0.171740 0.632101i
\(538\) 340.763 590.218i 0.633388 1.09706i
\(539\) 50.7902 + 29.3237i 0.0942304 + 0.0544040i
\(540\) −162.163 45.2786i −0.300302 0.0838493i
\(541\) −849.273 −1.56982 −0.784910 0.619609i \(-0.787291\pi\)
−0.784910 + 0.619609i \(0.787291\pi\)
\(542\) −249.189 + 143.870i −0.459759 + 0.265442i
\(543\) −554.391 + 550.530i −1.02098 + 1.01387i
\(544\) −313.721 + 543.381i −0.576693 + 0.998862i
\(545\) −564.780 + 326.076i −1.03629 + 0.598304i
\(546\) −103.197 + 722.107i −0.189005 + 1.32254i
\(547\) −167.503 + 290.123i −0.306221 + 0.530390i −0.977532 0.210785i \(-0.932398\pi\)
0.671312 + 0.741175i \(0.265731\pi\)
\(548\) −325.028 + 187.655i −0.593116 + 0.342436i
\(549\) 401.894 228.304i 0.732048 0.415854i
\(550\) 113.109 195.910i 0.205652 0.356200i
\(551\) −110.148 63.5940i −0.199906 0.115416i
\(552\) 31.1315 + 117.830i 0.0563976 + 0.213459i
\(553\) −126.041 −0.227923
\(554\) −233.530 + 134.829i −0.421534 + 0.243373i
\(555\) −409.228 + 108.121i −0.737348 + 0.194813i
\(556\) −7.74967 −0.0139383
\(557\) 291.748 168.441i 0.523785 0.302407i −0.214697 0.976681i \(-0.568876\pi\)
0.738482 + 0.674273i \(0.235543\pi\)
\(558\) 563.511 + 991.975i 1.00988 + 1.77773i
\(559\) −403.552 534.229i −0.721919 0.955687i
\(560\) 418.100 + 241.390i 0.746607 + 0.431054i
\(561\) 101.616 + 384.607i 0.181134 + 0.685573i
\(562\) −21.2735 + 36.8468i −0.0378532 + 0.0655637i
\(563\) 911.694i 1.61935i 0.586878 + 0.809675i \(0.300357\pi\)
−0.586878 + 0.809675i \(0.699643\pi\)
\(564\) 160.647 42.4441i 0.284835 0.0752555i
\(565\) −273.274 473.325i −0.483671 0.837743i
\(566\) 1043.60 + 602.522i 1.84382 + 1.06453i
\(567\) 302.327 + 540.969i 0.533205 + 0.954091i
\(568\) 20.2143 35.0123i 0.0355886 0.0616413i
\(569\) 425.960i 0.748611i 0.927305 + 0.374306i \(0.122119\pi\)
−0.927305 + 0.374306i \(0.877881\pi\)
\(570\) 494.971 491.524i 0.868370 0.862322i
\(571\) 383.824 + 664.803i 0.672196 + 1.16428i 0.977280 + 0.211952i \(0.0679822\pi\)
−0.305084 + 0.952325i \(0.598685\pi\)
\(572\) −19.4422 156.825i −0.0339899 0.274170i
\(573\) 275.017 1012.22i 0.479959 1.76652i
\(574\) −1035.34 −1.80374
\(575\) −106.993 + 61.7723i −0.186074 + 0.107430i
\(576\) −0.556625 + 79.6462i −0.000966363 + 0.138275i
\(577\) −535.973 −0.928895 −0.464448 0.885601i \(-0.653747\pi\)
−0.464448 + 0.885601i \(0.653747\pi\)
\(578\) 372.177 214.877i 0.643905 0.371759i
\(579\) 227.915 + 862.637i 0.393636 + 1.48987i
\(580\) 13.1549 + 22.7849i 0.0226808 + 0.0392843i
\(581\) 350.841i 0.603856i
\(582\) 90.2744 332.260i 0.155111 0.570894i
\(583\) −2.35212 −0.00403451
\(584\) 122.865i 0.210385i
\(585\) 220.444 + 296.108i 0.376828 + 0.506167i
\(586\) 846.127 1.44390
\(587\) 16.8090i 0.0286355i −0.999897 0.0143178i \(-0.995442\pi\)
0.999897 0.0143178i \(-0.00455764\pi\)
\(588\) 14.4415 + 54.6596i 0.0245603 + 0.0929585i
\(589\) −1563.11 −2.65384
\(590\) −320.383 + 184.973i −0.543022 + 0.313514i
\(591\) 273.570 1006.89i 0.462893 1.70370i
\(592\) −447.158 774.501i −0.755335 1.30828i
\(593\) 363.547i 0.613065i 0.951860 + 0.306532i \(0.0991688\pi\)
−0.951860 + 0.306532i \(0.900831\pi\)
\(594\) −284.043 290.062i −0.478188 0.488320i
\(595\) −260.214 450.705i −0.437335 0.757487i
\(596\) 543.690i 0.912231i
\(597\) 49.9510 + 189.060i 0.0836700 + 0.316683i
\(598\) −101.689 + 240.347i −0.170049 + 0.401918i
\(599\) −808.916 + 467.028i −1.35044 + 0.779679i −0.988312 0.152448i \(-0.951284\pi\)
−0.362132 + 0.932127i \(0.617951\pi\)
\(600\) −215.878 + 57.0366i −0.359797 + 0.0950611i
\(601\) −201.542 −0.335344 −0.167672 0.985843i \(-0.553625\pi\)
−0.167672 + 0.985843i \(0.553625\pi\)
\(602\) −834.213 481.633i −1.38574 0.800055i
\(603\) 201.135 + 118.007i 0.333557 + 0.195700i
\(604\) 21.4610 37.1715i 0.0355314 0.0615422i
\(605\) 227.259 131.208i 0.375634 0.216872i
\(606\) 192.123 190.785i 0.317035 0.314827i
\(607\) 677.821 1.11667 0.558337 0.829614i \(-0.311440\pi\)
0.558337 + 0.829614i \(0.311440\pi\)
\(608\) 759.791 + 438.665i 1.24966 + 0.721489i
\(609\) 25.3908 93.4525i 0.0416927 0.153452i
\(610\) 198.067 343.062i 0.324700 0.562397i
\(611\) −335.522 141.957i −0.549137 0.232336i
\(612\) −194.055 + 330.752i −0.317083 + 0.540445i
\(613\) −314.267 544.326i −0.512671 0.887971i −0.999892 0.0146930i \(-0.995323\pi\)
0.487222 0.873278i \(-0.338010\pi\)
\(614\) 1092.73i 1.77969i
\(615\) −371.791 + 369.202i −0.604539 + 0.600328i
\(616\) 116.399 + 201.608i 0.188959 + 0.327286i
\(617\) 976.498i 1.58265i −0.611393 0.791327i \(-0.709391\pi\)
0.611393 0.791327i \(-0.290609\pi\)
\(618\) 134.587 495.357i 0.217779 0.801549i
\(619\) 337.425 584.436i 0.545112 0.944162i −0.453487 0.891263i \(-0.649820\pi\)
0.998600 0.0528997i \(-0.0168464\pi\)
\(620\) 280.022 + 161.671i 0.451648 + 0.260759i
\(621\) 55.1364 + 214.752i 0.0887864 + 0.345816i
\(622\) −107.625 186.411i −0.173030 0.299696i
\(623\) −539.568 311.520i −0.866080 0.500031i
\(624\) −481.629 + 613.514i −0.771841 + 0.983196i
\(625\) 11.2646 + 19.5109i 0.0180234 + 0.0312175i
\(626\) 725.945 + 419.125i 1.15966 + 0.669528i
\(627\) 537.782 142.086i 0.857707 0.226613i
\(628\) −63.1485 109.376i −0.100555 0.174166i
\(629\) 964.058i 1.53268i
\(630\) 458.096 + 268.768i 0.727137 + 0.426616i
\(631\) −425.578 + 737.123i −0.674451 + 1.16818i 0.302178 + 0.953251i \(0.402286\pi\)
−0.976629 + 0.214932i \(0.931047\pi\)
\(632\) −70.5808 40.7498i −0.111678 0.0644776i
\(633\) 71.4603 + 270.471i 0.112892 + 0.427284i
\(634\) 409.465 709.215i 0.645844 1.11863i
\(635\) 449.645 + 259.603i 0.708102 + 0.408823i
\(636\) −1.59769 1.60889i −0.00251209 0.00252970i
\(637\) 48.3005 114.161i 0.0758250 0.179216i
\(638\) 63.4400i 0.0994357i
\(639\) 37.2191 63.4373i 0.0582458 0.0992760i
\(640\) 217.783 + 377.212i 0.340286 + 0.589393i
\(641\) 171.938 99.2685i 0.268234 0.154865i −0.359851 0.933010i \(-0.617172\pi\)
0.628085 + 0.778145i \(0.283839\pi\)
\(642\) 796.088 + 216.295i 1.24001 + 0.336909i
\(643\) −1201.46 −1.86853 −0.934263 0.356585i \(-0.883941\pi\)
−0.934263 + 0.356585i \(0.883941\pi\)
\(644\) 124.168i 0.192808i
\(645\) −471.315 + 124.525i −0.730721 + 0.193062i
\(646\) −794.397 1375.94i −1.22972 2.12993i
\(647\) 951.412 549.298i 1.47050 0.848993i 0.471047 0.882108i \(-0.343876\pi\)
0.999452 + 0.0331157i \(0.0105430\pi\)
\(648\) −5.60070 + 400.676i −0.00864306 + 0.618328i
\(649\) −294.995 −0.454538
\(650\) −440.344 186.307i −0.677453 0.286626i
\(651\) −304.014 1150.66i −0.466995 1.76753i
\(652\) 175.421 303.838i 0.269051 0.466010i
\(653\) 80.1614 + 46.2812i 0.122759 + 0.0708747i 0.560122 0.828410i \(-0.310754\pi\)
−0.437363 + 0.899285i \(0.644088\pi\)
\(654\) −1068.14 1075.63i −1.63324 1.64469i
\(655\) 262.149 454.056i 0.400228 0.693215i
\(656\) −958.751 553.535i −1.46151 0.843804i
\(657\) −1.56209 + 223.516i −0.00237761 + 0.340206i
\(658\) −524.160 −0.796595
\(659\) 529.611 305.771i 0.803659 0.463993i −0.0410900 0.999155i \(-0.513083\pi\)
0.844749 + 0.535163i \(0.179750\pi\)
\(660\) −111.036 30.1682i −0.168236 0.0457095i
\(661\) 292.415 506.478i 0.442383 0.766229i −0.555483 0.831528i \(-0.687467\pi\)
0.997866 + 0.0652985i \(0.0208000\pi\)
\(662\) 116.061 67.0078i 0.175319 0.101220i
\(663\) 780.309 313.159i 1.17694 0.472336i
\(664\) −113.429 + 196.464i −0.170826 + 0.295879i
\(665\) −630.205 + 363.849i −0.947677 + 0.547141i
\(666\) −485.965 855.467i −0.729677 1.28448i
\(667\) 17.3233 30.0049i 0.0259720 0.0449848i
\(668\) 109.284 + 63.0949i 0.163598 + 0.0944534i
\(669\) 524.183 520.532i 0.783532 0.778075i
\(670\) 199.858 0.298296
\(671\) 273.558 157.939i 0.407687 0.235378i
\(672\) −175.144 + 644.627i −0.260631 + 0.959266i
\(673\) −289.120 −0.429598 −0.214799 0.976658i \(-0.568910\pi\)
−0.214799 + 0.976658i \(0.568910\pi\)
\(674\) −395.291 + 228.221i −0.586485 + 0.338607i
\(675\) −393.451 + 101.016i −0.582891 + 0.149654i
\(676\) −323.894 + 81.5622i −0.479133 + 0.120654i
\(677\) −963.176 556.090i −1.42271 0.821403i −0.426182 0.904637i \(-0.640142\pi\)
−0.996530 + 0.0832338i \(0.973475\pi\)
\(678\) 901.452 895.174i 1.32958 1.32032i
\(679\) −179.590 + 311.060i −0.264492 + 0.458114i
\(680\) 336.515i 0.494874i
\(681\) 149.326 549.604i 0.219275 0.807055i
\(682\) 389.832 + 675.209i 0.571602 + 0.990043i
\(683\) 943.198 + 544.556i 1.38096 + 0.797300i 0.992274 0.124069i \(-0.0395944\pi\)
0.388690 + 0.921369i \(0.372928\pi\)
\(684\) 462.480 + 271.340i 0.676140 + 0.396696i
\(685\) 299.582 518.892i 0.437346 0.757506i
\(686\) 738.137i 1.07600i
\(687\) −121.598 33.0378i −0.176998 0.0480899i
\(688\) −515.000 892.006i −0.748547 1.29652i
\(689\) 0.611649 + 4.93370i 0.000887735 + 0.00716067i
\(690\) 133.894 + 134.833i 0.194049 + 0.195409i
\(691\) −133.449 −0.193124 −0.0965621 0.995327i \(-0.530785\pi\)
−0.0965621 + 0.995327i \(0.530785\pi\)
\(692\) −420.766 + 242.929i −0.608043 + 0.351054i
\(693\) 209.189 + 368.246i 0.301861 + 0.531380i
\(694\) 383.430 0.552493
\(695\) 10.7145 6.18600i 0.0154165 0.00890072i
\(696\) 44.4320 44.1226i 0.0638391 0.0633945i
\(697\) 596.702 + 1033.52i 0.856100 + 1.48281i
\(698\) 53.6227i 0.0768234i
\(699\) −320.906 323.156i −0.459093 0.462313i
\(700\) −227.491 −0.324987
\(701\) 693.561i 0.989388i 0.869067 + 0.494694i \(0.164720\pi\)
−0.869067 + 0.494694i \(0.835280\pi\)
\(702\) −534.557 + 671.224i −0.761478 + 0.956160i
\(703\) 1348.01 1.91751
\(704\) 54.4317i 0.0773177i
\(705\) −188.225 + 186.915i −0.266986 + 0.265127i
\(706\) 1308.89 1.85395
\(707\) −244.614 + 141.228i −0.345989 + 0.199757i
\(708\) −200.377 201.782i −0.283018 0.285003i
\(709\) −78.2712 135.570i −0.110397 0.191212i 0.805534 0.592550i \(-0.201879\pi\)
−0.915930 + 0.401338i \(0.868545\pi\)
\(710\) 63.0347i 0.0887813i
\(711\) −127.883 75.0295i −0.179863 0.105527i
\(712\) −201.432 348.890i −0.282910 0.490014i
\(713\) 425.800i 0.597195i
\(714\) 858.372 852.394i 1.20220 1.19383i
\(715\) 152.062 + 201.303i 0.212675 + 0.281542i
\(716\) 200.679 115.862i 0.280278 0.161819i
\(717\) −155.338 + 571.730i −0.216650 + 0.797393i
\(718\) 246.563 0.343403
\(719\) −105.238 60.7593i −0.146367 0.0845053i 0.425028 0.905180i \(-0.360264\pi\)
−0.571395 + 0.820675i \(0.693598\pi\)
\(720\) 280.514 + 493.801i 0.389602 + 0.685835i
\(721\) −267.746 + 463.750i −0.371354 + 0.643204i
\(722\) −1159.64 + 669.517i −1.60615 + 0.927309i
\(723\) −23.4582 6.37356i −0.0324457 0.00881543i
\(724\) −514.712 −0.710929
\(725\) 54.9726 + 31.7384i 0.0758242 + 0.0437771i
\(726\) 429.802 + 432.816i 0.592014 + 0.596166i
\(727\) 343.562 595.068i 0.472576 0.818525i −0.526932 0.849908i \(-0.676658\pi\)
0.999507 + 0.0313826i \(0.00999103\pi\)
\(728\) 392.616 296.579i 0.539308 0.407389i
\(729\) −15.2830 + 728.840i −0.0209643 + 0.999780i
\(730\) 95.7828 + 165.901i 0.131209 + 0.227261i
\(731\) 1110.32i 1.51891i
\(732\) 293.848 + 79.8379i 0.401432 + 0.109068i
\(733\) −17.5857 30.4593i −0.0239914 0.0415542i 0.853780 0.520633i \(-0.174304\pi\)
−0.877772 + 0.479079i \(0.840971\pi\)
\(734\) 1402.70i 1.91103i
\(735\) −63.5971 64.0432i −0.0865267 0.0871335i
\(736\) −119.495 + 206.971i −0.162357 + 0.281210i
\(737\) 138.016 + 79.6835i 0.187267 + 0.108119i
\(738\) −1050.47 616.316i −1.42340 0.835116i
\(739\) 700.539 + 1213.37i 0.947956 + 1.64191i 0.749722 + 0.661753i \(0.230187\pi\)
0.198234 + 0.980155i \(0.436479\pi\)
\(740\) −241.487 139.423i −0.326334 0.188409i
\(741\) −437.879 1091.08i −0.590930 1.47244i
\(742\) 3.57634 + 6.19440i 0.00481987 + 0.00834825i
\(743\) −719.045 415.141i −0.967759 0.558736i −0.0692068 0.997602i \(-0.522047\pi\)
−0.898552 + 0.438866i \(0.855380\pi\)
\(744\) 201.773 742.639i 0.271201 0.998171i
\(745\) 433.988 + 751.689i 0.582534 + 1.00898i
\(746\) 716.077i 0.959889i
\(747\) −208.847 + 355.965i −0.279581 + 0.476527i
\(748\) −131.034 + 226.958i −0.175179 + 0.303420i
\(749\) −745.291 430.294i −0.995049 0.574492i
\(750\) −657.517 + 652.938i −0.876690 + 0.870584i
\(751\) −362.979 + 628.698i −0.483327 + 0.837147i −0.999817 0.0191462i \(-0.993905\pi\)
0.516489 + 0.856294i \(0.327239\pi\)
\(752\) −485.384 280.236i −0.645457 0.372655i
\(753\) −321.026 + 84.8175i −0.426329 + 0.112639i
\(754\) 133.069 16.4970i 0.176484 0.0218794i
\(755\) 68.5229i 0.0907588i
\(756\) −109.794 + 393.222i −0.145230 + 0.520134i
\(757\) 455.691 + 789.279i 0.601969 + 1.04264i 0.992523 + 0.122061i \(0.0389503\pi\)
−0.390554 + 0.920580i \(0.627716\pi\)
\(758\) 471.116 271.999i 0.621525 0.358837i
\(759\) 38.7050 + 146.495i 0.0509947 + 0.193010i
\(760\) −470.537 −0.619127
\(761\) 1155.39i 1.51825i −0.650943 0.759126i \(-0.725626\pi\)
0.650943 0.759126i \(-0.274374\pi\)
\(762\) −316.429 + 1164.64i −0.415261 + 1.52839i
\(763\) 790.686 + 1369.51i 1.03629 + 1.79490i
\(764\) 598.432 345.505i 0.783288 0.452231i
\(765\) 4.27841 612.188i 0.00559269 0.800246i
\(766\) −1387.40 −1.81123
\(767\) 76.7110 + 618.768i 0.100014 + 0.806739i
\(768\) −643.049 + 638.570i −0.837303 + 0.831472i
\(769\) 275.054 476.408i 0.357678 0.619516i −0.629895 0.776681i \(-0.716902\pi\)
0.987572 + 0.157165i \(0.0502353\pi\)
\(770\)