Properties

Label 117.3.k.a.29.6
Level $117$
Weight $3$
Character 117.29
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(29,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.29");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 29.6
Character \(\chi\) \(=\) 117.29
Dual form 117.3.k.a.113.21

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.57904i q^{2} +(2.93962 + 0.598857i) q^{3} -2.65146 q^{4} +(-0.817198 + 0.471810i) q^{5} +(1.54448 - 7.58141i) q^{6} +(-2.52350 - 4.37084i) q^{7} -3.47795i q^{8} +(8.28274 + 3.52082i) q^{9} +(1.21682 + 2.10759i) q^{10} -15.9839i q^{11} +(-7.79428 - 1.58784i) q^{12} +(11.8077 + 5.43860i) q^{13} +(-11.2726 + 6.50822i) q^{14} +(-2.68480 + 0.897556i) q^{15} -19.5756 q^{16} +(21.5804 + 12.4595i) q^{17} +(9.08035 - 21.3615i) q^{18} +(-17.4215 + 30.1749i) q^{19} +(2.16677 - 1.25098i) q^{20} +(-4.80064 - 14.3598i) q^{21} -41.2231 q^{22} +(-17.7825 - 10.2667i) q^{23} +(2.08279 - 10.2238i) q^{24} +(-12.0548 + 20.8795i) q^{25} +(14.0264 - 30.4525i) q^{26} +(22.2396 + 15.3101i) q^{27} +(6.69097 + 11.5891i) q^{28} +17.8550i q^{29} +(2.31484 + 6.92421i) q^{30} +(10.2399 + 17.7361i) q^{31} +36.5745i q^{32} +(9.57206 - 46.9866i) q^{33} +(32.1335 - 55.6568i) q^{34} +(4.12441 + 2.38123i) q^{35} +(-21.9613 - 9.33532i) q^{36} +(1.09928 + 1.90401i) q^{37} +(77.8224 + 44.9308i) q^{38} +(31.4532 + 23.0585i) q^{39} +(1.64093 + 2.84217i) q^{40} +(5.08651 + 2.93670i) q^{41} +(-37.0346 + 12.3811i) q^{42} +(-0.939802 - 1.62778i) q^{43} +42.3806i q^{44} +(-8.42980 + 1.03067i) q^{45} +(-26.4783 + 45.8617i) q^{46} +(-6.18058 - 3.56836i) q^{47} +(-57.5448 - 11.7230i) q^{48} +(11.7638 - 20.3756i) q^{49} +(53.8491 + 31.0898i) q^{50} +(55.9768 + 49.5497i) q^{51} +(-31.3076 - 14.4202i) q^{52} -34.1353i q^{53} +(39.4853 - 57.3570i) q^{54} +(7.54135 + 13.0620i) q^{55} +(-15.2015 + 8.77662i) q^{56} +(-69.2831 + 78.2699i) q^{57} +46.0487 q^{58} +32.6220i q^{59} +(7.11863 - 2.37983i) q^{60} +(-6.68183 - 11.5733i) q^{61} +(45.7421 - 26.4092i) q^{62} +(-5.51258 - 45.0873i) q^{63} +16.0248 q^{64} +(-12.2152 + 1.12657i) q^{65} +(-121.180 - 24.6867i) q^{66} +(39.2885 - 68.0497i) q^{67} +(-57.2196 - 33.0357i) q^{68} +(-46.1254 - 40.8294i) q^{69} +(6.14128 - 10.6370i) q^{70} +(-121.405 - 70.0932i) q^{71} +(12.2452 - 28.8069i) q^{72} -89.5686 q^{73} +(4.91052 - 2.83509i) q^{74} +(-47.9404 + 54.1588i) q^{75} +(46.1924 - 80.0076i) q^{76} +(-69.8630 + 40.3354i) q^{77} +(59.4689 - 81.1191i) q^{78} +(28.9076 - 50.0695i) q^{79} +(15.9971 - 9.23596i) q^{80} +(56.2076 + 58.3242i) q^{81} +(7.57387 - 13.1183i) q^{82} +(38.2595 + 22.0891i) q^{83} +(12.7287 + 38.0745i) q^{84} -23.5140 q^{85} +(-4.19812 + 2.42379i) q^{86} +(-10.6926 + 52.4868i) q^{87} -55.5911 q^{88} +(48.6143 - 28.0675i) q^{89} +(2.65813 + 21.7408i) q^{90} +(-6.02555 - 65.3338i) q^{91} +(47.1494 + 27.2217i) q^{92} +(19.4802 + 58.2697i) q^{93} +(-9.20294 + 15.9400i) q^{94} -32.8785i q^{95} +(-21.9029 + 107.515i) q^{96} +(78.3791 + 135.757i) q^{97} +(-52.5495 - 30.3395i) q^{98} +(56.2764 - 132.390i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - q^{3} - 98 q^{4} - 6 q^{5} + 12 q^{6} - q^{7} - 3 q^{9} - 6 q^{10} - 39 q^{12} + 4 q^{13} - 6 q^{14} - 25 q^{15} + 166 q^{16} + 34 q^{18} + 5 q^{19} + 21 q^{20} - 91 q^{21} + 30 q^{22} - 75 q^{23}+ \cdots + 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.57904i 1.28952i −0.764385 0.644761i \(-0.776957\pi\)
0.764385 0.644761i \(-0.223043\pi\)
\(3\) 2.93962 + 0.598857i 0.979874 + 0.199619i
\(4\) −2.65146 −0.662864
\(5\) −0.817198 + 0.471810i −0.163440 + 0.0943619i −0.579489 0.814980i \(-0.696748\pi\)
0.416049 + 0.909342i \(0.363414\pi\)
\(6\) 1.54448 7.58141i 0.257413 1.26357i
\(7\) −2.52350 4.37084i −0.360501 0.624405i 0.627543 0.778582i \(-0.284061\pi\)
−0.988043 + 0.154177i \(0.950727\pi\)
\(8\) 3.47795i 0.434743i
\(9\) 8.28274 + 3.52082i 0.920305 + 0.391203i
\(10\) 1.21682 + 2.10759i 0.121682 + 0.210759i
\(11\) 15.9839i 1.45308i −0.687124 0.726540i \(-0.741127\pi\)
0.687124 0.726540i \(-0.258873\pi\)
\(12\) −7.79428 1.58784i −0.649523 0.132320i
\(13\) 11.8077 + 5.43860i 0.908284 + 0.418354i
\(14\) −11.2726 + 6.50822i −0.805184 + 0.464873i
\(15\) −2.68480 + 0.897556i −0.178987 + 0.0598371i
\(16\) −19.5756 −1.22348
\(17\) 21.5804 + 12.4595i 1.26944 + 0.732909i 0.974881 0.222725i \(-0.0714952\pi\)
0.294555 + 0.955635i \(0.404829\pi\)
\(18\) 9.08035 21.3615i 0.504464 1.18675i
\(19\) −17.4215 + 30.1749i −0.916921 + 1.58815i −0.112858 + 0.993611i \(0.536000\pi\)
−0.804064 + 0.594543i \(0.797333\pi\)
\(20\) 2.16677 1.25098i 0.108338 0.0625491i
\(21\) −4.80064 14.3598i −0.228602 0.683801i
\(22\) −41.2231 −1.87378
\(23\) −17.7825 10.2667i −0.773150 0.446379i 0.0608469 0.998147i \(-0.480620\pi\)
−0.833997 + 0.551769i \(0.813953\pi\)
\(24\) 2.08279 10.2238i 0.0867830 0.425994i
\(25\) −12.0548 + 20.8795i −0.482192 + 0.835180i
\(26\) 14.0264 30.4525i 0.539476 1.17125i
\(27\) 22.2396 + 15.3101i 0.823691 + 0.567039i
\(28\) 6.69097 + 11.5891i 0.238963 + 0.413896i
\(29\) 17.8550i 0.615688i 0.951437 + 0.307844i \(0.0996075\pi\)
−0.951437 + 0.307844i \(0.900393\pi\)
\(30\) 2.31484 + 6.92421i 0.0771612 + 0.230807i
\(31\) 10.2399 + 17.7361i 0.330321 + 0.572132i 0.982575 0.185868i \(-0.0595098\pi\)
−0.652254 + 0.758001i \(0.726176\pi\)
\(32\) 36.5745i 1.14295i
\(33\) 9.57206 46.9866i 0.290062 1.42384i
\(34\) 32.1335 55.6568i 0.945102 1.63696i
\(35\) 4.12441 + 2.38123i 0.117840 + 0.0680351i
\(36\) −21.9613 9.33532i −0.610037 0.259314i
\(37\) 1.09928 + 1.90401i 0.0297103 + 0.0514597i 0.880498 0.474049i \(-0.157208\pi\)
−0.850788 + 0.525509i \(0.823875\pi\)
\(38\) 77.8224 + 44.9308i 2.04796 + 1.18239i
\(39\) 31.4532 + 23.0585i 0.806492 + 0.591244i
\(40\) 1.64093 + 2.84217i 0.0410232 + 0.0710543i
\(41\) 5.08651 + 2.93670i 0.124061 + 0.0716268i 0.560746 0.827988i \(-0.310514\pi\)
−0.436685 + 0.899614i \(0.643848\pi\)
\(42\) −37.0346 + 12.3811i −0.881776 + 0.294787i
\(43\) −0.939802 1.62778i −0.0218559 0.0378555i 0.854891 0.518808i \(-0.173624\pi\)
−0.876746 + 0.480953i \(0.840291\pi\)
\(44\) 42.3806i 0.963195i
\(45\) −8.42980 + 1.03067i −0.187329 + 0.0229037i
\(46\) −26.4783 + 45.8617i −0.575615 + 0.996994i
\(47\) −6.18058 3.56836i −0.131502 0.0759225i 0.432806 0.901487i \(-0.357523\pi\)
−0.564308 + 0.825565i \(0.690857\pi\)
\(48\) −57.5448 11.7230i −1.19885 0.244229i
\(49\) 11.7638 20.3756i 0.240079 0.415828i
\(50\) 53.8491 + 31.0898i 1.07698 + 0.621796i
\(51\) 55.9768 + 49.5497i 1.09758 + 0.971562i
\(52\) −31.3076 14.4202i −0.602069 0.277312i
\(53\) 34.1353i 0.644062i −0.946729 0.322031i \(-0.895634\pi\)
0.946729 0.322031i \(-0.104366\pi\)
\(54\) 39.4853 57.3570i 0.731209 1.06217i
\(55\) 7.54135 + 13.0620i 0.137115 + 0.237491i
\(56\) −15.2015 + 8.77662i −0.271456 + 0.156725i
\(57\) −69.2831 + 78.2699i −1.21549 + 1.37316i
\(58\) 46.0487 0.793943
\(59\) 32.6220i 0.552916i 0.961026 + 0.276458i \(0.0891606\pi\)
−0.961026 + 0.276458i \(0.910839\pi\)
\(60\) 7.11863 2.37983i 0.118644 0.0396639i
\(61\) −6.68183 11.5733i −0.109538 0.189726i 0.806045 0.591854i \(-0.201604\pi\)
−0.915583 + 0.402128i \(0.868271\pi\)
\(62\) 45.7421 26.4092i 0.737777 0.425956i
\(63\) −5.51258 45.0873i −0.0875013 0.715672i
\(64\) 16.0248 0.250387
\(65\) −12.2152 + 1.12657i −0.187926 + 0.0173319i
\(66\) −121.180 24.6867i −1.83607 0.374042i
\(67\) 39.2885 68.0497i 0.586396 1.01567i −0.408304 0.912846i \(-0.633880\pi\)
0.994700 0.102821i \(-0.0327870\pi\)
\(68\) −57.2196 33.0357i −0.841464 0.485820i
\(69\) −46.1254 40.8294i −0.668484 0.591730i
\(70\) 6.14128 10.6370i 0.0877326 0.151957i
\(71\) −121.405 70.0932i −1.70993 0.987228i −0.934622 0.355643i \(-0.884262\pi\)
−0.775307 0.631585i \(-0.782405\pi\)
\(72\) 12.2452 28.8069i 0.170073 0.400096i
\(73\) −89.5686 −1.22697 −0.613483 0.789708i \(-0.710232\pi\)
−0.613483 + 0.789708i \(0.710232\pi\)
\(74\) 4.91052 2.83509i 0.0663584 0.0383120i
\(75\) −47.9404 + 54.1588i −0.639205 + 0.722117i
\(76\) 46.1924 80.0076i 0.607795 1.05273i
\(77\) −69.8630 + 40.3354i −0.907311 + 0.523836i
\(78\) 59.4689 81.1191i 0.762422 1.03999i
\(79\) 28.9076 50.0695i 0.365920 0.633791i −0.623004 0.782219i \(-0.714088\pi\)
0.988923 + 0.148428i \(0.0474212\pi\)
\(80\) 15.9971 9.23596i 0.199964 0.115449i
\(81\) 56.2076 + 58.3242i 0.693921 + 0.720051i
\(82\) 7.57387 13.1183i 0.0923643 0.159980i
\(83\) 38.2595 + 22.0891i 0.460958 + 0.266134i 0.712447 0.701726i \(-0.247587\pi\)
−0.251489 + 0.967860i \(0.580920\pi\)
\(84\) 12.7287 + 38.0745i 0.151532 + 0.453267i
\(85\) −23.5140 −0.276635
\(86\) −4.19812 + 2.42379i −0.0488154 + 0.0281836i
\(87\) −10.6926 + 52.4868i −0.122903 + 0.603296i
\(88\) −55.5911 −0.631717
\(89\) 48.6143 28.0675i 0.546228 0.315365i −0.201371 0.979515i \(-0.564540\pi\)
0.747599 + 0.664150i \(0.231206\pi\)
\(90\) 2.65813 + 21.7408i 0.0295348 + 0.241564i
\(91\) −6.02555 65.3338i −0.0662148 0.717954i
\(92\) 47.1494 + 27.2217i 0.512494 + 0.295888i
\(93\) 19.4802 + 58.2697i 0.209464 + 0.626556i
\(94\) −9.20294 + 15.9400i −0.0979037 + 0.169574i
\(95\) 32.8785i 0.346090i
\(96\) −21.9029 + 107.515i −0.228155 + 1.11995i
\(97\) 78.3791 + 135.757i 0.808032 + 1.39955i 0.914225 + 0.405206i \(0.132800\pi\)
−0.106194 + 0.994345i \(0.533866\pi\)
\(98\) −52.5495 30.3395i −0.536219 0.309586i
\(99\) 56.2764 132.390i 0.568449 1.33728i
\(100\) 31.9628 55.3611i 0.319628 0.553611i
\(101\) 111.828i 1.10721i −0.832779 0.553606i \(-0.813251\pi\)
0.832779 0.553606i \(-0.186749\pi\)
\(102\) 127.791 144.367i 1.25285 1.41536i
\(103\) 79.5352 + 137.759i 0.772187 + 1.33747i 0.936362 + 0.351035i \(0.114170\pi\)
−0.164176 + 0.986431i \(0.552496\pi\)
\(104\) 18.9152 41.0665i 0.181876 0.394871i
\(105\) 10.6982 + 9.46983i 0.101887 + 0.0901889i
\(106\) −88.0364 −0.830532
\(107\) −172.079 + 99.3501i −1.60822 + 0.928505i −0.618450 + 0.785824i \(0.712239\pi\)
−0.989769 + 0.142681i \(0.954428\pi\)
\(108\) −58.9675 40.5940i −0.545995 0.375870i
\(109\) 99.6164 0.913912 0.456956 0.889489i \(-0.348940\pi\)
0.456956 + 0.889489i \(0.348940\pi\)
\(110\) 33.6874 19.4495i 0.306249 0.176813i
\(111\) 2.09124 + 6.25538i 0.0188400 + 0.0563547i
\(112\) 49.3991 + 85.5618i 0.441064 + 0.763945i
\(113\) 22.5030i 0.199142i −0.995030 0.0995708i \(-0.968253\pi\)
0.995030 0.0995708i \(-0.0317470\pi\)
\(114\) 201.861 + 178.684i 1.77071 + 1.56740i
\(115\) 19.3757 0.168485
\(116\) 47.3417i 0.408118i
\(117\) 78.6517 + 86.6193i 0.672237 + 0.740336i
\(118\) 84.1336 0.712996
\(119\) 125.766i 1.05686i
\(120\) 3.12165 + 9.33759i 0.0260138 + 0.0778132i
\(121\) −134.485 −1.11144
\(122\) −29.8480 + 17.2327i −0.244655 + 0.141252i
\(123\) 13.1938 + 11.6789i 0.107266 + 0.0949502i
\(124\) −27.1508 47.0265i −0.218958 0.379246i
\(125\) 46.3407i 0.370726i
\(126\) −116.282 + 14.2172i −0.922874 + 0.112835i
\(127\) −58.8631 101.954i −0.463489 0.802786i 0.535643 0.844444i \(-0.320069\pi\)
−0.999132 + 0.0416583i \(0.986736\pi\)
\(128\) 104.969i 0.820074i
\(129\) −1.78785 5.34788i −0.0138593 0.0414564i
\(130\) 2.90548 + 31.5035i 0.0223498 + 0.242335i
\(131\) −77.7495 + 44.8887i −0.593507 + 0.342662i −0.766483 0.642264i \(-0.777995\pi\)
0.172976 + 0.984926i \(0.444662\pi\)
\(132\) −25.3799 + 124.583i −0.192272 + 0.943810i
\(133\) 175.853 1.32220
\(134\) −175.503 101.327i −1.30972 0.756170i
\(135\) −25.3976 2.01848i −0.188131 0.0149517i
\(136\) 43.3333 75.0556i 0.318628 0.551879i
\(137\) 7.91314 4.56866i 0.0577602 0.0333478i −0.470842 0.882218i \(-0.656050\pi\)
0.528602 + 0.848870i \(0.322716\pi\)
\(138\) −105.301 + 118.959i −0.763048 + 0.862024i
\(139\) −148.704 −1.06982 −0.534908 0.844910i \(-0.679654\pi\)
−0.534908 + 0.844910i \(0.679654\pi\)
\(140\) −10.9357 6.31372i −0.0781121 0.0450980i
\(141\) −16.0316 14.1909i −0.113699 0.100645i
\(142\) −180.773 + 313.108i −1.27305 + 2.20499i
\(143\) 86.9299 188.733i 0.607901 1.31981i
\(144\) −162.140 68.9223i −1.12597 0.478627i
\(145\) −8.42414 14.5910i −0.0580975 0.100628i
\(146\) 231.001i 1.58220i
\(147\) 46.7833 52.8516i 0.318254 0.359535i
\(148\) −2.91469 5.04840i −0.0196939 0.0341108i
\(149\) 32.9169i 0.220919i −0.993881 0.110459i \(-0.964768\pi\)
0.993881 0.110459i \(-0.0352322\pi\)
\(150\) 139.678 + 123.640i 0.931185 + 0.824268i
\(151\) 53.6782 92.9733i 0.355485 0.615717i −0.631716 0.775200i \(-0.717649\pi\)
0.987201 + 0.159482i \(0.0509825\pi\)
\(152\) 104.947 + 60.5911i 0.690440 + 0.398626i
\(153\) 134.877 + 179.179i 0.881552 + 1.17111i
\(154\) 104.027 + 180.180i 0.675498 + 1.17000i
\(155\) −16.7361 9.66260i −0.107975 0.0623394i
\(156\) −83.3968 61.1387i −0.534595 0.391915i
\(157\) −2.21063 3.82892i −0.0140804 0.0243880i 0.858899 0.512144i \(-0.171149\pi\)
−0.872980 + 0.487756i \(0.837815\pi\)
\(158\) −129.131 74.5540i −0.817287 0.471861i
\(159\) 20.4422 100.345i 0.128567 0.631100i
\(160\) −17.2562 29.8886i −0.107851 0.186804i
\(161\) 103.632i 0.643679i
\(162\) 150.420 144.962i 0.928521 0.894826i
\(163\) 47.2209 81.7891i 0.289699 0.501774i −0.684039 0.729446i \(-0.739778\pi\)
0.973738 + 0.227672i \(0.0731114\pi\)
\(164\) −13.4867 7.78654i −0.0822358 0.0474789i
\(165\) 14.3464 + 42.9135i 0.0869481 + 0.260082i
\(166\) 56.9688 98.6729i 0.343186 0.594415i
\(167\) −142.317 82.1665i −0.852195 0.492015i 0.00919597 0.999958i \(-0.497073\pi\)
−0.861391 + 0.507943i \(0.830406\pi\)
\(168\) −49.9427 + 16.6964i −0.297278 + 0.0993832i
\(169\) 109.843 + 128.435i 0.649961 + 0.759968i
\(170\) 60.6435i 0.356727i
\(171\) −250.538 + 188.593i −1.46514 + 1.10288i
\(172\) 2.49184 + 4.31600i 0.0144875 + 0.0250930i
\(173\) −87.6553 + 50.6078i −0.506678 + 0.292531i −0.731467 0.681877i \(-0.761164\pi\)
0.224789 + 0.974407i \(0.427831\pi\)
\(174\) 135.366 + 27.5766i 0.777963 + 0.158486i
\(175\) 121.681 0.695322
\(176\) 312.894i 1.77781i
\(177\) −19.5359 + 95.8964i −0.110372 + 0.541788i
\(178\) −72.3872 125.378i −0.406670 0.704372i
\(179\) 176.959 102.167i 0.988595 0.570766i 0.0837411 0.996488i \(-0.473313\pi\)
0.904854 + 0.425722i \(0.139980\pi\)
\(180\) 22.3513 2.73277i 0.124174 0.0151820i
\(181\) −121.248 −0.669879 −0.334939 0.942240i \(-0.608716\pi\)
−0.334939 + 0.942240i \(0.608716\pi\)
\(182\) −168.499 + 15.5401i −0.925817 + 0.0853854i
\(183\) −12.7113 38.0225i −0.0694608 0.207773i
\(184\) −35.7071 + 61.8465i −0.194060 + 0.336122i
\(185\) −1.79666 1.03730i −0.00971167 0.00560704i
\(186\) 150.280 50.2402i 0.807957 0.270108i
\(187\) 199.151 344.939i 1.06498 1.84459i
\(188\) 16.3875 + 9.46135i 0.0871677 + 0.0503263i
\(189\) 10.7960 135.841i 0.0571215 0.718735i
\(190\) −84.7951 −0.446290
\(191\) 157.021 90.6562i 0.822100 0.474640i −0.0290401 0.999578i \(-0.509245\pi\)
0.851140 + 0.524939i \(0.175912\pi\)
\(192\) 47.1068 + 9.59656i 0.245348 + 0.0499821i
\(193\) 1.22711 2.12542i 0.00635808 0.0110125i −0.862829 0.505496i \(-0.831309\pi\)
0.869187 + 0.494484i \(0.164643\pi\)
\(194\) 350.122 202.143i 1.80475 1.04197i
\(195\) −36.5827 4.00346i −0.187604 0.0205306i
\(196\) −31.1913 + 54.0250i −0.159140 + 0.275638i
\(197\) −300.863 + 173.703i −1.52722 + 0.881743i −0.527748 + 0.849401i \(0.676963\pi\)
−0.999477 + 0.0323423i \(0.989703\pi\)
\(198\) −341.440 145.139i −1.72445 0.733027i
\(199\) 88.3111 152.959i 0.443774 0.768640i −0.554192 0.832389i \(-0.686973\pi\)
0.997966 + 0.0637495i \(0.0203059\pi\)
\(200\) 72.6178 + 41.9259i 0.363089 + 0.209630i
\(201\) 156.245 176.512i 0.777340 0.878170i
\(202\) −288.410 −1.42777
\(203\) 78.0411 45.0571i 0.384439 0.221956i
\(204\) −148.420 131.379i −0.727550 0.644014i
\(205\) −5.54225 −0.0270354
\(206\) 355.286 205.125i 1.72469 0.995751i
\(207\) −111.140 147.645i −0.536909 0.713263i
\(208\) −231.143 106.464i −1.11126 0.511845i
\(209\) 482.313 + 278.463i 2.30772 + 1.33236i
\(210\) 24.4231 27.5910i 0.116300 0.131386i
\(211\) 136.380 236.218i 0.646352 1.11952i −0.337635 0.941277i \(-0.609627\pi\)
0.983987 0.178238i \(-0.0570397\pi\)
\(212\) 90.5083i 0.426926i
\(213\) −314.909 278.752i −1.47844 1.30869i
\(214\) 256.228 + 443.800i 1.19733 + 2.07383i
\(215\) 1.53601 + 0.886815i 0.00714423 + 0.00412472i
\(216\) 53.2476 77.3483i 0.246517 0.358094i
\(217\) 51.6811 89.5143i 0.238162 0.412508i
\(218\) 256.915i 1.17851i
\(219\) −263.298 53.6388i −1.20227 0.244926i
\(220\) −19.9956 34.6333i −0.0908889 0.157424i
\(221\) 187.053 + 264.485i 0.846394 + 1.19676i
\(222\) 16.1329 5.39339i 0.0726706 0.0242946i
\(223\) −37.3803 −0.167625 −0.0838124 0.996482i \(-0.526710\pi\)
−0.0838124 + 0.996482i \(0.526710\pi\)
\(224\) 159.861 92.2960i 0.713666 0.412036i
\(225\) −173.360 + 130.497i −0.770488 + 0.579986i
\(226\) −58.0362 −0.256797
\(227\) −172.213 + 99.4272i −0.758648 + 0.438005i −0.828810 0.559530i \(-0.810982\pi\)
0.0701623 + 0.997536i \(0.477648\pi\)
\(228\) 183.701 207.529i 0.805707 0.910216i
\(229\) −138.042 239.095i −0.602802 1.04408i −0.992395 0.123096i \(-0.960718\pi\)
0.389593 0.920987i \(-0.372616\pi\)
\(230\) 49.9708i 0.217264i
\(231\) −229.526 + 76.7329i −0.993618 + 0.332177i
\(232\) 62.0986 0.267666
\(233\) 106.047i 0.455137i 0.973762 + 0.227568i \(0.0730775\pi\)
−0.973762 + 0.227568i \(0.926922\pi\)
\(234\) 223.395 202.846i 0.954679 0.866864i
\(235\) 6.73434 0.0286568
\(236\) 86.4959i 0.366508i
\(237\) 114.962 129.874i 0.485072 0.547991i
\(238\) −324.356 −1.36284
\(239\) −331.745 + 191.533i −1.38805 + 0.801393i −0.993096 0.117307i \(-0.962574\pi\)
−0.394957 + 0.918700i \(0.629241\pi\)
\(240\) 52.5566 17.5702i 0.218986 0.0732092i
\(241\) 23.4930 + 40.6911i 0.0974813 + 0.168843i 0.910641 0.413197i \(-0.135588\pi\)
−0.813160 + 0.582040i \(0.802255\pi\)
\(242\) 346.841i 1.43323i
\(243\) 130.301 + 205.111i 0.536219 + 0.844079i
\(244\) 17.7166 + 30.6860i 0.0726090 + 0.125762i
\(245\) 22.2012i 0.0906171i
\(246\) 30.1203 34.0273i 0.122440 0.138322i
\(247\) −369.817 + 261.548i −1.49724 + 1.05890i
\(248\) 61.6852 35.6140i 0.248731 0.143605i
\(249\) 99.2402 + 87.8456i 0.398555 + 0.352794i
\(250\) −119.515 −0.478059
\(251\) 40.4117 + 23.3317i 0.161003 + 0.0929549i 0.578336 0.815798i \(-0.303702\pi\)
−0.417334 + 0.908753i \(0.637035\pi\)
\(252\) 14.6164 + 119.547i 0.0580015 + 0.474394i
\(253\) −164.102 + 284.233i −0.648624 + 1.12345i
\(254\) −262.943 + 151.810i −1.03521 + 0.597679i
\(255\) −69.1221 14.0815i −0.271067 0.0552216i
\(256\) 334.820 1.30789
\(257\) −103.885 59.9783i −0.404224 0.233379i 0.284081 0.958800i \(-0.408312\pi\)
−0.688305 + 0.725422i \(0.741645\pi\)
\(258\) −13.7924 + 4.61094i −0.0534589 + 0.0178719i
\(259\) 5.54808 9.60955i 0.0214211 0.0371025i
\(260\) 32.3881 2.98706i 0.124570 0.0114887i
\(261\) −62.8642 + 147.888i −0.240859 + 0.566621i
\(262\) 115.770 + 200.519i 0.441869 + 0.765340i
\(263\) 338.862i 1.28845i −0.764836 0.644225i \(-0.777180\pi\)
0.764836 0.644225i \(-0.222820\pi\)
\(264\) −163.417 33.2911i −0.619003 0.126103i
\(265\) 16.1054 + 27.8953i 0.0607749 + 0.105265i
\(266\) 453.532i 1.70501i
\(267\) 159.716 53.3947i 0.598187 0.199980i
\(268\) −104.172 + 180.431i −0.388701 + 0.673250i
\(269\) 194.820 + 112.479i 0.724236 + 0.418138i 0.816310 0.577614i \(-0.196016\pi\)
−0.0920735 + 0.995752i \(0.529349\pi\)
\(270\) −5.20574 + 65.5016i −0.0192805 + 0.242598i
\(271\) 2.75897 + 4.77868i 0.0101807 + 0.0176335i 0.871071 0.491157i \(-0.163426\pi\)
−0.860890 + 0.508791i \(0.830093\pi\)
\(272\) −422.450 243.901i −1.55312 0.896696i
\(273\) 21.4128 195.665i 0.0784351 0.716722i
\(274\) −11.7828 20.4083i −0.0430027 0.0744829i
\(275\) 333.736 + 192.682i 1.21358 + 0.700663i
\(276\) 122.300 + 108.257i 0.443114 + 0.392237i
\(277\) −116.170 201.213i −0.419387 0.726400i 0.576491 0.817104i \(-0.304422\pi\)
−0.995878 + 0.0907036i \(0.971088\pi\)
\(278\) 383.515i 1.37955i
\(279\) 22.3691 + 182.957i 0.0801760 + 0.655758i
\(280\) 8.28178 14.3445i 0.0295778 0.0512302i
\(281\) 108.117 + 62.4211i 0.384757 + 0.222139i 0.679886 0.733318i \(-0.262029\pi\)
−0.295129 + 0.955457i \(0.595363\pi\)
\(282\) −36.5989 + 41.3462i −0.129783 + 0.146618i
\(283\) −214.400 + 371.352i −0.757597 + 1.31220i 0.186476 + 0.982460i \(0.440293\pi\)
−0.944073 + 0.329737i \(0.893040\pi\)
\(284\) 321.900 + 185.849i 1.13345 + 0.654398i
\(285\) 19.6895 96.6504i 0.0690861 0.339124i
\(286\) −486.750 224.196i −1.70192 0.783902i
\(287\) 29.6431i 0.103286i
\(288\) −128.772 + 302.937i −0.447127 + 1.05187i
\(289\) 165.976 + 287.479i 0.574312 + 0.994738i
\(290\) −37.6309 + 21.7262i −0.129762 + 0.0749179i
\(291\) 149.106 + 446.011i 0.512392 + 1.53268i
\(292\) 237.487 0.813313
\(293\) 152.486i 0.520431i 0.965551 + 0.260215i \(0.0837936\pi\)
−0.965551 + 0.260215i \(0.916206\pi\)
\(294\) −136.307 120.656i −0.463628 0.410395i
\(295\) −15.3914 26.6587i −0.0521742 0.0903683i
\(296\) 6.62204 3.82324i 0.0223718 0.0129163i
\(297\) 244.714 355.476i 0.823954 1.19689i
\(298\) −84.8940 −0.284879
\(299\) −154.133 217.938i −0.515496 0.728889i
\(300\) 127.112 143.600i 0.423706 0.478665i
\(301\) −4.74319 + 8.21544i −0.0157581 + 0.0272938i
\(302\) −239.782 138.438i −0.793980 0.458405i
\(303\) 66.9692 328.733i 0.221020 1.08493i
\(304\) 341.036 590.692i 1.12183 1.94307i
\(305\) 10.9208 + 6.30510i 0.0358058 + 0.0206725i
\(306\) 462.111 347.855i 1.51017 1.13678i
\(307\) 559.739 1.82325 0.911627 0.411019i \(-0.134827\pi\)
0.911627 + 0.411019i \(0.134827\pi\)
\(308\) 185.239 106.948i 0.601424 0.347233i
\(309\) 151.305 + 452.590i 0.489662 + 1.46469i
\(310\) −24.9203 + 43.1632i −0.0803879 + 0.139236i
\(311\) 278.602 160.851i 0.895827 0.517206i 0.0199832 0.999800i \(-0.493639\pi\)
0.875844 + 0.482594i \(0.160305\pi\)
\(312\) 80.1964 109.393i 0.257040 0.350617i
\(313\) −174.107 + 301.562i −0.556252 + 0.963456i 0.441553 + 0.897235i \(0.354428\pi\)
−0.997805 + 0.0662213i \(0.978906\pi\)
\(314\) −9.87494 + 5.70130i −0.0314488 + 0.0181570i
\(315\) 25.7775 + 34.2444i 0.0818333 + 0.108712i
\(316\) −76.6474 + 132.757i −0.242555 + 0.420118i
\(317\) −74.3159 42.9063i −0.234435 0.135351i 0.378181 0.925732i \(-0.376550\pi\)
−0.612616 + 0.790380i \(0.709883\pi\)
\(318\) −258.794 52.7212i −0.813816 0.165790i
\(319\) 285.392 0.894644
\(320\) −13.0954 + 7.56065i −0.0409232 + 0.0236270i
\(321\) −565.345 + 189.001i −1.76120 + 0.588787i
\(322\) 267.272 0.830038
\(323\) −751.927 + 434.125i −2.32795 + 1.34404i
\(324\) −149.032 154.644i −0.459975 0.477296i
\(325\) −255.895 + 180.978i −0.787368 + 0.556855i
\(326\) −210.937 121.785i −0.647047 0.373573i
\(327\) 292.834 + 59.6559i 0.895518 + 0.182434i
\(328\) 10.2137 17.6906i 0.0311393 0.0539348i
\(329\) 36.0191i 0.109480i
\(330\) 110.676 37.0001i 0.335381 0.112121i
\(331\) −3.02205 5.23434i −0.00913006 0.0158137i 0.861424 0.507886i \(-0.169573\pi\)
−0.870554 + 0.492072i \(0.836240\pi\)
\(332\) −101.443 58.5684i −0.305553 0.176411i
\(333\) 2.40137 + 19.6408i 0.00721132 + 0.0589813i
\(334\) −211.911 + 367.040i −0.634464 + 1.09892i
\(335\) 74.1468i 0.221334i
\(336\) 93.9754 + 281.102i 0.279689 + 0.836614i
\(337\) 201.907 + 349.714i 0.599132 + 1.03773i 0.992950 + 0.118538i \(0.0378208\pi\)
−0.393818 + 0.919189i \(0.628846\pi\)
\(338\) 331.238 283.291i 0.979995 0.838138i
\(339\) 13.4761 66.1503i 0.0397524 0.195134i
\(340\) 62.3463 0.183371
\(341\) 283.492 163.674i 0.831354 0.479983i
\(342\) 486.389 + 646.149i 1.42219 + 1.88933i
\(343\) −366.048 −1.06720
\(344\) −5.66135 + 3.26858i −0.0164574 + 0.00950169i
\(345\) 56.9573 + 11.6033i 0.165094 + 0.0336327i
\(346\) 130.520 + 226.067i 0.377225 + 0.653372i
\(347\) 294.439i 0.848528i −0.905538 0.424264i \(-0.860533\pi\)
0.905538 0.424264i \(-0.139467\pi\)
\(348\) 28.3509 139.167i 0.0814680 0.399904i
\(349\) −510.269 −1.46209 −0.731045 0.682330i \(-0.760967\pi\)
−0.731045 + 0.682330i \(0.760967\pi\)
\(350\) 313.821i 0.896632i
\(351\) 179.334 + 301.729i 0.510922 + 0.859627i
\(352\) 584.603 1.66080
\(353\) 502.273i 1.42287i −0.702752 0.711435i \(-0.748046\pi\)
0.702752 0.711435i \(-0.251954\pi\)
\(354\) 247.321 + 50.3840i 0.698646 + 0.142328i
\(355\) 132.283 0.372627
\(356\) −128.899 + 74.4197i −0.362075 + 0.209044i
\(357\) 75.3158 369.704i 0.210969 1.03559i
\(358\) −263.493 456.383i −0.736014 1.27481i
\(359\) 258.046i 0.718791i −0.933185 0.359395i \(-0.882983\pi\)
0.933185 0.359395i \(-0.117017\pi\)
\(360\) 3.58460 + 29.3184i 0.00995722 + 0.0814400i
\(361\) −426.518 738.750i −1.18149 2.04640i
\(362\) 312.704i 0.863822i
\(363\) −395.334 80.5370i −1.08907 0.221865i
\(364\) 15.9765 + 173.230i 0.0438915 + 0.475906i
\(365\) 73.1953 42.2593i 0.200535 0.115779i
\(366\) −98.0616 + 32.7830i −0.267928 + 0.0895711i
\(367\) −117.287 −0.319584 −0.159792 0.987151i \(-0.551082\pi\)
−0.159792 + 0.987151i \(0.551082\pi\)
\(368\) 348.102 + 200.977i 0.945930 + 0.546133i
\(369\) 31.7907 + 42.2327i 0.0861536 + 0.114452i
\(370\) −2.67524 + 4.63366i −0.00723039 + 0.0125234i
\(371\) −149.200 + 86.1406i −0.402156 + 0.232185i
\(372\) −51.6508 154.500i −0.138846 0.415321i
\(373\) 703.087 1.88495 0.942476 0.334273i \(-0.108491\pi\)
0.942476 + 0.334273i \(0.108491\pi\)
\(374\) −889.612 513.618i −2.37864 1.37331i
\(375\) 27.7515 136.224i 0.0740039 0.363265i
\(376\) −12.4106 + 21.4957i −0.0330068 + 0.0571695i
\(377\) −97.1059 + 210.826i −0.257575 + 0.559220i
\(378\) −350.339 27.8432i −0.926824 0.0736594i
\(379\) 166.355 + 288.136i 0.438932 + 0.760252i 0.997607 0.0691341i \(-0.0220236\pi\)
−0.558676 + 0.829386i \(0.688690\pi\)
\(380\) 87.1760i 0.229411i
\(381\) −111.979 334.956i −0.293909 0.879150i
\(382\) −233.806 404.964i −0.612058 1.06012i
\(383\) 333.347i 0.870357i 0.900344 + 0.435179i \(0.143315\pi\)
−0.900344 + 0.435179i \(0.856685\pi\)
\(384\) −62.8617 + 308.570i −0.163702 + 0.803569i
\(385\) 38.0613 65.9240i 0.0988604 0.171231i
\(386\) −5.48154 3.16477i −0.0142009 0.00819888i
\(387\) −2.05299 16.7914i −0.00530489 0.0433886i
\(388\) −207.819 359.953i −0.535615 0.927713i
\(389\) 505.351 + 291.765i 1.29910 + 0.750038i 0.980249 0.197766i \(-0.0633685\pi\)
0.318855 + 0.947804i \(0.396702\pi\)
\(390\) −10.3251 + 94.3484i −0.0264746 + 0.241919i
\(391\) −255.835 443.120i −0.654310 1.13330i
\(392\) −70.8652 40.9140i −0.180779 0.104373i
\(393\) −255.436 + 85.3949i −0.649964 + 0.217290i
\(394\) 447.989 + 775.939i 1.13703 + 1.96939i
\(395\) 54.5556i 0.138115i
\(396\) −149.215 + 351.027i −0.376805 + 0.886433i
\(397\) −107.622 + 186.406i −0.271088 + 0.469538i −0.969141 0.246508i \(-0.920717\pi\)
0.698053 + 0.716046i \(0.254050\pi\)
\(398\) −394.488 227.758i −0.991177 0.572256i
\(399\) 516.941 + 105.311i 1.29559 + 0.263937i
\(400\) 235.980 408.729i 0.589950 1.02182i
\(401\) −114.212 65.9404i −0.284818 0.164440i 0.350784 0.936456i \(-0.385915\pi\)
−0.635603 + 0.772016i \(0.719248\pi\)
\(402\) −455.232 402.963i −1.13242 1.00240i
\(403\) 24.4506 + 265.113i 0.0606715 + 0.657850i
\(404\) 296.508i 0.733931i
\(405\) −73.4506 21.1431i −0.181360 0.0522052i
\(406\) −116.204 201.271i −0.286217 0.495742i
\(407\) 30.4335 17.5708i 0.0747751 0.0431714i
\(408\) 172.331 194.684i 0.422380 0.477168i
\(409\) −59.9512 −0.146580 −0.0732899 0.997311i \(-0.523350\pi\)
−0.0732899 + 0.997311i \(0.523350\pi\)
\(410\) 14.2937i 0.0348627i
\(411\) 25.9976 8.69127i 0.0632545 0.0211467i
\(412\) −210.884 365.262i −0.511855 0.886559i
\(413\) 142.586 82.3218i 0.345244 0.199326i
\(414\) −380.784 + 286.635i −0.919767 + 0.692356i
\(415\) −41.6875 −0.100452
\(416\) −198.914 + 431.861i −0.478159 + 1.03813i
\(417\) −437.135 89.0527i −1.04828 0.213556i
\(418\) 718.169 1243.90i 1.71811 2.97585i
\(419\) 360.213 + 207.969i 0.859696 + 0.496346i 0.863910 0.503645i \(-0.168008\pi\)
−0.00421444 + 0.999991i \(0.501342\pi\)
\(420\) −28.3658 25.1089i −0.0675375 0.0597830i
\(421\) −3.52056 + 6.09779i −0.00836237 + 0.0144841i −0.870176 0.492740i \(-0.835995\pi\)
0.861814 + 0.507225i \(0.169329\pi\)
\(422\) −609.215 351.731i −1.44364 0.833485i
\(423\) −38.6286 51.3165i −0.0913205 0.121316i
\(424\) −118.721 −0.280002
\(425\) −520.295 + 300.392i −1.22422 + 0.706806i
\(426\) −718.912 + 812.163i −1.68759 + 1.90649i
\(427\) −33.7233 + 58.4104i −0.0789772 + 0.136793i
\(428\) 456.261 263.423i 1.06603 0.615473i
\(429\) 368.565 502.744i 0.859126 1.17190i
\(430\) 2.28713 3.96143i 0.00531891 0.00921263i
\(431\) −28.5577 + 16.4878i −0.0662592 + 0.0382548i −0.532764 0.846264i \(-0.678847\pi\)
0.466504 + 0.884519i \(0.345513\pi\)
\(432\) −435.355 299.704i −1.00777 0.693759i
\(433\) 169.487 293.559i 0.391424 0.677966i −0.601214 0.799088i \(-0.705316\pi\)
0.992638 + 0.121122i \(0.0386492\pi\)
\(434\) −230.861 133.288i −0.531938 0.307114i
\(435\) −16.0258 47.9370i −0.0368410 0.110200i
\(436\) −264.129 −0.605799
\(437\) 619.594 357.723i 1.41784 0.818588i
\(438\) −138.337 + 679.056i −0.315837 + 1.55036i
\(439\) 490.839 1.11808 0.559042 0.829139i \(-0.311169\pi\)
0.559042 + 0.829139i \(0.311169\pi\)
\(440\) 45.4289 26.2284i 0.103248 0.0596100i
\(441\) 169.176 127.347i 0.383619 0.288769i
\(442\) 682.117 482.418i 1.54325 1.09144i
\(443\) −182.064 105.115i −0.410980 0.237279i 0.280231 0.959933i \(-0.409589\pi\)
−0.691211 + 0.722653i \(0.742922\pi\)
\(444\) −5.54483 16.5859i −0.0124884 0.0373556i
\(445\) −26.4850 + 45.8734i −0.0595169 + 0.103086i
\(446\) 96.4054i 0.216156i
\(447\) 19.7125 96.7631i 0.0440995 0.216472i
\(448\) −40.4386 70.0418i −0.0902648 0.156343i
\(449\) 70.3212 + 40.6000i 0.156617 + 0.0904231i 0.576260 0.817266i \(-0.304511\pi\)
−0.419643 + 0.907689i \(0.637845\pi\)
\(450\) 336.557 + 447.102i 0.747904 + 0.993560i
\(451\) 46.9399 81.3023i 0.104080 0.180271i
\(452\) 59.6657i 0.132004i
\(453\) 213.471 241.161i 0.471239 0.532364i
\(454\) 256.427 + 444.145i 0.564817 + 0.978292i
\(455\) 35.7492 + 50.5478i 0.0785697 + 0.111094i
\(456\) 272.218 + 240.963i 0.596970 + 0.528427i
\(457\) 21.8247 0.0477565 0.0238782 0.999715i \(-0.492399\pi\)
0.0238782 + 0.999715i \(0.492399\pi\)
\(458\) −616.636 + 356.015i −1.34637 + 0.777326i
\(459\) 289.186 + 607.492i 0.630034 + 1.32351i
\(460\) −51.3739 −0.111682
\(461\) 403.982 233.239i 0.876318 0.505942i 0.00687516 0.999976i \(-0.497812\pi\)
0.869443 + 0.494034i \(0.164478\pi\)
\(462\) 197.897 + 591.957i 0.428349 + 1.28129i
\(463\) 132.919 + 230.222i 0.287081 + 0.497239i 0.973112 0.230333i \(-0.0739817\pi\)
−0.686031 + 0.727573i \(0.740648\pi\)
\(464\) 349.521i 0.753279i
\(465\) −43.4113 38.4269i −0.0933577 0.0826386i
\(466\) 273.499 0.586908
\(467\) 534.686i 1.14494i −0.819926 0.572469i \(-0.805986\pi\)
0.819926 0.572469i \(-0.194014\pi\)
\(468\) −208.542 229.667i −0.445602 0.490742i
\(469\) −396.579 −0.845584
\(470\) 17.3681i 0.0369535i
\(471\) −4.20543 12.5794i −0.00892872 0.0267079i
\(472\) 113.458 0.240376
\(473\) −26.0183 + 15.0217i −0.0550070 + 0.0317583i
\(474\) −334.950 296.492i −0.706646 0.625510i
\(475\) −420.025 727.505i −0.884264 1.53159i
\(476\) 333.463i 0.700553i
\(477\) 120.184 282.734i 0.251959 0.592733i
\(478\) 493.971 + 855.583i 1.03341 + 1.78992i
\(479\) 158.438i 0.330769i 0.986229 + 0.165384i \(0.0528864\pi\)
−0.986229 + 0.165384i \(0.947114\pi\)
\(480\) −32.8277 98.1952i −0.0683910 0.204573i
\(481\) 2.62483 + 28.4605i 0.00545702 + 0.0591694i
\(482\) 104.944 60.5894i 0.217726 0.125704i
\(483\) −62.0609 + 304.640i −0.128491 + 0.630724i
\(484\) 356.580 0.736736
\(485\) −128.102 73.9600i −0.264129 0.152495i
\(486\) 528.990 336.052i 1.08846 0.691466i
\(487\) 280.748 486.271i 0.576486 0.998502i −0.419393 0.907805i \(-0.637757\pi\)
0.995878 0.0906974i \(-0.0289096\pi\)
\(488\) −40.2512 + 23.2391i −0.0824820 + 0.0476210i
\(489\) 187.792 212.150i 0.384032 0.433845i
\(490\) 57.2578 0.116853
\(491\) 400.940 + 231.483i 0.816579 + 0.471452i 0.849235 0.528015i \(-0.177063\pi\)
−0.0326565 + 0.999467i \(0.510397\pi\)
\(492\) −34.9827 30.9661i −0.0711030 0.0629391i
\(493\) −222.463 + 385.317i −0.451244 + 0.781577i
\(494\) 674.543 + 953.774i 1.36547 + 1.93072i
\(495\) 16.4740 + 134.741i 0.0332809 + 0.272204i
\(496\) −200.453 347.195i −0.404139 0.699990i
\(497\) 707.522i 1.42359i
\(498\) 226.558 255.945i 0.454935 0.513945i
\(499\) 161.354 + 279.473i 0.323354 + 0.560065i 0.981178 0.193106i \(-0.0618563\pi\)
−0.657824 + 0.753172i \(0.728523\pi\)
\(500\) 122.871i 0.245741i
\(501\) −369.151 326.766i −0.736828 0.652227i
\(502\) 60.1734 104.223i 0.119867 0.207616i
\(503\) −278.116 160.570i −0.552915 0.319225i 0.197382 0.980327i \(-0.436756\pi\)
−0.750297 + 0.661101i \(0.770089\pi\)
\(504\) −156.811 + 19.1725i −0.311134 + 0.0380406i
\(505\) 52.7617 + 91.3859i 0.104479 + 0.180962i
\(506\) 733.048 + 423.226i 1.44871 + 0.836414i
\(507\) 245.984 + 443.329i 0.485175 + 0.874417i
\(508\) 156.073 + 270.326i 0.307230 + 0.532138i
\(509\) −630.554 364.050i −1.23881 0.715226i −0.269958 0.962872i \(-0.587010\pi\)
−0.968851 + 0.247646i \(0.920343\pi\)
\(510\) −36.3168 + 178.269i −0.0712094 + 0.349547i
\(511\) 226.027 + 391.490i 0.442322 + 0.766125i
\(512\) 443.636i 0.866477i
\(513\) −849.428 + 404.355i −1.65581 + 0.788217i
\(514\) −154.687 + 267.925i −0.300947 + 0.521255i
\(515\) −129.992 75.0509i −0.252412 0.145730i
\(516\) 4.74041 + 14.1797i 0.00918684 + 0.0274800i
\(517\) −57.0362 + 98.7896i −0.110321 + 0.191082i
\(518\) −24.7834 14.3087i −0.0478445 0.0276230i
\(519\) −287.980 + 96.2748i −0.554875 + 0.185501i
\(520\) 3.91816 + 42.4838i 0.00753492 + 0.0816997i
\(521\) 819.761i 1.57344i −0.617311 0.786719i \(-0.711778\pi\)
0.617311 0.786719i \(-0.288222\pi\)
\(522\) 381.409 + 162.129i 0.730669 + 0.310593i
\(523\) 485.658 + 841.184i 0.928601 + 1.60838i 0.785666 + 0.618651i \(0.212321\pi\)
0.142935 + 0.989732i \(0.454346\pi\)
\(524\) 206.149 119.020i 0.393415 0.227138i
\(525\) 357.697 + 72.8697i 0.681327 + 0.138799i
\(526\) −873.940 −1.66148
\(527\) 510.337i 0.968381i
\(528\) −187.379 + 919.790i −0.354884 + 1.74203i
\(529\) −53.6894 92.9928i −0.101492 0.175790i
\(530\) 71.9432 41.5364i 0.135742 0.0783706i
\(531\) −114.856 + 270.200i −0.216302 + 0.508851i
\(532\) −466.267 −0.876441
\(533\) 44.0885 + 62.3392i 0.0827176 + 0.116959i
\(534\) −137.707 411.914i −0.257879 0.771375i
\(535\) 93.7486 162.377i 0.175231 0.303509i
\(536\) −236.673 136.643i −0.441555 0.254932i
\(537\) 581.374 194.360i 1.08263 0.361936i
\(538\) 290.088 502.448i 0.539198 0.933918i
\(539\) −325.681 188.032i −0.604232 0.348853i
\(540\) 67.3407 + 5.35191i 0.124705 + 0.00991094i
\(541\) −850.073 −1.57130 −0.785650 0.618672i \(-0.787671\pi\)
−0.785650 + 0.618672i \(0.787671\pi\)
\(542\) 12.3244 7.11551i 0.0227388 0.0131282i
\(543\) −356.423 72.6102i −0.656396 0.133720i
\(544\) −455.699 + 789.293i −0.837681 + 1.45091i
\(545\) −81.4063 + 46.9999i −0.149369 + 0.0862384i
\(546\) −504.629 55.2245i −0.924228 0.101144i
\(547\) −290.185 + 502.616i −0.530503 + 0.918859i 0.468863 + 0.883271i \(0.344664\pi\)
−0.999367 + 0.0355881i \(0.988670\pi\)
\(548\) −20.9814 + 12.1136i −0.0382872 + 0.0221051i
\(549\) −14.5964 119.384i −0.0265873 0.217457i
\(550\) 496.936 860.718i 0.903520 1.56494i
\(551\) −538.772 311.060i −0.977808 0.564538i
\(552\) −142.002 + 160.422i −0.257251 + 0.290619i
\(553\) −291.794 −0.527657
\(554\) −518.936 + 299.608i −0.936708 + 0.540809i
\(555\) −4.66030 4.12522i −0.00839694 0.00743282i
\(556\) 394.284 0.709143
\(557\) 76.5165 44.1768i 0.137373 0.0793121i −0.429739 0.902953i \(-0.641394\pi\)
0.567111 + 0.823641i \(0.308061\pi\)
\(558\) 471.853 57.6908i 0.845614 0.103389i
\(559\) −2.24403 24.3316i −0.00401437 0.0435270i
\(560\) −80.7377 46.6140i −0.144175 0.0832392i
\(561\) 791.996 894.727i 1.41176 1.59488i
\(562\) 160.987 278.837i 0.286453 0.496152i
\(563\) 849.876i 1.50955i 0.655984 + 0.754774i \(0.272254\pi\)
−0.655984 + 0.754774i \(0.727746\pi\)
\(564\) 42.5071 + 37.6266i 0.0753673 + 0.0667138i
\(565\) 10.6171 + 18.3894i 0.0187914 + 0.0325476i
\(566\) 957.732 + 552.947i 1.69211 + 0.976937i
\(567\) 113.085 392.856i 0.199445 0.692867i
\(568\) −243.780 + 422.240i −0.429191 + 0.743380i
\(569\) 305.664i 0.537196i 0.963252 + 0.268598i \(0.0865602\pi\)
−0.963252 + 0.268598i \(0.913440\pi\)
\(570\) −249.265 50.7801i −0.437308 0.0890879i
\(571\) −76.3088 132.171i −0.133641 0.231472i 0.791437 0.611251i \(-0.209333\pi\)
−0.925077 + 0.379779i \(0.876000\pi\)
\(572\) −230.491 + 500.417i −0.402956 + 0.874855i
\(573\) 515.873 172.462i 0.900301 0.300980i
\(574\) −76.4508 −0.133190
\(575\) 428.728 247.526i 0.745613 0.430480i
\(576\) 132.729 + 56.4205i 0.230433 + 0.0979522i
\(577\) −357.654 −0.619851 −0.309926 0.950761i \(-0.600304\pi\)
−0.309926 + 0.950761i \(0.600304\pi\)
\(578\) 741.421 428.060i 1.28274 0.740588i
\(579\) 4.88006 5.51305i 0.00842842 0.00952168i
\(580\) 22.3362 + 38.6875i 0.0385108 + 0.0667026i
\(581\) 222.968i 0.383766i
\(582\) 1150.28 384.551i 1.97643 0.660740i
\(583\) −545.615 −0.935874
\(584\) 311.515i 0.533416i
\(585\) −105.142 33.6765i −0.179730 0.0575666i
\(586\) 393.268 0.671106
\(587\) 807.369i 1.37542i −0.725987 0.687708i \(-0.758617\pi\)
0.725987 0.687708i \(-0.241383\pi\)
\(588\) −124.044 + 140.134i −0.210959 + 0.238323i
\(589\) −713.581 −1.21151
\(590\) −68.7538 + 39.6950i −0.116532 + 0.0672797i
\(591\) −988.447 + 330.448i −1.67250 + 0.559134i
\(592\) −21.5191 37.2721i −0.0363498 0.0629597i
\(593\) 246.824i 0.416230i 0.978104 + 0.208115i \(0.0667328\pi\)
−0.978104 + 0.208115i \(0.933267\pi\)
\(594\) −916.787 631.128i −1.54341 1.06251i
\(595\) 59.3376 + 102.776i 0.0997271 + 0.172732i
\(596\) 87.2777i 0.146439i
\(597\) 351.202 396.757i 0.588278 0.664584i
\(598\) −562.071 + 397.516i −0.939918 + 0.664743i
\(599\) 120.864 69.7811i 0.201777 0.116496i −0.395707 0.918377i \(-0.629500\pi\)
0.597484 + 0.801881i \(0.296167\pi\)
\(600\) 188.361 + 166.734i 0.313935 + 0.277890i
\(601\) −969.145 −1.61255 −0.806277 0.591538i \(-0.798521\pi\)
−0.806277 + 0.591538i \(0.798521\pi\)
\(602\) 21.1880 + 12.2329i 0.0351960 + 0.0203204i
\(603\) 565.008 425.310i 0.936994 0.705324i
\(604\) −142.325 + 246.515i −0.235638 + 0.408137i
\(605\) 109.900 63.4511i 0.181654 0.104878i
\(606\) −847.816 172.716i −1.39904 0.285010i
\(607\) −603.040 −0.993476 −0.496738 0.867900i \(-0.665469\pi\)
−0.496738 + 0.867900i \(0.665469\pi\)
\(608\) −1103.63 637.183i −1.81519 1.04800i
\(609\) 256.394 85.7152i 0.421008 0.140747i
\(610\) 16.2611 28.1651i 0.0266576 0.0461723i
\(611\) −53.5715 75.7477i −0.0876784 0.123973i
\(612\) −357.622 475.086i −0.584349 0.776285i
\(613\) 520.011 + 900.685i 0.848305 + 1.46931i 0.882720 + 0.469900i \(0.155710\pi\)
−0.0344149 + 0.999408i \(0.510957\pi\)
\(614\) 1443.59i 2.35112i
\(615\) −16.2921 3.31902i −0.0264913 0.00539677i
\(616\) 140.284 + 242.980i 0.227734 + 0.394448i
\(617\) 189.448i 0.307047i −0.988145 0.153523i \(-0.950938\pi\)
0.988145 0.153523i \(-0.0490620\pi\)
\(618\) 1167.25 390.223i 1.88875 0.631429i
\(619\) −378.224 + 655.103i −0.611024 + 1.05832i 0.380044 + 0.924968i \(0.375909\pi\)
−0.991068 + 0.133356i \(0.957425\pi\)
\(620\) 44.3751 + 25.6200i 0.0715728 + 0.0413226i
\(621\) −238.292 500.579i −0.383722 0.806085i
\(622\) −414.842 718.527i −0.666948 1.15519i
\(623\) −245.357 141.657i −0.393831 0.227378i
\(624\) −615.715 451.385i −0.986724 0.723373i
\(625\) −279.506 484.118i −0.447209 0.774589i
\(626\) 777.741 + 449.029i 1.24240 + 0.717298i
\(627\) 1251.06 + 1107.41i 1.99531 + 1.76621i
\(628\) 5.86138 + 10.1522i 0.00933341 + 0.0161659i
\(629\) 54.7857i 0.0870998i
\(630\) 88.3177 66.4813i 0.140187 0.105526i
\(631\) 363.821 630.156i 0.576578 0.998662i −0.419290 0.907852i \(-0.637721\pi\)
0.995868 0.0908100i \(-0.0289456\pi\)
\(632\) −174.139 100.539i −0.275537 0.159081i
\(633\) 542.367 612.718i 0.856820 0.967959i
\(634\) −110.657 + 191.664i −0.174538 + 0.302309i
\(635\) 96.2056 + 55.5443i 0.151505 + 0.0874714i
\(636\) −54.2015 + 266.060i −0.0852225 + 0.418333i
\(637\) 249.719 176.610i 0.392023 0.277253i
\(638\) 736.037i 1.15366i
\(639\) −758.780 1008.01i −1.18745 1.57748i
\(640\) −49.5256 85.7808i −0.0773837 0.134033i
\(641\) 759.962 438.764i 1.18559 0.684499i 0.228287 0.973594i \(-0.426688\pi\)
0.957301 + 0.289095i \(0.0933542\pi\)
\(642\) 487.441 + 1458.05i 0.759253 + 2.27110i
\(643\) −415.517 −0.646217 −0.323108 0.946362i \(-0.604728\pi\)
−0.323108 + 0.946362i \(0.604728\pi\)
\(644\) 274.777i 0.426672i
\(645\) 3.98421 + 3.52675i 0.00617707 + 0.00546783i
\(646\) 1119.63 + 1939.25i 1.73317 + 3.00194i
\(647\) −327.840 + 189.279i −0.506708 + 0.292548i −0.731479 0.681864i \(-0.761170\pi\)
0.224772 + 0.974411i \(0.427836\pi\)
\(648\) 202.848 195.487i 0.313038 0.301678i
\(649\) 521.427 0.803431
\(650\) 466.749 + 659.963i 0.718076 + 1.01533i
\(651\) 205.529 232.188i 0.315713 0.356664i
\(652\) −125.204 + 216.860i −0.192031 + 0.332608i
\(653\) 261.706 + 151.096i 0.400775 + 0.231387i 0.686818 0.726829i \(-0.259007\pi\)
−0.286043 + 0.958217i \(0.592340\pi\)
\(654\) 153.855 755.232i 0.235253 1.15479i
\(655\) 42.3578 73.3659i 0.0646684 0.112009i
\(656\) −99.5716 57.4877i −0.151786 0.0876337i
\(657\) −741.873 315.355i −1.12918 0.479993i
\(658\) 92.8947 0.141177
\(659\) −6.36168 + 3.67292i −0.00965354 + 0.00557347i −0.504819 0.863225i \(-0.668441\pi\)
0.495165 + 0.868799i \(0.335107\pi\)
\(660\) −38.0390 113.783i −0.0576348 0.172399i
\(661\) −315.997 + 547.323i −0.478059 + 0.828022i −0.999684 0.0251527i \(-0.991993\pi\)
0.521625 + 0.853175i \(0.325326\pi\)
\(662\) −13.4996 + 7.79399i −0.0203921 + 0.0117734i
\(663\) 391.476 + 889.503i 0.590462 + 1.34163i
\(664\) 76.8248 133.065i 0.115700 0.200398i
\(665\) −143.707 + 82.9691i −0.216100 + 0.124766i
\(666\) 50.6544 6.19324i 0.0760577 0.00929915i
\(667\) 183.312 317.505i 0.274830 0.476019i
\(668\) 377.346 + 217.861i 0.564890 + 0.326139i
\(669\) −109.884 22.3855i −0.164251 0.0334611i
\(670\) 191.228 0.285414
\(671\) −184.986 + 106.802i −0.275687 + 0.159168i
\(672\) 525.204 175.581i 0.781553 0.261281i
\(673\) 1010.99 1.50221 0.751105 0.660183i \(-0.229521\pi\)
0.751105 + 0.660183i \(0.229521\pi\)
\(674\) 901.927 520.728i 1.33817 0.772593i
\(675\) −587.761 + 279.793i −0.870757 + 0.414509i
\(676\) −291.245 340.539i −0.430836 0.503756i
\(677\) 453.715 + 261.952i 0.670185 + 0.386931i 0.796147 0.605104i \(-0.206868\pi\)
−0.125962 + 0.992035i \(0.540202\pi\)
\(678\) −170.604 34.7554i −0.251629 0.0512616i
\(679\) 395.580 685.164i 0.582592 1.00908i
\(680\) 81.7803i 0.120265i
\(681\) −565.784 + 189.147i −0.830813 + 0.277750i
\(682\) −422.122 731.137i −0.618948 1.07205i
\(683\) 733.152 + 423.286i 1.07343 + 0.619745i 0.929116 0.369787i \(-0.120569\pi\)
0.144313 + 0.989532i \(0.453903\pi\)
\(684\) 664.292 500.047i 0.971187 0.731062i
\(685\) −4.31107 + 7.46699i −0.00629353 + 0.0109007i
\(686\) 944.053i 1.37617i
\(687\) −262.606 785.516i −0.382251 1.14340i
\(688\) 18.3972 + 31.8649i 0.0267401 + 0.0463152i
\(689\) 185.648 403.059i 0.269446 0.584992i
\(690\) 29.9254 146.895i 0.0433701 0.212892i
\(691\) 681.316 0.985985 0.492993 0.870034i \(-0.335903\pi\)
0.492993 + 0.870034i \(0.335903\pi\)
\(692\) 232.414 134.185i 0.335859 0.193908i
\(693\) −720.671 + 88.1125i −1.03993 + 0.127146i
\(694\) −759.371 −1.09419
\(695\) 121.521 70.1602i 0.174850 0.100950i
\(696\) 182.546 + 37.1882i 0.262279 + 0.0534313i
\(697\) 73.1794 + 126.750i 0.104992 + 0.181851i
\(698\) 1316.01i 1.88539i
\(699\) −63.5069 + 311.738i −0.0908539 + 0.445976i
\(700\) −322.633 −0.460904
\(701\) 253.593i 0.361759i 0.983505 + 0.180880i \(0.0578945\pi\)
−0.983505 + 0.180880i \(0.942106\pi\)
\(702\) 778.172 462.509i 1.10851 0.658845i
\(703\) −76.6045 −0.108968
\(704\) 256.138i 0.363833i
\(705\) 19.7964 + 4.03291i 0.0280800 + 0.00572043i
\(706\) −1295.38 −1.83482
\(707\) −488.784 + 282.199i −0.691349 + 0.399150i
\(708\) 51.7987 254.265i 0.0731620 0.359132i
\(709\) −127.391 220.647i −0.179677 0.311209i 0.762093 0.647468i \(-0.224172\pi\)
−0.941770 + 0.336258i \(0.890839\pi\)
\(710\) 341.162i 0.480510i
\(711\) 415.720 312.934i 0.584698 0.440132i
\(712\) −97.6172 169.078i −0.137103 0.237469i
\(713\) 420.522i 0.589792i
\(714\) −953.483 194.243i −1.33541 0.272049i
\(715\) 18.0070 + 195.246i 0.0251846 + 0.273072i
\(716\) −469.198 + 270.892i −0.655305 + 0.378340i
\(717\) −1089.90 + 364.366i −1.52009 + 0.508182i
\(718\) −665.511 −0.926896
\(719\) −129.197 74.5922i −0.179690 0.103744i 0.407457 0.913224i \(-0.366416\pi\)
−0.587147 + 0.809480i \(0.699749\pi\)
\(720\) 165.018 20.1759i 0.229192 0.0280221i
\(721\) 401.415 695.271i 0.556748 0.964315i
\(722\) −1905.27 + 1100.01i −2.63888 + 1.52356i
\(723\) 44.6924 + 133.685i 0.0618152 + 0.184904i
\(724\) 321.484 0.444039
\(725\) −372.803 215.238i −0.514211 0.296880i
\(726\) −207.708 + 1019.58i −0.286100 + 1.40438i
\(727\) 495.936 858.987i 0.682168 1.18155i −0.292149 0.956373i \(-0.594370\pi\)
0.974318 0.225178i \(-0.0722962\pi\)
\(728\) −227.228 + 20.9565i −0.312126 + 0.0287865i
\(729\) 260.204 + 680.981i 0.356933 + 0.934130i
\(730\) −108.989 188.774i −0.149299 0.258594i
\(731\) 46.8377i 0.0640735i
\(732\) 33.7035 + 100.815i 0.0460431 + 0.137725i
\(733\) −48.4482 83.9147i −0.0660958 0.114481i 0.831084 0.556147i \(-0.187721\pi\)
−0.897180 + 0.441666i \(0.854388\pi\)
\(734\) 302.489i 0.412110i
\(735\) −13.2953 + 65.2631i −0.0180889 + 0.0887933i
\(736\) 375.500 650.385i 0.510190 0.883675i
\(737\) −1087.70 627.983i −1.47585 0.852080i
\(738\) 108.920 81.9895i 0.147588 0.111097i
\(739\) 508.944 + 881.516i 0.688692 + 1.19285i 0.972261 + 0.233898i \(0.0751483\pi\)
−0.283569 + 0.958952i \(0.591518\pi\)
\(740\) 4.76377 + 2.75036i 0.00643752 + 0.00371670i
\(741\) −1243.75 + 547.384i −1.67848 + 0.738710i
\(742\) 222.160 + 384.793i 0.299407 + 0.518589i
\(743\) −1.46824 0.847690i −0.00197610 0.00114090i 0.499012 0.866595i \(-0.333696\pi\)
−0.500988 + 0.865454i \(0.667030\pi\)
\(744\) 202.659 67.7510i 0.272391 0.0910631i
\(745\) 15.5305 + 26.8996i 0.0208463 + 0.0361068i
\(746\) 1813.29i 2.43069i
\(747\) 239.122 + 317.664i 0.320109 + 0.425252i
\(748\) −528.039 + 914.591i −0.705935 + 1.22271i
\(749\) 868.486 + 501.421i 1.15953 + 0.669454i
\(750\) −351.328 71.5722i −0.468437 0.0954296i
\(751\) 696.728 1206.77i 0.927734 1.60688i 0.140630 0.990062i \(-0.455087\pi\)
0.787104 0.616820i \(-0.211579\pi\)
\(752\) 120.989 + 69.8527i 0.160889 + 0.0928893i
\(753\) 104.823 + 92.7871i 0.139207 + 0.123223i
\(754\) 543.729 + 250.440i 0.721126 + 0.332149i
\(755\) 101.303i 0.134177i
\(756\) −28.6250 + 360.176i −0.0378638 + 0.476424i
\(757\) −89.1160 154.353i −0.117723 0.203901i 0.801142 0.598474i \(-0.204226\pi\)
−0.918865 + 0.394573i \(0.870893\pi\)
\(758\) 743.114 429.037i 0.980361 0.566012i
\(759\) −652.612 + 737.263i −0.859831 + 0.971361i
\(760\) −114.350 −0.150460
\(761\) 82.8037i 0.108809i 0.998519 + 0.0544046i \(0.0173261\pi\)
−0.998519 + 0.0544046i \(0.982674\pi\)
\(762\) −863.866 + 288.799i −1.13368 + 0.379002i
\(763\) −251.382 435.407i −0.329466 0.570651i
\(764\) −416.335 + 240.371i −0.544941 + 0.314622i
\(765\) −194.760 82.7885i −0.254588 0.108220i
\(766\) 859.715 1.12234
\(767\) −177.418 + 385.191i −0.231314 + 0.502205i
\(768\) 984.243 + 200.509i 1.28157 + 0.261080i
\(769\) 292.701 506.973i 0.380625 0.659263i −0.610526 0.791996i \(-0.709042\pi\)
0.991152 + 0.132733i \(0.0423754\pi\)