Properties

Label 117.3.k.a.29.5
Level $117$
Weight $3$
Character 117.29
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(29,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.29");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 29.5
Character \(\chi\) \(=\) 117.29
Dual form 117.3.k.a.113.22

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.75995i q^{2} +(-1.69762 - 2.47347i) q^{3} -3.61733 q^{4} +(7.95372 - 4.59208i) q^{5} +(-6.82666 + 4.68536i) q^{6} +(-2.71987 - 4.71096i) q^{7} -1.05616i q^{8} +(-3.23614 + 8.39806i) q^{9} +(-12.6739 - 21.9519i) q^{10} +18.2997i q^{11} +(6.14086 + 8.94736i) q^{12} +(12.7394 + 2.59000i) q^{13} +(-13.0020 + 7.50672i) q^{14} +(-24.8608 - 11.8777i) q^{15} -17.3843 q^{16} +(3.53920 + 2.04336i) q^{17} +(23.1782 + 8.93159i) q^{18} +(-4.68429 + 8.11343i) q^{19} +(-28.7712 + 16.6111i) q^{20} +(-7.03511 + 14.7250i) q^{21} +50.5062 q^{22} +(-2.18290 - 1.26030i) q^{23} +(-2.61238 + 1.79296i) q^{24} +(29.6745 - 51.3977i) q^{25} +(7.14827 - 35.1601i) q^{26} +(26.2661 - 6.25224i) q^{27} +(9.83868 + 17.0411i) q^{28} -10.3753i q^{29} +(-32.7818 + 68.6147i) q^{30} +(7.76905 + 13.4564i) q^{31} +43.7550i q^{32} +(45.2637 - 31.0660i) q^{33} +(5.63957 - 9.76803i) q^{34} +(-43.2663 - 24.9798i) q^{35} +(11.7062 - 30.3785i) q^{36} +(-23.6723 - 41.0016i) q^{37} +(22.3927 + 12.9284i) q^{38} +(-15.2204 - 35.9074i) q^{39} +(-4.84996 - 8.40038i) q^{40} +(34.8153 + 20.1006i) q^{41} +(40.6402 + 19.4166i) q^{42} +(-22.9833 - 39.8082i) q^{43} -66.1959i q^{44} +(12.8252 + 81.6565i) q^{45} +(-3.47837 + 6.02471i) q^{46} +(19.2835 + 11.1333i) q^{47} +(29.5119 + 42.9995i) q^{48} +(9.70457 - 16.8088i) q^{49} +(-141.855 - 81.9001i) q^{50} +(-0.954042 - 12.2230i) q^{51} +(-46.0825 - 9.36888i) q^{52} +73.5428i q^{53} +(-17.2559 - 72.4932i) q^{54} +(84.0336 + 145.550i) q^{55} +(-4.97552 + 2.87262i) q^{56} +(28.0205 - 2.18709i) q^{57} -28.6354 q^{58} -3.38499i q^{59} +(89.9298 + 42.9655i) q^{60} +(17.2929 + 29.9521i) q^{61} +(37.1390 - 21.4422i) q^{62} +(48.3648 - 7.59633i) q^{63} +51.2248 q^{64} +(113.219 - 37.9002i) q^{65} +(-85.7405 - 124.926i) q^{66} +(-37.9400 + 65.7140i) q^{67} +(-12.8025 - 7.39150i) q^{68} +(0.588432 + 7.53887i) q^{69} +(-68.9430 + 119.413i) q^{70} +(8.47547 + 4.89331i) q^{71} +(8.86967 + 3.41787i) q^{72} -90.9357 q^{73} +(-113.162 + 65.3343i) q^{74} +(-177.507 + 13.8550i) q^{75} +(16.9446 - 29.3489i) q^{76} +(86.2090 - 49.7728i) q^{77} +(-99.1026 + 42.0075i) q^{78} +(-7.46446 + 12.9288i) q^{79} +(-138.270 + 79.8300i) q^{80} +(-60.0548 - 54.3546i) q^{81} +(55.4767 - 96.0885i) q^{82} +(-37.6357 - 21.7290i) q^{83} +(25.4483 - 53.2651i) q^{84} +37.5331 q^{85} +(-109.869 + 63.4327i) q^{86} +(-25.6631 + 17.6134i) q^{87} +19.3273 q^{88} +(71.5607 - 41.3156i) q^{89} +(225.368 - 35.3970i) q^{90} +(-22.4481 - 67.0592i) q^{91} +(7.89628 + 4.55892i) q^{92} +(20.0951 - 42.0604i) q^{93} +(30.7274 - 53.2214i) q^{94} +86.0427i q^{95} +(108.227 - 74.2796i) q^{96} +(-46.4699 - 80.4881i) q^{97} +(-46.3915 - 26.7841i) q^{98} +(-153.682 - 59.2203i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - q^{3} - 98 q^{4} - 6 q^{5} + 12 q^{6} - q^{7} - 3 q^{9} - 6 q^{10} - 39 q^{12} + 4 q^{13} - 6 q^{14} - 25 q^{15} + 166 q^{16} + 34 q^{18} + 5 q^{19} + 21 q^{20} - 91 q^{21} + 30 q^{22} - 75 q^{23}+ \cdots + 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.75995i 1.37998i −0.723821 0.689988i \(-0.757616\pi\)
0.723821 0.689988i \(-0.242384\pi\)
\(3\) −1.69762 2.47347i −0.565875 0.824491i
\(4\) −3.61733 −0.904332
\(5\) 7.95372 4.59208i 1.59074 0.918417i 0.597565 0.801820i \(-0.296135\pi\)
0.993179 0.116597i \(-0.0371985\pi\)
\(6\) −6.82666 + 4.68536i −1.13778 + 0.780893i
\(7\) −2.71987 4.71096i −0.388554 0.672994i 0.603702 0.797210i \(-0.293692\pi\)
−0.992255 + 0.124216i \(0.960358\pi\)
\(8\) 1.05616i 0.132020i
\(9\) −3.23614 + 8.39806i −0.359571 + 0.933118i
\(10\) −12.6739 21.9519i −1.26739 2.19519i
\(11\) 18.2997i 1.66361i 0.555071 + 0.831803i \(0.312691\pi\)
−0.555071 + 0.831803i \(0.687309\pi\)
\(12\) 6.14086 + 8.94736i 0.511739 + 0.745614i
\(13\) 12.7394 + 2.59000i 0.979953 + 0.199231i
\(14\) −13.0020 + 7.50672i −0.928716 + 0.536194i
\(15\) −24.8608 11.8777i −1.65739 0.791846i
\(16\) −17.3843 −1.08652
\(17\) 3.53920 + 2.04336i 0.208188 + 0.120198i 0.600469 0.799648i \(-0.294981\pi\)
−0.392281 + 0.919846i \(0.628314\pi\)
\(18\) 23.1782 + 8.93159i 1.28768 + 0.496200i
\(19\) −4.68429 + 8.11343i −0.246542 + 0.427023i −0.962564 0.271055i \(-0.912628\pi\)
0.716022 + 0.698078i \(0.245961\pi\)
\(20\) −28.7712 + 16.6111i −1.43856 + 0.830554i
\(21\) −7.03511 + 14.7250i −0.335005 + 0.701190i
\(22\) 50.5062 2.29574
\(23\) −2.18290 1.26030i −0.0949089 0.0547957i 0.451794 0.892122i \(-0.350784\pi\)
−0.546703 + 0.837326i \(0.684117\pi\)
\(24\) −2.61238 + 1.79296i −0.108849 + 0.0747066i
\(25\) 29.6745 51.3977i 1.18698 2.05591i
\(26\) 7.14827 35.1601i 0.274934 1.35231i
\(27\) 26.2661 6.25224i 0.972820 0.231564i
\(28\) 9.83868 + 17.0411i 0.351381 + 0.608610i
\(29\) 10.3753i 0.357770i −0.983870 0.178885i \(-0.942751\pi\)
0.983870 0.178885i \(-0.0572491\pi\)
\(30\) −32.7818 + 68.6147i −1.09273 + 2.28716i
\(31\) 7.76905 + 13.4564i 0.250615 + 0.434077i 0.963695 0.267005i \(-0.0860340\pi\)
−0.713081 + 0.701082i \(0.752701\pi\)
\(32\) 43.7550i 1.36735i
\(33\) 45.2637 31.0660i 1.37163 0.941393i
\(34\) 5.63957 9.76803i 0.165870 0.287295i
\(35\) −43.2663 24.9798i −1.23618 0.713708i
\(36\) 11.7062 30.3785i 0.325172 0.843848i
\(37\) −23.6723 41.0016i −0.639791 1.10815i −0.985478 0.169801i \(-0.945687\pi\)
0.345687 0.938350i \(-0.387646\pi\)
\(38\) 22.3927 + 12.9284i 0.589281 + 0.340222i
\(39\) −15.2204 35.9074i −0.390266 0.920702i
\(40\) −4.84996 8.40038i −0.121249 0.210010i
\(41\) 34.8153 + 20.1006i 0.849154 + 0.490259i 0.860365 0.509678i \(-0.170235\pi\)
−0.0112114 + 0.999937i \(0.503569\pi\)
\(42\) 40.6402 + 19.4166i 0.967624 + 0.462299i
\(43\) −22.9833 39.8082i −0.534495 0.925772i −0.999188 0.0403000i \(-0.987169\pi\)
0.464693 0.885472i \(-0.346165\pi\)
\(44\) 66.1959i 1.50445i
\(45\) 12.8252 + 81.6565i 0.285005 + 1.81459i
\(46\) −3.47837 + 6.02471i −0.0756167 + 0.130972i
\(47\) 19.2835 + 11.1333i 0.410287 + 0.236879i 0.690913 0.722938i \(-0.257209\pi\)
−0.280626 + 0.959817i \(0.590542\pi\)
\(48\) 29.5119 + 42.9995i 0.614832 + 0.895823i
\(49\) 9.70457 16.8088i 0.198052 0.343037i
\(50\) −141.855 81.9001i −2.83710 1.63800i
\(51\) −0.954042 12.2230i −0.0187067 0.239666i
\(52\) −46.0825 9.36888i −0.886202 0.180171i
\(53\) 73.5428i 1.38760i 0.720168 + 0.693800i \(0.244065\pi\)
−0.720168 + 0.693800i \(0.755935\pi\)
\(54\) −17.2559 72.4932i −0.319553 1.34247i
\(55\) 84.0336 + 145.550i 1.52788 + 2.64637i
\(56\) −4.97552 + 2.87262i −0.0888485 + 0.0512967i
\(57\) 28.0205 2.18709i 0.491588 0.0383700i
\(58\) −28.6354 −0.493714
\(59\) 3.38499i 0.0573727i −0.999588 0.0286864i \(-0.990868\pi\)
0.999588 0.0286864i \(-0.00913241\pi\)
\(60\) 89.9298 + 42.9655i 1.49883 + 0.716091i
\(61\) 17.2929 + 29.9521i 0.283490 + 0.491019i 0.972242 0.233978i \(-0.0751745\pi\)
−0.688752 + 0.724997i \(0.741841\pi\)
\(62\) 37.1390 21.4422i 0.599016 0.345842i
\(63\) 48.3648 7.59633i 0.767696 0.120577i
\(64\) 51.2248 0.800387
\(65\) 113.219 37.9002i 1.74183 0.583080i
\(66\) −85.7405 124.926i −1.29910 1.89281i
\(67\) −37.9400 + 65.7140i −0.566268 + 0.980805i 0.430662 + 0.902513i \(0.358280\pi\)
−0.996930 + 0.0782922i \(0.975053\pi\)
\(68\) −12.8025 7.39150i −0.188271 0.108699i
\(69\) 0.588432 + 7.53887i 0.00852801 + 0.109259i
\(70\) −68.9430 + 119.413i −0.984900 + 1.70590i
\(71\) 8.47547 + 4.89331i 0.119373 + 0.0689199i 0.558498 0.829506i \(-0.311378\pi\)
−0.439125 + 0.898426i \(0.644711\pi\)
\(72\) 8.86967 + 3.41787i 0.123190 + 0.0474705i
\(73\) −90.9357 −1.24569 −0.622847 0.782343i \(-0.714024\pi\)
−0.622847 + 0.782343i \(0.714024\pi\)
\(74\) −113.162 + 65.3343i −1.52922 + 0.882896i
\(75\) −177.507 + 13.8550i −2.36676 + 0.184733i
\(76\) 16.9446 29.3489i 0.222956 0.386170i
\(77\) 86.2090 49.7728i 1.11960 0.646400i
\(78\) −99.1026 + 42.0075i −1.27055 + 0.538558i
\(79\) −7.46446 + 12.9288i −0.0944869 + 0.163656i −0.909394 0.415935i \(-0.863454\pi\)
0.814907 + 0.579591i \(0.196788\pi\)
\(80\) −138.270 + 79.8300i −1.72837 + 0.997874i
\(81\) −60.0548 54.3546i −0.741417 0.671045i
\(82\) 55.4767 96.0885i 0.676546 1.17181i
\(83\) −37.6357 21.7290i −0.453442 0.261795i 0.255841 0.966719i \(-0.417648\pi\)
−0.709283 + 0.704924i \(0.750981\pi\)
\(84\) 25.4483 53.2651i 0.302956 0.634108i
\(85\) 37.5331 0.441566
\(86\) −109.869 + 63.4327i −1.27754 + 0.737589i
\(87\) −25.6631 + 17.6134i −0.294979 + 0.202453i
\(88\) 19.3273 0.219629
\(89\) 71.5607 41.3156i 0.804053 0.464220i −0.0408334 0.999166i \(-0.513001\pi\)
0.844886 + 0.534946i \(0.179668\pi\)
\(90\) 225.368 35.3970i 2.50409 0.393300i
\(91\) −22.4481 67.0592i −0.246683 0.736914i
\(92\) 7.89628 + 4.55892i 0.0858291 + 0.0495535i
\(93\) 20.0951 42.0604i 0.216076 0.452263i
\(94\) 30.7274 53.2214i 0.326887 0.566186i
\(95\) 86.0427i 0.905712i
\(96\) 108.227 74.2796i 1.12736 0.773746i
\(97\) −46.4699 80.4881i −0.479071 0.829775i 0.520641 0.853776i \(-0.325693\pi\)
−0.999712 + 0.0240008i \(0.992360\pi\)
\(98\) −46.3915 26.7841i −0.473382 0.273307i
\(99\) −153.682 59.2203i −1.55234 0.598185i
\(100\) −107.342 + 185.922i −1.07342 + 1.85922i
\(101\) 91.8050i 0.908961i 0.890757 + 0.454480i \(0.150175\pi\)
−0.890757 + 0.454480i \(0.849825\pi\)
\(102\) −33.7348 + 2.63311i −0.330734 + 0.0258148i
\(103\) −17.4570 30.2365i −0.169486 0.293558i 0.768753 0.639545i \(-0.220877\pi\)
−0.938239 + 0.345987i \(0.887544\pi\)
\(104\) 2.73545 13.4548i 0.0263024 0.129373i
\(105\) 11.6630 + 149.424i 0.111076 + 1.42309i
\(106\) 202.974 1.91485
\(107\) 153.064 88.3715i 1.43050 0.825902i 0.433345 0.901228i \(-0.357333\pi\)
0.997159 + 0.0753268i \(0.0240000\pi\)
\(108\) −95.0132 + 22.6164i −0.879752 + 0.209411i
\(109\) −66.5314 −0.610380 −0.305190 0.952292i \(-0.598720\pi\)
−0.305190 + 0.952292i \(0.598720\pi\)
\(110\) 401.712 231.929i 3.65193 2.10844i
\(111\) −61.2297 + 128.158i −0.551619 + 1.15458i
\(112\) 47.2830 + 81.8965i 0.422169 + 0.731219i
\(113\) 168.290i 1.48929i 0.667458 + 0.744647i \(0.267382\pi\)
−0.667458 + 0.744647i \(0.732618\pi\)
\(114\) −6.03626 77.3353i −0.0529497 0.678380i
\(115\) −23.1496 −0.201301
\(116\) 37.5310i 0.323543i
\(117\) −62.9774 + 98.6045i −0.538269 + 0.842773i
\(118\) −9.34241 −0.0791729
\(119\) 22.2307i 0.186813i
\(120\) −12.5447 + 26.2570i −0.104539 + 0.218808i
\(121\) −213.878 −1.76759
\(122\) 82.6664 47.7275i 0.677593 0.391209i
\(123\) −9.38495 120.238i −0.0763004 0.977545i
\(124\) −28.1032 48.6762i −0.226639 0.392550i
\(125\) 315.467i 2.52373i
\(126\) −20.9655 133.485i −0.166393 1.05940i
\(127\) 19.1179 + 33.1132i 0.150535 + 0.260734i 0.931424 0.363936i \(-0.118567\pi\)
−0.780889 + 0.624669i \(0.785234\pi\)
\(128\) 33.6424i 0.262831i
\(129\) −59.4475 + 124.428i −0.460834 + 0.964557i
\(130\) −104.603 312.479i −0.804635 2.40368i
\(131\) −67.9435 + 39.2272i −0.518652 + 0.299444i −0.736383 0.676565i \(-0.763468\pi\)
0.217731 + 0.976009i \(0.430135\pi\)
\(132\) −163.734 + 112.376i −1.24041 + 0.851332i
\(133\) 50.9628 0.383179
\(134\) 181.367 + 104.712i 1.35349 + 0.781436i
\(135\) 180.203 170.345i 1.33483 1.26181i
\(136\) 2.15811 3.73795i 0.0158684 0.0274850i
\(137\) 99.7360 57.5826i 0.728000 0.420311i −0.0896899 0.995970i \(-0.528588\pi\)
0.817690 + 0.575659i \(0.195254\pi\)
\(138\) 20.8069 1.62404i 0.150775 0.0117684i
\(139\) 133.227 0.958467 0.479234 0.877687i \(-0.340915\pi\)
0.479234 + 0.877687i \(0.340915\pi\)
\(140\) 156.508 + 90.3601i 1.11792 + 0.645429i
\(141\) −5.19813 66.5974i −0.0368662 0.472322i
\(142\) 13.5053 23.3919i 0.0951078 0.164732i
\(143\) −47.3962 + 233.126i −0.331442 + 1.63026i
\(144\) 56.2579 145.994i 0.390680 1.01385i
\(145\) −47.6445 82.5226i −0.328582 0.569121i
\(146\) 250.978i 1.71903i
\(147\) −58.0508 + 4.53105i −0.394904 + 0.0308235i
\(148\) 85.6304 + 148.316i 0.578584 + 1.00214i
\(149\) 1.95766i 0.0131387i −0.999978 0.00656933i \(-0.997909\pi\)
0.999978 0.00656933i \(-0.00209110\pi\)
\(150\) 38.2390 + 489.911i 0.254927 + 3.26607i
\(151\) −80.3329 + 139.141i −0.532006 + 0.921461i 0.467296 + 0.884101i \(0.345228\pi\)
−0.999302 + 0.0373605i \(0.988105\pi\)
\(152\) 8.56906 + 4.94735i 0.0563754 + 0.0325484i
\(153\) −28.6136 + 23.1098i −0.187017 + 0.151045i
\(154\) −137.370 237.933i −0.892016 1.54502i
\(155\) 123.586 + 71.3523i 0.797328 + 0.460337i
\(156\) 55.0571 + 129.889i 0.352930 + 0.832620i
\(157\) 108.787 + 188.425i 0.692911 + 1.20016i 0.970880 + 0.239566i \(0.0770053\pi\)
−0.277969 + 0.960590i \(0.589661\pi\)
\(158\) 35.6829 + 20.6015i 0.225841 + 0.130390i
\(159\) 181.906 124.848i 1.14406 0.785208i
\(160\) 200.927 + 348.016i 1.25579 + 2.17510i
\(161\) 13.7114i 0.0851642i
\(162\) −150.016 + 165.748i −0.926025 + 1.02314i
\(163\) 29.4508 51.0104i 0.180680 0.312947i −0.761432 0.648244i \(-0.775503\pi\)
0.942112 + 0.335297i \(0.108837\pi\)
\(164\) −125.938 72.7106i −0.767917 0.443357i
\(165\) 217.358 454.945i 1.31732 2.75724i
\(166\) −59.9709 + 103.873i −0.361270 + 0.625739i
\(167\) −31.6310 18.2622i −0.189407 0.109354i 0.402298 0.915509i \(-0.368212\pi\)
−0.591705 + 0.806155i \(0.701545\pi\)
\(168\) 15.5519 + 7.43018i 0.0925708 + 0.0442273i
\(169\) 155.584 + 65.9900i 0.920614 + 0.390474i
\(170\) 103.590i 0.609350i
\(171\) −52.9781 65.5952i −0.309813 0.383598i
\(172\) 83.1380 + 143.999i 0.483360 + 0.837205i
\(173\) −154.231 + 89.0451i −0.891506 + 0.514711i −0.874435 0.485143i \(-0.838768\pi\)
−0.0170713 + 0.999854i \(0.505434\pi\)
\(174\) 48.6122 + 70.8290i 0.279381 + 0.407063i
\(175\) −322.843 −1.84482
\(176\) 318.126i 1.80753i
\(177\) −8.37269 + 5.74644i −0.0473033 + 0.0324658i
\(178\) −114.029 197.504i −0.640612 1.10957i
\(179\) 109.244 63.0721i 0.610302 0.352358i −0.162782 0.986662i \(-0.552047\pi\)
0.773084 + 0.634304i \(0.218713\pi\)
\(180\) −46.3930 295.378i −0.257739 1.64099i
\(181\) 74.8713 0.413654 0.206827 0.978378i \(-0.433686\pi\)
0.206827 + 0.978378i \(0.433686\pi\)
\(182\) −185.080 + 61.9557i −1.01692 + 0.340416i
\(183\) 44.7290 93.6209i 0.244421 0.511590i
\(184\) −1.33108 + 2.30549i −0.00723410 + 0.0125298i
\(185\) −376.566 217.410i −2.03549 1.17519i
\(186\) −116.085 55.4615i −0.624111 0.298180i
\(187\) −37.3928 + 64.7662i −0.199962 + 0.346344i
\(188\) −69.7547 40.2729i −0.371035 0.214217i
\(189\) −100.895 106.733i −0.533834 0.564727i
\(190\) 237.474 1.24986
\(191\) −57.5866 + 33.2476i −0.301501 + 0.174071i −0.643117 0.765768i \(-0.722359\pi\)
0.341616 + 0.939840i \(0.389026\pi\)
\(192\) −86.9604 126.703i −0.452919 0.659912i
\(193\) −118.582 + 205.389i −0.614413 + 1.06419i 0.376075 + 0.926589i \(0.377274\pi\)
−0.990487 + 0.137605i \(0.956060\pi\)
\(194\) −222.143 + 128.254i −1.14507 + 0.661106i
\(195\) −285.948 215.704i −1.46640 1.10617i
\(196\) −35.1046 + 60.8029i −0.179105 + 0.310219i
\(197\) 58.7778 33.9354i 0.298364 0.172261i −0.343344 0.939210i \(-0.611560\pi\)
0.641708 + 0.766949i \(0.278226\pi\)
\(198\) −163.445 + 424.154i −0.825481 + 2.14219i
\(199\) 37.1197 64.2933i 0.186531 0.323082i −0.757560 0.652765i \(-0.773609\pi\)
0.944091 + 0.329684i \(0.106942\pi\)
\(200\) −54.2841 31.3409i −0.271420 0.156705i
\(201\) 226.950 17.7141i 1.12910 0.0881299i
\(202\) 253.377 1.25434
\(203\) −48.8778 + 28.2196i −0.240778 + 0.139013i
\(204\) 3.45108 + 44.2145i 0.0169171 + 0.216738i
\(205\) 369.215 1.80105
\(206\) −83.4512 + 48.1806i −0.405103 + 0.233886i
\(207\) 17.6483 14.2536i 0.0852573 0.0688582i
\(208\) −221.465 45.0252i −1.06473 0.216467i
\(209\) −148.473 85.7210i −0.710398 0.410148i
\(210\) 412.404 32.1894i 1.96383 0.153283i
\(211\) −56.6494 + 98.1196i −0.268480 + 0.465022i −0.968470 0.249132i \(-0.919855\pi\)
0.699989 + 0.714153i \(0.253188\pi\)
\(212\) 266.028i 1.25485i
\(213\) −2.28468 29.2709i −0.0107262 0.137422i
\(214\) −243.901 422.449i −1.13972 1.97406i
\(215\) −365.605 211.082i −1.70049 0.981778i
\(216\) −6.60335 27.7412i −0.0305711 0.128431i
\(217\) 42.2617 73.1994i 0.194754 0.337324i
\(218\) 183.623i 0.842309i
\(219\) 154.375 + 224.927i 0.704907 + 1.02706i
\(220\) −303.977 526.504i −1.38171 2.39320i
\(221\) 39.7950 + 35.1977i 0.180068 + 0.159266i
\(222\) 353.710 + 168.991i 1.59329 + 0.761221i
\(223\) −133.991 −0.600857 −0.300428 0.953804i \(-0.597130\pi\)
−0.300428 + 0.953804i \(0.597130\pi\)
\(224\) 206.128 119.008i 0.920216 0.531287i
\(225\) 335.610 + 415.538i 1.49160 + 1.84684i
\(226\) 464.473 2.05519
\(227\) 28.2529 16.3118i 0.124462 0.0718583i −0.436476 0.899716i \(-0.643774\pi\)
0.560939 + 0.827857i \(0.310440\pi\)
\(228\) −101.359 + 7.91142i −0.444559 + 0.0346992i
\(229\) −112.099 194.161i −0.489516 0.847866i 0.510411 0.859930i \(-0.329493\pi\)
−0.999927 + 0.0120642i \(0.996160\pi\)
\(230\) 63.8918i 0.277790i
\(231\) −269.462 128.740i −1.16650 0.557317i
\(232\) −10.9580 −0.0472327
\(233\) 340.251i 1.46030i 0.683285 + 0.730152i \(0.260551\pi\)
−0.683285 + 0.730152i \(0.739449\pi\)
\(234\) 272.143 + 173.815i 1.16301 + 0.742797i
\(235\) 204.501 0.870215
\(236\) 12.2446i 0.0518840i
\(237\) 44.6510 3.48515i 0.188401 0.0147053i
\(238\) −61.3557 −0.257797
\(239\) −33.6429 + 19.4238i −0.140765 + 0.0812709i −0.568729 0.822525i \(-0.692565\pi\)
0.427963 + 0.903796i \(0.359231\pi\)
\(240\) 432.187 + 206.485i 1.80078 + 0.860353i
\(241\) 22.4599 + 38.9017i 0.0931947 + 0.161418i 0.908854 0.417115i \(-0.136959\pi\)
−0.815659 + 0.578533i \(0.803625\pi\)
\(242\) 590.292i 2.43922i
\(243\) −32.4942 + 240.818i −0.133721 + 0.991019i
\(244\) −62.5540 108.347i −0.256369 0.444044i
\(245\) 178.257i 0.727578i
\(246\) −331.851 + 25.9020i −1.34899 + 0.105293i
\(247\) −80.6888 + 91.2278i −0.326675 + 0.369343i
\(248\) 14.2121 8.20534i 0.0573067 0.0330860i
\(249\) 10.1452 + 129.979i 0.0407439 + 0.522002i
\(250\) −870.672 −3.48269
\(251\) −420.624 242.847i −1.67579 0.967519i −0.964296 0.264828i \(-0.914685\pi\)
−0.711496 0.702690i \(-0.751982\pi\)
\(252\) −174.951 + 27.4784i −0.694252 + 0.109041i
\(253\) 23.0631 39.9464i 0.0911584 0.157891i
\(254\) 91.3907 52.7645i 0.359806 0.207734i
\(255\) −63.7172 92.8372i −0.249871 0.364067i
\(256\) 297.750 1.16309
\(257\) −20.6759 11.9373i −0.0804511 0.0464485i 0.459235 0.888315i \(-0.348124\pi\)
−0.539686 + 0.841866i \(0.681457\pi\)
\(258\) 343.415 + 164.072i 1.33106 + 0.635939i
\(259\) −128.771 + 223.038i −0.497186 + 0.861152i
\(260\) −409.550 + 137.097i −1.57519 + 0.527297i
\(261\) 87.1327 + 33.5761i 0.333842 + 0.128644i
\(262\) 108.265 + 187.521i 0.413225 + 0.715727i
\(263\) 473.709i 1.80118i −0.434673 0.900588i \(-0.643136\pi\)
0.434673 0.900588i \(-0.356864\pi\)
\(264\) −32.8105 47.8056i −0.124282 0.181082i
\(265\) 337.715 + 584.939i 1.27439 + 2.20732i
\(266\) 140.655i 0.528777i
\(267\) −223.676 106.865i −0.837739 0.400244i
\(268\) 137.241 237.709i 0.512094 0.886974i
\(269\) 77.5036 + 44.7467i 0.288117 + 0.166345i 0.637093 0.770787i \(-0.280137\pi\)
−0.348975 + 0.937132i \(0.613470\pi\)
\(270\) −470.143 497.351i −1.74127 1.84204i
\(271\) 37.7478 + 65.3811i 0.139291 + 0.241259i 0.927228 0.374496i \(-0.122184\pi\)
−0.787938 + 0.615755i \(0.788851\pi\)
\(272\) −61.5264 35.5223i −0.226200 0.130597i
\(273\) −127.761 + 169.366i −0.467988 + 0.620389i
\(274\) −158.925 275.267i −0.580019 1.00462i
\(275\) 940.561 + 543.033i 3.42022 + 1.97467i
\(276\) −2.12855 27.2706i −0.00771215 0.0988064i
\(277\) 155.217 + 268.844i 0.560350 + 0.970554i 0.997466 + 0.0711492i \(0.0226667\pi\)
−0.437116 + 0.899405i \(0.644000\pi\)
\(278\) 367.700i 1.32266i
\(279\) −138.149 + 21.6982i −0.495159 + 0.0777712i
\(280\) −26.3826 + 45.6960i −0.0942235 + 0.163200i
\(281\) 100.496 + 58.0212i 0.357636 + 0.206481i 0.668043 0.744122i \(-0.267132\pi\)
−0.310407 + 0.950604i \(0.600465\pi\)
\(282\) −183.805 + 14.3466i −0.651792 + 0.0508744i
\(283\) 209.421 362.728i 0.740005 1.28173i −0.212488 0.977164i \(-0.568157\pi\)
0.952492 0.304562i \(-0.0985102\pi\)
\(284\) −30.6586 17.7007i −0.107953 0.0623265i
\(285\) 212.824 146.068i 0.746752 0.512520i
\(286\) 643.418 + 130.811i 2.24971 + 0.457381i
\(287\) 218.685i 0.761968i
\(288\) −367.457 141.598i −1.27589 0.491658i
\(289\) −136.149 235.818i −0.471105 0.815978i
\(290\) −227.758 + 131.496i −0.785374 + 0.453436i
\(291\) −120.197 + 251.581i −0.413048 + 0.864538i
\(292\) 328.944 1.12652
\(293\) 520.151i 1.77526i 0.460559 + 0.887629i \(0.347649\pi\)
−0.460559 + 0.887629i \(0.652351\pi\)
\(294\) 12.5055 + 160.217i 0.0425356 + 0.544957i
\(295\) −15.5442 26.9233i −0.0526921 0.0912654i
\(296\) −43.3041 + 25.0017i −0.146298 + 0.0844650i
\(297\) 114.414 + 480.661i 0.385232 + 1.61839i
\(298\) −5.40305 −0.0181310
\(299\) −24.5447 21.7092i −0.0820892 0.0726059i
\(300\) 642.101 50.1180i 2.14034 0.167060i
\(301\) −125.023 + 216.547i −0.415359 + 0.719424i
\(302\) 384.021 + 221.715i 1.27159 + 0.734155i
\(303\) 227.077 155.850i 0.749430 0.514358i
\(304\) 81.4329 141.046i 0.267871 0.463967i
\(305\) 275.085 + 158.821i 0.901919 + 0.520723i
\(306\) 63.7820 + 78.9722i 0.208438 + 0.258079i
\(307\) −544.605 −1.77396 −0.886979 0.461810i \(-0.847200\pi\)
−0.886979 + 0.461810i \(0.847200\pi\)
\(308\) −311.846 + 180.045i −1.01249 + 0.584560i
\(309\) −45.1536 + 94.5098i −0.146128 + 0.305857i
\(310\) 196.929 341.091i 0.635254 1.10029i
\(311\) 205.911 118.883i 0.662092 0.382259i −0.130982 0.991385i \(-0.541813\pi\)
0.793074 + 0.609126i \(0.208480\pi\)
\(312\) −37.9238 + 16.0751i −0.121551 + 0.0515228i
\(313\) 93.2954 161.592i 0.298068 0.516270i −0.677626 0.735407i \(-0.736991\pi\)
0.975694 + 0.219137i \(0.0703243\pi\)
\(314\) 520.042 300.247i 1.65619 0.956200i
\(315\) 349.797 282.514i 1.11047 0.896871i
\(316\) 27.0014 46.7678i 0.0854475 0.147999i
\(317\) −194.516 112.304i −0.613616 0.354271i 0.160763 0.986993i \(-0.448604\pi\)
−0.774379 + 0.632722i \(0.781938\pi\)
\(318\) −344.574 502.052i −1.08357 1.57878i
\(319\) 189.865 0.595189
\(320\) 407.428 235.228i 1.27321 0.735089i
\(321\) −478.429 228.578i −1.49043 0.712080i
\(322\) 37.8429 0.117524
\(323\) −33.1573 + 19.1434i −0.102654 + 0.0592675i
\(324\) 217.238 + 196.618i 0.670487 + 0.606847i
\(325\) 511.155 577.918i 1.57278 1.77821i
\(326\) −140.786 81.2829i −0.431859 0.249334i
\(327\) 112.945 + 164.564i 0.345398 + 0.503253i
\(328\) 21.2294 36.7704i 0.0647239 0.112105i
\(329\) 121.125i 0.368161i
\(330\) −1255.63 599.897i −3.80493 1.81787i
\(331\) −45.6994 79.1537i −0.138065 0.239135i 0.788699 0.614779i \(-0.210755\pi\)
−0.926764 + 0.375644i \(0.877422\pi\)
\(332\) 136.141 + 78.6008i 0.410062 + 0.236749i
\(333\) 420.941 66.1142i 1.26409 0.198541i
\(334\) −50.4027 + 87.3001i −0.150906 + 0.261377i
\(335\) 696.894i 2.08028i
\(336\) 122.300 255.983i 0.363988 0.761853i
\(337\) −302.402 523.776i −0.897336 1.55423i −0.830887 0.556441i \(-0.812166\pi\)
−0.0664486 0.997790i \(-0.521167\pi\)
\(338\) 182.129 429.404i 0.538844 1.27042i
\(339\) 416.262 285.694i 1.22791 0.842754i
\(340\) −135.770 −0.399322
\(341\) −246.247 + 142.171i −0.722133 + 0.416924i
\(342\) −181.039 + 146.217i −0.529355 + 0.427535i
\(343\) −372.129 −1.08492
\(344\) −42.0437 + 24.2739i −0.122220 + 0.0705638i
\(345\) 39.2994 + 57.2600i 0.113911 + 0.165971i
\(346\) 245.760 + 425.669i 0.710289 + 1.23026i
\(347\) 512.214i 1.47612i −0.674735 0.738060i \(-0.735742\pi\)
0.674735 0.738060i \(-0.264258\pi\)
\(348\) 92.8320 63.7136i 0.266759 0.183085i
\(349\) −118.621 −0.339888 −0.169944 0.985454i \(-0.554359\pi\)
−0.169944 + 0.985454i \(0.554359\pi\)
\(350\) 891.032i 2.54581i
\(351\) 350.808 11.6204i 0.999452 0.0331065i
\(352\) −800.703 −2.27472
\(353\) 362.350i 1.02649i −0.858243 0.513244i \(-0.828444\pi\)
0.858243 0.513244i \(-0.171556\pi\)
\(354\) 15.8599 + 23.1082i 0.0448020 + 0.0652774i
\(355\) 89.8821 0.253189
\(356\) −258.859 + 149.452i −0.727131 + 0.419809i
\(357\) −54.9871 + 37.7394i −0.154026 + 0.105713i
\(358\) −174.076 301.508i −0.486246 0.842202i
\(359\) 238.002i 0.662958i 0.943463 + 0.331479i \(0.107548\pi\)
−0.943463 + 0.331479i \(0.892452\pi\)
\(360\) 86.2421 13.5454i 0.239561 0.0376262i
\(361\) 136.615 + 236.624i 0.378434 + 0.655467i
\(362\) 206.641i 0.570832i
\(363\) 363.084 + 529.021i 1.00023 + 1.45736i
\(364\) 81.2022 + 242.575i 0.223083 + 0.666415i
\(365\) −723.278 + 417.584i −1.98158 + 1.14407i
\(366\) −258.389 123.450i −0.705981 0.337295i
\(367\) −314.924 −0.858103 −0.429051 0.903280i \(-0.641152\pi\)
−0.429051 + 0.903280i \(0.641152\pi\)
\(368\) 37.9482 + 21.9094i 0.103120 + 0.0595363i
\(369\) −281.474 + 227.333i −0.762801 + 0.616077i
\(370\) −600.042 + 1039.30i −1.62173 + 2.80893i
\(371\) 346.457 200.027i 0.933847 0.539157i
\(372\) −72.6905 + 152.146i −0.195405 + 0.408996i
\(373\) 54.9890 0.147424 0.0737118 0.997280i \(-0.476516\pi\)
0.0737118 + 0.997280i \(0.476516\pi\)
\(374\) 178.752 + 103.202i 0.477946 + 0.275942i
\(375\) −780.298 + 535.544i −2.08080 + 1.42812i
\(376\) 11.7585 20.3664i 0.0312727 0.0541659i
\(377\) 26.8721 132.175i 0.0712789 0.350598i
\(378\) −294.579 + 278.464i −0.779309 + 0.736678i
\(379\) 129.326 + 224.000i 0.341231 + 0.591029i 0.984662 0.174475i \(-0.0558229\pi\)
−0.643431 + 0.765504i \(0.722490\pi\)
\(380\) 311.245i 0.819065i
\(381\) 49.4495 103.501i 0.129789 0.271657i
\(382\) 91.7618 + 158.936i 0.240214 + 0.416063i
\(383\) 293.822i 0.767158i −0.923508 0.383579i \(-0.874691\pi\)
0.923508 0.383579i \(-0.125309\pi\)
\(384\) 83.2135 57.1121i 0.216702 0.148729i
\(385\) 457.122 791.758i 1.18733 2.05651i
\(386\) 566.865 + 327.280i 1.46856 + 0.847874i
\(387\) 408.689 64.1899i 1.05604 0.165865i
\(388\) 168.097 + 291.152i 0.433239 + 0.750392i
\(389\) −70.6008 40.7614i −0.181493 0.104785i 0.406501 0.913650i \(-0.366749\pi\)
−0.587994 + 0.808865i \(0.700082\pi\)
\(390\) −595.332 + 789.204i −1.52649 + 2.02360i
\(391\) −5.15049 8.92092i −0.0131726 0.0228156i
\(392\) −17.7527 10.2495i −0.0452876 0.0261468i
\(393\) 212.370 + 101.463i 0.540381 + 0.258176i
\(394\) −93.6599 162.224i −0.237716 0.411735i
\(395\) 137.110i 0.347113i
\(396\) 555.917 + 214.219i 1.40383 + 0.540958i
\(397\) 155.489 269.314i 0.391659 0.678373i −0.601010 0.799242i \(-0.705235\pi\)
0.992669 + 0.120869i \(0.0385680\pi\)
\(398\) −177.446 102.449i −0.445845 0.257409i
\(399\) −86.5156 126.055i −0.216831 0.315927i
\(400\) −515.869 + 893.511i −1.28967 + 2.23378i
\(401\) −354.860 204.879i −0.884939 0.510920i −0.0126552 0.999920i \(-0.504028\pi\)
−0.872284 + 0.489000i \(0.837362\pi\)
\(402\) −48.8901 626.370i −0.121617 1.55813i
\(403\) 64.1209 + 191.548i 0.159109 + 0.475305i
\(404\) 332.089i 0.822002i
\(405\) −727.260 156.545i −1.79570 0.386531i
\(406\) 77.8848 + 134.900i 0.191834 + 0.332267i
\(407\) 750.316 433.195i 1.84353 1.06436i
\(408\) −12.9094 + 1.00762i −0.0316407 + 0.00246965i
\(409\) −122.817 −0.300286 −0.150143 0.988664i \(-0.547973\pi\)
−0.150143 + 0.988664i \(0.547973\pi\)
\(410\) 1019.02i 2.48540i
\(411\) −311.743 148.941i −0.758500 0.362386i
\(412\) 63.1479 + 109.375i 0.153272 + 0.265474i
\(413\) −15.9466 + 9.20675i −0.0386115 + 0.0222924i
\(414\) −39.3394 48.7083i −0.0950226 0.117653i
\(415\) −399.125 −0.961747
\(416\) −113.326 + 557.412i −0.272417 + 1.33993i
\(417\) −226.169 329.533i −0.542372 0.790248i
\(418\) −236.586 + 409.779i −0.565995 + 0.980331i
\(419\) 459.582 + 265.340i 1.09685 + 0.633269i 0.935393 0.353610i \(-0.115046\pi\)
0.161461 + 0.986879i \(0.448379\pi\)
\(420\) −42.1890 540.516i −0.100450 1.28694i
\(421\) 299.520 518.784i 0.711450 1.23227i −0.252863 0.967502i \(-0.581372\pi\)
0.964313 0.264765i \(-0.0852943\pi\)
\(422\) 270.805 + 156.349i 0.641718 + 0.370496i
\(423\) −155.902 + 125.915i −0.368563 + 0.297671i
\(424\) 77.6727 0.183190
\(425\) 210.048 121.271i 0.494231 0.285344i
\(426\) −80.7861 + 6.30561i −0.189639 + 0.0148019i
\(427\) 94.0689 162.932i 0.220302 0.381574i
\(428\) −553.682 + 319.669i −1.29365 + 0.746889i
\(429\) 657.093 278.528i 1.53169 0.649250i
\(430\) −582.576 + 1009.05i −1.35483 + 2.34663i
\(431\) −644.922 + 372.346i −1.49634 + 0.863912i −0.999991 0.00421181i \(-0.998659\pi\)
−0.496348 + 0.868124i \(0.665326\pi\)
\(432\) −456.617 + 108.691i −1.05698 + 0.251598i
\(433\) −250.282 + 433.502i −0.578019 + 1.00116i 0.417687 + 0.908591i \(0.362841\pi\)
−0.995706 + 0.0925678i \(0.970493\pi\)
\(434\) −202.027 116.640i −0.465499 0.268756i
\(435\) −123.235 + 257.940i −0.283299 + 0.592965i
\(436\) 240.666 0.551986
\(437\) 20.4507 11.8072i 0.0467980 0.0270188i
\(438\) 620.788 426.067i 1.41732 0.972755i
\(439\) −265.192 −0.604082 −0.302041 0.953295i \(-0.597668\pi\)
−0.302041 + 0.953295i \(0.597668\pi\)
\(440\) 153.724 88.7527i 0.349373 0.201711i
\(441\) 109.756 + 135.895i 0.248880 + 0.308152i
\(442\) 97.1439 109.832i 0.219783 0.248489i
\(443\) 580.726 + 335.282i 1.31089 + 0.756845i 0.982244 0.187607i \(-0.0600733\pi\)
0.328649 + 0.944452i \(0.393407\pi\)
\(444\) 221.488 463.590i 0.498847 1.04412i
\(445\) 379.449 657.226i 0.852695 1.47691i
\(446\) 369.809i 0.829168i
\(447\) −4.84222 + 3.32337i −0.0108327 + 0.00743484i
\(448\) −139.325 241.318i −0.310993 0.538656i
\(449\) 25.9817 + 15.0005i 0.0578657 + 0.0334088i 0.528654 0.848838i \(-0.322697\pi\)
−0.470788 + 0.882246i \(0.656030\pi\)
\(450\) 1146.87 926.267i 2.54859 2.05837i
\(451\) −367.835 + 637.109i −0.815598 + 1.41266i
\(452\) 608.761i 1.34682i
\(453\) 480.536 37.5073i 1.06079 0.0827976i
\(454\) −45.0199 77.9767i −0.0991627 0.171755i
\(455\) −486.488 430.287i −1.06920 0.945685i
\(456\) −2.30991 29.5941i −0.00506559 0.0648993i
\(457\) −548.269 −1.19971 −0.599856 0.800108i \(-0.704776\pi\)
−0.599856 + 0.800108i \(0.704776\pi\)
\(458\) −535.876 + 309.388i −1.17003 + 0.675520i
\(459\) 105.737 + 31.5432i 0.230363 + 0.0687216i
\(460\) 83.7398 0.182043
\(461\) −708.821 + 409.238i −1.53757 + 0.887718i −0.538593 + 0.842566i \(0.681044\pi\)
−0.998980 + 0.0451524i \(0.985623\pi\)
\(462\) −355.317 + 743.703i −0.769083 + 1.60975i
\(463\) 133.168 + 230.654i 0.287620 + 0.498172i 0.973241 0.229786i \(-0.0738028\pi\)
−0.685621 + 0.727958i \(0.740469\pi\)
\(464\) 180.368i 0.388723i
\(465\) −33.3143 426.815i −0.0716436 0.917883i
\(466\) 939.076 2.01518
\(467\) 558.383i 1.19568i −0.801615 0.597840i \(-0.796026\pi\)
0.801615 0.597840i \(-0.203974\pi\)
\(468\) 227.810 356.685i 0.486773 0.762147i
\(469\) 412.768 0.880102
\(470\) 564.412i 1.20088i
\(471\) 281.384 588.956i 0.597418 1.25044i
\(472\) −3.57508 −0.00757433
\(473\) 728.477 420.586i 1.54012 0.889189i
\(474\) −9.61883 123.234i −0.0202929 0.259988i
\(475\) 278.008 + 481.524i 0.585280 + 1.01373i
\(476\) 80.4158i 0.168941i
\(477\) −617.616 237.995i −1.29479 0.498941i
\(478\) 53.6086 + 92.8528i 0.112152 + 0.194253i
\(479\) 631.510i 1.31839i 0.751971 + 0.659196i \(0.229103\pi\)
−0.751971 + 0.659196i \(0.770897\pi\)
\(480\) 519.709 1087.79i 1.08273 2.26622i
\(481\) −195.376 583.646i −0.406187 1.21340i
\(482\) 107.367 61.9883i 0.222753 0.128606i
\(483\) 33.9149 23.2769i 0.0702171 0.0481923i
\(484\) 773.666 1.59848
\(485\) −739.217 426.787i −1.52416 0.879973i
\(486\) 664.645 + 89.6825i 1.36758 + 0.184532i
\(487\) 323.946 561.091i 0.665187 1.15214i −0.314047 0.949407i \(-0.601685\pi\)
0.979235 0.202731i \(-0.0649816\pi\)
\(488\) 31.6342 18.2640i 0.0648241 0.0374262i
\(489\) −176.169 + 13.7506i −0.360264 + 0.0281197i
\(490\) −491.980 −1.00404
\(491\) 150.400 + 86.8333i 0.306313 + 0.176850i 0.645275 0.763950i \(-0.276743\pi\)
−0.338962 + 0.940800i \(0.610076\pi\)
\(492\) 33.9485 + 434.940i 0.0690009 + 0.884025i
\(493\) 21.2006 36.7204i 0.0430032 0.0744837i
\(494\) 251.784 + 222.697i 0.509685 + 0.450804i
\(495\) −1494.29 + 234.697i −3.01876 + 0.474136i
\(496\) −135.059 233.929i −0.272297 0.471632i
\(497\) 53.2368i 0.107116i
\(498\) 358.734 28.0003i 0.720350 0.0562256i
\(499\) 350.517 + 607.113i 0.702438 + 1.21666i 0.967608 + 0.252457i \(0.0812387\pi\)
−0.265170 + 0.964202i \(0.585428\pi\)
\(500\) 1141.15i 2.28229i
\(501\) 8.52659 + 109.241i 0.0170191 + 0.218046i
\(502\) −670.246 + 1160.90i −1.33515 + 2.31255i
\(503\) 507.409 + 292.953i 1.00876 + 0.582411i 0.910830 0.412782i \(-0.135443\pi\)
0.0979351 + 0.995193i \(0.468776\pi\)
\(504\) −8.02292 51.0809i −0.0159185 0.101351i
\(505\) 421.576 + 730.192i 0.834805 + 1.44592i
\(506\) −110.250 63.6529i −0.217886 0.125796i
\(507\) −100.898 496.859i −0.199010 0.979997i
\(508\) −69.1557 119.781i −0.136133 0.235790i
\(509\) −853.491 492.763i −1.67680 0.968100i −0.963681 0.267057i \(-0.913949\pi\)
−0.713118 0.701044i \(-0.752718\pi\)
\(510\) −256.226 + 175.856i −0.502404 + 0.344816i
\(511\) 247.334 + 428.395i 0.484019 + 0.838346i
\(512\) 687.207i 1.34220i
\(513\) −72.3111 + 242.396i −0.140957 + 0.472506i
\(514\) −32.9462 + 57.0645i −0.0640977 + 0.111021i
\(515\) −277.697 160.328i −0.539218 0.311317i
\(516\) 215.041 450.096i 0.416747 0.872280i
\(517\) −203.736 + 352.881i −0.394074 + 0.682556i
\(518\) 615.575 + 355.402i 1.18837 + 0.686105i
\(519\) 482.076 + 230.320i 0.928856 + 0.443777i
\(520\) −40.0285 119.577i −0.0769780 0.229956i
\(521\) 483.726i 0.928456i 0.885716 + 0.464228i \(0.153668\pi\)
−0.885716 + 0.464228i \(0.846332\pi\)
\(522\) 92.6683 240.482i 0.177526 0.460694i
\(523\) 328.154 + 568.379i 0.627445 + 1.08677i 0.988063 + 0.154053i \(0.0492326\pi\)
−0.360618 + 0.932714i \(0.617434\pi\)
\(524\) 245.774 141.898i 0.469034 0.270797i
\(525\) 548.067 + 798.545i 1.04394 + 1.52104i
\(526\) −1307.41 −2.48558
\(527\) 63.4999i 0.120493i
\(528\) −786.876 + 540.059i −1.49030 + 1.02284i
\(529\) −261.323 452.625i −0.493995 0.855624i
\(530\) 1614.40 932.076i 3.04604 1.75863i
\(531\) 28.4274 + 10.9543i 0.0535355 + 0.0206296i
\(532\) −184.349 −0.346521
\(533\) 391.465 + 346.241i 0.734456 + 0.649608i
\(534\) −294.943 + 617.335i −0.552327 + 1.15606i
\(535\) 811.618 1405.76i 1.51704 2.62760i
\(536\) 69.4043 + 40.0706i 0.129486 + 0.0747585i
\(537\) −341.463 163.140i −0.635871 0.303798i
\(538\) 123.499 213.906i 0.229552 0.397595i
\(539\) 307.595 + 177.590i 0.570678 + 0.329481i
\(540\) −651.852 + 616.193i −1.20713 + 1.14110i
\(541\) −438.431 −0.810408 −0.405204 0.914226i \(-0.632800\pi\)
−0.405204 + 0.914226i \(0.632800\pi\)
\(542\) 180.449 104.182i 0.332931 0.192218i
\(543\) −127.103 185.192i −0.234076 0.341054i
\(544\) −89.4073 + 154.858i −0.164352 + 0.284665i
\(545\) −529.172 + 305.518i −0.970958 + 0.560583i
\(546\) 467.442 + 352.613i 0.856122 + 0.645812i
\(547\) 447.046 774.307i 0.817270 1.41555i −0.0904170 0.995904i \(-0.528820\pi\)
0.907687 0.419649i \(-0.137847\pi\)
\(548\) −360.778 + 208.295i −0.658354 + 0.380101i
\(549\) −307.502 + 48.2972i −0.560113 + 0.0879730i
\(550\) 1498.74 2595.90i 2.72499 4.71982i
\(551\) 84.1797 + 48.6011i 0.152776 + 0.0882054i
\(552\) 7.96223 0.621477i 0.0144243 0.00112586i
\(553\) 81.2096 0.146853
\(554\) 741.995 428.391i 1.33934 0.773269i
\(555\) 101.509 + 1300.51i 0.182898 + 2.34325i
\(556\) −481.925 −0.866772
\(557\) −182.429 + 105.325i −0.327520 + 0.189094i −0.654739 0.755855i \(-0.727222\pi\)
0.327220 + 0.944948i \(0.393888\pi\)
\(558\) 59.8858 + 381.285i 0.107322 + 0.683307i
\(559\) −189.689 566.658i −0.339337 1.01370i
\(560\) 752.152 + 434.255i 1.34313 + 0.775455i
\(561\) 223.677 17.4586i 0.398710 0.0311206i
\(562\) 160.136 277.363i 0.284939 0.493529i
\(563\) 190.847i 0.338982i 0.985532 + 0.169491i \(0.0542124\pi\)
−0.985532 + 0.169491i \(0.945788\pi\)
\(564\) 18.8033 + 240.904i 0.0333393 + 0.427136i
\(565\) 772.803 + 1338.53i 1.36779 + 2.36909i
\(566\) −1001.11 577.993i −1.76875 1.02119i
\(567\) −92.7210 + 430.753i −0.163529 + 0.759706i
\(568\) 5.16811 8.95143i 0.00909878 0.0157596i
\(569\) 136.551i 0.239984i −0.992775 0.119992i \(-0.961713\pi\)
0.992775 0.119992i \(-0.0382869\pi\)
\(570\) −403.141 587.385i −0.707265 1.03050i
\(571\) −117.557 203.615i −0.205879 0.356593i 0.744533 0.667585i \(-0.232672\pi\)
−0.950413 + 0.310992i \(0.899339\pi\)
\(572\) 171.447 843.295i 0.299733 1.47429i
\(573\) 179.998 + 85.9969i 0.314132 + 0.150082i
\(574\) −603.559 −1.05150
\(575\) −129.553 + 74.7975i −0.225310 + 0.130083i
\(576\) −165.771 + 430.189i −0.287796 + 0.746855i
\(577\) −873.524 −1.51391 −0.756953 0.653469i \(-0.773313\pi\)
−0.756953 + 0.653469i \(0.773313\pi\)
\(578\) −650.845 + 375.766i −1.12603 + 0.650113i
\(579\) 709.332 55.3656i 1.22510 0.0956228i
\(580\) 172.346 + 298.511i 0.297148 + 0.514675i
\(581\) 236.400i 0.406885i
\(582\) 694.350 + 331.738i 1.19304 + 0.569996i
\(583\) −1345.81 −2.30842
\(584\) 96.0424i 0.164456i
\(585\) −48.1049 + 1073.47i −0.0822307 + 1.83499i
\(586\) 1435.59 2.44981
\(587\) 243.480i 0.414788i −0.978258 0.207394i \(-0.933502\pi\)
0.978258 0.207394i \(-0.0664982\pi\)
\(588\) 209.989 16.3903i 0.357124 0.0278746i
\(589\) −145.570 −0.247148
\(590\) −74.3069 + 42.9011i −0.125944 + 0.0727138i
\(591\) −183.721 87.7757i −0.310864 0.148521i
\(592\) 411.525 + 712.782i 0.695143 + 1.20402i
\(593\) 80.7878i 0.136236i −0.997677 0.0681179i \(-0.978301\pi\)
0.997677 0.0681179i \(-0.0216994\pi\)
\(594\) 1326.60 315.777i 2.23334 0.531611i
\(595\) −102.085 176.817i −0.171572 0.297172i
\(596\) 7.08150i 0.0118817i
\(597\) −222.043 + 17.3312i −0.371932 + 0.0290304i
\(598\) −59.9162 + 67.7421i −0.100194 + 0.113281i
\(599\) −119.798 + 69.1655i −0.199997 + 0.115468i −0.596654 0.802499i \(-0.703504\pi\)
0.396657 + 0.917967i \(0.370170\pi\)
\(600\) 14.6330 + 187.475i 0.0243884 + 0.312459i
\(601\) −196.015 −0.326149 −0.163074 0.986614i \(-0.552141\pi\)
−0.163074 + 0.986614i \(0.552141\pi\)
\(602\) 597.658 + 345.058i 0.992787 + 0.573186i
\(603\) −429.091 531.282i −0.711593 0.881064i
\(604\) 290.590 503.317i 0.481110 0.833307i
\(605\) −1701.13 + 982.145i −2.81178 + 1.62338i
\(606\) −430.140 626.722i −0.709801 1.03420i
\(607\) −599.524 −0.987684 −0.493842 0.869552i \(-0.664408\pi\)
−0.493842 + 0.869552i \(0.664408\pi\)
\(608\) −355.004 204.961i −0.583888 0.337108i
\(609\) 152.777 + 72.9917i 0.250865 + 0.119855i
\(610\) 438.337 759.222i 0.718585 1.24463i
\(611\) 216.824 + 191.776i 0.354868 + 0.313872i
\(612\) 103.505 83.5958i 0.169126 0.136594i
\(613\) −65.0110 112.602i −0.106054 0.183691i 0.808114 0.589026i \(-0.200488\pi\)
−0.914168 + 0.405335i \(0.867155\pi\)
\(614\) 1503.08i 2.44802i
\(615\) −626.789 913.244i −1.01917 1.48495i
\(616\) −52.5679 91.0503i −0.0853375 0.147809i
\(617\) 471.972i 0.764946i 0.923967 + 0.382473i \(0.124928\pi\)
−0.923967 + 0.382473i \(0.875072\pi\)
\(618\) 260.842 + 124.622i 0.422075 + 0.201653i
\(619\) 518.078 897.338i 0.836960 1.44966i −0.0554648 0.998461i \(-0.517664\pi\)
0.892425 0.451196i \(-0.149003\pi\)
\(620\) −447.050 258.105i −0.721049 0.416298i
\(621\) −65.2161 19.4552i −0.105018 0.0313288i
\(622\) −328.110 568.303i −0.527508 0.913671i
\(623\) −389.272 224.746i −0.624835 0.360749i
\(624\) 264.595 + 624.223i 0.424031 + 1.00036i
\(625\) −706.787 1224.19i −1.13086 1.95871i
\(626\) −445.987 257.491i −0.712439 0.411327i
\(627\) 40.0230 + 512.766i 0.0638326 + 0.817809i
\(628\) −393.518 681.593i −0.626621 1.08534i
\(629\) 193.484i 0.307606i
\(630\) −779.726 965.424i −1.23766 1.53242i
\(631\) 50.5861 87.6176i 0.0801681 0.138855i −0.823154 0.567818i \(-0.807788\pi\)
0.903322 + 0.428963i \(0.141121\pi\)
\(632\) 13.6549 + 7.88365i 0.0216058 + 0.0124741i
\(633\) 338.866 26.4495i 0.535333 0.0417844i
\(634\) −309.953 + 536.855i −0.488886 + 0.846775i
\(635\) 304.117 + 175.582i 0.478924 + 0.276507i
\(636\) −658.014 + 451.616i −1.03461 + 0.710088i
\(637\) 167.165 188.999i 0.262425 0.296702i
\(638\) 524.019i 0.821346i
\(639\) −68.5222 + 55.3420i −0.107233 + 0.0866072i
\(640\) 154.489 + 267.582i 0.241388 + 0.418097i
\(641\) 760.261 438.937i 1.18605 0.684769i 0.228647 0.973509i \(-0.426570\pi\)
0.957407 + 0.288741i \(0.0932366\pi\)
\(642\) −630.864 + 1320.44i −0.982654 + 2.05676i
\(643\) 988.379 1.53714 0.768568 0.639768i \(-0.220969\pi\)
0.768568 + 0.639768i \(0.220969\pi\)
\(644\) 49.5987i 0.0770167i
\(645\) 98.5540 + 1262.65i 0.152797 + 1.95760i
\(646\) 52.8348 + 91.5126i 0.0817876 + 0.141660i
\(647\) 292.366 168.797i 0.451879 0.260892i −0.256744 0.966479i \(-0.582650\pi\)
0.708623 + 0.705587i \(0.249317\pi\)
\(648\) −57.4070 + 63.4273i −0.0885911 + 0.0978816i
\(649\) 61.9442 0.0954456
\(650\) −1595.03 1410.76i −2.45389 2.17040i
\(651\) −252.801 + 19.7319i −0.388328 + 0.0303102i
\(652\) −106.533 + 184.521i −0.163395 + 0.283008i
\(653\) 399.414 + 230.602i 0.611660 + 0.353142i 0.773615 0.633656i \(-0.218447\pi\)
−0.161955 + 0.986798i \(0.551780\pi\)
\(654\) 454.187 311.723i 0.694476 0.476641i
\(655\) −360.269 + 624.004i −0.550029 + 0.952678i
\(656\) −605.238 349.434i −0.922619 0.532674i
\(657\) 294.281 763.683i 0.447916 1.16238i
\(658\) −334.299 −0.508053
\(659\) 642.759 371.097i 0.975355 0.563122i 0.0744906 0.997222i \(-0.476267\pi\)
0.900865 + 0.434100i \(0.142934\pi\)
\(660\) −786.254 + 1645.69i −1.19129 + 2.49346i
\(661\) 290.932 503.908i 0.440139 0.762342i −0.557561 0.830136i \(-0.688263\pi\)
0.997699 + 0.0677937i \(0.0215960\pi\)
\(662\) −218.460 + 126.128i −0.330001 + 0.190526i
\(663\) 19.5036 158.184i 0.0294172 0.238589i
\(664\) −22.9492 + 39.7492i −0.0345621 + 0.0598633i
\(665\) 405.344 234.025i 0.609539 0.351918i
\(666\) −182.472 1161.78i −0.273982 1.74441i
\(667\) −13.0760 + 22.6484i −0.0196043 + 0.0339556i
\(668\) 114.420 + 66.0603i 0.171287 + 0.0988927i
\(669\) 227.467 + 331.423i 0.340010 + 0.495401i
\(670\) 1923.39 2.87074
\(671\) −548.114 + 316.454i −0.816861 + 0.471615i
\(672\) −644.292 307.822i −0.958768 0.458068i
\(673\) −678.859 −1.00871 −0.504353 0.863498i \(-0.668269\pi\)
−0.504353 + 0.863498i \(0.668269\pi\)
\(674\) −1445.60 + 834.615i −2.14480 + 1.23830i
\(675\) 458.083 1535.55i 0.678641 2.27489i
\(676\) −562.798 238.708i −0.832541 0.353118i
\(677\) 332.591 + 192.021i 0.491271 + 0.283636i 0.725102 0.688642i \(-0.241793\pi\)
−0.233830 + 0.972277i \(0.575126\pi\)
\(678\) −788.501 1148.86i −1.16298 1.69449i
\(679\) −252.784 + 437.835i −0.372289 + 0.644824i
\(680\) 39.6409i 0.0582954i
\(681\) −88.3098 42.1915i −0.129677 0.0619552i
\(682\) 392.385 + 679.631i 0.575345 + 0.996526i
\(683\) −793.380 458.058i −1.16161 0.670656i −0.209921 0.977718i \(-0.567321\pi\)
−0.951689 + 0.307062i \(0.900654\pi\)
\(684\) 191.639 + 237.279i 0.280174 + 0.346900i
\(685\) 528.849 915.993i 0.772042 1.33722i
\(686\) 1027.06i 1.49717i
\(687\) −289.951 + 606.887i −0.422053 + 0.883388i
\(688\) 399.547 + 692.036i 0.580737 + 1.00587i
\(689\) −190.476 + 936.890i −0.276453 + 1.35978i
\(690\) 158.035 108.464i 0.229036 0.157195i
\(691\) 90.8448 0.131469 0.0657343 0.997837i \(-0.479061\pi\)
0.0657343 + 0.997837i \(0.479061\pi\)
\(692\) 557.902 322.105i 0.806217 0.465470i
\(693\) 139.010 + 885.060i 0.200592 + 1.27714i
\(694\) −1413.68 −2.03701
\(695\) 1059.65 611.789i 1.52468 0.880272i
\(696\) 18.6026 + 27.1043i 0.0267278 + 0.0389430i
\(697\) 82.1456 + 142.280i 0.117856 + 0.204133i
\(698\) 327.388i 0.469037i
\(699\) 841.601 577.618i 1.20401 0.826349i
\(700\) 1167.83 1.66833
\(701\) 905.030i 1.29106i −0.763737 0.645528i \(-0.776638\pi\)
0.763737 0.645528i \(-0.223362\pi\)
\(702\) −32.0717 968.212i −0.0456862 1.37922i
\(703\) 443.552 0.630941
\(704\) 937.396i 1.33153i
\(705\) −347.165 505.827i −0.492433 0.717485i
\(706\) −1000.07 −1.41653
\(707\) 432.490 249.698i 0.611725 0.353180i
\(708\) 30.2867 20.7868i 0.0427779 0.0293598i
\(709\) −469.965 814.004i −0.662857 1.14810i −0.979862 0.199677i \(-0.936011\pi\)
0.317005 0.948424i \(-0.397323\pi\)
\(710\) 248.070i 0.349394i
\(711\) −84.4210 104.527i −0.118736 0.147013i
\(712\) −43.6358 75.5794i −0.0612862 0.106151i
\(713\) 39.1653i 0.0549304i
\(714\) 104.159 + 151.762i 0.145881 + 0.212551i
\(715\) 693.561 + 2071.87i 0.970015 + 2.89772i
\(716\) −395.172 + 228.152i −0.551916 + 0.318649i
\(717\) 105.157 + 50.2406i 0.146663 + 0.0700706i
\(718\) 656.874 0.914866
\(719\) −623.182 359.794i −0.866734 0.500409i −0.000472449 1.00000i \(-0.500150\pi\)
−0.866262 + 0.499591i \(0.833484\pi\)
\(720\) −222.957 1419.54i −0.309662 1.97158i
\(721\) −94.9620 + 164.479i −0.131709 + 0.228126i
\(722\) 653.070 377.050i 0.904529 0.522230i
\(723\) 58.0939 121.595i 0.0803511 0.168181i
\(724\) −270.834 −0.374080
\(725\) −533.269 307.883i −0.735543 0.424666i
\(726\) 1460.07 1002.09i 2.01112 1.38030i
\(727\) −346.337 + 599.874i −0.476392 + 0.825136i −0.999634 0.0270484i \(-0.991389\pi\)
0.523242 + 0.852184i \(0.324723\pi\)
\(728\) −70.8251 + 23.7088i −0.0972872 + 0.0325670i
\(729\) 650.819 328.444i 0.892756 0.450541i
\(730\) 1152.51 + 1996.21i 1.57878 + 2.73453i
\(731\) 187.852i 0.256980i
\(732\) −161.799 + 338.658i −0.221037 + 0.462647i
\(733\) −135.599 234.864i −0.184992 0.320415i 0.758582 0.651578i \(-0.225893\pi\)
−0.943574 + 0.331162i \(0.892559\pi\)
\(734\) 869.174i 1.18416i
\(735\) −440.913 + 302.613i −0.599882 + 0.411718i
\(736\) 55.1445 95.5131i 0.0749246 0.129773i
\(737\) −1202.54 694.289i −1.63167 0.942047i
\(738\) 627.427 + 776.853i 0.850171 + 1.05265i
\(739\) −289.204 500.916i −0.391345 0.677830i 0.601282 0.799037i \(-0.294657\pi\)
−0.992627 + 0.121207i \(0.961323\pi\)
\(740\) 1362.16 + 786.444i 1.84076 + 1.06276i
\(741\) 362.629 + 44.7110i 0.489378 + 0.0603388i
\(742\) −552.065 956.204i −0.744023 1.28869i
\(743\) 1224.51 + 706.972i 1.64806 + 0.951510i 0.977841 + 0.209351i \(0.0671351\pi\)
0.670223 + 0.742159i \(0.266198\pi\)
\(744\) −44.4224 21.2236i −0.0597076 0.0285263i
\(745\) −8.98975 15.5707i −0.0120668 0.0209003i
\(746\) 151.767i 0.203441i
\(747\) 304.276 245.749i 0.407330 0.328981i
\(748\) 135.262 234.281i 0.180832 0.313209i
\(749\) −832.629 480.719i −1.11165 0.641814i
\(750\) 1478.07 + 2153.58i 1.97077 + 2.87145i
\(751\) −339.578 + 588.167i −0.452168 + 0.783178i −0.998520 0.0543771i \(-0.982683\pi\)
0.546352 + 0.837556i \(0.316016\pi\)
\(752\) −335.229 193.544i −0.445783 0.257373i
\(753\) 113.385 + 1452.66i 0.150578 + 1.92917i
\(754\) −364.798 74.1658i −0.483817 0.0983631i
\(755\) 1475.58i 1.95441i
\(756\) 364.969 + 386.090i 0.482763 + 0.510701i
\(757\) −46.7179 80.9178i −0.0617146 0.106893i 0.833517 0.552493i \(-0.186324\pi\)
−0.895232 + 0.445601i \(0.852990\pi\)
\(758\) 618.229 356.935i 0.815606 0.470890i
\(759\) −137.959 + 10.7681i −0.181764 + 0.0141872i
\(760\) 90.8746 0.119572
\(761\) 1082.76i 1.42281i −0.702781 0.711406i \(-0.748059\pi\)
0.702781 0.711406i \(-0.251941\pi\)
\(762\) −285.659 136.478i −0.374880 0.179105i
\(763\) 180.957 + 313.427i 0.237165 + 0.410782i
\(764\) 208.310 120.268i 0.272657 0.157418i
\(765\) −121.463 + 315.205i −0.158775 + 0.412033i
\(766\) −810.933 −1.05866
\(767\) 8.76713 43.1227i 0.0114304 0.0562226i
\(768\) −505.468 736.478i −0.658162 0.958955i
\(769\) −693.040 + 1200.38i −0.901222 + 1.56096i −0.0753122 + 0.997160i \(0.523995\pi\)
−0.825910 + 0.563802i \(0.809338\pi\)