Properties

Label 117.3.k.a.29.4
Level $117$
Weight $3$
Character 117.29
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(29,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.29");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 29.4
Character \(\chi\) \(=\) 117.29
Dual form 117.3.k.a.113.23

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.09261i q^{2} +(1.33417 + 2.68700i) q^{3} -5.56427 q^{4} +(6.70477 - 3.87100i) q^{5} +(8.30987 - 4.12608i) q^{6} +(6.32403 + 10.9535i) q^{7} +4.83767i q^{8} +(-5.43998 + 7.16984i) q^{9} +(-11.9715 - 20.7353i) q^{10} -5.58835i q^{11} +(-7.42368 - 14.9512i) q^{12} +(-4.52972 - 12.1853i) q^{13} +(33.8751 - 19.5578i) q^{14} +(19.3467 + 12.8512i) q^{15} -7.29600 q^{16} +(-13.1669 - 7.60194i) q^{17} +(22.1736 + 16.8238i) q^{18} +(-1.34728 + 2.33356i) q^{19} +(-37.3072 + 21.5393i) q^{20} +(-20.9949 + 31.6066i) q^{21} -17.2826 q^{22} +(8.74785 + 5.05057i) q^{23} +(-12.9988 + 6.45428i) q^{24} +(17.4693 - 30.2578i) q^{25} +(-37.6845 + 14.0087i) q^{26} +(-26.5233 - 5.05145i) q^{27} +(-35.1886 - 60.9484i) q^{28} +34.9691i q^{29} +(39.7437 - 59.8319i) q^{30} +(-1.95095 - 3.37914i) q^{31} +41.9144i q^{32} +(15.0159 - 7.45581i) q^{33} +(-23.5099 + 40.7203i) q^{34} +(84.8024 + 48.9607i) q^{35} +(30.2695 - 39.8949i) q^{36} +(10.0226 + 17.3596i) q^{37} +(7.21681 + 4.16663i) q^{38} +(26.6985 - 28.4286i) q^{39} +(18.7267 + 32.4355i) q^{40} +(-54.5456 - 31.4919i) q^{41} +(97.7470 + 64.9290i) q^{42} +(-12.5741 - 21.7790i) q^{43} +31.0951i q^{44} +(-8.71934 + 69.1303i) q^{45} +(15.6195 - 27.0537i) q^{46} +(40.0880 + 23.1448i) q^{47} +(-9.73411 - 19.6044i) q^{48} +(-55.4867 + 96.1057i) q^{49} +(-93.5756 - 54.0259i) q^{50} +(2.85949 - 45.5219i) q^{51} +(25.2045 + 67.8023i) q^{52} -37.9847i q^{53} +(-15.6222 + 82.0262i) q^{54} +(-21.6325 - 37.4686i) q^{55} +(-52.9896 + 30.5936i) q^{56} +(-8.06780 - 0.506784i) q^{57} +108.146 q^{58} -19.8505i q^{59} +(-107.650 - 71.5074i) q^{60} +(11.3598 + 19.6757i) q^{61} +(-10.4504 + 6.03353i) q^{62} +(-112.938 - 14.2447i) q^{63} +100.441 q^{64} +(-77.5401 - 64.1652i) q^{65} +(-23.0580 - 46.4385i) q^{66} +(-10.7619 + 18.6401i) q^{67} +(73.2644 + 42.2992i) q^{68} +(-1.89979 + 30.2438i) q^{69} +(151.416 - 262.261i) q^{70} +(-76.4358 - 44.1302i) q^{71} +(-34.6854 - 26.3168i) q^{72} -58.2411 q^{73} +(53.6866 - 30.9960i) q^{74} +(104.610 + 6.57113i) q^{75} +(7.49664 - 12.9846i) q^{76} +(61.2122 - 35.3409i) q^{77} +(-87.9188 - 82.5683i) q^{78} +(-62.2120 + 107.754i) q^{79} +(-48.9181 + 28.2429i) q^{80} +(-21.8133 - 78.0076i) q^{81} +(-97.3923 + 168.688i) q^{82} +(40.9017 + 23.6146i) q^{83} +(116.821 - 175.867i) q^{84} -117.708 q^{85} +(-67.3540 + 38.8869i) q^{86} +(-93.9621 + 46.6547i) q^{87} +27.0346 q^{88} +(93.6727 - 54.0819i) q^{89} +(213.794 + 26.9656i) q^{90} +(104.826 - 126.677i) q^{91} +(-48.6754 - 28.1027i) q^{92} +(6.47686 - 9.75055i) q^{93} +(71.5779 - 123.977i) q^{94} +20.8613i q^{95} +(-112.624 + 55.9210i) q^{96} +(10.5852 + 18.3341i) q^{97} +(297.218 + 171.599i) q^{98} +(40.0676 + 30.4005i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - q^{3} - 98 q^{4} - 6 q^{5} + 12 q^{6} - q^{7} - 3 q^{9} - 6 q^{10} - 39 q^{12} + 4 q^{13} - 6 q^{14} - 25 q^{15} + 166 q^{16} + 34 q^{18} + 5 q^{19} + 21 q^{20} - 91 q^{21} + 30 q^{22} - 75 q^{23}+ \cdots + 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.09261i 1.54631i −0.634219 0.773154i \(-0.718678\pi\)
0.634219 0.773154i \(-0.281322\pi\)
\(3\) 1.33417 + 2.68700i 0.444724 + 0.895668i
\(4\) −5.56427 −1.39107
\(5\) 6.70477 3.87100i 1.34095 0.774201i 0.354007 0.935243i \(-0.384819\pi\)
0.986948 + 0.161042i \(0.0514855\pi\)
\(6\) 8.30987 4.12608i 1.38498 0.687679i
\(7\) 6.32403 + 10.9535i 0.903433 + 1.56479i 0.823007 + 0.568031i \(0.192294\pi\)
0.0804252 + 0.996761i \(0.474372\pi\)
\(8\) 4.83767i 0.604709i
\(9\) −5.43998 + 7.16984i −0.604442 + 0.796649i
\(10\) −11.9715 20.7353i −1.19715 2.07353i
\(11\) 5.58835i 0.508032i −0.967200 0.254016i \(-0.918248\pi\)
0.967200 0.254016i \(-0.0817516\pi\)
\(12\) −7.42368 14.9512i −0.618640 1.24593i
\(13\) −4.52972 12.1853i −0.348440 0.937331i
\(14\) 33.8751 19.5578i 2.41965 1.39698i
\(15\) 19.3467 + 12.8512i 1.28978 + 0.856745i
\(16\) −7.29600 −0.456000
\(17\) −13.1669 7.60194i −0.774526 0.447173i 0.0599608 0.998201i \(-0.480902\pi\)
−0.834487 + 0.551028i \(0.814236\pi\)
\(18\) 22.1736 + 16.8238i 1.23186 + 0.934653i
\(19\) −1.34728 + 2.33356i −0.0709096 + 0.122819i −0.899300 0.437332i \(-0.855924\pi\)
0.828391 + 0.560151i \(0.189257\pi\)
\(20\) −37.3072 + 21.5393i −1.86536 + 1.07696i
\(21\) −20.9949 + 31.6066i −0.999756 + 1.50508i
\(22\) −17.2826 −0.785574
\(23\) 8.74785 + 5.05057i 0.380341 + 0.219590i 0.677967 0.735093i \(-0.262861\pi\)
−0.297626 + 0.954683i \(0.596195\pi\)
\(24\) −12.9988 + 6.45428i −0.541619 + 0.268928i
\(25\) 17.4693 30.2578i 0.698773 1.21031i
\(26\) −37.6845 + 14.0087i −1.44940 + 0.538795i
\(27\) −26.5233 5.05145i −0.982343 0.187091i
\(28\) −35.1886 60.9484i −1.25674 2.17673i
\(29\) 34.9691i 1.20583i 0.797805 + 0.602916i \(0.205994\pi\)
−0.797805 + 0.602916i \(0.794006\pi\)
\(30\) 39.7437 59.8319i 1.32479 1.99440i
\(31\) −1.95095 3.37914i −0.0629338 0.109004i 0.832842 0.553511i \(-0.186712\pi\)
−0.895776 + 0.444507i \(0.853379\pi\)
\(32\) 41.9144i 1.30983i
\(33\) 15.0159 7.45581i 0.455028 0.225934i
\(34\) −23.5099 + 40.7203i −0.691467 + 1.19766i
\(35\) 84.8024 + 48.9607i 2.42292 + 1.39888i
\(36\) 30.2695 39.8949i 0.840819 1.10819i
\(37\) 10.0226 + 17.3596i 0.270881 + 0.469179i 0.969088 0.246717i \(-0.0793518\pi\)
−0.698207 + 0.715896i \(0.746018\pi\)
\(38\) 7.21681 + 4.16663i 0.189916 + 0.109648i
\(39\) 26.6985 28.4286i 0.684578 0.728939i
\(40\) 18.7267 + 32.4355i 0.468166 + 0.810888i
\(41\) −54.5456 31.4919i −1.33038 0.768095i −0.345022 0.938595i \(-0.612128\pi\)
−0.985358 + 0.170500i \(0.945462\pi\)
\(42\) 97.7470 + 64.9290i 2.32731 + 1.54593i
\(43\) −12.5741 21.7790i −0.292421 0.506488i 0.681961 0.731389i \(-0.261128\pi\)
−0.974382 + 0.224901i \(0.927794\pi\)
\(44\) 31.0951i 0.706706i
\(45\) −8.71934 + 69.1303i −0.193763 + 1.53623i
\(46\) 15.6195 27.0537i 0.339554 0.588124i
\(47\) 40.0880 + 23.1448i 0.852935 + 0.492442i 0.861640 0.507520i \(-0.169438\pi\)
−0.00870479 + 0.999962i \(0.502771\pi\)
\(48\) −9.73411 19.6044i −0.202794 0.408425i
\(49\) −55.4867 + 96.1057i −1.13238 + 1.96134i
\(50\) −93.5756 54.0259i −1.87151 1.08052i
\(51\) 2.85949 45.5219i 0.0560684 0.892586i
\(52\) 25.2045 + 67.8023i 0.484703 + 1.30389i
\(53\) 37.9847i 0.716693i −0.933589 0.358347i \(-0.883341\pi\)
0.933589 0.358347i \(-0.116659\pi\)
\(54\) −15.6222 + 82.0262i −0.289300 + 1.51900i
\(55\) −21.6325 37.4686i −0.393319 0.681248i
\(56\) −52.9896 + 30.5936i −0.946244 + 0.546314i
\(57\) −8.06780 0.506784i −0.141540 0.00889095i
\(58\) 108.146 1.86459
\(59\) 19.8505i 0.336450i −0.985749 0.168225i \(-0.946197\pi\)
0.985749 0.168225i \(-0.0538035\pi\)
\(60\) −107.650 71.5074i −1.79417 1.19179i
\(61\) 11.3598 + 19.6757i 0.186226 + 0.322553i 0.943989 0.329977i \(-0.107041\pi\)
−0.757763 + 0.652530i \(0.773708\pi\)
\(62\) −10.4504 + 6.03353i −0.168554 + 0.0973150i
\(63\) −112.938 14.2447i −1.79266 0.226107i
\(64\) 100.441 1.56939
\(65\) −77.5401 64.1652i −1.19292 0.987157i
\(66\) −23.0580 46.4385i −0.349363 0.703613i
\(67\) −10.7619 + 18.6401i −0.160625 + 0.278211i −0.935093 0.354402i \(-0.884684\pi\)
0.774468 + 0.632613i \(0.218018\pi\)
\(68\) 73.2644 + 42.2992i 1.07742 + 0.622047i
\(69\) −1.89979 + 30.2438i −0.0275331 + 0.438316i
\(70\) 151.416 262.261i 2.16309 3.74659i
\(71\) −76.4358 44.1302i −1.07656 0.621552i −0.146594 0.989197i \(-0.546831\pi\)
−0.929966 + 0.367644i \(0.880164\pi\)
\(72\) −34.6854 26.3168i −0.481741 0.365512i
\(73\) −58.2411 −0.797823 −0.398912 0.916989i \(-0.630612\pi\)
−0.398912 + 0.916989i \(0.630612\pi\)
\(74\) 53.6866 30.9960i 0.725495 0.418865i
\(75\) 104.610 + 6.57113i 1.39480 + 0.0876151i
\(76\) 7.49664 12.9846i 0.0986400 0.170850i
\(77\) 61.2122 35.3409i 0.794964 0.458973i
\(78\) −87.9188 82.5683i −1.12716 1.05857i
\(79\) −62.2120 + 107.754i −0.787494 + 1.36398i 0.140004 + 0.990151i \(0.455288\pi\)
−0.927498 + 0.373829i \(0.878045\pi\)
\(80\) −48.9181 + 28.2429i −0.611476 + 0.353036i
\(81\) −21.8133 78.0076i −0.269300 0.963056i
\(82\) −97.3923 + 168.688i −1.18771 + 2.05718i
\(83\) 40.9017 + 23.6146i 0.492791 + 0.284513i 0.725732 0.687978i \(-0.241501\pi\)
−0.232941 + 0.972491i \(0.574835\pi\)
\(84\) 116.821 175.867i 1.39073 2.09366i
\(85\) −117.708 −1.38481
\(86\) −67.3540 + 38.8869i −0.783186 + 0.452173i
\(87\) −93.9621 + 46.6547i −1.08002 + 0.536261i
\(88\) 27.0346 0.307212
\(89\) 93.6727 54.0819i 1.05250 0.607662i 0.129153 0.991625i \(-0.458774\pi\)
0.923349 + 0.383962i \(0.125441\pi\)
\(90\) 213.794 + 26.9656i 2.37548 + 0.299617i
\(91\) 104.826 126.677i 1.15194 1.39205i
\(92\) −48.6754 28.1027i −0.529080 0.305464i
\(93\) 6.47686 9.75055i 0.0696437 0.104845i
\(94\) 71.5779 123.977i 0.761467 1.31890i
\(95\) 20.8613i 0.219593i
\(96\) −112.624 + 55.9210i −1.17317 + 0.582510i
\(97\) 10.5852 + 18.3341i 0.109126 + 0.189012i 0.915416 0.402508i \(-0.131862\pi\)
−0.806291 + 0.591520i \(0.798528\pi\)
\(98\) 297.218 + 171.599i 3.03284 + 1.75101i
\(99\) 40.0676 + 30.4005i 0.404723 + 0.307076i
\(100\) −97.2040 + 168.362i −0.972040 + 1.68362i
\(101\) 86.7652i 0.859062i 0.903052 + 0.429531i \(0.141321\pi\)
−0.903052 + 0.429531i \(0.858679\pi\)
\(102\) −140.782 8.84329i −1.38021 0.0866990i
\(103\) 5.38045 + 9.31921i 0.0522374 + 0.0904778i 0.890962 0.454078i \(-0.150031\pi\)
−0.838724 + 0.544556i \(0.816698\pi\)
\(104\) 58.9485 21.9133i 0.566813 0.210705i
\(105\) −18.4167 + 293.186i −0.175397 + 2.79225i
\(106\) −117.472 −1.10823
\(107\) 34.0074 19.6342i 0.317826 0.183497i −0.332597 0.943069i \(-0.607925\pi\)
0.650423 + 0.759572i \(0.274592\pi\)
\(108\) 147.582 + 28.1076i 1.36650 + 0.260256i
\(109\) 126.219 1.15798 0.578988 0.815336i \(-0.303448\pi\)
0.578988 + 0.815336i \(0.303448\pi\)
\(110\) −115.876 + 66.9011i −1.05342 + 0.608192i
\(111\) −33.2735 + 50.0914i −0.299762 + 0.451274i
\(112\) −46.1401 79.9171i −0.411966 0.713545i
\(113\) 142.648i 1.26237i −0.775632 0.631185i \(-0.782569\pi\)
0.775632 0.631185i \(-0.217431\pi\)
\(114\) −1.56729 + 24.9506i −0.0137481 + 0.218865i
\(115\) 78.2031 0.680027
\(116\) 194.577i 1.67739i
\(117\) 112.008 + 33.8104i 0.957336 + 0.288978i
\(118\) −61.3900 −0.520255
\(119\) 192.299i 1.61596i
\(120\) −62.1698 + 93.5931i −0.518082 + 0.779942i
\(121\) 89.7703 0.741904
\(122\) 60.8494 35.1314i 0.498766 0.287962i
\(123\) 11.8458 188.580i 0.0963070 1.53317i
\(124\) 10.8556 + 18.8024i 0.0875451 + 0.151633i
\(125\) 76.9452i 0.615562i
\(126\) −44.0534 + 349.273i −0.349630 + 2.77201i
\(127\) −32.4044 56.1261i −0.255153 0.441938i 0.709784 0.704419i \(-0.248793\pi\)
−0.964937 + 0.262481i \(0.915459\pi\)
\(128\) 142.968i 1.11694i
\(129\) 41.7442 62.8436i 0.323599 0.487159i
\(130\) −198.438 + 239.802i −1.52645 + 1.84463i
\(131\) 151.471 87.4520i 1.15627 0.667573i 0.205863 0.978581i \(-0.434000\pi\)
0.950407 + 0.311008i \(0.100667\pi\)
\(132\) −83.5526 + 41.4861i −0.632974 + 0.314289i
\(133\) −34.0810 −0.256248
\(134\) 57.6467 + 33.2823i 0.430199 + 0.248376i
\(135\) −197.387 + 68.8028i −1.46212 + 0.509650i
\(136\) 36.7757 63.6974i 0.270410 0.468363i
\(137\) −7.82537 + 4.51798i −0.0571195 + 0.0329779i −0.528288 0.849065i \(-0.677166\pi\)
0.471168 + 0.882043i \(0.343832\pi\)
\(138\) 93.5325 + 5.87530i 0.677772 + 0.0425747i
\(139\) 21.0897 0.151724 0.0758622 0.997118i \(-0.475829\pi\)
0.0758622 + 0.997118i \(0.475829\pi\)
\(140\) −471.863 272.430i −3.37045 1.94593i
\(141\) −8.70597 + 138.596i −0.0617445 + 0.982948i
\(142\) −136.478 + 236.386i −0.961111 + 1.66469i
\(143\) −68.0958 + 25.3136i −0.476194 + 0.177018i
\(144\) 39.6901 52.3112i 0.275626 0.363272i
\(145\) 135.366 + 234.460i 0.933555 + 1.61696i
\(146\) 180.117i 1.23368i
\(147\) −332.265 20.8715i −2.26031 0.141983i
\(148\) −55.7683 96.5936i −0.376813 0.652659i
\(149\) 1.85128i 0.0124247i −0.999981 0.00621236i \(-0.998023\pi\)
0.999981 0.00621236i \(-0.00197747\pi\)
\(150\) 20.3220 323.518i 0.135480 2.15679i
\(151\) 49.3351 85.4508i 0.326722 0.565899i −0.655137 0.755510i \(-0.727389\pi\)
0.981859 + 0.189610i \(0.0607225\pi\)
\(152\) −11.2890 6.51772i −0.0742698 0.0428797i
\(153\) 126.133 53.0505i 0.824396 0.346735i
\(154\) −109.296 189.306i −0.709713 1.22926i
\(155\) −26.1613 15.1042i −0.168783 0.0974467i
\(156\) −148.558 + 158.185i −0.952294 + 1.01400i
\(157\) −138.473 239.842i −0.881994 1.52766i −0.849120 0.528200i \(-0.822867\pi\)
−0.0328743 0.999459i \(-0.510466\pi\)
\(158\) 333.243 + 192.398i 2.10913 + 1.21771i
\(159\) 102.065 50.6781i 0.641919 0.318730i
\(160\) 162.251 + 281.027i 1.01407 + 1.75642i
\(161\) 127.760i 0.793539i
\(162\) −241.247 + 67.4601i −1.48918 + 0.416420i
\(163\) −151.394 + 262.223i −0.928800 + 1.60873i −0.143467 + 0.989655i \(0.545825\pi\)
−0.785333 + 0.619073i \(0.787508\pi\)
\(164\) 303.506 + 175.229i 1.85065 + 1.06847i
\(165\) 71.8169 108.116i 0.435254 0.655250i
\(166\) 73.0308 126.493i 0.439945 0.762006i
\(167\) 17.4098 + 10.0515i 0.104250 + 0.0601888i 0.551219 0.834361i \(-0.314163\pi\)
−0.446968 + 0.894550i \(0.647496\pi\)
\(168\) −152.902 101.566i −0.910133 0.604561i
\(169\) −127.963 + 110.392i −0.757180 + 0.653207i
\(170\) 364.027i 2.14134i
\(171\) −9.40209 22.3543i −0.0549830 0.130727i
\(172\) 69.9657 + 121.184i 0.406777 + 0.704559i
\(173\) −133.596 + 77.1319i −0.772234 + 0.445849i −0.833671 0.552262i \(-0.813765\pi\)
0.0614372 + 0.998111i \(0.480432\pi\)
\(174\) 144.285 + 290.589i 0.829225 + 1.67005i
\(175\) 441.906 2.52518
\(176\) 40.7726i 0.231663i
\(177\) 53.3384 26.4840i 0.301347 0.149627i
\(178\) −167.255 289.694i −0.939633 1.62749i
\(179\) 161.401 93.1847i 0.901680 0.520585i 0.0239350 0.999714i \(-0.492381\pi\)
0.877745 + 0.479128i \(0.159047\pi\)
\(180\) 48.5167 384.660i 0.269537 2.13700i
\(181\) 311.480 1.72089 0.860443 0.509546i \(-0.170187\pi\)
0.860443 + 0.509546i \(0.170187\pi\)
\(182\) −391.762 324.187i −2.15254 1.78125i
\(183\) −37.7128 + 56.7745i −0.206081 + 0.310243i
\(184\) −24.4330 + 42.3192i −0.132788 + 0.229996i
\(185\) 134.398 + 77.5949i 0.726477 + 0.419432i
\(186\) −30.1547 20.0304i −0.162122 0.107691i
\(187\) −42.4823 + 73.5815i −0.227178 + 0.393484i
\(188\) −223.060 128.784i −1.18649 0.685020i
\(189\) −112.403 322.469i −0.594723 1.70618i
\(190\) 64.5161 0.339559
\(191\) 121.460 70.1248i 0.635915 0.367145i −0.147124 0.989118i \(-0.547002\pi\)
0.783039 + 0.621973i \(0.213668\pi\)
\(192\) 134.006 + 269.886i 0.697946 + 1.40566i
\(193\) −40.2413 + 69.6999i −0.208504 + 0.361140i −0.951243 0.308441i \(-0.900193\pi\)
0.742739 + 0.669581i \(0.233526\pi\)
\(194\) 56.7004 32.7360i 0.292270 0.168742i
\(195\) 68.9604 293.958i 0.353643 1.50748i
\(196\) 308.743 534.758i 1.57522 2.72836i
\(197\) −8.10582 + 4.67990i −0.0411463 + 0.0237558i −0.520432 0.853903i \(-0.674229\pi\)
0.479286 + 0.877659i \(0.340896\pi\)
\(198\) 94.0171 123.914i 0.474834 0.625826i
\(199\) 110.946 192.164i 0.557518 0.965649i −0.440185 0.897907i \(-0.645087\pi\)
0.997703 0.0677419i \(-0.0215794\pi\)
\(200\) 146.377 + 84.5109i 0.731886 + 0.422555i
\(201\) −64.4442 4.04811i −0.320618 0.0201398i
\(202\) 268.331 1.32837
\(203\) −383.035 + 221.146i −1.88687 + 1.08939i
\(204\) −15.9110 + 253.296i −0.0779949 + 1.24165i
\(205\) −487.621 −2.37864
\(206\) 28.8207 16.6397i 0.139906 0.0807750i
\(207\) −83.7999 + 35.2457i −0.404830 + 0.170269i
\(208\) 33.0488 + 88.9040i 0.158889 + 0.427423i
\(209\) 13.0408 + 7.52909i 0.0623960 + 0.0360244i
\(210\) 906.712 + 56.9557i 4.31768 + 0.271218i
\(211\) 97.8006 169.396i 0.463510 0.802823i −0.535623 0.844457i \(-0.679923\pi\)
0.999133 + 0.0416343i \(0.0132564\pi\)
\(212\) 211.357i 0.996968i
\(213\) 16.5997 264.260i 0.0779328 1.24066i
\(214\) −60.7210 105.172i −0.283743 0.491457i
\(215\) −168.613 97.3488i −0.784247 0.452785i
\(216\) 24.4373 128.311i 0.113135 0.594032i
\(217\) 24.6757 42.7395i 0.113713 0.196956i
\(218\) 390.348i 1.79059i
\(219\) −77.7036 156.494i −0.354811 0.714585i
\(220\) 120.369 + 208.485i 0.547132 + 0.947661i
\(221\) −32.9894 + 194.878i −0.149273 + 0.881800i
\(222\) 154.913 + 102.902i 0.697808 + 0.463524i
\(223\) 234.679 1.05237 0.526185 0.850370i \(-0.323622\pi\)
0.526185 + 0.850370i \(0.323622\pi\)
\(224\) −459.111 + 265.068i −2.04960 + 1.18334i
\(225\) 121.911 + 289.854i 0.541825 + 1.28824i
\(226\) −441.155 −1.95201
\(227\) −153.247 + 88.4770i −0.675096 + 0.389767i −0.798005 0.602651i \(-0.794111\pi\)
0.122909 + 0.992418i \(0.460778\pi\)
\(228\) 44.8914 + 2.81988i 0.196892 + 0.0123679i
\(229\) 64.5827 + 111.861i 0.282021 + 0.488474i 0.971882 0.235467i \(-0.0756620\pi\)
−0.689862 + 0.723941i \(0.742329\pi\)
\(230\) 241.852i 1.05153i
\(231\) 176.629 + 117.327i 0.764626 + 0.507908i
\(232\) −169.169 −0.729177
\(233\) 159.159i 0.683084i 0.939866 + 0.341542i \(0.110949\pi\)
−0.939866 + 0.341542i \(0.889051\pi\)
\(234\) 104.563 346.398i 0.446849 1.48034i
\(235\) 358.374 1.52500
\(236\) 110.454i 0.468024i
\(237\) −372.538 23.4012i −1.57189 0.0987393i
\(238\) −594.708 −2.49877
\(239\) 204.696 118.181i 0.856470 0.494483i −0.00635882 0.999980i \(-0.502024\pi\)
0.862828 + 0.505497i \(0.168691\pi\)
\(240\) −141.154 93.7622i −0.588140 0.390676i
\(241\) −58.1959 100.798i −0.241477 0.418250i 0.719658 0.694328i \(-0.244298\pi\)
−0.961135 + 0.276078i \(0.910965\pi\)
\(242\) 277.625i 1.14721i
\(243\) 180.504 162.688i 0.742815 0.669497i
\(244\) −63.2088 109.481i −0.259053 0.448692i
\(245\) 859.156i 3.50676i
\(246\) −583.204 36.6344i −2.37075 0.148920i
\(247\) 34.5380 + 5.84668i 0.139830 + 0.0236708i
\(248\) 16.3472 9.43805i 0.0659160 0.0380566i
\(249\) −8.88268 + 141.409i −0.0356734 + 0.567907i
\(250\) −237.962 −0.951848
\(251\) 11.8161 + 6.82204i 0.0470762 + 0.0271795i 0.523353 0.852116i \(-0.324681\pi\)
−0.476277 + 0.879295i \(0.658014\pi\)
\(252\) 628.416 + 79.2614i 2.49371 + 0.314529i
\(253\) 28.2244 48.8860i 0.111559 0.193225i
\(254\) −173.577 + 100.214i −0.683372 + 0.394545i
\(255\) −157.043 316.283i −0.615856 1.24033i
\(256\) −40.3807 −0.157737
\(257\) −252.731 145.914i −0.983389 0.567760i −0.0800976 0.996787i \(-0.525523\pi\)
−0.903292 + 0.429027i \(0.858857\pi\)
\(258\) −194.351 129.099i −0.753298 0.500383i
\(259\) −126.766 + 219.566i −0.489445 + 0.847743i
\(260\) 431.454 + 357.032i 1.65944 + 1.37320i
\(261\) −250.723 190.231i −0.960624 0.728855i
\(262\) −270.455 468.443i −1.03227 1.78795i
\(263\) 200.566i 0.762608i −0.924450 0.381304i \(-0.875475\pi\)
0.924450 0.381304i \(-0.124525\pi\)
\(264\) 36.0688 + 72.6421i 0.136624 + 0.275160i
\(265\) −147.039 254.679i −0.554864 0.961053i
\(266\) 105.399i 0.396239i
\(267\) 270.294 + 179.544i 1.01234 + 0.672451i
\(268\) 59.8819 103.719i 0.223440 0.387010i
\(269\) −49.4104 28.5271i −0.183682 0.106049i 0.405340 0.914166i \(-0.367153\pi\)
−0.589021 + 0.808117i \(0.700487\pi\)
\(270\) 212.780 + 610.441i 0.788076 + 2.26089i
\(271\) 100.592 + 174.230i 0.371187 + 0.642915i 0.989748 0.142822i \(-0.0456175\pi\)
−0.618561 + 0.785736i \(0.712284\pi\)
\(272\) 96.0661 + 55.4638i 0.353184 + 0.203911i
\(273\) 480.237 + 112.660i 1.75911 + 0.412674i
\(274\) 13.9724 + 24.2008i 0.0509940 + 0.0883242i
\(275\) −169.091 97.6248i −0.614877 0.354999i
\(276\) 10.5709 168.285i 0.0383004 0.609727i
\(277\) 118.651 + 205.509i 0.428343 + 0.741911i 0.996726 0.0808527i \(-0.0257643\pi\)
−0.568384 + 0.822764i \(0.692431\pi\)
\(278\) 65.2223i 0.234612i
\(279\) 34.8410 + 4.39446i 0.124878 + 0.0157508i
\(280\) −236.856 + 410.246i −0.845913 + 1.46517i
\(281\) −150.238 86.7398i −0.534654 0.308682i 0.208256 0.978074i \(-0.433221\pi\)
−0.742909 + 0.669392i \(0.766555\pi\)
\(282\) 428.623 + 26.9242i 1.51994 + 0.0954760i
\(283\) −62.5556 + 108.350i −0.221045 + 0.382861i −0.955125 0.296202i \(-0.904280\pi\)
0.734081 + 0.679062i \(0.237613\pi\)
\(284\) 425.309 + 245.552i 1.49757 + 0.864621i
\(285\) −56.0545 + 27.8326i −0.196683 + 0.0976582i
\(286\) 78.2853 + 210.594i 0.273725 + 0.736343i
\(287\) 796.623i 2.77569i
\(288\) −300.520 228.014i −1.04347 0.791714i
\(289\) −28.9211 50.0928i −0.100073 0.173332i
\(290\) 725.094 418.633i 2.50032 1.44356i
\(291\) −35.1414 + 52.9033i −0.120761 + 0.181798i
\(292\) 324.069 1.10983
\(293\) 65.2174i 0.222585i 0.993788 + 0.111292i \(0.0354990\pi\)
−0.993788 + 0.111292i \(0.964501\pi\)
\(294\) −64.5474 + 1027.57i −0.219549 + 3.49513i
\(295\) −76.8415 133.093i −0.260480 0.451164i
\(296\) −83.9802 + 48.4860i −0.283717 + 0.163804i
\(297\) −28.2293 + 148.221i −0.0950480 + 0.499061i
\(298\) −5.72531 −0.0192124
\(299\) 21.9175 129.473i 0.0733027 0.433020i
\(300\) −582.077 36.5635i −1.94026 0.121878i
\(301\) 159.038 275.462i 0.528366 0.915156i
\(302\) −264.266 152.574i −0.875055 0.505213i
\(303\) −233.138 + 115.760i −0.769434 + 0.382045i
\(304\) 9.82978 17.0257i 0.0323348 0.0560055i
\(305\) 152.329 + 87.9475i 0.499441 + 0.288352i
\(306\) −164.065 390.079i −0.536160 1.27477i
\(307\) −516.260 −1.68163 −0.840814 0.541324i \(-0.817923\pi\)
−0.840814 + 0.541324i \(0.817923\pi\)
\(308\) −340.601 + 196.646i −1.10585 + 0.638461i
\(309\) −17.8623 + 26.8907i −0.0578068 + 0.0870249i
\(310\) −46.7116 + 80.9069i −0.150683 + 0.260990i
\(311\) −127.871 + 73.8265i −0.411162 + 0.237384i −0.691289 0.722579i \(-0.742957\pi\)
0.280127 + 0.959963i \(0.409623\pi\)
\(312\) 137.528 + 129.159i 0.440796 + 0.413971i
\(313\) −192.767 + 333.882i −0.615869 + 1.06672i 0.374363 + 0.927282i \(0.377861\pi\)
−0.990231 + 0.139433i \(0.955472\pi\)
\(314\) −741.740 + 428.244i −2.36223 + 1.36383i
\(315\) −812.363 + 341.675i −2.57893 + 1.08468i
\(316\) 346.164 599.574i 1.09546 1.89739i
\(317\) 361.661 + 208.805i 1.14089 + 0.658691i 0.946650 0.322264i \(-0.104444\pi\)
0.194236 + 0.980955i \(0.437777\pi\)
\(318\) −156.728 315.648i −0.492855 0.992604i
\(319\) 195.420 0.612601
\(320\) 673.435 388.808i 2.10449 1.21503i
\(321\) 98.1288 + 65.1827i 0.305697 + 0.203061i
\(322\) 395.112 1.22706
\(323\) 35.4792 20.4839i 0.109843 0.0634177i
\(324\) 121.375 + 434.055i 0.374614 + 1.33968i
\(325\) −447.831 75.8101i −1.37794 0.233262i
\(326\) 810.954 + 468.204i 2.48759 + 1.43621i
\(327\) 168.398 + 339.152i 0.514979 + 1.03716i
\(328\) 152.348 263.874i 0.464474 0.804493i
\(329\) 585.473i 1.77955i
\(330\) −334.362 222.102i −1.01322 0.673036i
\(331\) 119.991 + 207.831i 0.362512 + 0.627889i 0.988374 0.152045i \(-0.0485859\pi\)
−0.625862 + 0.779934i \(0.715253\pi\)
\(332\) −227.588 131.398i −0.685505 0.395777i
\(333\) −178.988 22.5756i −0.537503 0.0677947i
\(334\) 31.0855 53.8417i 0.0930704 0.161203i
\(335\) 166.637i 0.497424i
\(336\) 153.179 230.602i 0.455889 0.686315i
\(337\) 156.113 + 270.395i 0.463242 + 0.802359i 0.999120 0.0419364i \(-0.0133527\pi\)
−0.535878 + 0.844295i \(0.680019\pi\)
\(338\) 341.400 + 395.741i 1.01006 + 1.17083i
\(339\) 383.295 190.317i 1.13066 0.561406i
\(340\) 654.961 1.92636
\(341\) −18.8838 + 10.9026i −0.0553778 + 0.0319724i
\(342\) −69.1334 + 29.0770i −0.202144 + 0.0850206i
\(343\) −783.842 −2.28525
\(344\) 105.360 60.8294i 0.306278 0.176830i
\(345\) 104.336 + 210.132i 0.302424 + 0.609079i
\(346\) 238.539 + 413.162i 0.689420 + 1.19411i
\(347\) 309.828i 0.892877i −0.894814 0.446439i \(-0.852692\pi\)
0.894814 0.446439i \(-0.147308\pi\)
\(348\) 522.830 259.599i 1.50239 0.745975i
\(349\) 142.661 0.408771 0.204385 0.978890i \(-0.434480\pi\)
0.204385 + 0.978890i \(0.434480\pi\)
\(350\) 1366.65i 3.90470i
\(351\) 58.5893 + 346.076i 0.166921 + 0.985970i
\(352\) 234.233 0.665433
\(353\) 20.5564i 0.0582335i −0.999576 0.0291168i \(-0.990731\pi\)
0.999576 0.0291168i \(-0.00926946\pi\)
\(354\) −81.9048 164.955i −0.231369 0.465975i
\(355\) −683.313 −1.92483
\(356\) −521.220 + 300.926i −1.46410 + 0.845299i
\(357\) 516.709 256.560i 1.44737 0.718656i
\(358\) −288.184 499.150i −0.804985 1.39427i
\(359\) 147.021i 0.409529i −0.978811 0.204765i \(-0.934357\pi\)
0.978811 0.204765i \(-0.0656429\pi\)
\(360\) −334.430 42.1813i −0.928972 0.117170i
\(361\) 176.870 + 306.347i 0.489944 + 0.848607i
\(362\) 963.289i 2.66102i
\(363\) 119.769 + 241.213i 0.329942 + 0.664499i
\(364\) −583.281 + 704.863i −1.60242 + 1.93644i
\(365\) −390.493 + 225.451i −1.06985 + 0.617675i
\(366\) 175.582 + 116.631i 0.479731 + 0.318665i
\(367\) 389.190 1.06046 0.530231 0.847853i \(-0.322105\pi\)
0.530231 + 0.847853i \(0.322105\pi\)
\(368\) −63.8243 36.8490i −0.173436 0.100133i
\(369\) 522.519 219.768i 1.41604 0.595577i
\(370\) 239.971 415.642i 0.648571 1.12336i
\(371\) 416.067 240.217i 1.12148 0.647484i
\(372\) −36.0390 + 54.2547i −0.0968790 + 0.145846i
\(373\) −403.663 −1.08221 −0.541103 0.840956i \(-0.681993\pi\)
−0.541103 + 0.840956i \(0.681993\pi\)
\(374\) 227.559 + 131.381i 0.608447 + 0.351287i
\(375\) 206.752 102.658i 0.551339 0.273755i
\(376\) −111.967 + 193.932i −0.297785 + 0.515778i
\(377\) 426.109 158.400i 1.13026 0.420159i
\(378\) −997.272 + 347.618i −2.63829 + 0.919624i
\(379\) 78.4185 + 135.825i 0.206909 + 0.358377i 0.950739 0.309992i \(-0.100326\pi\)
−0.743830 + 0.668369i \(0.766993\pi\)
\(380\) 116.078i 0.305469i
\(381\) 107.578 161.953i 0.282357 0.425073i
\(382\) −216.869 375.628i −0.567720 0.983319i
\(383\) 292.349i 0.763314i −0.924304 0.381657i \(-0.875354\pi\)
0.924304 0.381657i \(-0.124646\pi\)
\(384\) 384.156 190.744i 1.00041 0.496729i
\(385\) 273.609 473.905i 0.710674 1.23092i
\(386\) 215.555 + 124.451i 0.558433 + 0.322411i
\(387\) 224.555 + 28.3229i 0.580245 + 0.0731857i
\(388\) −58.8989 102.016i −0.151801 0.262928i
\(389\) −657.425 379.564i −1.69004 0.975744i −0.954477 0.298286i \(-0.903585\pi\)
−0.735561 0.677458i \(-0.763081\pi\)
\(390\) −909.098 213.268i −2.33102 0.546841i
\(391\) −76.7883 133.001i −0.196389 0.340156i
\(392\) −464.928 268.426i −1.18604 0.684761i
\(393\) 437.073 + 290.328i 1.11214 + 0.738749i
\(394\) 14.4731 + 25.0682i 0.0367338 + 0.0636248i
\(395\) 963.292i 2.43871i
\(396\) −222.947 169.157i −0.562997 0.427163i
\(397\) 325.534 563.842i 0.819985 1.42026i −0.0857071 0.996320i \(-0.527315\pi\)
0.905692 0.423936i \(-0.139352\pi\)
\(398\) −594.290 343.113i −1.49319 0.862094i
\(399\) −45.4699 91.5758i −0.113960 0.229513i
\(400\) −127.456 + 220.761i −0.318641 + 0.551902i
\(401\) −357.827 206.591i −0.892336 0.515191i −0.0176303 0.999845i \(-0.505612\pi\)
−0.874706 + 0.484654i \(0.838946\pi\)
\(402\) −12.5192 + 199.301i −0.0311424 + 0.495774i
\(403\) −32.3386 + 39.0794i −0.0802447 + 0.0969713i
\(404\) 482.785i 1.19501i
\(405\) −448.221 438.584i −1.10672 1.08292i
\(406\) 683.918 + 1184.58i 1.68453 + 2.91769i
\(407\) 97.0117 56.0097i 0.238358 0.137616i
\(408\) 220.220 + 13.8333i 0.539755 + 0.0339051i
\(409\) −606.340 −1.48249 −0.741247 0.671233i \(-0.765765\pi\)
−0.741247 + 0.671233i \(0.765765\pi\)
\(410\) 1508.02i 3.67811i
\(411\) −22.5802 14.9990i −0.0549396 0.0364940i
\(412\) −29.9382 51.8546i −0.0726656 0.125861i
\(413\) 217.434 125.535i 0.526473 0.303960i
\(414\) 109.001 + 259.161i 0.263288 + 0.625992i
\(415\) 365.648 0.881081
\(416\) 510.740 189.860i 1.22774 0.456395i
\(417\) 28.1372 + 56.6680i 0.0674754 + 0.135895i
\(418\) 23.2846 40.3301i 0.0557047 0.0964834i
\(419\) 478.132 + 276.050i 1.14113 + 0.658830i 0.946709 0.322089i \(-0.104385\pi\)
0.194417 + 0.980919i \(0.437718\pi\)
\(420\) 102.475 1631.37i 0.243989 3.88420i
\(421\) 188.723 326.878i 0.448274 0.776433i −0.550000 0.835165i \(-0.685372\pi\)
0.998274 + 0.0587318i \(0.0187057\pi\)
\(422\) −523.876 302.460i −1.24141 0.716729i
\(423\) −384.022 + 161.517i −0.907854 + 0.381837i
\(424\) 183.758 0.433391
\(425\) −460.035 + 265.602i −1.08244 + 0.624945i
\(426\) −817.256 51.3365i −1.91844 0.120508i
\(427\) −143.679 + 248.860i −0.336485 + 0.582809i
\(428\) −189.226 + 109.250i −0.442118 + 0.255257i
\(429\) −158.869 149.201i −0.370325 0.347788i
\(430\) −301.062 + 521.455i −0.700145 + 1.21269i
\(431\) −317.790 + 183.476i −0.737332 + 0.425699i −0.821099 0.570786i \(-0.806638\pi\)
0.0837662 + 0.996485i \(0.473305\pi\)
\(432\) 193.514 + 36.8554i 0.447949 + 0.0853134i
\(433\) 389.105 673.950i 0.898626 1.55647i 0.0693753 0.997591i \(-0.477899\pi\)
0.829251 0.558876i \(-0.188767\pi\)
\(434\) −132.177 76.3124i −0.304555 0.175835i
\(435\) −449.394 + 676.537i −1.03309 + 1.55526i
\(436\) −702.318 −1.61082
\(437\) −23.5717 + 13.6091i −0.0539397 + 0.0311421i
\(438\) −483.976 + 240.307i −1.10497 + 0.548647i
\(439\) 628.382 1.43139 0.715697 0.698411i \(-0.246109\pi\)
0.715697 + 0.698411i \(0.246109\pi\)
\(440\) 181.261 104.651i 0.411957 0.237843i
\(441\) −387.217 920.644i −0.878042 2.08763i
\(442\) 602.682 + 102.024i 1.36353 + 0.230823i
\(443\) 552.260 + 318.848i 1.24664 + 0.719747i 0.970437 0.241353i \(-0.0775913\pi\)
0.276200 + 0.961100i \(0.410925\pi\)
\(444\) 185.143 278.722i 0.416988 0.627752i
\(445\) 418.703 725.214i 0.940905 1.62970i
\(446\) 725.770i 1.62729i
\(447\) 4.97441 2.46993i 0.0111284 0.00552557i
\(448\) 635.193 + 1100.19i 1.41784 + 2.45577i
\(449\) 632.272 + 365.043i 1.40818 + 0.813013i 0.995213 0.0977336i \(-0.0311593\pi\)
0.412966 + 0.910746i \(0.364493\pi\)
\(450\) 896.407 377.023i 1.99201 0.837828i
\(451\) −175.988 + 304.820i −0.390217 + 0.675875i
\(452\) 793.731i 1.75604i
\(453\) 295.428 + 18.5575i 0.652159 + 0.0409658i
\(454\) 273.625 + 473.933i 0.602699 + 1.04391i
\(455\) 212.470 1255.12i 0.466967 2.75851i
\(456\) 2.45166 39.0294i 0.00537644 0.0855907i
\(457\) −470.363 −1.02924 −0.514621 0.857418i \(-0.672067\pi\)
−0.514621 + 0.857418i \(0.672067\pi\)
\(458\) 345.941 199.729i 0.755331 0.436090i
\(459\) 310.829 + 268.140i 0.677188 + 0.584183i
\(460\) −435.143 −0.945963
\(461\) −9.99962 + 5.77328i −0.0216911 + 0.0125234i −0.510806 0.859696i \(-0.670653\pi\)
0.489115 + 0.872219i \(0.337320\pi\)
\(462\) 362.846 546.244i 0.785381 1.18235i
\(463\) 308.597 + 534.506i 0.666517 + 1.15444i 0.978872 + 0.204476i \(0.0655490\pi\)
−0.312354 + 0.949966i \(0.601118\pi\)
\(464\) 255.135i 0.549859i
\(465\) 5.68150 90.4472i 0.0122183 0.194510i
\(466\) 492.216 1.05626
\(467\) 786.834i 1.68487i 0.538799 + 0.842435i \(0.318878\pi\)
−0.538799 + 0.842435i \(0.681122\pi\)
\(468\) −623.244 188.130i −1.33172 0.401988i
\(469\) −272.234 −0.580455
\(470\) 1108.31i 2.35811i
\(471\) 459.711 692.069i 0.976032 1.46936i
\(472\) 96.0304 0.203454
\(473\) −121.709 + 70.2685i −0.257312 + 0.148559i
\(474\) −72.3709 + 1152.12i −0.152681 + 2.43062i
\(475\) 47.0723 + 81.5316i 0.0990995 + 0.171645i
\(476\) 1070.01i 2.24791i
\(477\) 272.345 + 206.636i 0.570953 + 0.433199i
\(478\) −365.490 633.047i −0.764623 1.32437i
\(479\) 575.137i 1.20070i 0.799736 + 0.600352i \(0.204973\pi\)
−0.799736 + 0.600352i \(0.795027\pi\)
\(480\) −538.650 + 810.906i −1.12219 + 1.68939i
\(481\) 166.133 200.762i 0.345391 0.417385i
\(482\) −311.730 + 179.977i −0.646743 + 0.373397i
\(483\) −343.291 + 170.453i −0.710748 + 0.352906i
\(484\) −499.506 −1.03204
\(485\) 141.943 + 81.9508i 0.292666 + 0.168971i
\(486\) −503.131 558.229i −1.03525 1.14862i
\(487\) −225.808 + 391.111i −0.463672 + 0.803103i −0.999140 0.0414523i \(-0.986802\pi\)
0.535469 + 0.844555i \(0.320135\pi\)
\(488\) −95.1847 + 54.9549i −0.195051 + 0.112612i
\(489\) −906.579 56.9474i −1.85395 0.116457i
\(490\) 2657.04 5.42253
\(491\) −549.987 317.535i −1.12014 0.646711i −0.178700 0.983904i \(-0.557189\pi\)
−0.941436 + 0.337193i \(0.890522\pi\)
\(492\) −65.9129 + 1049.31i −0.133969 + 2.13274i
\(493\) 265.833 460.436i 0.539215 0.933947i
\(494\) 18.0815 106.813i 0.0366023 0.216220i
\(495\) 386.325 + 48.7267i 0.780454 + 0.0984379i
\(496\) 14.2341 + 24.6542i 0.0286978 + 0.0497061i
\(497\) 1116.32i 2.24612i
\(498\) 437.323 + 27.4707i 0.878158 + 0.0551621i
\(499\) 413.055 + 715.432i 0.827766 + 1.43373i 0.899787 + 0.436329i \(0.143722\pi\)
−0.0720217 + 0.997403i \(0.522945\pi\)
\(500\) 428.144i 0.856287i
\(501\) −3.78091 + 60.1906i −0.00754673 + 0.120141i
\(502\) 21.0980 36.5427i 0.0420278 0.0727943i
\(503\) −555.930 320.966i −1.10523 0.638104i −0.167639 0.985848i \(-0.553614\pi\)
−0.937589 + 0.347745i \(0.886948\pi\)
\(504\) 68.9113 546.356i 0.136729 1.08404i
\(505\) 335.868 + 581.741i 0.665086 + 1.15196i
\(506\) −151.186 87.2871i −0.298786 0.172504i
\(507\) −467.348 196.556i −0.921792 0.387685i
\(508\) 180.307 + 312.301i 0.354935 + 0.614765i
\(509\) 229.706 + 132.621i 0.451288 + 0.260551i 0.708374 0.705837i \(-0.249429\pi\)
−0.257086 + 0.966389i \(0.582762\pi\)
\(510\) −978.142 + 485.674i −1.91793 + 0.952302i
\(511\) −368.318 637.946i −0.720780 1.24843i
\(512\) 446.991i 0.873028i
\(513\) 47.5222 55.0879i 0.0926359 0.107384i
\(514\) −451.257 + 781.600i −0.877932 + 1.52062i
\(515\) 72.1494 + 41.6555i 0.140096 + 0.0808844i
\(516\) −232.276 + 349.678i −0.450147 + 0.677671i
\(517\) 129.341 224.026i 0.250176 0.433318i
\(518\) 679.032 + 392.039i 1.31087 + 0.756832i
\(519\) −385.494 256.067i −0.742763 0.493385i
\(520\) 310.410 375.114i 0.596943 0.721372i
\(521\) 157.335i 0.301987i 0.988535 + 0.150993i \(0.0482472\pi\)
−0.988535 + 0.150993i \(0.951753\pi\)
\(522\) −588.312 + 775.389i −1.12703 + 1.48542i
\(523\) −20.3177 35.1913i −0.0388484 0.0672874i 0.845947 0.533266i \(-0.179036\pi\)
−0.884796 + 0.465979i \(0.845702\pi\)
\(524\) −842.827 + 486.606i −1.60845 + 0.928638i
\(525\) 589.578 + 1187.40i 1.12301 + 2.26172i
\(526\) −620.273 −1.17923
\(527\) 59.3239i 0.112569i
\(528\) −109.556 + 54.3976i −0.207493 + 0.103026i
\(529\) −213.483 369.764i −0.403560 0.698987i
\(530\) −787.624 + 454.735i −1.48608 + 0.857991i
\(531\) 142.325 + 107.986i 0.268032 + 0.203364i
\(532\) 189.636 0.356458
\(533\) −136.662 + 807.304i −0.256402 + 1.51464i
\(534\) 555.261 835.914i 1.03982 1.56538i
\(535\) 152.008 263.286i 0.284127 0.492123i
\(536\) −90.1748 52.0624i −0.168237 0.0971314i
\(537\) 465.724 + 309.360i 0.867270 + 0.576089i
\(538\) −88.2233 + 152.807i −0.163984 + 0.284028i
\(539\) 537.073 + 310.079i 0.996424 + 0.575286i
\(540\) 1098.31 382.837i 2.03391 0.708957i
\(541\) −491.446 −0.908404 −0.454202 0.890899i \(-0.650075\pi\)
−0.454202 + 0.890899i \(0.650075\pi\)
\(542\) 538.826 311.091i 0.994144 0.573969i
\(543\) 415.568 + 836.949i 0.765319 + 1.54134i
\(544\) 318.631 551.885i 0.585718 1.01449i
\(545\) 846.272 488.595i 1.55279 0.896505i
\(546\) 348.414 1485.19i 0.638121 2.72012i
\(547\) −469.686 + 813.519i −0.858657 + 1.48724i 0.0145528 + 0.999894i \(0.495368\pi\)
−0.873210 + 0.487344i \(0.837966\pi\)
\(548\) 43.5424 25.1392i 0.0794570 0.0458745i
\(549\) −202.869 25.5876i −0.369524 0.0466077i
\(550\) −301.916 + 522.934i −0.548938 + 0.950788i
\(551\) −81.6026 47.1133i −0.148099 0.0855050i
\(552\) −146.310 9.19054i −0.265054 0.0166495i
\(553\) −1573.72 −2.84579
\(554\) 635.561 366.941i 1.14722 0.662349i
\(555\) −29.1875 + 464.654i −0.0525901 + 0.837214i
\(556\) −117.349 −0.211059
\(557\) −657.510 + 379.614i −1.18045 + 0.681533i −0.956119 0.292980i \(-0.905353\pi\)
−0.224331 + 0.974513i \(0.572020\pi\)
\(558\) 13.5904 107.750i 0.0243555 0.193100i
\(559\) −208.427 + 251.872i −0.372856 + 0.450576i
\(560\) −618.718 357.217i −1.10485 0.637888i
\(561\) −254.392 15.9798i −0.453462 0.0284845i
\(562\) −268.253 + 464.627i −0.477318 + 0.826739i
\(563\) 113.917i 0.202340i −0.994869 0.101170i \(-0.967741\pi\)
0.994869 0.101170i \(-0.0322586\pi\)
\(564\) 48.4424 771.183i 0.0858907 1.36735i
\(565\) −552.190 956.422i −0.977328 1.69278i
\(566\) 335.083 + 193.460i 0.592020 + 0.341803i
\(567\) 716.511 732.255i 1.26369 1.29145i
\(568\) 213.488 369.771i 0.375858 0.651006i
\(569\) 510.755i 0.897636i −0.893623 0.448818i \(-0.851845\pi\)
0.893623 0.448818i \(-0.148155\pi\)
\(570\) 86.0755 + 173.355i 0.151010 + 0.304132i
\(571\) −483.591 837.605i −0.846920 1.46691i −0.883943 0.467594i \(-0.845121\pi\)
0.0370235 0.999314i \(-0.488212\pi\)
\(572\) 378.903 140.852i 0.662418 0.246244i
\(573\) 350.473 + 232.804i 0.611647 + 0.406290i
\(574\) −2463.65 −4.29207
\(575\) 305.638 176.460i 0.531545 0.306887i
\(576\) −546.398 + 720.147i −0.948607 + 1.25026i
\(577\) 122.569 0.212424 0.106212 0.994343i \(-0.466128\pi\)
0.106212 + 0.994343i \(0.466128\pi\)
\(578\) −154.918 + 89.4418i −0.268024 + 0.154744i
\(579\) −240.973 15.1369i −0.416188 0.0261431i
\(580\) −753.210 1304.60i −1.29864 2.24931i
\(581\) 597.357i 1.02815i
\(582\) 163.610 + 108.679i 0.281116 + 0.186733i
\(583\) −212.272 −0.364103
\(584\) 281.751i 0.482451i
\(585\) 881.871 206.893i 1.50747 0.353663i
\(586\) 201.692 0.344185
\(587\) 302.976i 0.516144i 0.966126 + 0.258072i \(0.0830871\pi\)
−0.966126 + 0.258072i \(0.916913\pi\)
\(588\) 1848.81 + 116.134i 3.14424 + 0.197507i
\(589\) 10.5139 0.0178504
\(590\) −411.606 + 237.641i −0.697638 + 0.402781i
\(591\) −23.3895 15.5366i −0.0395761 0.0262886i
\(592\) −73.1248 126.656i −0.123522 0.213946i
\(593\) 163.570i 0.275835i −0.990444 0.137918i \(-0.955959\pi\)
0.990444 0.137918i \(-0.0440409\pi\)
\(594\) 458.391 + 87.3022i 0.771702 + 0.146973i
\(595\) −744.392 1289.32i −1.25108 2.16693i
\(596\) 10.3010i 0.0172836i
\(597\) 664.367 + 41.7326i 1.11284 + 0.0699039i
\(598\) −400.410 67.7824i −0.669581 0.113348i
\(599\) −228.183 + 131.742i −0.380940 + 0.219936i −0.678227 0.734852i \(-0.737252\pi\)
0.297287 + 0.954788i \(0.403918\pi\)
\(600\) −31.7890 + 506.068i −0.0529817 + 0.843447i
\(601\) −888.347 −1.47812 −0.739058 0.673642i \(-0.764729\pi\)
−0.739058 + 0.673642i \(0.764729\pi\)
\(602\) −851.898 491.843i −1.41511 0.817015i
\(603\) −75.1023 178.563i −0.124548 0.296124i
\(604\) −274.513 + 475.471i −0.454492 + 0.787204i
\(605\) 601.890 347.501i 0.994859 0.574382i
\(606\) 358.000 + 721.008i 0.590759 + 1.18978i
\(607\) 194.775 0.320882 0.160441 0.987045i \(-0.448708\pi\)
0.160441 + 0.987045i \(0.448708\pi\)
\(608\) −97.8099 56.4706i −0.160872 0.0928793i
\(609\) −1105.25 734.172i −1.81487 1.20554i
\(610\) 271.988 471.096i 0.445881 0.772289i
\(611\) 100.439 593.323i 0.164385 0.971069i
\(612\) −701.835 + 295.187i −1.14679 + 0.482332i
\(613\) −153.947 266.645i −0.251138 0.434984i 0.712702 0.701467i \(-0.247471\pi\)
−0.963839 + 0.266484i \(0.914138\pi\)
\(614\) 1596.59i 2.60031i
\(615\) −650.569 1310.24i −1.05784 2.13047i
\(616\) 170.968 + 296.125i 0.277545 + 0.480722i
\(617\) 173.904i 0.281854i 0.990020 + 0.140927i \(0.0450082\pi\)
−0.990020 + 0.140927i \(0.954992\pi\)
\(618\) 83.1626 + 55.2413i 0.134567 + 0.0893871i
\(619\) −227.450 + 393.956i −0.367448 + 0.636439i −0.989166 0.146803i \(-0.953102\pi\)
0.621718 + 0.783241i \(0.286435\pi\)
\(620\) 145.569 + 84.0440i 0.234788 + 0.135555i
\(621\) −206.509 178.147i −0.332542 0.286871i
\(622\) 228.317 + 395.457i 0.367069 + 0.635782i
\(623\) 1184.78 + 684.032i 1.90173 + 1.09796i
\(624\) −194.793 + 207.415i −0.312168 + 0.332397i
\(625\) 138.878 + 240.544i 0.222205 + 0.384870i
\(626\) 1032.57 + 596.154i 1.64947 + 0.952322i
\(627\) −2.83209 + 45.0857i −0.00451688 + 0.0719070i
\(628\) 770.501 + 1334.55i 1.22691 + 2.12508i
\(629\) 304.764i 0.484522i
\(630\) 1056.67 + 2512.33i 1.67725 + 3.98782i
\(631\) 2.06774 3.58143i 0.00327693 0.00567580i −0.864382 0.502835i \(-0.832290\pi\)
0.867659 + 0.497159i \(0.165624\pi\)
\(632\) −521.281 300.961i −0.824811 0.476205i
\(633\) 585.650 + 36.7880i 0.925197 + 0.0581168i
\(634\) 645.753 1118.48i 1.01854 1.76416i
\(635\) −434.529 250.875i −0.684298 0.395079i
\(636\) −567.918 + 281.987i −0.892952 + 0.443375i
\(637\) 1422.42 + 240.790i 2.23299 + 0.378007i
\(638\) 604.358i 0.947269i
\(639\) 732.216 307.965i 1.14588 0.481949i
\(640\) −553.430 958.569i −0.864734 1.49776i
\(641\) 190.061 109.732i 0.296507 0.171188i −0.344366 0.938836i \(-0.611906\pi\)
0.640873 + 0.767647i \(0.278573\pi\)
\(642\) 201.585 303.475i 0.313995 0.472702i
\(643\) 832.551 1.29479 0.647395 0.762154i \(-0.275858\pi\)
0.647395 + 0.762154i \(0.275858\pi\)
\(644\) 710.890i 1.10387i
\(645\) 36.6180 582.944i 0.0567721 0.903789i
\(646\) −63.3489 109.723i −0.0980633 0.169851i
\(647\) 345.359 199.393i 0.533786 0.308181i −0.208771 0.977965i \(-0.566946\pi\)
0.742557 + 0.669783i \(0.233613\pi\)
\(648\) 377.375 105.526i 0.582369 0.162848i
\(649\) −110.932 −0.170927
\(650\) −234.451 + 1384.97i −0.360694 + 2.13072i
\(651\) 147.763 + 9.28182i 0.226978 + 0.0142578i
\(652\) 842.399 1459.08i 1.29202 2.23785i
\(653\) −960.778 554.705i −1.47133 0.849472i −0.471848 0.881680i \(-0.656413\pi\)
−0.999481 + 0.0322076i \(0.989746\pi\)
\(654\) 1048.87 520.790i 1.60377 0.796316i
\(655\) 677.054 1172.69i 1.03367 1.79037i
\(656\) 397.965 + 229.765i 0.606653 + 0.350252i
\(657\) 316.830 417.580i 0.482238 0.635585i
\(658\) 1810.64 2.75174
\(659\) −452.167 + 261.059i −0.686142 + 0.396144i −0.802165 0.597102i \(-0.796319\pi\)
0.116023 + 0.993246i \(0.462985\pi\)
\(660\) −399.608 + 601.587i −0.605467 + 0.911496i
\(661\) 141.464 245.023i 0.214015 0.370685i −0.738952 0.673758i \(-0.764679\pi\)
0.952967 + 0.303073i \(0.0980125\pi\)
\(662\) 642.742 371.087i 0.970909 0.560555i
\(663\) −567.651 + 171.358i −0.856185 + 0.258458i
\(664\) −114.240 + 197.869i −0.172048 + 0.297995i
\(665\) −228.506 + 131.928i −0.343617 + 0.198388i
\(666\) −69.8177 + 553.542i −0.104831 + 0.831144i
\(667\) −176.614 + 305.904i −0.264789 + 0.458627i
\(668\) −96.8726 55.9294i −0.145019 0.0837267i
\(669\) 313.101 + 630.582i 0.468014 + 0.942574i
\(670\) 515.344 0.769170
\(671\) 109.955 63.4824i 0.163867 0.0946087i
\(672\) −1324.77 879.988i −1.97139 1.30951i
\(673\) 554.927 0.824557 0.412279 0.911058i \(-0.364733\pi\)
0.412279 + 0.911058i \(0.364733\pi\)
\(674\) 836.228 482.796i 1.24069 0.716315i
\(675\) −616.189 + 714.289i −0.912873 + 1.05821i
\(676\) 712.022 614.250i 1.05329 0.908654i
\(677\) −513.136 296.259i −0.757956 0.437606i 0.0706053 0.997504i \(-0.477507\pi\)
−0.828561 + 0.559898i \(0.810840\pi\)
\(678\) −588.576 1185.38i −0.868106 1.74835i
\(679\) −133.882 + 231.891i −0.197176 + 0.341518i
\(680\) 569.435i 0.837405i
\(681\) −442.195 293.731i −0.649332 0.431323i
\(682\) 33.7175 + 58.4004i 0.0494391 + 0.0856310i
\(683\) −1020.77 589.343i −1.49454 0.862874i −0.494561 0.869143i \(-0.664671\pi\)
−0.999980 + 0.00626870i \(0.998005\pi\)
\(684\) 52.3157 + 124.385i 0.0764850 + 0.181850i
\(685\) −34.9782 + 60.5840i −0.0510631 + 0.0884439i
\(686\) 2424.12i 3.53371i
\(687\) −214.405 + 322.775i −0.312089 + 0.469833i
\(688\) 91.7407 + 158.900i 0.133344 + 0.230959i
\(689\) −462.856 + 172.060i −0.671779 + 0.249724i
\(690\) 649.858 322.672i 0.941823 0.467641i
\(691\) 407.940 0.590361 0.295181 0.955441i \(-0.404620\pi\)
0.295181 + 0.955441i \(0.404620\pi\)
\(692\) 743.366 429.183i 1.07423 0.620206i
\(693\) −79.6045 + 631.136i −0.114869 + 0.910730i
\(694\) −958.180 −1.38066
\(695\) 141.402 81.6382i 0.203455 0.117465i
\(696\) −225.700 454.558i −0.324282 0.653101i
\(697\) 478.799 + 829.304i 0.686942 + 1.18982i
\(698\) 441.196i 0.632086i
\(699\) −427.660 + 212.345i −0.611817 + 0.303784i
\(700\) −2458.88 −3.51269
\(701\) 388.806i 0.554644i −0.960777 0.277322i \(-0.910553\pi\)
0.960777 0.277322i \(-0.0894469\pi\)
\(702\) 1070.28 181.194i 1.52461 0.258112i
\(703\) −54.0130 −0.0768322
\(704\) 561.300i 0.797302i
\(705\) 478.132 + 962.953i 0.678202 + 1.36589i
\(706\) −63.5731 −0.0900469
\(707\) −950.386 + 548.706i −1.34425 + 0.776104i
\(708\) −296.789 + 147.364i −0.419194 + 0.208141i
\(709\) 243.148 + 421.144i 0.342945 + 0.593998i 0.984978 0.172679i \(-0.0552423\pi\)
−0.642033 + 0.766677i \(0.721909\pi\)
\(710\) 2113.22i 2.97637i
\(711\) −434.150 1032.23i −0.610619 1.45180i
\(712\) 261.631 + 453.158i 0.367459 + 0.636458i
\(713\) 39.4136i 0.0552785i
\(714\) −793.442 1597.98i −1.11126 2.23807i
\(715\) −358.578 + 433.321i −0.501507 + 0.606044i
\(716\) −898.076 + 518.505i −1.25430 + 0.724169i
\(717\) 590.654 + 392.345i 0.823785 + 0.547204i
\(718\) −454.679 −0.633258
\(719\) 548.518 + 316.687i 0.762890 + 0.440455i 0.830332 0.557269i \(-0.188151\pi\)
−0.0674425 + 0.997723i \(0.521484\pi\)
\(720\) 63.6163 504.375i 0.0883560 0.700521i
\(721\) −68.0522 + 117.870i −0.0943859 + 0.163481i
\(722\) 947.414 546.990i 1.31221 0.757603i
\(723\) 193.202 290.855i 0.267223 0.402288i
\(724\) −1733.16 −2.39387
\(725\) 1058.09 + 610.887i 1.45943 + 0.842603i
\(726\) 745.980 370.399i 1.02752 0.510192i
\(727\) −263.153 + 455.794i −0.361971 + 0.626951i −0.988285 0.152619i \(-0.951229\pi\)
0.626315 + 0.779570i \(0.284563\pi\)
\(728\) 612.820 + 507.115i 0.841786 + 0.696586i
\(729\) 677.966 + 267.962i 0.929994 + 0.367574i
\(730\) 697.235 + 1207.65i 0.955116 + 1.65431i
\(731\) 382.350i 0.523051i
\(732\) 209.844 315.909i 0.286672 0.431569i
\(733\) 623.923 + 1080.67i 0.851191 + 1.47431i 0.880134 + 0.474725i \(0.157452\pi\)
−0.0289432 + 0.999581i \(0.509214\pi\)
\(734\) 1203.61i 1.63980i
\(735\) −2308.56 + 1146.26i −3.14089 + 1.55954i
\(736\) −211.692 + 366.661i −0.287625 + 0.498181i
\(737\) 104.167 + 60.1411i 0.141340 + 0.0816026i
\(738\) −679.657 1615.95i −0.920945 2.18963i
\(739\) 241.687 + 418.615i 0.327047 + 0.566461i 0.981924 0.189274i \(-0.0606133\pi\)
−0.654878 + 0.755735i \(0.727280\pi\)
\(740\) −747.828 431.759i −1.01058 0.583458i
\(741\) 30.3695 + 100.604i 0.0409845 + 0.135768i
\(742\) −742.897 1286.74i −1.00121 1.73415i
\(743\) −606.999 350.451i −0.816957 0.471671i 0.0324087 0.999475i \(-0.489682\pi\)
−0.849366 + 0.527804i \(0.823016\pi\)
\(744\) 47.1700 + 31.3330i 0.0634005 + 0.0421142i
\(745\) −7.16632 12.4124i −0.00961923 0.0166610i
\(746\) 1248.37i 1.67342i
\(747\) −391.817 + 164.796i −0.524521 + 0.220610i
\(748\) 236.383 409.427i 0.316020 0.547362i
\(749\) 430.128 + 248.334i 0.574269 + 0.331555i
\(750\) −317.482 639.405i −0.423309 0.852539i
\(751\) −16.9091 + 29.2874i −0.0225154 + 0.0389979i −0.877064 0.480374i \(-0.840501\pi\)
0.854548 + 0.519372i \(0.173834\pi\)
\(752\) −292.482 168.865i −0.388939 0.224554i
\(753\) −2.56613 + 40.8517i −0.00340787 + 0.0542520i
\(754\) −489.870 1317.79i −0.649696 1.74773i
\(755\) 763.905i 1.01179i
\(756\) 625.438 + 1794.30i 0.827299 + 2.37342i
\(757\) −579.869 1004.36i −0.766009 1.32677i −0.939711 0.341968i \(-0.888906\pi\)
0.173702 0.984798i \(-0.444427\pi\)
\(758\) 420.054 242.518i 0.554161 0.319945i
\(759\) 169.013 + 10.6167i 0.222679 + 0.0139877i
\(760\) −100.920 −0.132790
\(761\) 11.0168i 0.0144767i −0.999974 0.00723836i \(-0.997696\pi\)
0.999974 0.00723836i \(-0.00230406\pi\)
\(762\) −500.857 332.698i −0.657293 0.436611i
\(763\) 798.215 + 1382.55i 1.04615 + 1.81199i
\(764\) −675.834 + 390.193i −0.884600 + 0.510724i
\(765\) 640.332 843.951i 0.837035 1.10320i
\(766\) −904.123 −1.18032
\(767\) −241.885 + 89.9172i −0.315365 + 0.117232i
\(768\) −53.8747 108.503i −0.0701494 0.141280i
\(769\) 323.693 560.652i 0.420927 0.729067i −0.575104 0.818081i \(-0.695038\pi\)
0.996030 + 0.0890140i \(0.0283716\pi\)
\(770\) −1465.61