Properties

Label 117.3.k.a.29.3
Level $117$
Weight $3$
Character 117.29
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(29,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.29");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 29.3
Character \(\chi\) \(=\) 117.29
Dual form 117.3.k.a.113.24

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.27217i q^{2} +(-2.67392 - 1.36020i) q^{3} -6.70711 q^{4} +(-3.48512 + 2.01214i) q^{5} +(-4.45081 + 8.74953i) q^{6} +(1.40029 + 2.42538i) q^{7} +8.85812i q^{8} +(5.29971 + 7.27414i) q^{9} +(6.58406 + 11.4039i) q^{10} -10.5579i q^{11} +(17.9343 + 9.12301i) q^{12} +(-12.8016 + 2.26238i) q^{13} +(7.93627 - 4.58201i) q^{14} +(12.0559 - 0.639831i) q^{15} +2.15687 q^{16} +(-13.9728 - 8.06719i) q^{17} +(23.8022 - 17.3416i) q^{18} +(-11.6456 + 20.1708i) q^{19} +(23.3751 - 13.4956i) q^{20} +(-0.445274 - 8.38996i) q^{21} -34.5473 q^{22} +(9.63655 + 5.56367i) q^{23} +(12.0488 - 23.6859i) q^{24} +(-4.40262 + 7.62555i) q^{25} +(7.40288 + 41.8891i) q^{26} +(-4.27674 - 26.6591i) q^{27} +(-9.39193 - 16.2673i) q^{28} -24.7726i q^{29} +(-2.09364 - 39.4488i) q^{30} +(4.04316 + 7.00296i) q^{31} +28.3748i q^{32} +(-14.3609 + 28.2311i) q^{33} +(-26.3972 + 45.7213i) q^{34} +(-9.76040 - 5.63517i) q^{35} +(-35.5457 - 48.7884i) q^{36} +(-33.7864 - 58.5198i) q^{37} +(66.0022 + 38.1064i) q^{38} +(37.3078 + 11.3634i) q^{39} +(-17.8238 - 30.8716i) q^{40} +(-8.53943 - 4.93024i) q^{41} +(-27.4534 + 1.45701i) q^{42} +(1.70728 + 2.95709i) q^{43} +70.8132i q^{44} +(-33.1067 - 14.6875i) q^{45} +(18.2053 - 31.5325i) q^{46} +(-80.2410 - 46.3271i) q^{47} +(-5.76730 - 2.93378i) q^{48} +(20.5783 - 35.6427i) q^{49} +(24.9521 + 14.4061i) q^{50} +(26.3891 + 40.5768i) q^{51} +(85.8619 - 15.1740i) q^{52} -36.1018i q^{53} +(-87.2333 + 13.9942i) q^{54} +(21.2440 + 36.7957i) q^{55} +(-21.4843 + 12.4040i) q^{56} +(58.5757 - 38.0947i) q^{57} -81.0602 q^{58} -16.8680i q^{59} +(-80.8599 + 4.29142i) q^{60} +(8.90904 + 15.4309i) q^{61} +(22.9149 - 13.2299i) q^{62} +(-10.2214 + 23.0398i) q^{63} +101.475 q^{64} +(40.0630 - 33.6433i) q^{65} +(92.3769 + 46.9913i) q^{66} +(27.4720 - 47.5828i) q^{67} +(93.7169 + 54.1075i) q^{68} +(-18.1997 - 27.9844i) q^{69} +(-18.4392 + 31.9377i) q^{70} +(76.3871 + 44.1021i) q^{71} +(-64.4352 + 46.9455i) q^{72} +86.4607 q^{73} +(-191.487 + 110.555i) q^{74} +(22.1445 - 14.4017i) q^{75} +(78.1083 - 135.287i) q^{76} +(25.6070 - 14.7842i) q^{77} +(37.1829 - 122.078i) q^{78} +(-62.9550 + 109.041i) q^{79} +(-7.51696 + 4.33992i) q^{80} +(-24.8261 + 77.1017i) q^{81} +(-16.1326 + 27.9425i) q^{82} +(1.94262 + 1.12157i) q^{83} +(2.98650 + 56.2724i) q^{84} +64.9291 q^{85} +(9.67611 - 5.58651i) q^{86} +(-33.6957 + 66.2400i) q^{87} +93.5234 q^{88} +(-66.8494 + 38.5955i) q^{89} +(-48.0601 + 108.331i) q^{90} +(-23.4132 - 27.8808i) q^{91} +(-64.6334 - 37.3161i) q^{92} +(-1.28567 - 24.2249i) q^{93} +(-151.590 + 262.562i) q^{94} -93.7301i q^{95} +(38.5955 - 75.8721i) q^{96} +(-49.4835 - 85.7080i) q^{97} +(-116.629 - 67.3359i) q^{98} +(76.7998 - 55.9540i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - q^{3} - 98 q^{4} - 6 q^{5} + 12 q^{6} - q^{7} - 3 q^{9} - 6 q^{10} - 39 q^{12} + 4 q^{13} - 6 q^{14} - 25 q^{15} + 166 q^{16} + 34 q^{18} + 5 q^{19} + 21 q^{20} - 91 q^{21} + 30 q^{22} - 75 q^{23}+ \cdots + 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.27217i 1.63609i −0.575157 0.818043i \(-0.695059\pi\)
0.575157 0.818043i \(-0.304941\pi\)
\(3\) −2.67392 1.36020i −0.891307 0.453400i
\(4\) −6.70711 −1.67678
\(5\) −3.48512 + 2.01214i −0.697024 + 0.402427i −0.806238 0.591591i \(-0.798500\pi\)
0.109214 + 0.994018i \(0.465167\pi\)
\(6\) −4.45081 + 8.74953i −0.741801 + 1.45826i
\(7\) 1.40029 + 2.42538i 0.200042 + 0.346483i 0.948542 0.316652i \(-0.102559\pi\)
−0.748500 + 0.663135i \(0.769225\pi\)
\(8\) 8.85812i 1.10727i
\(9\) 5.29971 + 7.27414i 0.588857 + 0.808237i
\(10\) 6.58406 + 11.4039i 0.658406 + 1.14039i
\(11\) 10.5579i 0.959811i −0.877320 0.479906i \(-0.840671\pi\)
0.877320 0.479906i \(-0.159329\pi\)
\(12\) 17.9343 + 9.12301i 1.49452 + 0.760251i
\(13\) −12.8016 + 2.26238i −0.984741 + 0.174029i
\(14\) 7.93627 4.58201i 0.566876 0.327286i
\(15\) 12.0559 0.639831i 0.803723 0.0426554i
\(16\) 2.15687 0.134804
\(17\) −13.9728 8.06719i −0.821928 0.474540i 0.0291528 0.999575i \(-0.490719\pi\)
−0.851081 + 0.525035i \(0.824052\pi\)
\(18\) 23.8022 17.3416i 1.32235 0.963421i
\(19\) −11.6456 + 20.1708i −0.612926 + 1.06162i 0.377819 + 0.925880i \(0.376674\pi\)
−0.990745 + 0.135739i \(0.956659\pi\)
\(20\) 23.3751 13.4956i 1.16875 0.674781i
\(21\) −0.445274 8.38996i −0.0212035 0.399522i
\(22\) −34.5473 −1.57033
\(23\) 9.63655 + 5.56367i 0.418981 + 0.241899i 0.694641 0.719357i \(-0.255563\pi\)
−0.275660 + 0.961255i \(0.588897\pi\)
\(24\) 12.0488 23.6859i 0.502034 0.986914i
\(25\) −4.40262 + 7.62555i −0.176105 + 0.305022i
\(26\) 7.40288 + 41.8891i 0.284726 + 1.61112i
\(27\) −4.27674 26.6591i −0.158398 0.987375i
\(28\) −9.39193 16.2673i −0.335426 0.580975i
\(29\) 24.7726i 0.854228i −0.904198 0.427114i \(-0.859530\pi\)
0.904198 0.427114i \(-0.140470\pi\)
\(30\) −2.09364 39.4488i −0.0697879 1.31496i
\(31\) 4.04316 + 7.00296i 0.130425 + 0.225902i 0.923840 0.382778i \(-0.125033\pi\)
−0.793416 + 0.608680i \(0.791699\pi\)
\(32\) 28.3748i 0.886714i
\(33\) −14.3609 + 28.2311i −0.435178 + 0.855487i
\(34\) −26.3972 + 45.7213i −0.776389 + 1.34475i
\(35\) −9.76040 5.63517i −0.278869 0.161005i
\(36\) −35.5457 48.7884i −0.987382 1.35523i
\(37\) −33.7864 58.5198i −0.913146 1.58162i −0.809593 0.586992i \(-0.800312\pi\)
−0.103553 0.994624i \(-0.533021\pi\)
\(38\) 66.0022 + 38.1064i 1.73690 + 1.00280i
\(39\) 37.3078 + 11.3634i 0.956611 + 0.291368i
\(40\) −17.8238 30.8716i −0.445594 0.771791i
\(41\) −8.53943 4.93024i −0.208279 0.120250i 0.392232 0.919866i \(-0.371703\pi\)
−0.600511 + 0.799616i \(0.705036\pi\)
\(42\) −27.4534 + 1.45701i −0.653652 + 0.0346908i
\(43\) 1.70728 + 2.95709i 0.0397041 + 0.0687696i 0.885195 0.465221i \(-0.154025\pi\)
−0.845490 + 0.533991i \(0.820692\pi\)
\(44\) 70.8132i 1.60939i
\(45\) −33.1067 14.6875i −0.735704 0.326389i
\(46\) 18.2053 31.5325i 0.395767 0.685488i
\(47\) −80.2410 46.3271i −1.70725 0.985684i −0.937929 0.346827i \(-0.887259\pi\)
−0.769326 0.638857i \(-0.779408\pi\)
\(48\) −5.76730 2.93378i −0.120152 0.0611203i
\(49\) 20.5783 35.6427i 0.419966 0.727403i
\(50\) 24.9521 + 14.4061i 0.499043 + 0.288122i
\(51\) 26.3891 + 40.5768i 0.517434 + 0.795623i
\(52\) 85.8619 15.1740i 1.65119 0.291808i
\(53\) 36.1018i 0.681167i −0.940214 0.340583i \(-0.889375\pi\)
0.940214 0.340583i \(-0.110625\pi\)
\(54\) −87.2333 + 13.9942i −1.61543 + 0.259152i
\(55\) 21.2440 + 36.7957i 0.386254 + 0.669012i
\(56\) −21.4843 + 12.4040i −0.383649 + 0.221500i
\(57\) 58.5757 38.0947i 1.02764 0.668328i
\(58\) −81.0602 −1.39759
\(59\) 16.8680i 0.285898i −0.989730 0.142949i \(-0.954342\pi\)
0.989730 0.142949i \(-0.0456584\pi\)
\(60\) −80.8599 + 4.29142i −1.34766 + 0.0715236i
\(61\) 8.90904 + 15.4309i 0.146050 + 0.252966i 0.929764 0.368156i \(-0.120011\pi\)
−0.783714 + 0.621121i \(0.786677\pi\)
\(62\) 22.9149 13.2299i 0.369595 0.213386i
\(63\) −10.2214 + 23.0398i −0.162244 + 0.365711i
\(64\) 101.475 1.58554
\(65\) 40.0630 33.6433i 0.616354 0.517589i
\(66\) 92.3769 + 46.9913i 1.39965 + 0.711989i
\(67\) 27.4720 47.5828i 0.410029 0.710192i −0.584863 0.811132i \(-0.698852\pi\)
0.994892 + 0.100940i \(0.0321851\pi\)
\(68\) 93.7169 + 54.1075i 1.37819 + 0.795699i
\(69\) −18.1997 27.9844i −0.263764 0.405572i
\(70\) −18.4392 + 31.9377i −0.263418 + 0.456253i
\(71\) 76.3871 + 44.1021i 1.07587 + 0.621156i 0.929780 0.368115i \(-0.119997\pi\)
0.146094 + 0.989271i \(0.453330\pi\)
\(72\) −64.4352 + 46.9455i −0.894933 + 0.652021i
\(73\) 86.4607 1.18439 0.592196 0.805794i \(-0.298261\pi\)
0.592196 + 0.805794i \(0.298261\pi\)
\(74\) −191.487 + 110.555i −2.58766 + 1.49399i
\(75\) 22.1445 14.4017i 0.295260 0.192023i
\(76\) 78.1083 135.287i 1.02774 1.78010i
\(77\) 25.6070 14.7842i 0.332558 0.192003i
\(78\) 37.1829 122.078i 0.476703 1.56510i
\(79\) −62.9550 + 109.041i −0.796899 + 1.38027i 0.124727 + 0.992191i \(0.460195\pi\)
−0.921626 + 0.388079i \(0.873139\pi\)
\(80\) −7.51696 + 4.33992i −0.0939620 + 0.0542490i
\(81\) −24.8261 + 77.1017i −0.306495 + 0.951872i
\(82\) −16.1326 + 27.9425i −0.196739 + 0.340762i
\(83\) 1.94262 + 1.12157i 0.0234051 + 0.0135129i 0.511657 0.859190i \(-0.329032\pi\)
−0.488252 + 0.872703i \(0.662365\pi\)
\(84\) 2.98650 + 56.2724i 0.0355536 + 0.669909i
\(85\) 64.9291 0.763872
\(86\) 9.67611 5.58651i 0.112513 0.0649594i
\(87\) −33.6957 + 66.2400i −0.387307 + 0.761379i
\(88\) 93.5234 1.06277
\(89\) −66.8494 + 38.5955i −0.751117 + 0.433658i −0.826098 0.563527i \(-0.809444\pi\)
0.0749801 + 0.997185i \(0.476111\pi\)
\(90\) −48.0601 + 108.331i −0.534001 + 1.20368i
\(91\) −23.4132 27.8808i −0.257288 0.306383i
\(92\) −64.6334 37.3161i −0.702537 0.405610i
\(93\) −1.28567 24.2249i −0.0138244 0.260483i
\(94\) −151.590 + 262.562i −1.61266 + 2.79322i
\(95\) 93.7301i 0.986632i
\(96\) 38.5955 75.8721i 0.402036 0.790334i
\(97\) −49.4835 85.7080i −0.510140 0.883588i −0.999931 0.0117480i \(-0.996260\pi\)
0.489791 0.871840i \(-0.337073\pi\)
\(98\) −116.629 67.3359i −1.19009 0.687101i
\(99\) 76.7998 55.9540i 0.775755 0.565192i
\(100\) 29.5288 51.1454i 0.295288 0.511454i
\(101\) 91.5426i 0.906362i 0.891419 + 0.453181i \(0.149711\pi\)
−0.891419 + 0.453181i \(0.850289\pi\)
\(102\) 132.774 86.3498i 1.30171 0.846566i
\(103\) 46.6869 + 80.8641i 0.453271 + 0.785089i 0.998587 0.0531421i \(-0.0169236\pi\)
−0.545316 + 0.838231i \(0.683590\pi\)
\(104\) −20.0404 113.398i −0.192696 1.09037i
\(105\) 18.4336 + 28.3441i 0.175558 + 0.269944i
\(106\) −118.131 −1.11445
\(107\) 66.3985 38.3352i 0.620547 0.358273i −0.156535 0.987672i \(-0.550032\pi\)
0.777082 + 0.629400i \(0.216699\pi\)
\(108\) 28.6845 + 178.806i 0.265597 + 1.65561i
\(109\) −157.860 −1.44826 −0.724128 0.689666i \(-0.757757\pi\)
−0.724128 + 0.689666i \(0.757757\pi\)
\(110\) 120.402 69.5140i 1.09456 0.631945i
\(111\) 10.7436 + 202.434i 0.0967893 + 1.82373i
\(112\) 3.02026 + 5.23124i 0.0269666 + 0.0467075i
\(113\) 119.644i 1.05879i −0.848374 0.529397i \(-0.822418\pi\)
0.848374 0.529397i \(-0.177582\pi\)
\(114\) −124.652 191.670i −1.09344 1.68131i
\(115\) −44.7794 −0.389386
\(116\) 166.153i 1.43235i
\(117\) −84.3018 81.1308i −0.720528 0.693426i
\(118\) −55.1949 −0.467753
\(119\) 45.1858i 0.379712i
\(120\) 5.66771 + 106.792i 0.0472309 + 0.889935i
\(121\) 9.53021 0.0787621
\(122\) 50.4926 29.1519i 0.413874 0.238950i
\(123\) 16.1277 + 24.7984i 0.131119 + 0.201613i
\(124\) −27.1179 46.9696i −0.218693 0.378787i
\(125\) 136.041i 1.08833i
\(126\) 75.3901 + 33.4462i 0.598334 + 0.265446i
\(127\) 95.7996 + 165.930i 0.754327 + 1.30653i 0.945708 + 0.325017i \(0.105370\pi\)
−0.191381 + 0.981516i \(0.561296\pi\)
\(128\) 218.544i 1.70737i
\(129\) −0.542891 10.2293i −0.00420845 0.0792967i
\(130\) −110.087 131.093i −0.846820 1.00841i
\(131\) −208.472 + 120.361i −1.59139 + 0.918789i −0.598321 + 0.801257i \(0.704165\pi\)
−0.993069 + 0.117533i \(0.962502\pi\)
\(132\) 96.3200 189.349i 0.729697 1.43446i
\(133\) −65.2291 −0.490444
\(134\) −155.699 89.8930i −1.16193 0.670843i
\(135\) 68.5468 + 84.3050i 0.507754 + 0.624481i
\(136\) 71.4601 123.773i 0.525442 0.910093i
\(137\) −17.9933 + 10.3884i −0.131338 + 0.0758278i −0.564229 0.825618i \(-0.690827\pi\)
0.432892 + 0.901446i \(0.357493\pi\)
\(138\) −91.5699 + 59.5525i −0.663550 + 0.431540i
\(139\) 253.990 1.82727 0.913634 0.406539i \(-0.133264\pi\)
0.913634 + 0.406539i \(0.133264\pi\)
\(140\) 65.4640 + 37.7957i 0.467600 + 0.269969i
\(141\) 151.544 + 233.019i 1.07478 + 1.65262i
\(142\) 144.310 249.952i 1.01626 1.76022i
\(143\) 23.8860 + 135.159i 0.167035 + 0.945165i
\(144\) 11.4308 + 15.6894i 0.0793805 + 0.108954i
\(145\) 49.8459 + 86.3356i 0.343765 + 0.595418i
\(146\) 282.914i 1.93777i
\(147\) −103.506 + 67.3152i −0.704123 + 0.457927i
\(148\) 226.609 + 392.499i 1.53114 + 2.65202i
\(149\) 146.052i 0.980214i −0.871662 0.490107i \(-0.836958\pi\)
0.871662 0.490107i \(-0.163042\pi\)
\(150\) −47.1248 72.4607i −0.314166 0.483071i
\(151\) 140.864 243.983i 0.932871 1.61578i 0.154485 0.987995i \(-0.450628\pi\)
0.778386 0.627786i \(-0.216039\pi\)
\(152\) −178.675 103.158i −1.17549 0.678672i
\(153\) −15.3699 144.394i −0.100457 0.943749i
\(154\) −48.3765 83.7905i −0.314133 0.544094i
\(155\) −28.1818 16.2708i −0.181818 0.104973i
\(156\) −250.228 76.2153i −1.60402 0.488559i
\(157\) −66.6730 115.481i −0.424669 0.735548i 0.571720 0.820448i \(-0.306276\pi\)
−0.996389 + 0.0849002i \(0.972943\pi\)
\(158\) 356.802 + 206.000i 2.25824 + 1.30380i
\(159\) −49.1057 + 96.5335i −0.308841 + 0.607129i
\(160\) −57.0941 98.8898i −0.356838 0.618061i
\(161\) 31.1631i 0.193560i
\(162\) 252.290 + 81.2353i 1.55734 + 0.501452i
\(163\) −15.9767 + 27.6724i −0.0980163 + 0.169769i −0.910863 0.412708i \(-0.864583\pi\)
0.812847 + 0.582477i \(0.197916\pi\)
\(164\) 57.2749 + 33.0677i 0.349237 + 0.201632i
\(165\) −6.75529 127.285i −0.0409412 0.771423i
\(166\) 3.66998 6.35659i 0.0221083 0.0382927i
\(167\) −144.425 83.3837i −0.864819 0.499303i 0.000804162 1.00000i \(-0.499744\pi\)
−0.865623 + 0.500696i \(0.833077\pi\)
\(168\) 74.3193 3.94430i 0.442377 0.0234779i
\(169\) 158.763 57.9242i 0.939428 0.342747i
\(170\) 212.459i 1.24976i
\(171\) −208.443 + 22.1876i −1.21897 + 0.129752i
\(172\) −11.4509 19.8335i −0.0665750 0.115311i
\(173\) −57.0314 + 32.9271i −0.329661 + 0.190330i −0.655691 0.755030i \(-0.727622\pi\)
0.326030 + 0.945360i \(0.394289\pi\)
\(174\) 216.749 + 110.258i 1.24568 + 0.633667i
\(175\) −24.6598 −0.140913
\(176\) 22.7721i 0.129387i
\(177\) −22.9438 + 45.1036i −0.129626 + 0.254823i
\(178\) 126.291 + 218.743i 0.709501 + 1.22889i
\(179\) −210.321 + 121.429i −1.17498 + 0.678374i −0.954847 0.297097i \(-0.903982\pi\)
−0.220130 + 0.975470i \(0.570648\pi\)
\(180\) 222.050 + 98.5107i 1.23361 + 0.547282i
\(181\) −117.666 −0.650086 −0.325043 0.945699i \(-0.605379\pi\)
−0.325043 + 0.945699i \(0.605379\pi\)
\(182\) −91.2309 + 76.6119i −0.501269 + 0.420945i
\(183\) −2.83295 53.3791i −0.0154806 0.291689i
\(184\) −49.2837 + 85.3618i −0.267846 + 0.463923i
\(185\) 235.500 + 135.966i 1.27297 + 0.734950i
\(186\) −79.2680 + 4.20693i −0.426172 + 0.0226179i
\(187\) −85.1728 + 147.524i −0.455469 + 0.788896i
\(188\) 538.185 + 310.721i 2.86269 + 1.65277i
\(189\) 58.6699 47.7034i 0.310423 0.252399i
\(190\) −306.701 −1.61422
\(191\) −184.114 + 106.298i −0.963948 + 0.556535i −0.897386 0.441247i \(-0.854536\pi\)
−0.0665619 + 0.997782i \(0.521203\pi\)
\(192\) −271.336 138.026i −1.41321 0.718886i
\(193\) −31.1378 + 53.9323i −0.161336 + 0.279442i −0.935348 0.353729i \(-0.884914\pi\)
0.774012 + 0.633171i \(0.218247\pi\)
\(194\) −280.451 + 161.919i −1.44563 + 0.834632i
\(195\) −152.887 + 35.4658i −0.784036 + 0.181876i
\(196\) −138.021 + 239.060i −0.704190 + 1.21969i
\(197\) −248.948 + 143.730i −1.26369 + 0.729594i −0.973787 0.227461i \(-0.926957\pi\)
−0.289906 + 0.957055i \(0.593624\pi\)
\(198\) −183.091 251.302i −0.924702 1.26920i
\(199\) −106.633 + 184.694i −0.535845 + 0.928111i 0.463277 + 0.886214i \(0.346674\pi\)
−0.999122 + 0.0418972i \(0.986660\pi\)
\(200\) −67.5481 38.9989i −0.337741 0.194995i
\(201\) −138.180 + 89.8654i −0.687463 + 0.447092i
\(202\) 299.543 1.48289
\(203\) 60.0830 34.6890i 0.295976 0.170882i
\(204\) −176.995 272.153i −0.867621 1.33408i
\(205\) 39.6813 0.193567
\(206\) 264.601 152.768i 1.28447 0.741590i
\(207\) 10.6001 + 99.5834i 0.0512082 + 0.481079i
\(208\) −27.6115 + 4.87965i −0.132747 + 0.0234599i
\(209\) 212.961 + 122.953i 1.01895 + 0.588293i
\(210\) 92.7467 60.3178i 0.441651 0.287228i
\(211\) 177.600 307.613i 0.841708 1.45788i −0.0467410 0.998907i \(-0.514884\pi\)
0.888449 0.458975i \(-0.151783\pi\)
\(212\) 242.139i 1.14216i
\(213\) −144.265 221.827i −0.677302 1.04144i
\(214\) −125.439 217.267i −0.586165 1.01527i
\(215\) −11.9001 6.87055i −0.0553495 0.0319560i
\(216\) 236.150 37.8839i 1.09329 0.175388i
\(217\) −11.3232 + 19.6124i −0.0521808 + 0.0903798i
\(218\) 516.545i 2.36947i
\(219\) −231.189 117.604i −1.05566 0.537004i
\(220\) −142.486 246.792i −0.647662 1.12178i
\(221\) 197.125 + 71.6614i 0.891970 + 0.324260i
\(222\) 662.397 35.1549i 2.98377 0.158356i
\(223\) −26.7604 −0.120002 −0.0600008 0.998198i \(-0.519110\pi\)
−0.0600008 + 0.998198i \(0.519110\pi\)
\(224\) −68.8198 + 39.7332i −0.307231 + 0.177380i
\(225\) −78.8019 + 8.38802i −0.350231 + 0.0372801i
\(226\) −391.495 −1.73228
\(227\) 263.953 152.393i 1.16279 0.671337i 0.210818 0.977525i \(-0.432387\pi\)
0.951971 + 0.306189i \(0.0990538\pi\)
\(228\) −392.873 + 255.505i −1.72313 + 1.12064i
\(229\) 4.51573 + 7.82147i 0.0197193 + 0.0341549i 0.875717 0.482825i \(-0.160389\pi\)
−0.855997 + 0.516980i \(0.827056\pi\)
\(230\) 146.526i 0.637069i
\(231\) −88.5806 + 4.70117i −0.383466 + 0.0203514i
\(232\) 219.439 0.945857
\(233\) 104.668i 0.449218i 0.974449 + 0.224609i \(0.0721105\pi\)
−0.974449 + 0.224609i \(0.927889\pi\)
\(234\) −265.474 + 275.850i −1.13450 + 1.17885i
\(235\) 372.866 1.58666
\(236\) 113.135i 0.479387i
\(237\) 316.655 205.937i 1.33610 0.868930i
\(238\) −147.856 −0.621242
\(239\) 97.9341 56.5423i 0.409766 0.236579i −0.280923 0.959730i \(-0.590641\pi\)
0.690689 + 0.723152i \(0.257307\pi\)
\(240\) 26.0029 1.38003i 0.108345 0.00575014i
\(241\) −83.2698 144.227i −0.345518 0.598454i 0.639930 0.768433i \(-0.278963\pi\)
−0.985448 + 0.169979i \(0.945630\pi\)
\(242\) 31.1845i 0.128861i
\(243\) 171.257 172.395i 0.704760 0.709446i
\(244\) −59.7539 103.497i −0.244893 0.424167i
\(245\) 165.626i 0.676023i
\(246\) 81.1447 52.7724i 0.329856 0.214522i
\(247\) 103.449 284.565i 0.418821 1.15209i
\(248\) −62.0331 + 35.8148i −0.250134 + 0.144415i
\(249\) −3.66885 5.64135i −0.0147344 0.0226560i
\(250\) −445.151 −1.78060
\(251\) 98.5267 + 56.8844i 0.392537 + 0.226631i 0.683259 0.730176i \(-0.260562\pi\)
−0.290722 + 0.956808i \(0.593895\pi\)
\(252\) 68.5560 154.530i 0.272048 0.613215i
\(253\) 58.7408 101.742i 0.232177 0.402142i
\(254\) 542.951 313.473i 2.13760 1.23414i
\(255\) −173.615 88.3166i −0.680845 0.346340i
\(256\) −309.213 −1.20786
\(257\) −87.1830 50.3351i −0.339233 0.195857i 0.320700 0.947181i \(-0.396082\pi\)
−0.659933 + 0.751324i \(0.729415\pi\)
\(258\) −33.4719 + 1.77643i −0.129736 + 0.00688539i
\(259\) 94.6219 163.890i 0.365335 0.632780i
\(260\) −268.707 + 225.649i −1.03349 + 0.867881i
\(261\) 180.199 131.288i 0.690419 0.503018i
\(262\) 393.843 + 682.156i 1.50322 + 2.60365i
\(263\) 57.0781i 0.217027i −0.994095 0.108513i \(-0.965391\pi\)
0.994095 0.108513i \(-0.0346091\pi\)
\(264\) −250.074 127.211i −0.947251 0.481858i
\(265\) 72.6418 + 125.819i 0.274120 + 0.474790i
\(266\) 213.441i 0.802409i
\(267\) 231.248 12.2728i 0.866097 0.0459657i
\(268\) −184.257 + 319.143i −0.687528 + 1.19083i
\(269\) 407.684 + 235.377i 1.51556 + 0.875006i 0.999833 + 0.0182500i \(0.00580947\pi\)
0.515722 + 0.856756i \(0.327524\pi\)
\(270\) 275.860 224.297i 1.02170 0.830729i
\(271\) 23.6165 + 40.9050i 0.0871457 + 0.150941i 0.906304 0.422627i \(-0.138892\pi\)
−0.819158 + 0.573568i \(0.805559\pi\)
\(272\) −30.1375 17.3999i −0.110800 0.0639702i
\(273\) 24.6815 + 106.398i 0.0904084 + 0.389735i
\(274\) 33.9927 + 58.8770i 0.124061 + 0.214880i
\(275\) 80.5100 + 46.4825i 0.292764 + 0.169027i
\(276\) 122.067 + 187.695i 0.442273 + 0.680053i
\(277\) 101.870 + 176.444i 0.367761 + 0.636981i 0.989215 0.146470i \(-0.0467911\pi\)
−0.621454 + 0.783451i \(0.713458\pi\)
\(278\) 831.099i 2.98957i
\(279\) −29.5129 + 66.5242i −0.105781 + 0.238438i
\(280\) 49.9170 86.4588i 0.178275 0.308781i
\(281\) −37.9875 21.9321i −0.135187 0.0780502i 0.430881 0.902409i \(-0.358203\pi\)
−0.566068 + 0.824358i \(0.691536\pi\)
\(282\) 762.478 495.878i 2.70382 1.75843i
\(283\) −73.6462 + 127.559i −0.260234 + 0.450739i −0.966304 0.257404i \(-0.917133\pi\)
0.706070 + 0.708142i \(0.250466\pi\)
\(284\) −512.336 295.797i −1.80400 1.04154i
\(285\) −127.492 + 250.627i −0.447339 + 0.879393i
\(286\) 442.262 78.1591i 1.54637 0.273284i
\(287\) 27.6152i 0.0962201i
\(288\) −206.402 + 150.379i −0.716675 + 0.522148i
\(289\) −14.3410 24.8393i −0.0496228 0.0859491i
\(290\) 282.505 163.104i 0.974154 0.562428i
\(291\) 15.7351 + 296.484i 0.0540724 + 1.01885i
\(292\) −579.901 −1.98596
\(293\) 367.033i 1.25267i −0.779553 0.626336i \(-0.784554\pi\)
0.779553 0.626336i \(-0.215446\pi\)
\(294\) 220.267 + 338.690i 0.749208 + 1.15201i
\(295\) 33.9406 + 58.7869i 0.115053 + 0.199278i
\(296\) 518.375 299.284i 1.75127 1.01110i
\(297\) −281.465 + 45.1535i −0.947694 + 0.152032i
\(298\) −477.907 −1.60371
\(299\) −135.951 49.4225i −0.454685 0.165293i
\(300\) −148.526 + 96.5937i −0.495086 + 0.321979i
\(301\) −4.78138 + 8.28160i −0.0158850 + 0.0275136i
\(302\) −798.354 460.930i −2.64356 1.52626i
\(303\) 124.516 244.778i 0.410944 0.807847i
\(304\) −25.1180 + 43.5057i −0.0826251 + 0.143111i
\(305\) −62.0982 35.8524i −0.203601 0.117549i
\(306\) −472.481 + 50.2929i −1.54406 + 0.164356i
\(307\) −39.1332 −0.127470 −0.0637348 0.997967i \(-0.520301\pi\)
−0.0637348 + 0.997967i \(0.520301\pi\)
\(308\) −171.749 + 99.1593i −0.557626 + 0.321946i
\(309\) −14.8458 279.728i −0.0480446 0.905268i
\(310\) −53.2408 + 92.2158i −0.171745 + 0.297470i
\(311\) −245.318 + 141.635i −0.788805 + 0.455417i −0.839542 0.543295i \(-0.817176\pi\)
0.0507366 + 0.998712i \(0.483843\pi\)
\(312\) −100.658 + 330.477i −0.322622 + 1.05922i
\(313\) −59.1441 + 102.441i −0.188959 + 0.327286i −0.944903 0.327349i \(-0.893845\pi\)
0.755945 + 0.654636i \(0.227178\pi\)
\(314\) −377.874 + 218.166i −1.20342 + 0.694795i
\(315\) −10.7363 100.863i −0.0340836 0.320201i
\(316\) 422.246 731.352i 1.33622 2.31441i
\(317\) −373.019 215.363i −1.17672 0.679378i −0.221464 0.975169i \(-0.571083\pi\)
−0.955253 + 0.295791i \(0.904417\pi\)
\(318\) 315.874 + 160.682i 0.993315 + 0.505290i
\(319\) −261.547 −0.819898
\(320\) −353.652 + 204.181i −1.10516 + 0.638066i
\(321\) −229.688 + 12.1901i −0.715539 + 0.0379753i
\(322\) 101.971 0.316680
\(323\) 325.443 187.894i 1.00756 0.581716i
\(324\) 166.511 517.129i 0.513924 1.59608i
\(325\) 39.1088 107.580i 0.120335 0.331015i
\(326\) 90.5488 + 52.2784i 0.277757 + 0.160363i
\(327\) 422.105 + 214.721i 1.29084 + 0.656639i
\(328\) 43.6727 75.6433i 0.133148 0.230620i
\(329\) 259.487i 0.788713i
\(330\) −416.498 + 22.1045i −1.26211 + 0.0669833i
\(331\) −69.8755 121.028i −0.211104 0.365643i 0.740956 0.671553i \(-0.234373\pi\)
−0.952060 + 0.305910i \(0.901039\pi\)
\(332\) −13.0294 7.52251i −0.0392451 0.0226582i
\(333\) 246.623 555.905i 0.740608 1.66938i
\(334\) −272.846 + 472.583i −0.816903 + 1.41492i
\(335\) 221.109i 0.660028i
\(336\) −0.960399 18.0961i −0.00285833 0.0538573i
\(337\) −58.9960 102.184i −0.175062 0.303217i 0.765120 0.643887i \(-0.222679\pi\)
−0.940183 + 0.340670i \(0.889346\pi\)
\(338\) −189.538 519.501i −0.560763 1.53698i
\(339\) −162.740 + 319.918i −0.480058 + 0.943712i
\(340\) −435.487 −1.28084
\(341\) 73.9368 42.6874i 0.216823 0.125183i
\(342\) 72.6016 + 682.062i 0.212285 + 1.99433i
\(343\) 252.492 0.736128
\(344\) −26.1943 + 15.1233i −0.0761462 + 0.0439630i
\(345\) 119.737 + 60.9090i 0.347063 + 0.176548i
\(346\) 107.743 + 186.616i 0.311396 + 0.539354i
\(347\) 204.549i 0.589478i −0.955578 0.294739i \(-0.904767\pi\)
0.955578 0.294739i \(-0.0952327\pi\)
\(348\) 226.001 444.279i 0.649427 1.27666i
\(349\) −375.210 −1.07510 −0.537550 0.843232i \(-0.680650\pi\)
−0.537550 + 0.843232i \(0.680650\pi\)
\(350\) 80.6912i 0.230546i
\(351\) 115.062 + 331.605i 0.327812 + 0.944743i
\(352\) 299.580 0.851078
\(353\) 46.5674i 0.131919i 0.997822 + 0.0659594i \(0.0210108\pi\)
−0.997822 + 0.0659594i \(0.978989\pi\)
\(354\) 147.587 + 75.0761i 0.416912 + 0.212079i
\(355\) −354.958 −0.999881
\(356\) 448.367 258.865i 1.25946 0.727148i
\(357\) −61.4617 + 120.823i −0.172162 + 0.338440i
\(358\) 397.336 + 688.206i 1.10988 + 1.92236i
\(359\) 18.4512i 0.0513962i −0.999670 0.0256981i \(-0.991819\pi\)
0.999670 0.0256981i \(-0.00818086\pi\)
\(360\) 130.104 293.263i 0.361399 0.814620i
\(361\) −90.7397 157.166i −0.251357 0.435362i
\(362\) 385.022i 1.06360i
\(363\) −25.4830 12.9630i −0.0702012 0.0357107i
\(364\) 157.035 + 187.000i 0.431414 + 0.513736i
\(365\) −301.326 + 173.971i −0.825551 + 0.476632i
\(366\) −174.666 + 9.26990i −0.477229 + 0.0253276i
\(367\) 128.775 0.350886 0.175443 0.984490i \(-0.443864\pi\)
0.175443 + 0.984490i \(0.443864\pi\)
\(368\) 20.7848 + 12.0001i 0.0564804 + 0.0326090i
\(369\) −9.39327 88.2458i −0.0254560 0.239149i
\(370\) 444.903 770.595i 1.20244 2.08269i
\(371\) 87.5607 50.5532i 0.236013 0.136262i
\(372\) 8.62312 + 162.479i 0.0231804 + 0.436771i
\(373\) −156.887 −0.420607 −0.210304 0.977636i \(-0.567445\pi\)
−0.210304 + 0.977636i \(0.567445\pi\)
\(374\) 482.722 + 278.700i 1.29070 + 0.745187i
\(375\) −185.044 + 363.764i −0.493450 + 0.970038i
\(376\) 410.372 710.785i 1.09141 1.89038i
\(377\) 56.0450 + 317.130i 0.148660 + 0.841193i
\(378\) −156.094 191.978i −0.412946 0.507878i
\(379\) −148.248 256.773i −0.391156 0.677501i 0.601447 0.798913i \(-0.294591\pi\)
−0.992602 + 0.121412i \(0.961258\pi\)
\(380\) 628.658i 1.65436i
\(381\) −30.4629 573.990i −0.0799552 1.50653i
\(382\) 347.826 + 602.453i 0.910540 + 1.57710i
\(383\) 207.337i 0.541350i 0.962671 + 0.270675i \(0.0872469\pi\)
−0.962671 + 0.270675i \(0.912753\pi\)
\(384\) −297.263 + 584.369i −0.774123 + 1.52179i
\(385\) −59.4957 + 103.050i −0.154534 + 0.267661i
\(386\) 176.476 + 101.888i 0.457191 + 0.263959i
\(387\) −12.4622 + 28.0907i −0.0322021 + 0.0725858i
\(388\) 331.891 + 574.853i 0.855390 + 1.48158i
\(389\) 116.285 + 67.1372i 0.298933 + 0.172589i 0.641964 0.766735i \(-0.278120\pi\)
−0.343030 + 0.939324i \(0.611453\pi\)
\(390\) 116.050 + 500.272i 0.297564 + 1.28275i
\(391\) −89.7663 155.480i −0.229581 0.397646i
\(392\) 315.728 + 182.286i 0.805428 + 0.465014i
\(393\) 721.153 38.2732i 1.83500 0.0973874i
\(394\) 470.309 + 814.599i 1.19368 + 2.06751i
\(395\) 506.696i 1.28278i
\(396\) −515.104 + 375.289i −1.30077 + 0.947700i
\(397\) −244.628 + 423.709i −0.616192 + 1.06728i 0.373982 + 0.927436i \(0.377992\pi\)
−0.990174 + 0.139841i \(0.955341\pi\)
\(398\) 604.351 + 348.922i 1.51847 + 0.876688i
\(399\) 174.417 + 88.7246i 0.437136 + 0.222367i
\(400\) −9.49588 + 16.4473i −0.0237397 + 0.0411183i
\(401\) 664.384 + 383.583i 1.65682 + 0.956565i 0.974169 + 0.225819i \(0.0725058\pi\)
0.682650 + 0.730746i \(0.260828\pi\)
\(402\) 294.055 + 452.149i 0.731480 + 1.12475i
\(403\) −67.6024 80.5022i −0.167748 0.199757i
\(404\) 613.986i 1.51977i
\(405\) −68.6170 318.662i −0.169425 0.786820i
\(406\) −113.508 196.602i −0.279577 0.484241i
\(407\) −617.847 + 356.714i −1.51805 + 0.876448i
\(408\) −359.434 + 233.758i −0.880966 + 0.572937i
\(409\) −258.247 −0.631412 −0.315706 0.948857i \(-0.602241\pi\)
−0.315706 + 0.948857i \(0.602241\pi\)
\(410\) 129.844i 0.316693i
\(411\) 62.2429 3.30337i 0.151442 0.00803740i
\(412\) −313.134 542.364i −0.760035 1.31642i
\(413\) 40.9113 23.6201i 0.0990587 0.0571916i
\(414\) 325.854 34.6853i 0.787087 0.0837810i
\(415\) −9.02703 −0.0217519
\(416\) −64.1946 363.244i −0.154314 0.873183i
\(417\) −679.150 345.477i −1.62866 0.828483i
\(418\) 402.324 696.846i 0.962499 1.66710i
\(419\) 323.004 + 186.486i 0.770892 + 0.445075i 0.833193 0.552983i \(-0.186510\pi\)
−0.0623005 + 0.998057i \(0.519844\pi\)
\(420\) −123.636 190.107i −0.294372 0.452635i
\(421\) −211.181 + 365.776i −0.501617 + 0.868826i 0.498381 + 0.866958i \(0.333928\pi\)
−0.999998 + 0.00186824i \(0.999405\pi\)
\(422\) −1006.56 581.139i −2.38522 1.37711i
\(423\) −88.2641 829.204i −0.208662 1.96029i
\(424\) 319.794 0.754232
\(425\) 123.034 71.0335i 0.289491 0.167138i
\(426\) −725.857 + 472.061i −1.70389 + 1.10812i
\(427\) −24.9506 + 43.2157i −0.0584322 + 0.101208i
\(428\) −445.342 + 257.118i −1.04052 + 0.600744i
\(429\) 119.973 393.893i 0.279658 0.918166i
\(430\) −22.4816 + 38.9393i −0.0522828 + 0.0905565i
\(431\) 353.148 203.890i 0.819369 0.473063i −0.0308300 0.999525i \(-0.509815\pi\)
0.850199 + 0.526462i \(0.176482\pi\)
\(432\) −9.22437 57.5003i −0.0213527 0.133103i
\(433\) 228.343 395.502i 0.527351 0.913399i −0.472141 0.881523i \(-0.656519\pi\)
0.999492 0.0318757i \(-0.0101481\pi\)
\(434\) 64.1752 + 37.0516i 0.147869 + 0.0853723i
\(435\) −15.8503 298.655i −0.0364374 0.686563i
\(436\) 1058.78 2.42840
\(437\) −224.447 + 129.584i −0.513608 + 0.296532i
\(438\) −384.820 + 756.490i −0.878584 + 1.72715i
\(439\) 413.430 0.941755 0.470877 0.882199i \(-0.343937\pi\)
0.470877 + 0.882199i \(0.343937\pi\)
\(440\) −325.941 + 188.182i −0.740774 + 0.427686i
\(441\) 368.329 39.2066i 0.835214 0.0889038i
\(442\) 234.489 645.028i 0.530517 1.45934i
\(443\) −469.005 270.780i −1.05870 0.611242i −0.133629 0.991031i \(-0.542663\pi\)
−0.925073 + 0.379790i \(0.875996\pi\)
\(444\) −72.0585 1357.74i −0.162294 3.05798i
\(445\) 155.319 269.020i 0.349031 0.604540i
\(446\) 87.5646i 0.196333i
\(447\) −198.660 + 390.531i −0.444429 + 0.873672i
\(448\) 142.095 + 246.115i 0.317176 + 0.549364i
\(449\) −462.566 267.062i −1.03021 0.594794i −0.113167 0.993576i \(-0.536100\pi\)
−0.917046 + 0.398782i \(0.869433\pi\)
\(450\) 27.4470 + 257.853i 0.0609934 + 0.573008i
\(451\) −52.0531 + 90.1587i −0.115417 + 0.199908i
\(452\) 802.464i 1.77536i
\(453\) −708.524 + 460.788i −1.56407 + 1.01719i
\(454\) −498.658 863.700i −1.09836 1.90242i
\(455\) 137.698 + 50.0576i 0.302633 + 0.110017i
\(456\) 337.448 + 518.871i 0.740017 + 1.13787i
\(457\) −647.581 −1.41703 −0.708513 0.705697i \(-0.750634\pi\)
−0.708513 + 0.705697i \(0.750634\pi\)
\(458\) 25.5932 14.7762i 0.0558803 0.0322625i
\(459\) −155.306 + 407.003i −0.338358 + 0.886718i
\(460\) 300.340 0.652914
\(461\) −217.137 + 125.364i −0.471013 + 0.271940i −0.716664 0.697419i \(-0.754332\pi\)
0.245651 + 0.969358i \(0.420998\pi\)
\(462\) 15.3830 + 289.851i 0.0332966 + 0.627383i
\(463\) 16.3357 + 28.2943i 0.0352823 + 0.0611108i 0.883127 0.469133i \(-0.155434\pi\)
−0.847845 + 0.530244i \(0.822100\pi\)
\(464\) 53.4313i 0.115154i
\(465\) 53.2245 + 81.8397i 0.114461 + 0.175999i
\(466\) 342.491 0.734960
\(467\) 102.067i 0.218560i 0.994011 + 0.109280i \(0.0348545\pi\)
−0.994011 + 0.109280i \(0.965146\pi\)
\(468\) 565.421 + 544.153i 1.20816 + 1.16272i
\(469\) 153.875 0.328093
\(470\) 1220.08i 2.59592i
\(471\) 21.2011 + 399.476i 0.0450129 + 0.848144i
\(472\) 149.419 0.316565
\(473\) 31.2208 18.0253i 0.0660058 0.0381085i
\(474\) −673.860 1036.15i −1.42164 2.18597i
\(475\) −102.542 177.608i −0.215878 0.373912i
\(476\) 303.066i 0.636693i
\(477\) 262.610 191.329i 0.550544 0.401110i
\(478\) −185.016 320.457i −0.387063 0.670413i
\(479\) 568.796i 1.18746i −0.804663 0.593732i \(-0.797654\pi\)
0.804663 0.593732i \(-0.202346\pi\)
\(480\) 18.1551 + 342.083i 0.0378232 + 0.712673i
\(481\) 564.915 + 672.711i 1.17446 + 1.39857i
\(482\) −471.937 + 272.473i −0.979122 + 0.565297i
\(483\) 42.3880 83.3277i 0.0877599 0.172521i
\(484\) −63.9201 −0.132066
\(485\) 344.912 + 199.135i 0.711159 + 0.410588i
\(486\) −564.107 560.381i −1.16071 1.15305i
\(487\) −175.779 + 304.458i −0.360942 + 0.625171i −0.988116 0.153709i \(-0.950878\pi\)
0.627174 + 0.778879i \(0.284212\pi\)
\(488\) −136.689 + 78.9174i −0.280100 + 0.161716i
\(489\) 80.3603 52.2623i 0.164336 0.106876i
\(490\) 541.956 1.10603
\(491\) −576.678 332.945i −1.17450 0.678096i −0.219761 0.975554i \(-0.570528\pi\)
−0.954735 + 0.297458i \(0.903861\pi\)
\(492\) −108.170 166.326i −0.219858 0.338060i
\(493\) −199.845 + 346.142i −0.405366 + 0.702114i
\(494\) −931.146 338.502i −1.88491 0.685227i
\(495\) −155.070 + 349.538i −0.313272 + 0.706137i
\(496\) 8.72058 + 15.1045i 0.0175818 + 0.0304526i
\(497\) 247.024i 0.497030i
\(498\) −18.4595 + 12.0051i −0.0370672 + 0.0241067i
\(499\) 284.011 + 491.922i 0.569161 + 0.985816i 0.996649 + 0.0817951i \(0.0260653\pi\)
−0.427488 + 0.904021i \(0.640601\pi\)
\(500\) 912.445i 1.82489i
\(501\) 272.762 + 419.408i 0.544435 + 0.837142i
\(502\) 186.136 322.396i 0.370788 0.642224i
\(503\) 424.010 + 244.802i 0.842961 + 0.486684i 0.858270 0.513199i \(-0.171540\pi\)
−0.0153084 + 0.999883i \(0.504873\pi\)
\(504\) −204.089 90.5424i −0.404939 0.179648i
\(505\) −184.196 319.037i −0.364745 0.631756i
\(506\) −332.917 192.210i −0.657939 0.379862i
\(507\) −503.309 61.0651i −0.992720 0.120444i
\(508\) −642.538 1112.91i −1.26484 2.19077i
\(509\) 596.533 + 344.408i 1.17197 + 0.676637i 0.954143 0.299350i \(-0.0967698\pi\)
0.217827 + 0.975987i \(0.430103\pi\)
\(510\) −288.987 + 568.099i −0.566641 + 1.11392i
\(511\) 121.070 + 209.700i 0.236928 + 0.410372i
\(512\) 137.624i 0.268797i
\(513\) 587.540 + 224.196i 1.14530 + 0.437030i
\(514\) −164.705 + 285.278i −0.320438 + 0.555015i
\(515\) −325.419 187.881i −0.631882 0.364817i
\(516\) 3.64123 + 68.6088i 0.00705664 + 0.132963i
\(517\) −489.119 + 847.178i −0.946071 + 1.63864i
\(518\) −536.276 309.619i −1.03528 0.597720i
\(519\) 197.285 10.4704i 0.380125 0.0201741i
\(520\) 298.016 + 354.883i 0.573108 + 0.682468i
\(521\) 248.194i 0.476379i 0.971219 + 0.238190i \(0.0765540\pi\)
−0.971219 + 0.238190i \(0.923446\pi\)
\(522\) −429.596 589.643i −0.822981 1.12958i
\(523\) 241.642 + 418.536i 0.462031 + 0.800261i 0.999062 0.0433015i \(-0.0137876\pi\)
−0.537031 + 0.843562i \(0.680454\pi\)
\(524\) 1398.24 807.277i 2.66841 1.54060i
\(525\) 65.9385 + 33.5423i 0.125597 + 0.0638901i
\(526\) −186.769 −0.355075
\(527\) 130.468i 0.247567i
\(528\) −30.9746 + 60.8908i −0.0586640 + 0.115323i
\(529\) −202.591 350.898i −0.382970 0.663324i
\(530\) 411.702 237.696i 0.776797 0.448484i
\(531\) 122.700 89.3953i 0.231073 0.168353i
\(532\) 437.498 0.822365
\(533\) 120.473 + 43.7957i 0.226028 + 0.0821683i
\(534\) −40.1589 756.683i −0.0752039 1.41701i
\(535\) −154.271 + 267.206i −0.288358 + 0.499450i
\(536\) 421.495 + 243.350i 0.786371 + 0.454011i
\(537\) 727.549 38.6127i 1.35484 0.0719045i
\(538\) 770.193 1334.01i 1.43159 2.47958i
\(539\) −376.313 217.265i −0.698170 0.403088i
\(540\) −459.751 565.443i −0.851390 1.04712i
\(541\) −64.9904 −0.120130 −0.0600650 0.998194i \(-0.519131\pi\)
−0.0600650 + 0.998194i \(0.519131\pi\)
\(542\) 133.848 77.2772i 0.246952 0.142578i
\(543\) 314.629 + 160.049i 0.579426 + 0.294749i
\(544\) 228.905 396.475i 0.420782 0.728815i
\(545\) 550.161 317.636i 1.00947 0.582817i
\(546\) 348.152 80.7621i 0.637641 0.147916i
\(547\) 219.952 380.968i 0.402106 0.696467i −0.591874 0.806030i \(-0.701612\pi\)
0.993980 + 0.109563i \(0.0349452\pi\)
\(548\) 120.683 69.6762i 0.220224 0.127146i
\(549\) −65.0312 + 146.585i −0.118454 + 0.267004i
\(550\) 152.099 263.443i 0.276543 0.478987i
\(551\) 499.682 + 288.492i 0.906864 + 0.523578i
\(552\) 247.890 161.215i 0.449076 0.292056i
\(553\) −352.622 −0.637654
\(554\) 577.354 333.336i 1.04216 0.601689i
\(555\) −444.767 683.888i −0.801381 1.23223i
\(556\) −1703.54 −3.06392
\(557\) −365.644 + 211.105i −0.656452 + 0.379003i −0.790924 0.611915i \(-0.790400\pi\)
0.134472 + 0.990917i \(0.457066\pi\)
\(558\) 217.679 + 96.5713i 0.390105 + 0.173067i
\(559\) −28.5460 33.9931i −0.0510662 0.0608105i
\(560\) −21.0519 12.1543i −0.0375927 0.0217042i
\(561\) 428.407 278.614i 0.763649 0.496639i
\(562\) −71.7657 + 124.302i −0.127697 + 0.221178i
\(563\) 762.156i 1.35374i −0.736103 0.676870i \(-0.763336\pi\)
0.736103 0.676870i \(-0.236664\pi\)
\(564\) −1016.42 1562.88i −1.80217 2.77107i
\(565\) 240.740 + 416.973i 0.426088 + 0.738006i
\(566\) 417.395 + 240.983i 0.737447 + 0.425765i
\(567\) −221.765 + 47.7523i −0.391120 + 0.0842192i
\(568\) −390.662 + 676.646i −0.687785 + 1.19128i
\(569\) 264.660i 0.465131i −0.972581 0.232566i \(-0.925288\pi\)
0.972581 0.232566i \(-0.0747121\pi\)
\(570\) 820.094 + 417.175i 1.43876 + 0.731885i
\(571\) 200.357 + 347.029i 0.350889 + 0.607757i 0.986405 0.164330i \(-0.0525462\pi\)
−0.635517 + 0.772087i \(0.719213\pi\)
\(572\) −160.206 906.524i −0.280080 1.58483i
\(573\) 636.893 33.8014i 1.11151 0.0589902i
\(574\) −90.3616 −0.157424
\(575\) −84.8521 + 48.9894i −0.147569 + 0.0851989i
\(576\) 537.788 + 738.142i 0.933659 + 1.28150i
\(577\) −1041.61 −1.80522 −0.902610 0.430460i \(-0.858351\pi\)
−0.902610 + 0.430460i \(0.858351\pi\)
\(578\) −81.2784 + 46.9261i −0.140620 + 0.0811871i
\(579\) 156.619 101.857i 0.270499 0.175919i
\(580\) −334.322 579.062i −0.576416 0.998383i
\(581\) 6.28213i 0.0108126i
\(582\) 970.146 51.4879i 1.66692 0.0884671i
\(583\) −381.160 −0.653791
\(584\) 765.879i 1.31144i
\(585\) 457.048 + 113.124i 0.781279 + 0.193375i
\(586\) −1200.99 −2.04948
\(587\) 19.6411i 0.0334602i −0.999860 0.0167301i \(-0.994674\pi\)
0.999860 0.0167301i \(-0.00532560\pi\)
\(588\) 694.227 451.491i 1.18066 0.767841i
\(589\) −188.340 −0.319762
\(590\) 192.361 111.060i 0.326035 0.188237i
\(591\) 861.168 45.7041i 1.45714 0.0773336i
\(592\) −72.8729 126.220i −0.123096 0.213209i
\(593\) 221.793i 0.374019i 0.982358 + 0.187010i \(0.0598795\pi\)
−0.982358 + 0.187010i \(0.940120\pi\)
\(594\) 147.750 + 921.002i 0.248737 + 1.55051i
\(595\) 90.9199 + 157.478i 0.152807 + 0.264669i
\(596\) 979.586i 1.64360i
\(597\) 536.349 348.815i 0.898408 0.584280i
\(598\) −161.719 + 444.854i −0.270433 + 0.743903i
\(599\) −2.12724 + 1.22816i −0.00355132 + 0.00205035i −0.501775 0.864998i \(-0.667319\pi\)
0.498223 + 0.867049i \(0.333986\pi\)
\(600\) 127.572 + 196.159i 0.212620 + 0.326932i
\(601\) −513.483 −0.854382 −0.427191 0.904161i \(-0.640497\pi\)
−0.427191 + 0.904161i \(0.640497\pi\)
\(602\) 27.0988 + 15.6455i 0.0450147 + 0.0259892i
\(603\) 491.717 52.3405i 0.815452 0.0868002i
\(604\) −944.787 + 1636.42i −1.56422 + 2.70930i
\(605\) −33.2139 + 19.1761i −0.0548991 + 0.0316960i
\(606\) −800.954 407.438i −1.32171 0.672340i
\(607\) 10.2166 0.0168313 0.00841565 0.999965i \(-0.497321\pi\)
0.00841565 + 0.999965i \(0.497321\pi\)
\(608\) −572.342 330.442i −0.941352 0.543490i
\(609\) −207.841 + 11.0306i −0.341283 + 0.0181127i
\(610\) −117.315 + 203.196i −0.192320 + 0.333108i
\(611\) 1132.02 + 411.528i 1.85274 + 0.673531i
\(612\) 103.088 + 968.464i 0.168444 + 1.58246i
\(613\) −178.452 309.088i −0.291113 0.504222i 0.682960 0.730456i \(-0.260692\pi\)
−0.974073 + 0.226233i \(0.927359\pi\)
\(614\) 128.050i 0.208551i
\(615\) −106.105 53.9745i −0.172528 0.0877634i
\(616\) 130.960 + 226.830i 0.212598 + 0.368231i
\(617\) 627.168i 1.01648i 0.861215 + 0.508240i \(0.169704\pi\)
−0.861215 + 0.508240i \(0.830296\pi\)
\(618\) −915.318 + 48.5780i −1.48110 + 0.0786051i
\(619\) 438.414 759.355i 0.708261 1.22674i −0.257241 0.966347i \(-0.582813\pi\)
0.965502 0.260397i \(-0.0838533\pi\)
\(620\) 189.019 + 109.130i 0.304869 + 0.176016i
\(621\) 107.110 280.697i 0.172479 0.452007i
\(622\) 463.453 + 802.724i 0.745101 + 1.29055i
\(623\) −187.218 108.090i −0.300510 0.173500i
\(624\) 80.4682 + 24.5093i 0.128955 + 0.0392777i
\(625\) 163.669 + 283.482i 0.261870 + 0.453572i
\(626\) 335.203 + 193.530i 0.535469 + 0.309153i
\(627\) −402.201 618.438i −0.641469 0.986344i
\(628\) 447.183 + 774.544i 0.712075 + 1.23335i
\(629\) 1090.25i 1.73330i
\(630\) −330.042 + 35.1311i −0.523876 + 0.0557636i
\(631\) 182.381 315.894i 0.289035 0.500624i −0.684544 0.728971i \(-0.739999\pi\)
0.973580 + 0.228347i \(0.0733322\pi\)
\(632\) −965.902 557.664i −1.52833 0.882379i
\(633\) −893.305 + 580.961i −1.41122 + 0.917790i
\(634\) −704.704 + 1220.58i −1.11152 + 1.92521i
\(635\) −667.746 385.524i −1.05157 0.607124i
\(636\) 329.357 647.460i 0.517857 1.01802i
\(637\) −182.799 + 502.841i −0.286969 + 0.789389i
\(638\) 855.828i 1.34142i
\(639\) 84.0248 + 789.378i 0.131494 + 1.23533i
\(640\) 439.740 + 761.652i 0.687093 + 1.19008i
\(641\) 309.205 178.519i 0.482379 0.278501i −0.239029 0.971013i \(-0.576829\pi\)
0.721407 + 0.692511i \(0.243496\pi\)
\(642\) 39.8880 + 751.578i 0.0621308 + 1.17068i
\(643\) −184.996 −0.287708 −0.143854 0.989599i \(-0.545950\pi\)
−0.143854 + 0.989599i \(0.545950\pi\)
\(644\) 209.014i 0.324556i
\(645\) 22.4747 + 34.5579i 0.0348445 + 0.0535781i
\(646\) −614.823 1064.90i −0.951738 1.64846i
\(647\) 714.972 412.789i 1.10506 0.638005i 0.167512 0.985870i \(-0.446427\pi\)
0.937545 + 0.347865i \(0.113093\pi\)
\(648\) −682.976 219.913i −1.05398 0.339371i
\(649\) −178.091 −0.274408
\(650\) −352.020 127.971i −0.541569 0.196878i
\(651\) 56.9543 37.0402i 0.0874874 0.0568974i
\(652\) 107.157 185.602i 0.164352 0.284665i
\(653\) −307.955 177.798i −0.471601 0.272279i 0.245309 0.969445i \(-0.421111\pi\)
−0.716910 + 0.697166i \(0.754444\pi\)
\(654\) 702.604 1381.20i 1.07432 2.11193i
\(655\) 484.367 838.948i 0.739492 1.28084i
\(656\) −18.4184 10.6339i −0.0280769 0.0162102i
\(657\) 458.217 + 628.927i 0.697438 + 0.957270i
\(658\) −849.085 −1.29040
\(659\) −176.256 + 101.761i −0.267459 + 0.154418i −0.627732 0.778429i \(-0.716017\pi\)
0.360273 + 0.932847i \(0.382683\pi\)
\(660\) 45.3085 + 853.713i 0.0686492 + 1.29350i
\(661\) 178.791 309.676i 0.270486 0.468496i −0.698500 0.715610i \(-0.746149\pi\)
0.968986 + 0.247114i \(0.0794822\pi\)
\(662\) −396.024 + 228.645i −0.598224 + 0.345385i
\(663\) −429.624 459.747i −0.648000 0.693434i
\(664\) −9.93503 + 17.2080i −0.0149624 + 0.0259156i
\(665\) 227.331 131.250i 0.341852 0.197368i
\(666\) −1819.02 806.991i −2.73126 1.21170i
\(667\) 137.827 238.723i 0.206636 0.357905i
\(668\) 968.672 + 559.263i 1.45011 + 0.837221i
\(669\) 71.5551 + 36.3995i 0.106958 + 0.0544088i
\(670\) 723.508 1.07986
\(671\) 162.918 94.0610i 0.242799 0.140180i
\(672\) 238.064 12.6346i 0.354262 0.0188015i
\(673\) 1113.09 1.65393 0.826965 0.562254i \(-0.190066\pi\)
0.826965 + 0.562254i \(0.190066\pi\)
\(674\) −334.364 + 193.045i −0.496089 + 0.286417i
\(675\) 222.120 + 84.7575i 0.329066 + 0.125567i
\(676\) −1064.84 + 388.504i −1.57521 + 0.574710i
\(677\) 702.163 + 405.394i 1.03717 + 0.598809i 0.919030 0.394188i \(-0.128974\pi\)
0.118138 + 0.992997i \(0.462307\pi\)
\(678\) 1046.83 + 532.512i 1.54399 + 0.785415i
\(679\) 138.583 240.033i 0.204099 0.353509i
\(680\) 575.150i 0.845809i
\(681\) −913.076 + 48.4590i −1.34079 + 0.0711586i
\(682\) −139.681 241.934i −0.204810 0.354742i
\(683\) −710.444 410.175i −1.04018 0.600549i −0.120297 0.992738i \(-0.538385\pi\)
−0.919885 + 0.392189i \(0.871718\pi\)
\(684\) 1398.05 148.815i 2.04393 0.217565i
\(685\) 41.8058 72.4097i 0.0610303 0.105708i
\(686\) 826.197i 1.20437i
\(687\) −1.43594 27.0563i −0.00209016 0.0393832i
\(688\) 3.68238 + 6.37807i 0.00535229 + 0.00927044i
\(689\) 81.6759 + 462.162i 0.118543 + 0.670772i
\(690\) 199.305 391.799i 0.288847 0.567825i
\(691\) −737.645 −1.06750 −0.533752 0.845641i \(-0.679218\pi\)
−0.533752 + 0.845641i \(0.679218\pi\)
\(692\) 382.516 220.845i 0.552768 0.319141i
\(693\) 243.252 + 107.917i 0.351013 + 0.155724i
\(694\) −669.319 −0.964437
\(695\) −885.187 + 511.063i −1.27365 + 0.735342i
\(696\) −586.762 298.481i −0.843049 0.428852i
\(697\) 79.5464 + 137.778i 0.114127 + 0.197673i
\(698\) 1227.75i 1.75895i
\(699\) 142.369 279.874i 0.203676 0.400391i
\(700\) 165.396 0.236280
\(701\) 1169.94i 1.66896i −0.551039 0.834480i \(-0.685768\pi\)
0.551039 0.834480i \(-0.314232\pi\)
\(702\) 1085.07 376.503i 1.54568 0.536329i
\(703\) 1573.85 2.23876
\(704\) 1071.36i 1.52182i
\(705\) −997.015 507.172i −1.41421 0.719394i
\(706\) 152.376 0.215831
\(707\) −222.026 + 128.187i −0.314039 + 0.181311i
\(708\) 153.887 302.515i 0.217354 0.427281i
\(709\) 526.762 + 912.378i 0.742964 + 1.28685i 0.951140 + 0.308760i \(0.0999141\pi\)
−0.208176 + 0.978091i \(0.566753\pi\)
\(710\) 1161.48i 1.63589i
\(711\) −1126.83 + 119.944i −1.58485 + 0.168698i
\(712\) −341.884 592.161i −0.480174 0.831686i
\(713\) 89.9792i 0.126198i
\(714\) 395.354 + 201.113i 0.553717 + 0.281671i
\(715\) −355.203 422.982i −0.496788 0.591584i
\(716\) 1410.65 814.437i 1.97018 1.13748i
\(717\) −338.777 + 17.9797i −0.472492 + 0.0250762i
\(718\) −60.3756 −0.0840886
\(719\) −895.444 516.985i −1.24540 0.719033i −0.275213 0.961383i \(-0.588748\pi\)
−0.970189 + 0.242350i \(0.922082\pi\)
\(720\) −71.4069 31.6791i −0.0991762 0.0439987i
\(721\) −130.751 + 226.467i −0.181347 + 0.314102i
\(722\) −514.274 + 296.916i −0.712290 + 0.411241i
\(723\) 26.4786 + 498.916i 0.0366233 + 0.690064i
\(724\) 789.196 1.09005
\(725\) 188.905 + 109.064i 0.260558 + 0.150433i
\(726\) −42.4171 + 83.3848i −0.0584258 + 0.114855i
\(727\) 334.678 579.679i 0.460355 0.797358i −0.538624 0.842546i \(-0.681056\pi\)
0.998978 + 0.0451886i \(0.0143889\pi\)
\(728\) 246.972 207.397i 0.339247 0.284886i
\(729\) −692.419 + 228.028i −0.949820 + 0.312796i
\(730\) 569.262 + 985.990i 0.779811 + 1.35067i
\(731\) 55.0917i 0.0753649i
\(732\) 19.0009 + 358.020i 0.0259575 + 0.489098i
\(733\) −409.264 708.867i −0.558342 0.967076i −0.997635 0.0687324i \(-0.978105\pi\)
0.439294 0.898344i \(-0.355229\pi\)
\(734\) 421.374i 0.574079i
\(735\) 225.284 442.870i 0.306509 0.602545i
\(736\) −157.868 + 273.436i −0.214495 + 0.371516i
\(737\) −502.376 290.047i −0.681650 0.393551i
\(738\) −288.756 + 30.7364i −0.391268 + 0.0416482i
\(739\) −616.781 1068.30i −0.834616 1.44560i −0.894343 0.447383i \(-0.852356\pi\)
0.0597263 0.998215i \(-0.480977\pi\)
\(740\) −1579.52 911.937i −2.13449 1.23235i
\(741\) −663.679 + 620.194i −0.895654 + 0.836969i
\(742\) −165.419 286.514i −0.222936 0.386137i
\(743\) 179.341 + 103.542i 0.241374 + 0.139357i 0.615808 0.787896i \(-0.288830\pi\)
−0.374434 + 0.927253i \(0.622163\pi\)
\(744\) 214.587 11.3886i 0.288423 0.0153073i
\(745\) 293.876 + 509.009i 0.394465 + 0.683233i
\(746\) 513.360i 0.688150i
\(747\) 2.13686 + 20.0749i 0.00286059 + 0.0268740i
\(748\) 571.263 989.456i 0.763721 1.32280i
\(749\) 185.955 + 107.361i 0.248271 + 0.143339i
\(750\) 1190.30 + 605.494i 1.58707 + 0.807326i
\(751\) −454.666 + 787.504i −0.605414 + 1.04861i 0.386572 + 0.922259i \(0.373659\pi\)
−0.991986 + 0.126348i \(0.959674\pi\)
\(752\) −173.069 99.9217i −0.230146 0.132875i
\(753\) −186.079 286.121i −0.247116 0.379974i
\(754\) 1037.70 183.389i 1.37626 0.243221i
\(755\) 1133.75i 1.50165i
\(756\) −393.505 + 319.952i −0.520510 + 0.423217i
\(757\) 143.376 + 248.334i 0.189400 + 0.328050i 0.945050 0.326925i \(-0.106012\pi\)
−0.755650 + 0.654975i \(0.772679\pi\)
\(758\) −840.205 + 485.093i −1.10845 + 0.639964i
\(759\) −295.458 + 192.151i −0.389272 + 0.253163i
\(760\) 830.273 1.09246
\(761\) 66.0246i 0.0867604i −0.999059 0.0433802i \(-0.986187\pi\)
0.999059 0.0433802i \(-0.0138127\pi\)
\(762\) −1878.19 + 99.6799i −2.46482 + 0.130814i
\(763\) −221.050 382.870i −0.289712 0.501796i
\(764\) 1234.87 712.954i 1.61633 0.933186i
\(765\) 344.106 + 472.303i 0.449811 + 0.617390i
\(766\) 678.443 0.885696
\(767\) 38.1617 + 215.937i 0.0497545 + 0.281535i
\(768\) 826.812 + 420.592i 1.07658 + 0.547646i
\(769\) 496.903 860.661i 0.646168 1.11920i −0.337863 0.941195i \(-0.609704\pi\)
0.984031 0.178000i \(-0.0569626\pi\)
\(770\)