Properties

Label 117.3.k.a.29.20
Level $117$
Weight $3$
Character 117.29
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(29,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.29");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 29.20
Character \(\chi\) \(=\) 117.29
Dual form 117.3.k.a.113.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.89941i q^{2} +(-2.99862 - 0.0909164i) q^{3} +0.392234 q^{4} +(5.82785 - 3.36471i) q^{5} +(0.172688 - 5.69562i) q^{6} +(2.17329 + 3.76424i) q^{7} +8.34266i q^{8} +(8.98347 + 0.545248i) q^{9} +(6.39097 + 11.0695i) q^{10} +10.7668i q^{11} +(-1.17616 - 0.0356605i) q^{12} +(-9.80294 - 8.53829i) q^{13} +(-7.14985 + 4.12797i) q^{14} +(-17.7814 + 9.55965i) q^{15} -14.2772 q^{16} +(12.1195 + 6.99720i) q^{17} +(-1.03565 + 17.0633i) q^{18} +(1.12611 - 1.95047i) q^{19} +(2.28588 - 1.31975i) q^{20} +(-6.17463 - 11.4851i) q^{21} -20.4507 q^{22} +(39.1645 + 22.6116i) q^{23} +(0.758485 - 25.0165i) q^{24} +(10.1425 - 17.5674i) q^{25} +(16.2177 - 18.6198i) q^{26} +(-26.8885 - 2.45174i) q^{27} +(0.852437 + 1.47646i) q^{28} -30.1766i q^{29} +(-18.1577 - 33.7742i) q^{30} +(-11.0730 - 19.1790i) q^{31} +6.25233i q^{32} +(0.978883 - 32.2857i) q^{33} +(-13.2906 + 23.0199i) q^{34} +(25.3312 + 14.6250i) q^{35} +(3.52362 + 0.213865i) q^{36} +(-2.46243 - 4.26506i) q^{37} +(3.70475 + 2.13894i) q^{38} +(28.6190 + 26.4943i) q^{39} +(28.0706 + 48.6198i) q^{40} +(-45.8760 - 26.4865i) q^{41} +(21.8150 - 11.7282i) q^{42} +(-19.9603 - 34.5723i) q^{43} +4.22312i q^{44} +(54.1889 - 27.0491i) q^{45} +(-42.9488 + 74.3895i) q^{46} +(-34.4904 - 19.9131i) q^{47} +(42.8120 + 1.29803i) q^{48} +(15.0537 - 26.0737i) q^{49} +(33.3677 + 19.2649i) q^{50} +(-35.7056 - 22.0838i) q^{51} +(-3.84505 - 3.34901i) q^{52} +26.9386i q^{53} +(4.65686 - 51.0723i) q^{54} +(36.2273 + 62.7475i) q^{55} +(-31.4038 + 18.1310i) q^{56} +(-3.55410 + 5.74635i) q^{57} +57.3179 q^{58} -83.3518i q^{59} +(-6.97448 + 3.74962i) q^{60} +(-36.2916 - 62.8589i) q^{61} +(36.4287 - 21.0321i) q^{62} +(17.4712 + 35.0009i) q^{63} -68.9846 q^{64} +(-85.8589 - 16.7758i) q^{65} +(61.3238 + 1.85930i) q^{66} +(-52.6454 + 91.1844i) q^{67} +(4.75368 + 2.74454i) q^{68} +(-115.384 - 71.3644i) q^{69} +(-27.7788 + 48.1143i) q^{70} +(60.2932 + 34.8103i) q^{71} +(-4.54882 + 74.9460i) q^{72} +12.2795 q^{73} +(8.10110 - 4.67717i) q^{74} +(-32.0108 + 51.7559i) q^{75} +(0.441697 - 0.765042i) q^{76} +(-40.5290 + 23.3994i) q^{77} +(-50.3237 + 54.3594i) q^{78} +(35.6253 - 61.7048i) q^{79} +(-83.2055 + 48.0387i) q^{80} +(80.4054 + 9.79644i) q^{81} +(50.3089 - 87.1375i) q^{82} +(46.7575 + 26.9955i) q^{83} +(-2.42190 - 4.50486i) q^{84} +94.1742 q^{85} +(65.6671 - 37.9129i) q^{86} +(-2.74355 + 90.4883i) q^{87} -89.8241 q^{88} +(-26.7527 + 15.4457i) q^{89} +(51.3775 + 102.927i) q^{90} +(10.8356 - 55.4568i) q^{91} +(15.3616 + 8.86905i) q^{92} +(31.4600 + 58.5172i) q^{93} +(37.8231 - 65.5115i) q^{94} -15.1561i q^{95} +(0.568440 - 18.7484i) q^{96} +(75.0256 + 129.948i) q^{97} +(49.5247 + 28.5931i) q^{98} +(-5.87060 + 96.7236i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - q^{3} - 98 q^{4} - 6 q^{5} + 12 q^{6} - q^{7} - 3 q^{9} - 6 q^{10} - 39 q^{12} + 4 q^{13} - 6 q^{14} - 25 q^{15} + 166 q^{16} + 34 q^{18} + 5 q^{19} + 21 q^{20} - 91 q^{21} + 30 q^{22} - 75 q^{23}+ \cdots + 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.89941i 0.949706i 0.880065 + 0.474853i \(0.157499\pi\)
−0.880065 + 0.474853i \(0.842501\pi\)
\(3\) −2.99862 0.0909164i −0.999541 0.0303055i
\(4\) 0.392234 0.0980585
\(5\) 5.82785 3.36471i 1.16557 0.672942i 0.212937 0.977066i \(-0.431697\pi\)
0.952632 + 0.304124i \(0.0983637\pi\)
\(6\) 0.172688 5.69562i 0.0287813 0.949270i
\(7\) 2.17329 + 3.76424i 0.310469 + 0.537749i 0.978464 0.206417i \(-0.0661804\pi\)
−0.667995 + 0.744166i \(0.732847\pi\)
\(8\) 8.34266i 1.04283i
\(9\) 8.98347 + 0.545248i 0.998163 + 0.0605831i
\(10\) 6.39097 + 11.0695i 0.639097 + 1.10695i
\(11\) 10.7668i 0.978804i 0.872058 + 0.489402i \(0.162785\pi\)
−0.872058 + 0.489402i \(0.837215\pi\)
\(12\) −1.17616 0.0356605i −0.0980135 0.00297171i
\(13\) −9.80294 8.53829i −0.754073 0.656791i
\(14\) −7.14985 + 4.12797i −0.510703 + 0.294855i
\(15\) −17.7814 + 9.55965i −1.18543 + 0.637310i
\(16\) −14.2772 −0.892326
\(17\) 12.1195 + 6.99720i 0.712912 + 0.411600i 0.812138 0.583465i \(-0.198303\pi\)
−0.0992264 + 0.995065i \(0.531637\pi\)
\(18\) −1.03565 + 17.0633i −0.0575362 + 0.947962i
\(19\) 1.12611 1.95047i 0.0592688 0.102657i −0.834869 0.550449i \(-0.814456\pi\)
0.894137 + 0.447793i \(0.147790\pi\)
\(20\) 2.28588 1.31975i 0.114294 0.0659877i
\(21\) −6.17463 11.4851i −0.294030 0.546911i
\(22\) −20.4507 −0.929576
\(23\) 39.1645 + 22.6116i 1.70280 + 0.983114i 0.942899 + 0.333078i \(0.108087\pi\)
0.759904 + 0.650036i \(0.225246\pi\)
\(24\) 0.758485 25.0165i 0.0316035 1.04235i
\(25\) 10.1425 17.5674i 0.405702 0.702696i
\(26\) 16.2177 18.6198i 0.623759 0.716147i
\(27\) −26.8885 2.45174i −0.995869 0.0908051i
\(28\) 0.852437 + 1.47646i 0.0304442 + 0.0527308i
\(29\) 30.1766i 1.04057i −0.853992 0.520287i \(-0.825825\pi\)
0.853992 0.520287i \(-0.174175\pi\)
\(30\) −18.1577 33.7742i −0.605257 1.12581i
\(31\) −11.0730 19.1790i −0.357193 0.618676i 0.630298 0.776353i \(-0.282933\pi\)
−0.987491 + 0.157677i \(0.949599\pi\)
\(32\) 6.25233i 0.195385i
\(33\) 0.978883 32.2857i 0.0296631 0.978354i
\(34\) −13.2906 + 23.0199i −0.390899 + 0.677057i
\(35\) 25.3312 + 14.6250i 0.723747 + 0.417856i
\(36\) 3.52362 + 0.213865i 0.0978784 + 0.00594069i
\(37\) −2.46243 4.26506i −0.0665522 0.115272i 0.830829 0.556527i \(-0.187867\pi\)
−0.897381 + 0.441256i \(0.854533\pi\)
\(38\) 3.70475 + 2.13894i 0.0974935 + 0.0562879i
\(39\) 28.6190 + 26.4943i 0.733822 + 0.679342i
\(40\) 28.0706 + 48.6198i 0.701766 + 1.21549i
\(41\) −45.8760 26.4865i −1.11893 0.646013i −0.177801 0.984066i \(-0.556898\pi\)
−0.941127 + 0.338053i \(0.890232\pi\)
\(42\) 21.8150 11.7282i 0.519404 0.279242i
\(43\) −19.9603 34.5723i −0.464194 0.804007i 0.534971 0.844870i \(-0.320323\pi\)
−0.999165 + 0.0408632i \(0.986989\pi\)
\(44\) 4.22312i 0.0959801i
\(45\) 54.1889 27.0491i 1.20420 0.601092i
\(46\) −42.9488 + 74.3895i −0.933669 + 1.61716i
\(47\) −34.4904 19.9131i −0.733839 0.423682i 0.0859862 0.996296i \(-0.472596\pi\)
−0.819825 + 0.572614i \(0.805929\pi\)
\(48\) 42.8120 + 1.29803i 0.891916 + 0.0270424i
\(49\) 15.0537 26.0737i 0.307218 0.532116i
\(50\) 33.3677 + 19.2649i 0.667355 + 0.385297i
\(51\) −35.7056 22.0838i −0.700111 0.433016i
\(52\) −3.84505 3.34901i −0.0739432 0.0644040i
\(53\) 26.9386i 0.508275i 0.967168 + 0.254137i \(0.0817915\pi\)
−0.967168 + 0.254137i \(0.918208\pi\)
\(54\) 4.65686 51.0723i 0.0862382 0.945782i
\(55\) 36.2273 + 62.7475i 0.658678 + 1.14086i
\(56\) −31.4038 + 18.1310i −0.560782 + 0.323768i
\(57\) −3.55410 + 5.74635i −0.0623526 + 0.100813i
\(58\) 57.3179 0.988239
\(59\) 83.3518i 1.41274i −0.707842 0.706371i \(-0.750331\pi\)
0.707842 0.706371i \(-0.249669\pi\)
\(60\) −6.97448 + 3.74962i −0.116241 + 0.0624936i
\(61\) −36.2916 62.8589i −0.594944 1.03047i −0.993555 0.113353i \(-0.963841\pi\)
0.398611 0.917120i \(-0.369492\pi\)
\(62\) 36.4287 21.0321i 0.587560 0.339228i
\(63\) 17.4712 + 35.0009i 0.277321 + 0.555570i
\(64\) −68.9846 −1.07788
\(65\) −85.8589 16.7758i −1.32091 0.258089i
\(66\) 61.3238 + 1.85930i 0.929149 + 0.0281712i
\(67\) −52.6454 + 91.1844i −0.785752 + 1.36096i 0.142797 + 0.989752i \(0.454390\pi\)
−0.928549 + 0.371210i \(0.878943\pi\)
\(68\) 4.75368 + 2.74454i 0.0699071 + 0.0403609i
\(69\) −115.384 71.3644i −1.67223 1.03427i
\(70\) −27.7788 + 48.1143i −0.396840 + 0.687347i
\(71\) 60.2932 + 34.8103i 0.849200 + 0.490286i 0.860381 0.509652i \(-0.170226\pi\)
−0.0111809 + 0.999937i \(0.503559\pi\)
\(72\) −4.54882 + 74.9460i −0.0631781 + 1.04092i
\(73\) 12.2795 0.168213 0.0841064 0.996457i \(-0.473196\pi\)
0.0841064 + 0.996457i \(0.473196\pi\)
\(74\) 8.10110 4.67717i 0.109474 0.0632050i
\(75\) −32.0108 + 51.7559i −0.426811 + 0.690078i
\(76\) 0.441697 0.765042i 0.00581181 0.0100663i
\(77\) −40.5290 + 23.3994i −0.526351 + 0.303889i
\(78\) −50.3237 + 54.3594i −0.645175 + 0.696915i
\(79\) 35.6253 61.7048i 0.450953 0.781074i −0.547492 0.836811i \(-0.684417\pi\)
0.998445 + 0.0557370i \(0.0177508\pi\)
\(80\) −83.2055 + 48.0387i −1.04007 + 0.600484i
\(81\) 80.4054 + 9.79644i 0.992659 + 0.120944i
\(82\) 50.3089 87.1375i 0.613523 1.06265i
\(83\) 46.7575 + 26.9955i 0.563344 + 0.325247i 0.754486 0.656316i \(-0.227886\pi\)
−0.191143 + 0.981562i \(0.561219\pi\)
\(84\) −2.42190 4.50486i −0.0288321 0.0536292i
\(85\) 94.1742 1.10793
\(86\) 65.6671 37.9129i 0.763571 0.440848i
\(87\) −2.74355 + 90.4883i −0.0315351 + 1.04010i
\(88\) −89.8241 −1.02073
\(89\) −26.7527 + 15.4457i −0.300592 + 0.173547i −0.642709 0.766110i \(-0.722190\pi\)
0.342117 + 0.939657i \(0.388856\pi\)
\(90\) 51.3775 + 102.927i 0.570861 + 1.14363i
\(91\) 10.8356 55.4568i 0.119072 0.609415i
\(92\) 15.3616 + 8.86905i 0.166974 + 0.0964027i
\(93\) 31.4600 + 58.5172i 0.338279 + 0.629217i
\(94\) 37.8231 65.5115i 0.402373 0.696931i
\(95\) 15.1561i 0.159538i
\(96\) 0.568440 18.7484i 0.00592125 0.195296i
\(97\) 75.0256 + 129.948i 0.773460 + 1.33967i 0.935656 + 0.352914i \(0.114809\pi\)
−0.162196 + 0.986759i \(0.551858\pi\)
\(98\) 49.5247 + 28.5931i 0.505354 + 0.291766i
\(99\) −5.87060 + 96.7236i −0.0592990 + 0.977006i
\(100\) 3.97825 6.89053i 0.0397825 0.0689053i
\(101\) 13.7627i 0.136265i −0.997676 0.0681324i \(-0.978296\pi\)
0.997676 0.0681324i \(-0.0217040\pi\)
\(102\) 41.9463 67.8197i 0.411238 0.664899i
\(103\) −22.7960 39.4838i −0.221320 0.383338i 0.733889 0.679270i \(-0.237703\pi\)
−0.955209 + 0.295932i \(0.904370\pi\)
\(104\) 71.2320 81.7826i 0.684923 0.786372i
\(105\) −74.6289 46.1577i −0.710752 0.439597i
\(106\) −51.1674 −0.482712
\(107\) −159.973 + 92.3602i −1.49507 + 0.863179i −0.999984 0.00566409i \(-0.998197\pi\)
−0.495087 + 0.868844i \(0.664864\pi\)
\(108\) −10.5466 0.961655i −0.0976534 0.00890421i
\(109\) −10.4891 −0.0962307 −0.0481153 0.998842i \(-0.515322\pi\)
−0.0481153 + 0.998842i \(0.515322\pi\)
\(110\) −119.183 + 68.8106i −1.08349 + 0.625551i
\(111\) 6.99614 + 13.0132i 0.0630283 + 0.117236i
\(112\) −31.0285 53.7429i −0.277040 0.479847i
\(113\) 132.144i 1.16942i −0.811243 0.584709i \(-0.801209\pi\)
0.811243 0.584709i \(-0.198791\pi\)
\(114\) −10.9147 6.75070i −0.0957429 0.0592166i
\(115\) 304.326 2.64631
\(116\) 11.8363i 0.102037i
\(117\) −83.4089 82.0485i −0.712897 0.701269i
\(118\) 158.319 1.34169
\(119\) 60.8276i 0.511157i
\(120\) −79.7529 148.344i −0.664607 1.23620i
\(121\) 5.07507 0.0419427
\(122\) 119.395 68.9327i 0.978647 0.565022i
\(123\) 135.157 + 83.5940i 1.09884 + 0.679626i
\(124\) −4.34320 7.52264i −0.0350258 0.0606664i
\(125\) 31.7286i 0.253829i
\(126\) −66.4812 + 33.1850i −0.527628 + 0.263373i
\(127\) −80.9910 140.281i −0.637725 1.10457i −0.985931 0.167154i \(-0.946542\pi\)
0.348206 0.937418i \(-0.386791\pi\)
\(128\) 106.021i 0.828288i
\(129\) 56.7103 + 105.484i 0.439615 + 0.817706i
\(130\) 31.8641 163.081i 0.245108 1.25447i
\(131\) −172.357 + 99.5104i −1.31570 + 0.759622i −0.983034 0.183422i \(-0.941283\pi\)
−0.332669 + 0.943044i \(0.607949\pi\)
\(132\) 0.383951 12.6635i 0.00290872 0.0959360i
\(133\) 9.78941 0.0736046
\(134\) −173.197 99.9952i −1.29251 0.746233i
\(135\) −164.951 + 76.1835i −1.22186 + 0.564322i
\(136\) −58.3753 + 101.109i −0.429230 + 0.743448i
\(137\) −61.2087 + 35.3389i −0.446779 + 0.257948i −0.706469 0.707744i \(-0.749713\pi\)
0.259690 + 0.965692i \(0.416380\pi\)
\(138\) 135.550 219.161i 0.982249 1.58812i
\(139\) 19.0314 0.136917 0.0684583 0.997654i \(-0.478192\pi\)
0.0684583 + 0.997654i \(0.478192\pi\)
\(140\) 9.93574 + 5.73640i 0.0709696 + 0.0409743i
\(141\) 101.613 + 62.8475i 0.720662 + 0.445727i
\(142\) −66.1191 + 114.522i −0.465627 + 0.806490i
\(143\) 91.9304 105.547i 0.642870 0.738089i
\(144\) −128.259 7.78463i −0.890687 0.0540599i
\(145\) −101.536 175.865i −0.700246 1.21286i
\(146\) 23.3239i 0.159753i
\(147\) −47.5108 + 76.8165i −0.323202 + 0.522562i
\(148\) −0.965850 1.67290i −0.00652601 0.0113034i
\(149\) 17.4914i 0.117392i −0.998276 0.0586958i \(-0.981306\pi\)
0.998276 0.0586958i \(-0.0186942\pi\)
\(150\) −98.3057 60.8017i −0.655372 0.405345i
\(151\) 89.5177 155.049i 0.592832 1.02682i −0.401016 0.916071i \(-0.631343\pi\)
0.993849 0.110745i \(-0.0353237\pi\)
\(152\) 16.2721 + 9.39473i 0.107054 + 0.0618074i
\(153\) 105.060 + 69.4672i 0.686666 + 0.454034i
\(154\) −44.4452 76.9813i −0.288605 0.499878i
\(155\) −129.063 74.5147i −0.832666 0.480740i
\(156\) 11.2254 + 10.3920i 0.0719575 + 0.0666153i
\(157\) −70.7984 122.627i −0.450946 0.781061i 0.547500 0.836806i \(-0.315580\pi\)
−0.998445 + 0.0557455i \(0.982246\pi\)
\(158\) 117.203 + 67.6671i 0.741790 + 0.428273i
\(159\) 2.44916 80.7786i 0.0154035 0.508041i
\(160\) 21.0373 + 36.4376i 0.131483 + 0.227735i
\(161\) 196.566i 1.22091i
\(162\) −18.6075 + 152.723i −0.114861 + 0.942735i
\(163\) 20.6255 35.7244i 0.126537 0.219168i −0.795796 0.605565i \(-0.792947\pi\)
0.922333 + 0.386397i \(0.126280\pi\)
\(164\) −17.9941 10.3889i −0.109720 0.0633471i
\(165\) −102.927 191.450i −0.623801 1.16030i
\(166\) −51.2755 + 88.8118i −0.308889 + 0.535011i
\(167\) −24.7775 14.3053i −0.148369 0.0856606i 0.423978 0.905673i \(-0.360633\pi\)
−0.572346 + 0.820012i \(0.693967\pi\)
\(168\) 95.8165 51.5129i 0.570336 0.306624i
\(169\) 23.1954 + 167.401i 0.137251 + 0.990536i
\(170\) 178.876i 1.05221i
\(171\) 11.1798 16.9080i 0.0653792 0.0988773i
\(172\) −7.82912 13.5604i −0.0455182 0.0788398i
\(173\) 92.6345 53.4825i 0.535459 0.309148i −0.207777 0.978176i \(-0.566623\pi\)
0.743237 + 0.669029i \(0.233290\pi\)
\(174\) −171.875 5.21114i −0.987785 0.0299491i
\(175\) 88.1706 0.503832
\(176\) 153.721i 0.873412i
\(177\) −7.57805 + 249.940i −0.0428138 + 1.41209i
\(178\) −29.3377 50.8144i −0.164819 0.285474i
\(179\) 275.120 158.840i 1.53698 0.887376i 0.537967 0.842966i \(-0.319192\pi\)
0.999013 0.0444106i \(-0.0141410\pi\)
\(180\) 21.2547 10.6096i 0.118082 0.0589422i
\(181\) 246.323 1.36090 0.680451 0.732794i \(-0.261784\pi\)
0.680451 + 0.732794i \(0.261784\pi\)
\(182\) 105.335 + 20.5812i 0.578765 + 0.113084i
\(183\) 103.110 + 191.789i 0.563442 + 1.04803i
\(184\) −188.641 + 326.736i −1.02522 + 1.77574i
\(185\) −28.7014 16.5707i −0.155142 0.0895715i
\(186\) −111.148 + 59.7555i −0.597571 + 0.321266i
\(187\) −75.3377 + 130.489i −0.402876 + 0.697801i
\(188\) −13.5283 7.81058i −0.0719591 0.0415456i
\(189\) −49.2074 106.543i −0.260356 0.563719i
\(190\) 28.7877 0.151514
\(191\) −14.1190 + 8.15160i −0.0739214 + 0.0426785i −0.536505 0.843897i \(-0.680256\pi\)
0.462584 + 0.886576i \(0.346922\pi\)
\(192\) 206.859 + 6.27184i 1.07739 + 0.0326658i
\(193\) −78.3005 + 135.621i −0.405702 + 0.702697i −0.994403 0.105654i \(-0.966306\pi\)
0.588701 + 0.808351i \(0.299640\pi\)
\(194\) −246.825 + 142.505i −1.27229 + 0.734560i
\(195\) 255.933 + 58.1102i 1.31248 + 0.298001i
\(196\) 5.90456 10.2270i 0.0301253 0.0521785i
\(197\) 224.786 129.780i 1.14104 0.658782i 0.194356 0.980931i \(-0.437738\pi\)
0.946689 + 0.322149i \(0.104405\pi\)
\(198\) −183.718 11.1507i −0.927869 0.0563166i
\(199\) −136.220 + 235.939i −0.684521 + 1.18563i 0.289066 + 0.957309i \(0.406655\pi\)
−0.973587 + 0.228316i \(0.926678\pi\)
\(200\) 146.559 + 84.6158i 0.732794 + 0.423079i
\(201\) 166.154 268.641i 0.826635 1.33652i
\(202\) 26.1411 0.129412
\(203\) 113.592 65.5825i 0.559567 0.323066i
\(204\) −14.0050 8.66202i −0.0686518 0.0424609i
\(205\) −356.478 −1.73892
\(206\) 74.9961 43.2990i 0.364059 0.210189i
\(207\) 339.504 + 224.485i 1.64012 + 1.08447i
\(208\) 139.959 + 121.903i 0.672879 + 0.586072i
\(209\) 21.0004 + 12.1246i 0.100481 + 0.0580125i
\(210\) 87.6725 141.751i 0.417488 0.675005i
\(211\) −136.308 + 236.093i −0.646011 + 1.11892i 0.338056 + 0.941126i \(0.390231\pi\)
−0.984067 + 0.177798i \(0.943103\pi\)
\(212\) 10.5662i 0.0498407i
\(213\) −177.632 109.865i −0.833951 0.515796i
\(214\) −175.430 303.854i −0.819767 1.41988i
\(215\) −232.652 134.321i −1.08210 0.624751i
\(216\) 20.4540 224.321i 0.0946945 1.03852i
\(217\) 48.1295 83.3627i 0.221795 0.384160i
\(218\) 19.9232i 0.0913909i
\(219\) −36.8217 1.11641i −0.168136 0.00509777i
\(220\) 14.2096 + 24.6117i 0.0645890 + 0.111871i
\(221\) −59.0627 172.073i −0.267252 0.778610i
\(222\) −24.7174 + 13.2885i −0.111340 + 0.0598583i
\(223\) 197.694 0.886518 0.443259 0.896393i \(-0.353822\pi\)
0.443259 + 0.896393i \(0.353822\pi\)
\(224\) −23.5353 + 13.5881i −0.105068 + 0.0606612i
\(225\) 100.694 152.286i 0.447528 0.676827i
\(226\) 250.996 1.11060
\(227\) −237.667 + 137.217i −1.04699 + 0.604480i −0.921805 0.387654i \(-0.873286\pi\)
−0.125184 + 0.992133i \(0.539952\pi\)
\(228\) −1.39404 + 2.25391i −0.00611420 + 0.00988559i
\(229\) −48.5933 84.1661i −0.212198 0.367538i 0.740204 0.672382i \(-0.234729\pi\)
−0.952402 + 0.304845i \(0.901395\pi\)
\(230\) 578.041i 2.51322i
\(231\) 123.659 66.4813i 0.535318 0.287798i
\(232\) 251.754 1.08514
\(233\) 121.511i 0.521507i 0.965405 + 0.260754i \(0.0839710\pi\)
−0.965405 + 0.260754i \(0.916029\pi\)
\(234\) 155.844 158.428i 0.665999 0.677043i
\(235\) −268.007 −1.14045
\(236\) 32.6934i 0.138531i
\(237\) −112.437 + 181.791i −0.474417 + 0.767049i
\(238\) −115.537 −0.485449
\(239\) −259.747 + 149.965i −1.08681 + 0.627467i −0.932724 0.360591i \(-0.882575\pi\)
−0.154081 + 0.988058i \(0.549242\pi\)
\(240\) 253.869 136.485i 1.05779 0.568688i
\(241\) 187.966 + 325.566i 0.779940 + 1.35090i 0.931976 + 0.362521i \(0.118084\pi\)
−0.152035 + 0.988375i \(0.548583\pi\)
\(242\) 9.63964i 0.0398332i
\(243\) −240.215 36.6860i −0.988538 0.150971i
\(244\) −14.2348 24.6554i −0.0583393 0.101047i
\(245\) 202.605i 0.826958i
\(246\) −158.780 + 256.719i −0.645445 + 1.04357i
\(247\) −27.6929 + 9.50536i −0.112117 + 0.0384833i
\(248\) 160.004 92.3781i 0.645176 0.372492i
\(249\) −137.754 85.2002i −0.553228 0.342170i
\(250\) −60.2657 −0.241063
\(251\) 3.31004 + 1.91105i 0.0131874 + 0.00761375i 0.506579 0.862193i \(-0.330910\pi\)
−0.493392 + 0.869807i \(0.664243\pi\)
\(252\) 6.85280 + 13.7286i 0.0271936 + 0.0544784i
\(253\) −243.456 + 421.678i −0.962276 + 1.66671i
\(254\) 266.451 153.835i 1.04902 0.605651i
\(255\) −282.393 8.56198i −1.10742 0.0335764i
\(256\) −74.5611 −0.291254
\(257\) 224.378 + 129.545i 0.873066 + 0.504065i 0.868366 0.495924i \(-0.165171\pi\)
0.00470007 + 0.999989i \(0.498504\pi\)
\(258\) −200.358 + 107.716i −0.776580 + 0.417505i
\(259\) 10.7031 18.5384i 0.0413248 0.0715767i
\(260\) −33.6768 6.58003i −0.129526 0.0253078i
\(261\) 16.4538 271.091i 0.0630412 1.03866i
\(262\) −189.011 327.377i −0.721417 1.24953i
\(263\) 202.869i 0.771365i 0.922632 + 0.385683i \(0.126034\pi\)
−0.922632 + 0.385683i \(0.873966\pi\)
\(264\) 269.349 + 8.16649i 1.02026 + 0.0309337i
\(265\) 90.6404 + 156.994i 0.342039 + 0.592430i
\(266\) 18.5941i 0.0699027i
\(267\) 81.6255 43.8835i 0.305714 0.164358i
\(268\) −20.6493 + 35.7656i −0.0770496 + 0.133454i
\(269\) 182.658 + 105.458i 0.679027 + 0.392036i 0.799488 0.600682i \(-0.205104\pi\)
−0.120462 + 0.992718i \(0.538437\pi\)
\(270\) −144.704 313.310i −0.535940 1.16041i
\(271\) 54.5228 + 94.4363i 0.201191 + 0.348474i 0.948913 0.315539i \(-0.102185\pi\)
−0.747721 + 0.664013i \(0.768852\pi\)
\(272\) −173.033 99.9005i −0.636150 0.367281i
\(273\) −37.5337 + 165.309i −0.137486 + 0.605527i
\(274\) −67.1231 116.261i −0.244975 0.424309i
\(275\) 189.145 + 109.203i 0.687802 + 0.397103i
\(276\) −45.2574 27.9915i −0.163976 0.101419i
\(277\) −152.861 264.763i −0.551844 0.955822i −0.998142 0.0609373i \(-0.980591\pi\)
0.446298 0.894885i \(-0.352742\pi\)
\(278\) 36.1485i 0.130031i
\(279\) −89.0164 178.331i −0.319055 0.639179i
\(280\) −122.011 + 211.329i −0.435754 + 0.754748i
\(281\) 176.239 + 101.751i 0.627184 + 0.362105i 0.779661 0.626202i \(-0.215392\pi\)
−0.152477 + 0.988307i \(0.548725\pi\)
\(282\) −119.373 + 193.006i −0.423309 + 0.684417i
\(283\) −41.0373 + 71.0787i −0.145008 + 0.251161i −0.929376 0.369135i \(-0.879654\pi\)
0.784368 + 0.620296i \(0.212987\pi\)
\(284\) 23.6490 + 13.6538i 0.0832713 + 0.0480767i
\(285\) −1.37794 + 45.4474i −0.00483487 + 0.159464i
\(286\) 200.477 + 174.614i 0.700968 + 0.610537i
\(287\) 230.251i 0.802269i
\(288\) −3.40907 + 56.1676i −0.0118371 + 0.195026i
\(289\) −46.5785 80.6763i −0.161171 0.279157i
\(290\) 334.040 192.858i 1.15186 0.665028i
\(291\) −213.159 396.487i −0.732506 1.36250i
\(292\) 4.81645 0.0164947
\(293\) 76.2493i 0.260237i −0.991498 0.130118i \(-0.958464\pi\)
0.991498 0.130118i \(-0.0415357\pi\)
\(294\) −145.906 90.2425i −0.496280 0.306947i
\(295\) −280.454 485.761i −0.950693 1.64665i
\(296\) 35.5819 20.5432i 0.120209 0.0694028i
\(297\) 26.3975 289.504i 0.0888804 0.974760i
\(298\) 33.2233 0.111488
\(299\) −190.863 556.058i −0.638337 1.85973i
\(300\) −12.5557 + 20.3004i −0.0418524 + 0.0676680i
\(301\) 86.7590 150.271i 0.288236 0.499239i
\(302\) 294.502 + 170.031i 0.975173 + 0.563016i
\(303\) −1.25126 + 41.2693i −0.00412957 + 0.136202i
\(304\) −16.0777 + 27.8473i −0.0528871 + 0.0916031i
\(305\) −423.004 244.221i −1.38690 0.800726i
\(306\) −131.947 + 199.552i −0.431199 + 0.652131i
\(307\) 165.711 0.539777 0.269888 0.962892i \(-0.413013\pi\)
0.269888 + 0.962892i \(0.413013\pi\)
\(308\) −15.8969 + 9.17805i −0.0516132 + 0.0297989i
\(309\) 64.7669 + 120.470i 0.209601 + 0.389869i
\(310\) 141.534 245.144i 0.456562 0.790788i
\(311\) −82.1589 + 47.4344i −0.264176 + 0.152522i −0.626238 0.779632i \(-0.715406\pi\)
0.362062 + 0.932154i \(0.382073\pi\)
\(312\) −221.033 + 238.759i −0.708440 + 0.765253i
\(313\) 226.404 392.144i 0.723337 1.25286i −0.236318 0.971676i \(-0.575941\pi\)
0.959655 0.281180i \(-0.0907258\pi\)
\(314\) 232.918 134.475i 0.741778 0.428266i
\(315\) 219.587 + 145.195i 0.697103 + 0.460935i
\(316\) 13.9735 24.2027i 0.0442198 0.0765909i
\(317\) 387.765 + 223.876i 1.22323 + 0.706234i 0.965606 0.260011i \(-0.0837262\pi\)
0.257627 + 0.966245i \(0.417059\pi\)
\(318\) 153.432 + 4.65196i 0.482490 + 0.0146288i
\(319\) 324.907 1.01852
\(320\) −402.032 + 232.113i −1.25635 + 0.725354i
\(321\) 488.094 262.409i 1.52054 0.817474i
\(322\) −373.360 −1.15950
\(323\) 27.2957 15.7592i 0.0845068 0.0487900i
\(324\) 31.5377 + 3.84250i 0.0973387 + 0.0118596i
\(325\) −249.422 + 85.6123i −0.767453 + 0.263422i
\(326\) 67.8554 + 39.1764i 0.208146 + 0.120173i
\(327\) 31.4530 + 0.953636i 0.0961865 + 0.00291632i
\(328\) 220.968 382.728i 0.673684 1.16685i
\(329\) 173.107i 0.526161i
\(330\) 363.642 195.501i 1.10195 0.592428i
\(331\) −26.4122 45.7473i −0.0797952 0.138209i 0.823366 0.567510i \(-0.192093\pi\)
−0.903161 + 0.429301i \(0.858760\pi\)
\(332\) 18.3399 + 10.5885i 0.0552406 + 0.0318932i
\(333\) −19.7957 39.6576i −0.0594464 0.119092i
\(334\) 27.1717 47.0628i 0.0813524 0.140906i
\(335\) 708.545i 2.11506i
\(336\) 88.1565 + 163.976i 0.262371 + 0.488023i
\(337\) −321.124 556.204i −0.952891 1.65046i −0.739121 0.673572i \(-0.764759\pi\)
−0.213770 0.976884i \(-0.568574\pi\)
\(338\) −317.963 + 44.0576i −0.940718 + 0.130348i
\(339\) −12.0141 + 396.250i −0.0354398 + 1.16888i
\(340\) 36.9383 0.108642
\(341\) 206.497 119.221i 0.605563 0.349622i
\(342\) 32.1153 + 21.2351i 0.0939043 + 0.0620910i
\(343\) 343.846 1.00247
\(344\) 288.425 166.522i 0.838445 0.484077i
\(345\) −912.559 27.6682i −2.64510 0.0801978i
\(346\) 101.585 + 175.951i 0.293599 + 0.508529i
\(347\) 285.274i 0.822117i −0.911609 0.411058i \(-0.865159\pi\)
0.911609 0.411058i \(-0.134841\pi\)
\(348\) −1.07611 + 35.4926i −0.00309228 + 0.101990i
\(349\) −232.958 −0.667502 −0.333751 0.942661i \(-0.608314\pi\)
−0.333751 + 0.942661i \(0.608314\pi\)
\(350\) 167.472i 0.478492i
\(351\) 242.652 + 253.616i 0.691317 + 0.722551i
\(352\) −67.3179 −0.191244
\(353\) 211.272i 0.598506i 0.954174 + 0.299253i \(0.0967374\pi\)
−0.954174 + 0.299253i \(0.903263\pi\)
\(354\) −474.740 14.3938i −1.34107 0.0406605i
\(355\) 468.506 1.31974
\(356\) −10.4933 + 6.05832i −0.0294756 + 0.0170178i
\(357\) 5.53023 182.399i 0.0154908 0.510922i
\(358\) 301.703 + 522.565i 0.842747 + 1.45968i
\(359\) 124.143i 0.345801i 0.984939 + 0.172901i \(0.0553139\pi\)
−0.984939 + 0.172901i \(0.944686\pi\)
\(360\) 225.662 + 452.080i 0.626838 + 1.25578i
\(361\) 177.964 + 308.242i 0.492974 + 0.853857i
\(362\) 467.869i 1.29246i
\(363\) −15.2182 0.461407i −0.0419234 0.00127109i
\(364\) 4.25008 21.7520i 0.0116760 0.0597583i
\(365\) 71.5633 41.3171i 0.196064 0.113197i
\(366\) −364.287 + 195.848i −0.995320 + 0.535104i
\(367\) −10.8912 −0.0296764 −0.0148382 0.999890i \(-0.504723\pi\)
−0.0148382 + 0.999890i \(0.504723\pi\)
\(368\) −559.160 322.831i −1.51946 0.877258i
\(369\) −397.684 262.955i −1.07774 0.712615i
\(370\) 31.4747 54.5157i 0.0850666 0.147340i
\(371\) −101.403 + 58.5452i −0.273324 + 0.157804i
\(372\) 12.3397 + 22.9524i 0.0331712 + 0.0617001i
\(373\) −241.181 −0.646597 −0.323299 0.946297i \(-0.604792\pi\)
−0.323299 + 0.946297i \(0.604792\pi\)
\(374\) −247.852 143.097i −0.662706 0.382613i
\(375\) 2.88465 95.1421i 0.00769241 0.253712i
\(376\) 166.128 287.742i 0.441829 0.765271i
\(377\) −257.657 + 295.820i −0.683440 + 0.784668i
\(378\) 202.369 93.4651i 0.535368 0.247262i
\(379\) −206.602 357.845i −0.545124 0.944182i −0.998599 0.0529130i \(-0.983149\pi\)
0.453476 0.891269i \(-0.350184\pi\)
\(380\) 5.94473i 0.0156440i
\(381\) 230.108 + 428.012i 0.603957 + 1.12339i
\(382\) −15.4833 26.8178i −0.0405321 0.0702036i
\(383\) 651.689i 1.70154i 0.525540 + 0.850769i \(0.323863\pi\)
−0.525540 + 0.850769i \(0.676137\pi\)
\(384\) −9.63904 + 317.917i −0.0251017 + 0.827908i
\(385\) −157.465 + 272.737i −0.408999 + 0.708407i
\(386\) −257.599 148.725i −0.667356 0.385298i
\(387\) −160.463 321.463i −0.414632 0.830653i
\(388\) 29.4276 + 50.9701i 0.0758444 + 0.131366i
\(389\) 53.1062 + 30.6609i 0.136520 + 0.0788197i 0.566704 0.823921i \(-0.308218\pi\)
−0.430185 + 0.902741i \(0.641552\pi\)
\(390\) −110.375 + 486.123i −0.283013 + 1.24647i
\(391\) 316.436 + 548.083i 0.809299 + 1.40175i
\(392\) 217.524 + 125.588i 0.554908 + 0.320376i
\(393\) 525.881 282.724i 1.33812 0.719400i
\(394\) 246.506 + 426.961i 0.625650 + 1.08366i
\(395\) 479.475i 1.21386i
\(396\) −2.30265 + 37.9383i −0.00581477 + 0.0958038i
\(397\) 166.978 289.214i 0.420599 0.728499i −0.575399 0.817873i \(-0.695153\pi\)
0.995998 + 0.0893738i \(0.0284866\pi\)
\(398\) −448.146 258.737i −1.12600 0.650094i
\(399\) −29.3547 0.890018i −0.0735707 0.00223062i
\(400\) −144.807 + 250.814i −0.362018 + 0.627034i
\(401\) −503.053 290.438i −1.25450 0.724284i −0.282497 0.959268i \(-0.591163\pi\)
−0.971999 + 0.234985i \(0.924496\pi\)
\(402\) 510.261 + 315.594i 1.26930 + 0.785061i
\(403\) −55.2076 + 282.554i −0.136992 + 0.701128i
\(404\) 5.39822i 0.0133619i
\(405\) 501.553 213.449i 1.23840 0.527034i
\(406\) 124.568 + 215.758i 0.306818 + 0.531424i
\(407\) 45.9212 26.5126i 0.112829 0.0651416i
\(408\) 184.238 297.880i 0.451563 0.730098i
\(409\) 44.3794 0.108507 0.0542535 0.998527i \(-0.482722\pi\)
0.0542535 + 0.998527i \(0.482722\pi\)
\(410\) 677.099i 1.65146i
\(411\) 186.755 100.403i 0.454391 0.244290i
\(412\) −8.94137 15.4869i −0.0217023 0.0375896i
\(413\) 313.756 181.147i 0.759700 0.438613i
\(414\) −426.390 + 644.858i −1.02993 + 1.55763i
\(415\) 363.328 0.875488
\(416\) 53.3842 61.2913i 0.128327 0.147335i
\(417\) −57.0680 1.73027i −0.136854 0.00414932i
\(418\) −23.0296 + 39.8885i −0.0550948 + 0.0954270i
\(419\) −228.253 131.782i −0.544756 0.314515i 0.202248 0.979334i \(-0.435175\pi\)
−0.747004 + 0.664819i \(0.768509\pi\)
\(420\) −29.2720 18.1046i −0.0696952 0.0431063i
\(421\) −220.575 + 382.047i −0.523931 + 0.907475i 0.475681 + 0.879618i \(0.342202\pi\)
−0.999612 + 0.0278569i \(0.991132\pi\)
\(422\) −448.438 258.906i −1.06265 0.613521i
\(423\) −298.986 197.694i −0.706823 0.467362i
\(424\) −224.739 −0.530046
\(425\) 245.845 141.939i 0.578459 0.333974i
\(426\) 208.678 337.396i 0.489855 0.792009i
\(427\) 157.744 273.221i 0.369424 0.639861i
\(428\) −62.7467 + 36.2268i −0.146604 + 0.0846421i
\(429\) −285.260 + 308.137i −0.664943 + 0.718268i
\(430\) 255.132 441.901i 0.593330 1.02768i
\(431\) −682.231 + 393.886i −1.58290 + 0.913889i −0.588469 + 0.808520i \(0.700269\pi\)
−0.994433 + 0.105369i \(0.966398\pi\)
\(432\) 383.892 + 35.0040i 0.888640 + 0.0810278i
\(433\) −315.221 + 545.978i −0.727993 + 1.26092i 0.229738 + 0.973253i \(0.426213\pi\)
−0.957730 + 0.287668i \(0.907120\pi\)
\(434\) 158.340 + 91.4177i 0.364839 + 0.210640i
\(435\) 288.478 + 536.584i 0.663168 + 1.23353i
\(436\) −4.11420 −0.00943624
\(437\) 88.2067 50.9262i 0.201846 0.116536i
\(438\) 2.12053 69.9395i 0.00484138 0.159679i
\(439\) −91.3244 −0.208028 −0.104014 0.994576i \(-0.533169\pi\)
−0.104014 + 0.994576i \(0.533169\pi\)
\(440\) −523.481 + 302.232i −1.18973 + 0.686891i
\(441\) 149.451 226.024i 0.338890 0.512527i
\(442\) 326.837 112.184i 0.739451 0.253811i
\(443\) −122.310 70.6155i −0.276094 0.159403i 0.355560 0.934653i \(-0.384290\pi\)
−0.631654 + 0.775251i \(0.717624\pi\)
\(444\) 2.74412 + 5.10421i 0.00618046 + 0.0114960i
\(445\) −103.940 + 180.030i −0.233574 + 0.404562i
\(446\) 375.502i 0.841932i
\(447\) −1.59025 + 52.4500i −0.00355761 + 0.117338i
\(448\) −149.923 259.675i −0.334650 0.579631i
\(449\) 356.884 + 206.047i 0.794841 + 0.458902i 0.841664 0.540001i \(-0.181576\pi\)
−0.0468227 + 0.998903i \(0.514910\pi\)
\(450\) 289.254 + 191.259i 0.642786 + 0.425020i
\(451\) 285.177 493.940i 0.632320 1.09521i
\(452\) 51.8314i 0.114671i
\(453\) −282.526 + 456.795i −0.623678 + 1.00838i
\(454\) −260.631 451.427i −0.574078 0.994332i
\(455\) −123.448 359.652i −0.271314 0.790444i
\(456\) −47.9399 29.6506i −0.105131 0.0650233i
\(457\) −511.496 −1.11925 −0.559624 0.828747i \(-0.689054\pi\)
−0.559624 + 0.828747i \(0.689054\pi\)
\(458\) 159.866 92.2987i 0.349053 0.201526i
\(459\) −308.719 217.858i −0.672591 0.474635i
\(460\) 119.367 0.259494
\(461\) 204.728 118.200i 0.444096 0.256399i −0.261238 0.965274i \(-0.584131\pi\)
0.705333 + 0.708876i \(0.250797\pi\)
\(462\) 126.275 + 234.879i 0.273323 + 0.508395i
\(463\) 119.938 + 207.738i 0.259044 + 0.448678i 0.965986 0.258594i \(-0.0832591\pi\)
−0.706942 + 0.707272i \(0.749926\pi\)
\(464\) 430.838i 0.928531i
\(465\) 380.237 + 235.175i 0.817715 + 0.505754i
\(466\) −230.800 −0.495279
\(467\) 667.629i 1.42961i −0.699322 0.714807i \(-0.746515\pi\)
0.699322 0.714807i \(-0.253485\pi\)
\(468\) −32.7158 32.1822i −0.0699056 0.0687654i
\(469\) −457.654 −0.975807
\(470\) 509.055i 1.08310i
\(471\) 201.149 + 374.147i 0.427068 + 0.794368i
\(472\) 695.376 1.47325
\(473\) 372.235 214.910i 0.786966 0.454355i
\(474\) −345.295 213.564i −0.728471 0.450556i
\(475\) −22.8432 39.5655i −0.0480909 0.0832959i
\(476\) 23.8587i 0.0501233i
\(477\) −14.6882 + 242.002i −0.0307929 + 0.507341i
\(478\) −284.845 493.366i −0.595910 1.03215i
\(479\) 122.851i 0.256473i −0.991744 0.128237i \(-0.959068\pi\)
0.991744 0.128237i \(-0.0409317\pi\)
\(480\) −59.7701 111.175i −0.124521 0.231615i
\(481\) −12.2772 + 62.8351i −0.0255243 + 0.130634i
\(482\) −618.384 + 357.024i −1.28295 + 0.740714i
\(483\) 17.8711 589.427i 0.0370002 1.22035i
\(484\) 1.99061 0.00411284
\(485\) 874.476 + 504.879i 1.80304 + 1.04099i
\(486\) 69.6818 456.267i 0.143378 0.938821i
\(487\) 346.529 600.205i 0.711558 1.23245i −0.252715 0.967541i \(-0.581323\pi\)
0.964272 0.264913i \(-0.0853432\pi\)
\(488\) 524.410 302.768i 1.07461 0.620427i
\(489\) −65.0961 + 105.249i −0.133121 + 0.215233i
\(490\) 384.830 0.785367
\(491\) 329.459 + 190.213i 0.670997 + 0.387400i 0.796454 0.604699i \(-0.206707\pi\)
−0.125458 + 0.992099i \(0.540040\pi\)
\(492\) 53.0131 + 32.7884i 0.107750 + 0.0666431i
\(493\) 211.152 365.726i 0.428300 0.741837i
\(494\) −18.0546 52.6002i −0.0365478 0.106478i
\(495\) 291.234 + 583.443i 0.588351 + 1.17867i
\(496\) 158.091 + 273.822i 0.318732 + 0.552061i
\(497\) 302.611i 0.608875i
\(498\) 161.830 261.651i 0.324960 0.525404i
\(499\) −215.620 373.465i −0.432104 0.748426i 0.564950 0.825125i \(-0.308895\pi\)
−0.997054 + 0.0766989i \(0.975562\pi\)
\(500\) 12.4450i 0.0248901i
\(501\) 72.9979 + 45.1489i 0.145704 + 0.0901176i
\(502\) −3.62987 + 6.28712i −0.00723082 + 0.0125241i
\(503\) 162.685 + 93.9264i 0.323430 + 0.186732i 0.652920 0.757426i \(-0.273544\pi\)
−0.329490 + 0.944159i \(0.606877\pi\)
\(504\) −292.001 + 145.756i −0.579367 + 0.289199i
\(505\) −46.3077 80.2072i −0.0916983 0.158826i
\(506\) −800.940 462.423i −1.58288 0.913879i
\(507\) −54.3347 504.080i −0.107169 0.994241i
\(508\) −31.7674 55.0228i −0.0625343 0.108313i
\(509\) 540.974 + 312.331i 1.06282 + 0.613618i 0.926210 0.377008i \(-0.123047\pi\)
0.136607 + 0.990625i \(0.456380\pi\)
\(510\) 16.2627 536.380i 0.0318877 1.05173i
\(511\) 26.6869 + 46.2231i 0.0522249 + 0.0904562i
\(512\) 565.706i 1.10489i
\(513\) −35.0613 + 49.6843i −0.0683456 + 0.0968505i
\(514\) −246.059 + 426.186i −0.478713 + 0.829156i
\(515\) −265.703 153.404i −0.515929 0.297872i
\(516\) 22.2437 + 41.3744i 0.0431080 + 0.0801830i
\(517\) 214.401 371.353i 0.414702 0.718284i
\(518\) 35.2120 + 20.3297i 0.0679769 + 0.0392465i
\(519\) −282.638 + 151.952i −0.544582 + 0.292778i
\(520\) 139.955 716.292i 0.269143 1.37748i
\(521\) 7.80764i 0.0149859i −0.999972 0.00749293i \(-0.997615\pi\)
0.999972 0.00749293i \(-0.00238510\pi\)
\(522\) 514.913 + 31.2525i 0.986424 + 0.0598706i
\(523\) −153.833 266.447i −0.294136 0.509458i 0.680648 0.732611i \(-0.261698\pi\)
−0.974784 + 0.223153i \(0.928365\pi\)
\(524\) −67.6043 + 39.0314i −0.129016 + 0.0744874i
\(525\) −264.390 8.01616i −0.503601 0.0152689i
\(526\) −385.332 −0.732570
\(527\) 309.919i 0.588082i
\(528\) −13.9757 + 460.950i −0.0264692 + 0.873011i
\(529\) 758.070 + 1313.02i 1.43303 + 2.48207i
\(530\) −298.196 + 172.164i −0.562634 + 0.324837i
\(531\) 45.4474 748.788i 0.0855883 1.41015i
\(532\) 3.83974 0.00721755
\(533\) 223.571 + 651.349i 0.419457 + 1.22204i
\(534\) 83.3529 + 155.041i 0.156092 + 0.290338i
\(535\) −621.531 + 1076.52i −1.16174 + 2.01219i
\(536\) −760.721 439.202i −1.41926 0.819408i
\(537\) −839.421 + 451.289i −1.56317 + 0.840390i
\(538\) −200.308 + 346.943i −0.372319 + 0.644876i
\(539\) 280.731 + 162.080i 0.520838 + 0.300706i
\(540\) −64.6995 + 29.8818i −0.119814 + 0.0553366i
\(541\) −104.066 −0.192359 −0.0961795 0.995364i \(-0.530662\pi\)
−0.0961795 + 0.995364i \(0.530662\pi\)
\(542\) −179.373 + 103.561i −0.330947 + 0.191073i
\(543\) −738.630 22.3948i −1.36028 0.0412428i
\(544\) −43.7488 + 75.7751i −0.0804206 + 0.139293i
\(545\) −61.1291 + 35.2929i −0.112164 + 0.0647577i
\(546\) −313.989 71.2920i −0.575072 0.130571i
\(547\) 266.804 462.117i 0.487758 0.844822i −0.512143 0.858900i \(-0.671148\pi\)
0.999901 + 0.0140786i \(0.00448151\pi\)
\(548\) −24.0081 + 13.8611i −0.0438105 + 0.0252940i
\(549\) −291.751 584.479i −0.531422 1.06462i
\(550\) −207.422 + 359.265i −0.377131 + 0.653209i
\(551\) −58.8588 33.9821i −0.106822 0.0616735i
\(552\) 595.369 962.607i 1.07857 1.74385i
\(553\) 309.696 0.560029
\(554\) 502.893 290.346i 0.907750 0.524090i
\(555\) 84.5580 + 52.2988i 0.152357 + 0.0942321i
\(556\) 7.46477 0.0134258
\(557\) −385.575 + 222.612i −0.692235 + 0.399662i −0.804449 0.594022i \(-0.797539\pi\)
0.112214 + 0.993684i \(0.464206\pi\)
\(558\) 338.724 169.079i 0.607033 0.303009i
\(559\) −99.5183 + 509.337i −0.178029 + 0.911158i
\(560\) −361.658 208.804i −0.645819 0.372864i
\(561\) 237.773 384.437i 0.423838 0.685271i
\(562\) −193.268 + 334.750i −0.343893 + 0.595640i
\(563\) 42.9231i 0.0762400i −0.999273 0.0381200i \(-0.987863\pi\)
0.999273 0.0381200i \(-0.0121369\pi\)
\(564\) 39.8562 + 24.6509i 0.0706670 + 0.0437073i
\(565\) −444.627 770.116i −0.786950 1.36304i
\(566\) −135.008 77.9467i −0.238529 0.137715i
\(567\) 137.868 + 323.956i 0.243153 + 0.571351i
\(568\) −290.410 + 503.006i −0.511286 + 0.885573i
\(569\) 416.946i 0.732769i 0.930464 + 0.366385i \(0.119405\pi\)
−0.930464 + 0.366385i \(0.880595\pi\)
\(570\) −86.3233 2.61727i −0.151444 0.00459170i
\(571\) −337.496 584.561i −0.591062 1.02375i −0.994090 0.108561i \(-0.965376\pi\)
0.403028 0.915188i \(-0.367958\pi\)
\(572\) 36.0582 41.3990i 0.0630389 0.0723759i
\(573\) 43.0786 23.1599i 0.0751809 0.0404187i
\(574\) 437.342 0.761920
\(575\) 794.455 458.679i 1.38166 0.797702i
\(576\) −619.721 37.6137i −1.07590 0.0653016i
\(577\) −1085.40 −1.88111 −0.940554 0.339645i \(-0.889693\pi\)
−0.940554 + 0.339645i \(0.889693\pi\)
\(578\) 153.237 88.4717i 0.265117 0.153065i
\(579\) 247.124 399.556i 0.426812 0.690079i
\(580\) −39.8257 68.9802i −0.0686651 0.118931i
\(581\) 234.675i 0.403916i
\(582\) 753.092 404.877i 1.29397 0.695665i
\(583\) −290.043 −0.497501
\(584\) 102.444i 0.175418i
\(585\) −762.164 197.519i −1.30284 0.337639i
\(586\) 144.829 0.247148
\(587\) 872.015i 1.48555i 0.669543 + 0.742773i \(0.266490\pi\)
−0.669543 + 0.742773i \(0.733510\pi\)
\(588\) −18.6353 + 30.1301i −0.0316927 + 0.0512416i
\(589\) −49.8774 −0.0846815
\(590\) 922.661 532.699i 1.56383 0.902879i
\(591\) −685.847 + 368.725i −1.16049 + 0.623900i
\(592\) 35.1567 + 60.8931i 0.0593863 + 0.102860i
\(593\) 533.078i 0.898951i 0.893293 + 0.449475i \(0.148389\pi\)
−0.893293 + 0.449475i \(0.851611\pi\)
\(594\) 549.887 + 50.1397i 0.925736 + 0.0844103i
\(595\) 204.667 + 354.494i 0.343979 + 0.595789i
\(596\) 6.86071i 0.0115113i
\(597\) 429.922 695.109i 0.720138 1.16434i
\(598\) 1056.18 362.527i 1.76619 0.606232i
\(599\) −137.101 + 79.1555i −0.228884 + 0.132146i −0.610057 0.792358i \(-0.708853\pi\)
0.381173 + 0.924504i \(0.375520\pi\)
\(600\) −431.782 267.055i −0.719636 0.445092i
\(601\) 874.328 1.45479 0.727394 0.686220i \(-0.240731\pi\)
0.727394 + 0.686220i \(0.240731\pi\)
\(602\) 285.427 + 164.791i 0.474131 + 0.273739i
\(603\) −522.656 + 790.448i −0.866760 + 1.31086i
\(604\) 35.1119 60.8156i 0.0581323 0.100688i
\(605\) 29.5767 17.0761i 0.0488871 0.0282250i
\(606\) −78.3874 2.37666i −0.129352 0.00392188i
\(607\) −851.480 −1.40277 −0.701384 0.712784i \(-0.747434\pi\)
−0.701384 + 0.712784i \(0.747434\pi\)
\(608\) 12.1950 + 7.04079i 0.0200576 + 0.0115803i
\(609\) −346.583 + 186.330i −0.569101 + 0.305960i
\(610\) 463.877 803.458i 0.760454 1.31714i
\(611\) 168.084 + 489.696i 0.275097 + 0.801466i
\(612\) 41.2081 + 27.2474i 0.0673335 + 0.0445219i
\(613\) 215.476 + 373.215i 0.351511 + 0.608834i 0.986514 0.163675i \(-0.0523348\pi\)
−0.635004 + 0.772509i \(0.719001\pi\)
\(614\) 314.754i 0.512629i
\(615\) 1068.94 + 32.4097i 1.73812 + 0.0526987i
\(616\) −195.214 338.120i −0.316905 0.548896i
\(617\) 735.561i 1.19216i 0.802926 + 0.596079i \(0.203275\pi\)
−0.802926 + 0.596079i \(0.796725\pi\)
\(618\) −228.821 + 123.019i −0.370261 + 0.199060i
\(619\) 201.576 349.140i 0.325648 0.564039i −0.655995 0.754765i \(-0.727751\pi\)
0.981643 + 0.190726i \(0.0610841\pi\)
\(620\) −50.6230 29.2272i −0.0816500 0.0471406i
\(621\) −997.634 704.012i −1.60650 1.13368i
\(622\) −90.0975 156.054i −0.144851 0.250890i
\(623\) −116.283 67.1358i −0.186649 0.107762i
\(624\) −408.600 378.265i −0.654808 0.606195i
\(625\) 360.321 + 624.095i 0.576514 + 0.998551i
\(626\) 744.843 + 430.035i 1.18984 + 0.686957i
\(627\) −61.8701 38.2664i −0.0986764 0.0610310i
\(628\) −27.7696 48.0983i −0.0442190 0.0765896i
\(629\) 68.9205i 0.109572i
\(630\) −275.784 + 417.087i −0.437753 + 0.662043i
\(631\) 362.274 627.478i 0.574127 0.994418i −0.422008 0.906592i \(-0.638675\pi\)
0.996136 0.0878260i \(-0.0279919\pi\)
\(632\) 514.782 + 297.210i 0.814529 + 0.470269i
\(633\) 430.202 695.561i 0.679624 1.09883i
\(634\) −425.233 + 736.525i −0.670714 + 1.16171i
\(635\) −944.007 545.023i −1.48662 0.858303i
\(636\) 0.960643 31.6841i 0.00151045 0.0498178i
\(637\) −370.195 + 127.067i −0.581154 + 0.199477i
\(638\) 617.133i 0.967293i
\(639\) 522.662 + 345.592i 0.817937 + 0.540832i
\(640\) −356.730 617.874i −0.557390 0.965428i
\(641\) −36.6359 + 21.1518i −0.0571544 + 0.0329981i −0.528305 0.849055i \(-0.677172\pi\)
0.471151 + 0.882053i \(0.343839\pi\)
\(642\) 498.423 + 927.092i 0.776360 + 1.44407i
\(643\) −388.142 −0.603642 −0.301821 0.953365i \(-0.597595\pi\)
−0.301821 + 0.953365i \(0.597595\pi\)
\(644\) 77.0999i 0.119720i
\(645\) 685.422 + 423.931i 1.06267 + 0.657258i
\(646\) 29.9332 + 51.8458i 0.0463362 + 0.0802566i
\(647\) 94.1041 54.3311i 0.145447 0.0839738i −0.425511 0.904953i \(-0.639905\pi\)
0.570957 + 0.820980i \(0.306572\pi\)
\(648\) −81.7284 + 670.795i −0.126124 + 1.03518i
\(649\) 897.435 1.38280
\(650\) −162.613 473.756i −0.250174 0.728855i
\(651\) −151.901 + 245.597i −0.233335 + 0.377262i
\(652\) 8.09003 14.0123i 0.0124080 0.0214913i
\(653\) 847.926 + 489.550i 1.29851 + 0.749694i 0.980147 0.198275i \(-0.0635338\pi\)
0.318362 + 0.947969i \(0.396867\pi\)
\(654\) −1.81135 + 59.7422i −0.00276964 + 0.0913489i
\(655\) −669.648 + 1159.86i −1.02236 + 1.77078i
\(656\) 654.982 + 378.154i 0.998448 + 0.576455i
\(657\) 110.313 + 6.69539i 0.167904 + 0.0101909i
\(658\) 328.802 0.499698
\(659\) 123.321 71.1993i 0.187133 0.108041i −0.403507 0.914977i \(-0.632209\pi\)
0.590640 + 0.806935i \(0.298875\pi\)
\(660\) −40.3716 75.0931i −0.0611690 0.113777i
\(661\) −532.421 + 922.180i −0.805478 + 1.39513i 0.110490 + 0.993877i \(0.464758\pi\)
−0.915968 + 0.401252i \(0.868575\pi\)
\(662\) 86.8929 50.1677i 0.131258 0.0757820i
\(663\) 161.462 + 521.351i 0.243533 + 0.786352i
\(664\) −225.214 + 390.082i −0.339178 + 0.587473i
\(665\) 57.0512 32.9385i 0.0857912 0.0495316i
\(666\) 75.3262 37.6001i 0.113102 0.0564566i
\(667\) 682.343 1181.85i 1.02300 1.77189i
\(668\) −9.71859 5.61103i −0.0145488 0.00839975i
\(669\) −592.808 17.9736i −0.886111 0.0268664i
\(670\) −1345.82 −2.00869
\(671\) 676.792 390.746i 1.00863 0.582334i
\(672\) 71.8088 38.6058i 0.106858 0.0574492i
\(673\) −417.411 −0.620224 −0.310112 0.950700i \(-0.600367\pi\)
−0.310112 + 0.950700i \(0.600367\pi\)
\(674\) 1056.46 609.948i 1.56745 0.904967i
\(675\) −315.788 + 447.493i −0.467834 + 0.662953i
\(676\) 9.09802 + 65.6602i 0.0134586 + 0.0971305i
\(677\) −406.765 234.846i −0.600835 0.346892i 0.168535 0.985696i \(-0.446096\pi\)
−0.769370 + 0.638803i \(0.779430\pi\)
\(678\) −752.643 22.8197i −1.11009 0.0336574i
\(679\) −326.104 + 564.829i −0.480271 + 0.831855i
\(680\) 785.663i 1.15539i
\(681\) 725.148 389.854i 1.06483 0.572473i
\(682\) 226.450 + 392.223i 0.332038 + 0.575106i
\(683\) 328.925 + 189.905i 0.481589 + 0.278046i 0.721078 0.692853i \(-0.243647\pi\)
−0.239489 + 0.970899i \(0.576980\pi\)
\(684\) 4.38511 6.63190i 0.00641098 0.00969576i
\(685\) −237.810 + 411.899i −0.347168 + 0.601313i
\(686\) 653.104i 0.952047i
\(687\) 138.061 + 256.800i 0.200962 + 0.373800i
\(688\) 284.978 + 493.596i 0.414212 + 0.717437i
\(689\) 230.009 264.077i 0.333830 0.383276i
\(690\) 52.5534 1733.33i 0.0761644 2.51207i
\(691\) 78.7758 0.114003 0.0570013 0.998374i \(-0.481846\pi\)
0.0570013 + 0.998374i \(0.481846\pi\)
\(692\) 36.3344 20.9777i 0.0525064 0.0303146i
\(693\) −376.849 + 188.110i −0.543794 + 0.271443i
\(694\) 541.854 0.780769
\(695\) 110.912 64.0352i 0.159586 0.0921369i
\(696\) −754.914 22.8885i −1.08465 0.0328858i
\(697\) −370.663 642.007i −0.531798 0.921101i
\(698\) 442.484i 0.633931i
\(699\) 11.0474 364.366i 0.0158045 0.521268i
\(700\) 34.5835 0.0494050
\(701\) 1265.05i 1.80464i 0.431067 + 0.902320i \(0.358137\pi\)
−0.431067 + 0.902320i \(0.641863\pi\)
\(702\) −481.720 + 460.897i −0.686211 + 0.656548i
\(703\) −11.0918 −0.0157779
\(704\) 742.747i 1.05504i
\(705\) 803.650 + 24.3662i 1.13993 + 0.0345620i
\(706\) −401.293 −0.568404
\(707\) 51.8063 29.9104i 0.0732762 0.0423061i
\(708\) −2.97237 + 98.0351i −0.00419826 + 0.138468i
\(709\) 465.030 + 805.455i 0.655895 + 1.13604i 0.981669 + 0.190596i \(0.0610420\pi\)
−0.325773 + 0.945448i \(0.605625\pi\)
\(710\) 889.886i 1.25336i
\(711\) 353.683 534.899i 0.497445 0.752319i
\(712\) −128.858 223.189i −0.180981 0.313467i
\(713\) 1001.51i 1.40464i
\(714\) 346.451 + 10.5042i 0.485226 + 0.0147118i
\(715\) 180.622 924.430i 0.252618 1.29291i
\(716\) 107.911 62.3026i 0.150714 0.0870148i
\(717\) 792.516 426.072i 1.10532 0.594243i
\(718\) −235.798 −0.328410
\(719\) −663.267 382.937i −0.922485 0.532597i −0.0380580 0.999276i \(-0.512117\pi\)
−0.884427 + 0.466679i \(0.845451\pi\)
\(720\) −773.667 + 386.186i −1.07454 + 0.536370i
\(721\) 99.0844 171.619i 0.137426 0.238030i
\(722\) −585.479 + 338.027i −0.810913 + 0.468181i
\(723\) −534.039 993.339i −0.738643 1.37391i
\(724\) 96.6163 0.133448
\(725\) −530.125 306.068i −0.731207 0.422163i
\(726\) 0.876402 28.9056i 0.00120717 0.0398149i
\(727\) 33.7945 58.5338i 0.0464849 0.0805141i −0.841847 0.539717i \(-0.818531\pi\)
0.888332 + 0.459202i \(0.151865\pi\)
\(728\) 462.657 + 90.3975i 0.635518 + 0.124172i
\(729\) 716.978 + 131.847i 0.983509 + 0.180860i
\(730\) 78.4781 + 135.928i 0.107504 + 0.186203i
\(731\) 558.666i 0.764248i
\(732\) 40.4432 + 75.2264i 0.0552503 + 0.102768i
\(733\) −299.220 518.265i −0.408213 0.707046i 0.586476 0.809966i \(-0.300515\pi\)
−0.994690 + 0.102920i \(0.967181\pi\)
\(734\) 20.6869i 0.0281838i
\(735\) −18.4201 + 607.535i −0.0250614 + 0.826578i
\(736\) −141.375 + 244.869i −0.192086 + 0.332703i
\(737\) −981.769 566.824i −1.33211 0.769097i
\(738\) 499.460 755.366i 0.676775 1.02353i
\(739\) 625.661 + 1083.68i 0.846632 + 1.46641i 0.884196 + 0.467115i \(0.154707\pi\)
−0.0375643 + 0.999294i \(0.511960\pi\)
\(740\) −11.2576 6.49961i −0.0152130 0.00878325i
\(741\) 83.9046 25.9853i 0.113232 0.0350678i
\(742\) −111.201 192.607i −0.149867 0.259578i
\(743\) −984.439 568.366i −1.32495 0.764961i −0.340437 0.940267i \(-0.610575\pi\)
−0.984514 + 0.175306i \(0.943908\pi\)
\(744\) −488.189 + 262.460i −0.656168 + 0.352769i
\(745\) −58.8534 101.937i −0.0789978 0.136828i
\(746\) 458.102i 0.614077i
\(747\) 405.325 + 268.007i 0.542604 + 0.358778i
\(748\) −29.5500 + 51.1821i −0.0395054 + 0.0684253i
\(749\) −695.332 401.450i −0.928347 0.535982i
\(750\) 180.714 + 5.47915i 0.240952 + 0.00730553i
\(751\) 253.160 438.486i 0.337097 0.583870i −0.646788 0.762670i \(-0.723888\pi\)
0.983885 + 0.178800i \(0.0572215\pi\)
\(752\) 492.427 + 284.303i 0.654823 + 0.378062i
\(753\) −9.75180 6.03145i −0.0129506 0.00800990i
\(754\) −561.884 489.396i −0.745204 0.649067i
\(755\) 1204.80i 1.59577i
\(756\) −19.3008 41.7898i −0.0255302 0.0552775i
\(757\) −164.329 284.626i −0.217079 0.375993i 0.736834 0.676073i \(-0.236320\pi\)
−0.953914 + 0.300081i \(0.902986\pi\)
\(758\) 679.695 392.422i 0.896695 0.517707i
\(759\) 768.369 1242.32i 1.01234 1.63678i
\(760\) 126.442 0.166371
\(761\) 701.867i 0.922295i −0.887323 0.461148i \(-0.847438\pi\)
0.887323 0.461148i \(-0.152562\pi\)
\(762\) −812.971 + 437.069i −1.06689 + 0.573582i
\(763\) −22.7959 39.4837i −0.0298767 0.0517479i
\(764\) −5.53795 + 3.19734i −0.00724862 + 0.00418499i
\(765\) 846.011 + 51.3483i 1.10590 + 0.0671219i
\(766\) −1237.83 −1.61596
\(767\) −711.681 + 817.093i −0.927876 + 1.06531i
\(768\) 223.581 + 6.77883i 0.291121 + 0.00882661i
\(769\) 431.615 747.579i 0.561268 0.972144i −0.436118 0.899889i \(-0.643647\pi\)
0.997386 0.0722550i \(-0.0230195\pi\)