Properties

Label 117.3.k.a.29.2
Level $117$
Weight $3$
Character 117.29
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(29,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.29");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 29.2
Character \(\chi\) \(=\) 117.29
Dual form 117.3.k.a.113.25

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.53953i q^{2} +(0.194193 + 2.99371i) q^{3} -8.52830 q^{4} +(-6.00755 + 3.46846i) q^{5} +(10.5963 - 0.687351i) q^{6} +(-2.39062 - 4.14067i) q^{7} +16.0281i q^{8} +(-8.92458 + 1.16271i) q^{9} +(12.2767 + 21.2639i) q^{10} +14.5808i q^{11} +(-1.65613 - 25.5312i) q^{12} +(8.05780 + 10.2016i) q^{13} +(-14.6561 + 8.46168i) q^{14} +(-11.5502 - 17.3113i) q^{15} +22.6187 q^{16} +(-23.2425 - 13.4191i) q^{17} +(4.11546 + 31.5888i) q^{18} +(5.79181 - 10.0317i) q^{19} +(51.2342 - 29.5801i) q^{20} +(11.9317 - 7.96091i) q^{21} +51.6093 q^{22} +(-27.6664 - 15.9732i) q^{23} +(-47.9833 + 3.11253i) q^{24} +(11.5604 - 20.0233i) q^{25} +(36.1088 - 28.5208i) q^{26} +(-5.21391 - 26.4918i) q^{27} +(20.3879 + 35.3129i) q^{28} +23.2513i q^{29} +(-61.2739 + 40.8823i) q^{30} +(-7.06716 - 12.2407i) q^{31} -15.9473i q^{32} +(-43.6507 + 2.83149i) q^{33} +(-47.4973 + 82.2677i) q^{34} +(28.7235 + 16.5835i) q^{35} +(76.1115 - 9.91595i) q^{36} +(13.2297 + 22.9145i) q^{37} +(-35.5076 - 20.5003i) q^{38} +(-28.9757 + 26.1038i) q^{39} +(-55.5927 - 96.2894i) q^{40} +(0.891522 + 0.514720i) q^{41} +(-28.1779 - 42.2328i) q^{42} +(5.58744 + 9.67774i) q^{43} -124.350i q^{44} +(49.5820 - 37.9396i) q^{45} +(-56.5378 + 97.9263i) q^{46} +(29.9550 + 17.2945i) q^{47} +(4.39238 + 67.7137i) q^{48} +(13.0699 - 22.6377i) q^{49} +(-70.8730 - 40.9186i) q^{50} +(35.6593 - 72.1872i) q^{51} +(-68.7193 - 87.0020i) q^{52} -8.55270i q^{53} +(-93.7686 + 18.4548i) q^{54} +(-50.5730 - 87.5950i) q^{55} +(66.3670 - 38.3170i) q^{56} +(31.1567 + 15.3909i) q^{57} +82.2987 q^{58} +97.6091i q^{59} +(98.5034 + 147.636i) q^{60} +(12.0161 + 20.8125i) q^{61} +(-43.3263 + 25.0144i) q^{62} +(26.1497 + 34.1742i) q^{63} +34.0287 q^{64} +(-83.7913 - 33.3382i) q^{65} +(10.0221 + 154.503i) q^{66} +(-36.0107 + 62.3723i) q^{67} +(198.219 + 114.442i) q^{68} +(42.4466 - 85.9271i) q^{69} +(58.6980 - 101.668i) q^{70} +(60.2943 + 34.8109i) q^{71} +(-18.6360 - 143.044i) q^{72} -64.5728 q^{73} +(81.1067 - 46.8270i) q^{74} +(62.1888 + 30.7202i) q^{75} +(-49.3943 + 85.5534i) q^{76} +(60.3744 - 34.8572i) q^{77} +(92.3952 + 102.561i) q^{78} +(-7.43609 + 12.8797i) q^{79} +(-135.883 + 78.4520i) q^{80} +(78.2962 - 20.7534i) q^{81} +(1.82187 - 3.15557i) q^{82} +(-90.6104 - 52.3140i) q^{83} +(-101.757 + 67.8930i) q^{84} +186.174 q^{85} +(34.2547 - 19.7769i) q^{86} +(-69.6076 + 4.51523i) q^{87} -233.702 q^{88} +(-71.9152 + 41.5203i) q^{89} +(-134.288 - 175.497i) q^{90} +(22.9782 - 57.7528i) q^{91} +(235.948 + 136.224i) q^{92} +(35.2726 - 23.5341i) q^{93} +(61.2146 - 106.027i) q^{94} +80.3547i q^{95} +(47.7416 - 3.09685i) q^{96} +(-13.5762 - 23.5147i) q^{97} +(-80.1268 - 46.2613i) q^{98} +(-16.9533 - 130.128i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - q^{3} - 98 q^{4} - 6 q^{5} + 12 q^{6} - q^{7} - 3 q^{9} - 6 q^{10} - 39 q^{12} + 4 q^{13} - 6 q^{14} - 25 q^{15} + 166 q^{16} + 34 q^{18} + 5 q^{19} + 21 q^{20} - 91 q^{21} + 30 q^{22} - 75 q^{23}+ \cdots + 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.53953i 1.76977i −0.465813 0.884883i \(-0.654238\pi\)
0.465813 0.884883i \(-0.345762\pi\)
\(3\) 0.194193 + 2.99371i 0.0647309 + 0.997903i
\(4\) −8.52830 −2.13207
\(5\) −6.00755 + 3.46846i −1.20151 + 0.693692i −0.960891 0.276927i \(-0.910684\pi\)
−0.240619 + 0.970620i \(0.577350\pi\)
\(6\) 10.5963 0.687351i 1.76606 0.114559i
\(7\) −2.39062 4.14067i −0.341517 0.591525i 0.643198 0.765700i \(-0.277607\pi\)
−0.984715 + 0.174175i \(0.944274\pi\)
\(8\) 16.0281i 2.00351i
\(9\) −8.92458 + 1.16271i −0.991620 + 0.129190i
\(10\) 12.2767 + 21.2639i 1.22767 + 2.12639i
\(11\) 14.5808i 1.32553i 0.748828 + 0.662764i \(0.230617\pi\)
−0.748828 + 0.662764i \(0.769383\pi\)
\(12\) −1.65613 25.5312i −0.138011 2.12760i
\(13\) 8.05780 + 10.2016i 0.619831 + 0.784736i
\(14\) −14.6561 + 8.46168i −1.04686 + 0.604406i
\(15\) −11.5502 17.3113i −0.770012 1.15409i
\(16\) 22.6187 1.41367
\(17\) −23.2425 13.4191i −1.36721 0.789358i −0.376637 0.926361i \(-0.622920\pi\)
−0.990571 + 0.137003i \(0.956253\pi\)
\(18\) 4.11546 + 31.5888i 0.228637 + 1.75494i
\(19\) 5.79181 10.0317i 0.304832 0.527985i −0.672392 0.740195i \(-0.734733\pi\)
0.977224 + 0.212211i \(0.0680663\pi\)
\(20\) 51.2342 29.5801i 2.56171 1.47900i
\(21\) 11.9317 7.96091i 0.568178 0.379091i
\(22\) 51.6093 2.34588
\(23\) −27.6664 15.9732i −1.20289 0.694488i −0.241692 0.970353i \(-0.577702\pi\)
−0.961196 + 0.275865i \(0.911036\pi\)
\(24\) −47.9833 + 3.11253i −1.99931 + 0.129689i
\(25\) 11.5604 20.0233i 0.462418 0.800931i
\(26\) 36.1088 28.5208i 1.38880 1.09696i
\(27\) −5.21391 26.4918i −0.193108 0.981178i
\(28\) 20.3879 + 35.3129i 0.728140 + 1.26118i
\(29\) 23.2513i 0.801769i 0.916129 + 0.400884i \(0.131297\pi\)
−0.916129 + 0.400884i \(0.868703\pi\)
\(30\) −61.2739 + 40.8823i −2.04246 + 1.36274i
\(31\) −7.06716 12.2407i −0.227973 0.394861i 0.729234 0.684264i \(-0.239876\pi\)
−0.957207 + 0.289403i \(0.906543\pi\)
\(32\) 15.9473i 0.498353i
\(33\) −43.6507 + 2.83149i −1.32275 + 0.0858026i
\(34\) −47.4973 + 82.2677i −1.39698 + 2.41964i
\(35\) 28.7235 + 16.5835i 0.820672 + 0.473815i
\(36\) 76.1115 9.91595i 2.11421 0.275443i
\(37\) 13.2297 + 22.9145i 0.357560 + 0.619312i 0.987553 0.157289i \(-0.0502755\pi\)
−0.629993 + 0.776601i \(0.716942\pi\)
\(38\) −35.5076 20.5003i −0.934410 0.539482i
\(39\) −28.9757 + 26.1038i −0.742968 + 0.669327i
\(40\) −55.5927 96.2894i −1.38982 2.40723i
\(41\) 0.891522 + 0.514720i 0.0217444 + 0.0125542i 0.510833 0.859680i \(-0.329337\pi\)
−0.489088 + 0.872234i \(0.662670\pi\)
\(42\) −28.1779 42.2328i −0.670902 1.00554i
\(43\) 5.58744 + 9.67774i 0.129941 + 0.225064i 0.923653 0.383229i \(-0.125188\pi\)
−0.793713 + 0.608293i \(0.791855\pi\)
\(44\) 124.350i 2.82613i
\(45\) 49.5820 37.9396i 1.10182 0.843102i
\(46\) −56.5378 + 97.9263i −1.22908 + 2.12883i
\(47\) 29.9550 + 17.2945i 0.637341 + 0.367969i 0.783589 0.621279i \(-0.213387\pi\)
−0.146249 + 0.989248i \(0.546720\pi\)
\(48\) 4.39238 + 67.7137i 0.0915079 + 1.41070i
\(49\) 13.0699 22.6377i 0.266732 0.461994i
\(50\) −70.8730 40.9186i −1.41746 0.818371i
\(51\) 35.6593 72.1872i 0.699202 1.41544i
\(52\) −68.7193 87.0020i −1.32153 1.67311i
\(53\) 8.55270i 0.161372i −0.996740 0.0806859i \(-0.974289\pi\)
0.996740 0.0806859i \(-0.0257111\pi\)
\(54\) −93.7686 + 18.4548i −1.73646 + 0.341756i
\(55\) −50.5730 87.5950i −0.919509 1.59264i
\(56\) 66.3670 38.3170i 1.18512 0.684232i
\(57\) 31.1567 + 15.3909i 0.546610 + 0.270016i
\(58\) 82.2987 1.41894
\(59\) 97.6091i 1.65439i 0.561914 + 0.827195i \(0.310065\pi\)
−0.561914 + 0.827195i \(0.689935\pi\)
\(60\) 98.5034 + 147.636i 1.64172 + 2.46060i
\(61\) 12.0161 + 20.8125i 0.196985 + 0.341188i 0.947549 0.319609i \(-0.103552\pi\)
−0.750564 + 0.660797i \(0.770218\pi\)
\(62\) −43.3263 + 25.0144i −0.698811 + 0.403459i
\(63\) 26.1497 + 34.1742i 0.415074 + 0.542447i
\(64\) 34.0287 0.531698
\(65\) −83.7913 33.3382i −1.28910 0.512896i
\(66\) 10.0221 + 154.503i 0.151851 + 2.34096i
\(67\) −36.0107 + 62.3723i −0.537473 + 0.930931i 0.461566 + 0.887106i \(0.347288\pi\)
−0.999039 + 0.0438248i \(0.986046\pi\)
\(68\) 198.219 + 114.442i 2.91499 + 1.68297i
\(69\) 42.4466 85.9271i 0.615168 1.24532i
\(70\) 58.6980 101.668i 0.838543 1.45240i
\(71\) 60.2943 + 34.8109i 0.849216 + 0.490295i 0.860386 0.509643i \(-0.170222\pi\)
−0.0111703 + 0.999938i \(0.503556\pi\)
\(72\) −18.6360 143.044i −0.258834 1.98672i
\(73\) −64.5728 −0.884559 −0.442279 0.896877i \(-0.645830\pi\)
−0.442279 + 0.896877i \(0.645830\pi\)
\(74\) 81.1067 46.8270i 1.09604 0.632797i
\(75\) 62.1888 + 30.7202i 0.829184 + 0.409603i
\(76\) −49.3943 + 85.5534i −0.649925 + 1.12570i
\(77\) 60.3744 34.8572i 0.784083 0.452691i
\(78\) 92.3952 + 102.561i 1.18455 + 1.31488i
\(79\) −7.43609 + 12.8797i −0.0941278 + 0.163034i −0.909244 0.416263i \(-0.863340\pi\)
0.815116 + 0.579297i \(0.196673\pi\)
\(80\) −135.883 + 78.4520i −1.69854 + 0.980650i
\(81\) 78.2962 20.7534i 0.966620 0.256215i
\(82\) 1.82187 3.15557i 0.0222179 0.0384826i
\(83\) −90.6104 52.3140i −1.09169 0.630289i −0.157665 0.987493i \(-0.550397\pi\)
−0.934026 + 0.357204i \(0.883730\pi\)
\(84\) −101.757 + 67.8930i −1.21140 + 0.808250i
\(85\) 186.174 2.19028
\(86\) 34.2547 19.7769i 0.398310 0.229965i
\(87\) −69.6076 + 4.51523i −0.800087 + 0.0518992i
\(88\) −233.702 −2.65571
\(89\) −71.9152 + 41.5203i −0.808036 + 0.466520i −0.846273 0.532749i \(-0.821159\pi\)
0.0382372 + 0.999269i \(0.487826\pi\)
\(90\) −134.288 175.497i −1.49209 1.94997i
\(91\) 22.9782 57.7528i 0.252508 0.634646i
\(92\) 235.948 + 136.224i 2.56465 + 1.48070i
\(93\) 35.2726 23.5341i 0.379276 0.253054i
\(94\) 61.2146 106.027i 0.651219 1.12794i
\(95\) 80.3547i 0.845839i
\(96\) 47.7416 3.09685i 0.497308 0.0322588i
\(97\) −13.5762 23.5147i −0.139961 0.242420i 0.787521 0.616288i \(-0.211364\pi\)
−0.927482 + 0.373869i \(0.878031\pi\)
\(98\) −80.1268 46.2613i −0.817621 0.472054i
\(99\) −16.9533 130.128i −0.171245 1.31442i
\(100\) −98.5909 + 170.764i −0.985909 + 1.70764i
\(101\) 62.6007i 0.619809i −0.950768 0.309904i \(-0.899703\pi\)
0.950768 0.309904i \(-0.100297\pi\)
\(102\) −255.509 126.217i −2.50499 1.23742i
\(103\) 55.1061 + 95.4465i 0.535010 + 0.926665i 0.999163 + 0.0409098i \(0.0130256\pi\)
−0.464153 + 0.885755i \(0.653641\pi\)
\(104\) −163.511 + 129.151i −1.57222 + 1.24184i
\(105\) −44.0684 + 89.2103i −0.419699 + 0.849622i
\(106\) −30.2726 −0.285590
\(107\) −89.5094 + 51.6783i −0.836536 + 0.482974i −0.856085 0.516835i \(-0.827110\pi\)
0.0195492 + 0.999809i \(0.493777\pi\)
\(108\) 44.4658 + 225.930i 0.411720 + 2.09194i
\(109\) −37.3796 −0.342932 −0.171466 0.985190i \(-0.554850\pi\)
−0.171466 + 0.985190i \(0.554850\pi\)
\(110\) −310.045 + 179.005i −2.81859 + 1.62732i
\(111\) −66.0303 + 44.0557i −0.594868 + 0.396898i
\(112\) −54.0726 93.6566i −0.482791 0.836219i
\(113\) 185.714i 1.64349i −0.569856 0.821745i \(-0.693001\pi\)
0.569856 0.821745i \(-0.306999\pi\)
\(114\) 54.4766 110.280i 0.477865 0.967371i
\(115\) 221.610 1.92704
\(116\) 198.294i 1.70943i
\(117\) −83.7739 81.6757i −0.716017 0.698083i
\(118\) 345.491 2.92789
\(119\) 128.320i 1.07832i
\(120\) 277.467 185.127i 2.31222 1.54273i
\(121\) −91.6001 −0.757026
\(122\) 73.6665 42.5314i 0.603824 0.348618i
\(123\) −1.36780 + 2.76891i −0.0111203 + 0.0225115i
\(124\) 60.2708 + 104.392i 0.486055 + 0.841872i
\(125\) 13.0353i 0.104283i
\(126\) 120.961 92.5577i 0.960005 0.734585i
\(127\) 7.47211 + 12.9421i 0.0588355 + 0.101906i 0.893943 0.448181i \(-0.147928\pi\)
−0.835107 + 0.550087i \(0.814595\pi\)
\(128\) 184.235i 1.43933i
\(129\) −27.8873 + 18.6065i −0.216181 + 0.144237i
\(130\) −118.002 + 296.582i −0.907706 + 2.28140i
\(131\) −166.360 + 96.0478i −1.26992 + 0.733190i −0.974973 0.222323i \(-0.928636\pi\)
−0.294949 + 0.955513i \(0.595303\pi\)
\(132\) 372.266 24.1478i 2.82020 0.182938i
\(133\) −55.3841 −0.416422
\(134\) 220.769 + 127.461i 1.64753 + 0.951202i
\(135\) 123.209 + 141.067i 0.912656 + 1.04494i
\(136\) 215.082 372.533i 1.58148 2.73921i
\(137\) 204.623 118.139i 1.49360 0.862330i 0.493627 0.869674i \(-0.335671\pi\)
0.999973 + 0.00734348i \(0.00233752\pi\)
\(138\) −304.142 150.241i −2.20393 1.08870i
\(139\) −204.623 −1.47211 −0.736054 0.676923i \(-0.763313\pi\)
−0.736054 + 0.676923i \(0.763313\pi\)
\(140\) −244.963 141.429i −1.74973 1.01021i
\(141\) −45.9577 + 93.0350i −0.325941 + 0.659823i
\(142\) 123.215 213.414i 0.867708 1.50291i
\(143\) −148.747 + 117.489i −1.04019 + 0.821603i
\(144\) −201.862 + 26.2990i −1.40182 + 0.182632i
\(145\) −80.6462 139.683i −0.556181 0.963333i
\(146\) 228.558i 1.56546i
\(147\) 70.3087 + 34.7313i 0.478290 + 0.236267i
\(148\) −112.827 195.422i −0.762344 1.32042i
\(149\) 180.830i 1.21362i 0.794846 + 0.606811i \(0.207552\pi\)
−0.794846 + 0.606811i \(0.792448\pi\)
\(150\) 108.735 220.119i 0.724901 1.46746i
\(151\) −48.1240 + 83.3533i −0.318702 + 0.552008i −0.980218 0.197923i \(-0.936580\pi\)
0.661515 + 0.749932i \(0.269914\pi\)
\(152\) 160.789 + 92.8315i 1.05782 + 0.610734i
\(153\) 223.032 + 92.7353i 1.45773 + 0.606113i
\(154\) −123.378 213.697i −0.801157 1.38764i
\(155\) 84.9126 + 49.0243i 0.547823 + 0.316286i
\(156\) 247.114 222.621i 1.58406 1.42706i
\(157\) −66.1161 114.516i −0.421122 0.729404i 0.574928 0.818204i \(-0.305030\pi\)
−0.996049 + 0.0888001i \(0.971697\pi\)
\(158\) 45.5881 + 26.3203i 0.288532 + 0.166584i
\(159\) 25.6043 1.66087i 0.161033 0.0104457i
\(160\) 55.3126 + 95.8042i 0.345704 + 0.598776i
\(161\) 152.744i 0.948718i
\(162\) −73.4574 277.132i −0.453441 1.71069i
\(163\) −0.785540 + 1.36060i −0.00481926 + 0.00834721i −0.868425 0.495821i \(-0.834867\pi\)
0.863606 + 0.504168i \(0.168201\pi\)
\(164\) −7.60316 4.38969i −0.0463608 0.0267664i
\(165\) 252.413 168.411i 1.52977 1.02067i
\(166\) −185.167 + 320.719i −1.11546 + 1.93204i
\(167\) 238.739 + 137.836i 1.42958 + 0.825366i 0.997087 0.0762737i \(-0.0243023\pi\)
0.432488 + 0.901639i \(0.357636\pi\)
\(168\) 127.598 + 191.243i 0.759511 + 1.13835i
\(169\) −39.1438 + 164.404i −0.231620 + 0.972806i
\(170\) 658.970i 3.87629i
\(171\) −40.0255 + 96.2630i −0.234067 + 0.562942i
\(172\) −47.6514 82.5346i −0.277043 0.479853i
\(173\) 50.4722 29.1401i 0.291747 0.168440i −0.346983 0.937872i \(-0.612794\pi\)
0.638729 + 0.769431i \(0.279460\pi\)
\(174\) 15.9818 + 246.378i 0.0918495 + 1.41597i
\(175\) −110.546 −0.631694
\(176\) 329.799i 1.87386i
\(177\) −292.213 + 18.9550i −1.65092 + 0.107090i
\(178\) 146.962 + 254.546i 0.825632 + 1.43004i
\(179\) 7.54922 4.35854i 0.0421744 0.0243494i −0.478765 0.877943i \(-0.658915\pi\)
0.520939 + 0.853594i \(0.325582\pi\)
\(180\) −422.850 + 323.560i −2.34917 + 1.79756i
\(181\) −319.717 −1.76639 −0.883195 0.469006i \(-0.844612\pi\)
−0.883195 + 0.469006i \(0.844612\pi\)
\(182\) −204.418 81.3322i −1.12318 0.446880i
\(183\) −59.9731 + 40.0143i −0.327722 + 0.218657i
\(184\) 256.020 443.439i 1.39141 2.41000i
\(185\) −158.956 91.7735i −0.859223 0.496073i
\(186\) −83.2996 124.849i −0.447847 0.671229i
\(187\) 195.661 338.895i 1.04632 1.81227i
\(188\) −255.465 147.493i −1.35886 0.784537i
\(189\) −97.2294 + 84.9209i −0.514441 + 0.449317i
\(190\) 284.418 1.49694
\(191\) −18.6864 + 10.7886i −0.0978346 + 0.0564848i −0.548119 0.836400i \(-0.684656\pi\)
0.450284 + 0.892885i \(0.351323\pi\)
\(192\) 6.60812 + 101.872i 0.0344173 + 0.530583i
\(193\) −4.45316 + 7.71309i −0.0230733 + 0.0399642i −0.877332 0.479885i \(-0.840678\pi\)
0.854258 + 0.519849i \(0.174012\pi\)
\(194\) −83.2311 + 48.0535i −0.429026 + 0.247698i
\(195\) 83.5333 257.321i 0.428376 1.31959i
\(196\) −111.464 + 193.061i −0.568693 + 0.985005i
\(197\) 13.8582 8.00106i 0.0703464 0.0406145i −0.464414 0.885618i \(-0.653735\pi\)
0.534761 + 0.845004i \(0.320402\pi\)
\(198\) −460.591 + 60.0067i −2.32622 + 0.303064i
\(199\) −86.1243 + 149.172i −0.432786 + 0.749607i −0.997112 0.0759451i \(-0.975803\pi\)
0.564326 + 0.825552i \(0.309136\pi\)
\(200\) 320.934 + 185.291i 1.60467 + 0.926457i
\(201\) −193.718 95.6933i −0.963769 0.476086i
\(202\) −221.577 −1.09692
\(203\) 96.2761 55.5850i 0.474266 0.273818i
\(204\) −304.113 + 615.634i −1.49075 + 3.01781i
\(205\) −7.14115 −0.0348349
\(206\) 337.836 195.050i 1.63998 0.946843i
\(207\) 265.484 + 110.386i 1.28253 + 0.533267i
\(208\) 182.257 + 230.746i 0.876234 + 1.10935i
\(209\) 146.271 + 84.4493i 0.699859 + 0.404064i
\(210\) 315.763 + 155.982i 1.50363 + 0.742769i
\(211\) 39.4983 68.4130i 0.187196 0.324232i −0.757119 0.653277i \(-0.773394\pi\)
0.944314 + 0.329045i \(0.106727\pi\)
\(212\) 72.9400i 0.344057i
\(213\) −92.5051 + 187.264i −0.434296 + 0.879172i
\(214\) 182.917 + 316.821i 0.854752 + 1.48047i
\(215\) −67.1337 38.7597i −0.312250 0.180278i
\(216\) 424.612 83.5688i 1.96580 0.386893i
\(217\) −33.7898 + 58.5256i −0.155713 + 0.269703i
\(218\) 132.306i 0.606910i
\(219\) −12.5396 193.312i −0.0572583 0.882704i
\(220\) 431.301 + 747.036i 1.96046 + 3.39562i
\(221\) −50.3880 345.238i −0.228000 1.56216i
\(222\) 155.937 + 233.716i 0.702418 + 1.05278i
\(223\) 136.653 0.612793 0.306396 0.951904i \(-0.400877\pi\)
0.306396 + 0.951904i \(0.400877\pi\)
\(224\) −66.0326 + 38.1239i −0.294788 + 0.170196i
\(225\) −79.8908 + 192.141i −0.355070 + 0.853959i
\(226\) −657.342 −2.90859
\(227\) 78.8649 45.5326i 0.347422 0.200584i −0.316127 0.948717i \(-0.602383\pi\)
0.663549 + 0.748133i \(0.269049\pi\)
\(228\) −265.714 131.258i −1.16541 0.575694i
\(229\) 104.863 + 181.628i 0.457918 + 0.793137i 0.998851 0.0479288i \(-0.0152620\pi\)
−0.540933 + 0.841066i \(0.681929\pi\)
\(230\) 784.396i 3.41042i
\(231\) 116.076 + 173.974i 0.502496 + 0.753136i
\(232\) −372.673 −1.60635
\(233\) 308.839i 1.32549i −0.748845 0.662745i \(-0.769391\pi\)
0.748845 0.662745i \(-0.230609\pi\)
\(234\) −289.094 + 296.521i −1.23544 + 1.26718i
\(235\) −239.942 −1.02103
\(236\) 832.439i 3.52728i
\(237\) −40.0021 19.7604i −0.168785 0.0833770i
\(238\) 454.192 1.90837
\(239\) 167.140 96.4983i 0.699331 0.403759i −0.107767 0.994176i \(-0.534370\pi\)
0.807098 + 0.590417i \(0.201037\pi\)
\(240\) −261.250 391.559i −1.08854 1.63149i
\(241\) −156.704 271.420i −0.650225 1.12622i −0.983068 0.183241i \(-0.941341\pi\)
0.332843 0.942982i \(-0.391992\pi\)
\(242\) 324.222i 1.33976i
\(243\) 77.3342 + 230.366i 0.318248 + 0.948008i
\(244\) −102.477 177.495i −0.419987 0.727439i
\(245\) 181.329i 0.740120i
\(246\) 9.80066 + 4.84136i 0.0398401 + 0.0196803i
\(247\) 149.008 21.7480i 0.603273 0.0880485i
\(248\) 196.194 113.273i 0.791106 0.456745i
\(249\) 139.017 281.420i 0.558301 1.13020i
\(250\) −46.1390 −0.184556
\(251\) 231.469 + 133.638i 0.922186 + 0.532424i 0.884332 0.466859i \(-0.154614\pi\)
0.0378541 + 0.999283i \(0.487948\pi\)
\(252\) −223.012 291.448i −0.884969 1.15654i
\(253\) 232.903 403.399i 0.920564 1.59446i
\(254\) 45.8089 26.4478i 0.180350 0.104125i
\(255\) 36.1536 + 557.351i 0.141779 + 2.18569i
\(256\) −515.991 −2.01559
\(257\) −63.6103 36.7254i −0.247511 0.142901i 0.371113 0.928588i \(-0.378976\pi\)
−0.618624 + 0.785687i \(0.712310\pi\)
\(258\) 65.8584 + 98.7080i 0.255265 + 0.382589i
\(259\) 63.2544 109.560i 0.244226 0.423011i
\(260\) 714.598 + 284.318i 2.74845 + 1.09353i
\(261\) −27.0346 207.508i −0.103581 0.795050i
\(262\) 339.965 + 588.836i 1.29757 + 2.24747i
\(263\) 6.08203i 0.0231256i −0.999933 0.0115628i \(-0.996319\pi\)
0.999933 0.0115628i \(-0.00368063\pi\)
\(264\) −45.3832 699.636i −0.171906 2.65014i
\(265\) 29.6647 + 51.3808i 0.111942 + 0.193890i
\(266\) 196.034i 0.736969i
\(267\) −138.265 207.230i −0.517846 0.776143i
\(268\) 307.110 531.930i 1.14593 1.98481i
\(269\) −154.391 89.1378i −0.573945 0.331367i 0.184778 0.982780i \(-0.440843\pi\)
−0.758723 + 0.651413i \(0.774177\pi\)
\(270\) 499.310 436.101i 1.84930 1.61519i
\(271\) 117.638 + 203.755i 0.434088 + 0.751863i 0.997221 0.0745036i \(-0.0237372\pi\)
−0.563132 + 0.826367i \(0.690404\pi\)
\(272\) −525.715 303.522i −1.93278 1.11589i
\(273\) 177.357 + 57.5749i 0.649660 + 0.210897i
\(274\) −418.158 724.271i −1.52612 2.64332i
\(275\) 291.956 + 168.561i 1.06166 + 0.612948i
\(276\) −361.997 + 732.812i −1.31158 + 2.65512i
\(277\) 108.786 + 188.423i 0.392729 + 0.680226i 0.992808 0.119714i \(-0.0381978\pi\)
−0.600080 + 0.799940i \(0.704864\pi\)
\(278\) 724.270i 2.60529i
\(279\) 77.3038 + 101.026i 0.277075 + 0.362100i
\(280\) −265.802 + 460.383i −0.949293 + 1.64422i
\(281\) −104.650 60.4199i −0.372421 0.215018i 0.302094 0.953278i \(-0.402314\pi\)
−0.674516 + 0.738260i \(0.735648\pi\)
\(282\) 329.301 + 162.669i 1.16773 + 0.576840i
\(283\) 6.33735 10.9766i 0.0223935 0.0387866i −0.854611 0.519268i \(-0.826205\pi\)
0.877005 + 0.480481i \(0.159538\pi\)
\(284\) −514.208 296.878i −1.81059 1.04535i
\(285\) −240.558 + 15.6043i −0.844065 + 0.0547519i
\(286\) 415.857 + 526.495i 1.45405 + 1.84089i
\(287\) 4.92200i 0.0171498i
\(288\) 18.5421 + 142.323i 0.0643823 + 0.494177i
\(289\) 215.643 + 373.505i 0.746171 + 1.29241i
\(290\) −494.414 + 285.450i −1.70488 + 0.984310i
\(291\) 67.7598 45.2096i 0.232852 0.155360i
\(292\) 550.696 1.88595
\(293\) 197.967i 0.675655i 0.941208 + 0.337827i \(0.109692\pi\)
−0.941208 + 0.337827i \(0.890308\pi\)
\(294\) 122.933 248.860i 0.418138 0.846463i
\(295\) −338.553 586.391i −1.14764 1.98777i
\(296\) −367.275 + 212.047i −1.24080 + 0.716374i
\(297\) 386.272 76.0230i 1.30058 0.255970i
\(298\) 640.053 2.14783
\(299\) −59.9787 410.950i −0.200598 1.37441i
\(300\) −530.364 261.991i −1.76788 0.873304i
\(301\) 26.7149 46.2716i 0.0887539 0.153726i
\(302\) 295.032 + 170.337i 0.976926 + 0.564028i
\(303\) 187.408 12.1566i 0.618509 0.0401207i
\(304\) 131.003 226.904i 0.430931 0.746395i
\(305\) −144.375 83.3547i −0.473359 0.273294i
\(306\) 328.240 789.430i 1.07268 2.57984i
\(307\) −543.817 −1.77139 −0.885696 0.464265i \(-0.846318\pi\)
−0.885696 + 0.464265i \(0.846318\pi\)
\(308\) −514.891 + 297.272i −1.67172 + 0.965170i
\(309\) −275.038 + 183.506i −0.890090 + 0.593872i
\(310\) 173.523 300.551i 0.559752 0.969520i
\(311\) −375.320 + 216.691i −1.20682 + 0.696756i −0.962063 0.272829i \(-0.912041\pi\)
−0.244754 + 0.969585i \(0.578707\pi\)
\(312\) −418.393 464.425i −1.34100 1.48854i
\(313\) −63.3667 + 109.754i −0.202450 + 0.350653i −0.949317 0.314320i \(-0.898224\pi\)
0.746868 + 0.664973i \(0.231557\pi\)
\(314\) −405.335 + 234.020i −1.29087 + 0.745287i
\(315\) −275.627 114.604i −0.875007 0.363822i
\(316\) 63.4172 109.842i 0.200687 0.347601i
\(317\) 356.487 + 205.818i 1.12457 + 0.649268i 0.942563 0.334030i \(-0.108409\pi\)
0.182003 + 0.983298i \(0.441742\pi\)
\(318\) −5.87871 90.6273i −0.0184865 0.284991i
\(319\) −339.023 −1.06277
\(320\) −204.429 + 118.027i −0.638841 + 0.368835i
\(321\) −172.092 257.929i −0.536111 0.803518i
\(322\) 540.641 1.67901
\(323\) −269.233 + 155.442i −0.833538 + 0.481243i
\(324\) −667.733 + 176.991i −2.06091 + 0.546270i
\(325\) 297.420 43.4089i 0.915139 0.133566i
\(326\) 4.81587 + 2.78045i 0.0147726 + 0.00852897i
\(327\) −7.25885 111.904i −0.0221983 0.342213i
\(328\) −8.24997 + 14.2894i −0.0251524 + 0.0435652i
\(329\) 165.379i 0.502671i
\(330\) −596.096 893.424i −1.80635 2.70734i
\(331\) 61.2192 + 106.035i 0.184952 + 0.320346i 0.943560 0.331201i \(-0.107454\pi\)
−0.758608 + 0.651547i \(0.774120\pi\)
\(332\) 772.753 + 446.149i 2.32757 + 1.34382i
\(333\) −144.713 189.120i −0.434572 0.567928i
\(334\) 487.875 845.025i 1.46070 2.53002i
\(335\) 499.607i 1.49136i
\(336\) 269.880 180.065i 0.803214 0.535908i
\(337\) 2.95144 + 5.11204i 0.00875797 + 0.0151693i 0.870371 0.492396i \(-0.163879\pi\)
−0.861613 + 0.507565i \(0.830546\pi\)
\(338\) 581.914 + 138.551i 1.72164 + 0.409913i
\(339\) 555.975 36.0643i 1.64004 0.106384i
\(340\) −1587.75 −4.66985
\(341\) 178.479 103.045i 0.523399 0.302185i
\(342\) 340.726 + 141.672i 0.996275 + 0.414244i
\(343\) −359.261 −1.04741
\(344\) −155.115 + 89.5559i −0.450917 + 0.260337i
\(345\) 43.0350 + 663.436i 0.124739 + 1.92300i
\(346\) −103.142 178.648i −0.298100 0.516324i
\(347\) 143.359i 0.413138i 0.978432 + 0.206569i \(0.0662298\pi\)
−0.978432 + 0.206569i \(0.933770\pi\)
\(348\) 593.634 38.5072i 1.70585 0.110653i
\(349\) 273.417 0.783429 0.391715 0.920087i \(-0.371882\pi\)
0.391715 + 0.920087i \(0.371882\pi\)
\(350\) 391.283i 1.11795i
\(351\) 228.245 266.656i 0.650271 0.759702i
\(352\) 232.525 0.660581
\(353\) 488.715i 1.38446i −0.721676 0.692231i \(-0.756628\pi\)
0.721676 0.692231i \(-0.243372\pi\)
\(354\) 67.0917 + 1034.30i 0.189525 + 2.92175i
\(355\) −482.962 −1.36046
\(356\) 613.315 354.097i 1.72279 0.994655i
\(357\) −384.152 + 24.9187i −1.07605 + 0.0698003i
\(358\) −15.4272 26.7207i −0.0430928 0.0746389i
\(359\) 539.571i 1.50298i −0.659742 0.751492i \(-0.729335\pi\)
0.659742 0.751492i \(-0.270665\pi\)
\(360\) 608.098 + 794.704i 1.68916 + 2.20751i
\(361\) 113.410 + 196.432i 0.314155 + 0.544132i
\(362\) 1131.65i 3.12610i
\(363\) −17.7881 274.224i −0.0490029 0.755438i
\(364\) −195.965 + 492.533i −0.538366 + 1.35311i
\(365\) 387.924 223.968i 1.06281 0.613611i
\(366\) 141.632 + 212.277i 0.386973 + 0.579991i
\(367\) 52.0141 0.141728 0.0708639 0.997486i \(-0.477424\pi\)
0.0708639 + 0.997486i \(0.477424\pi\)
\(368\) −625.778 361.293i −1.70048 0.981775i
\(369\) −8.55493 3.55708i −0.0231841 0.00963978i
\(370\) −324.835 + 562.631i −0.877933 + 1.52062i
\(371\) −35.4140 + 20.4463i −0.0954554 + 0.0551112i
\(372\) −300.815 + 200.705i −0.808644 + 0.539531i
\(373\) 613.654 1.64518 0.822592 0.568631i \(-0.192527\pi\)
0.822592 + 0.568631i \(0.192527\pi\)
\(374\) −1199.53 692.549i −3.20730 1.85174i
\(375\) 39.0240 2.53136i 0.104064 0.00675030i
\(376\) −277.198 + 480.121i −0.737228 + 1.27692i
\(377\) −237.200 + 187.354i −0.629177 + 0.496961i
\(378\) 300.580 + 344.147i 0.795186 + 0.910441i
\(379\) 68.7440 + 119.068i 0.181382 + 0.314164i 0.942352 0.334624i \(-0.108609\pi\)
−0.760969 + 0.648788i \(0.775276\pi\)
\(380\) 685.289i 1.80339i
\(381\) −37.2938 + 24.8826i −0.0978839 + 0.0653086i
\(382\) 38.1866 + 66.1412i 0.0999650 + 0.173144i
\(383\) 77.9413i 0.203502i −0.994810 0.101751i \(-0.967555\pi\)
0.994810 0.101751i \(-0.0324445\pi\)
\(384\) 551.545 35.7770i 1.43632 0.0931694i
\(385\) −241.802 + 418.812i −0.628056 + 1.08782i
\(386\) 27.3007 + 15.7621i 0.0707273 + 0.0408344i
\(387\) −61.1180 79.8731i −0.157928 0.206391i
\(388\) 115.782 + 200.540i 0.298407 + 0.516857i
\(389\) 308.392 + 178.050i 0.792781 + 0.457712i 0.840941 0.541127i \(-0.182002\pi\)
−0.0481597 + 0.998840i \(0.515336\pi\)
\(390\) −910.796 295.669i −2.33537 0.758126i
\(391\) 428.692 + 742.516i 1.09640 + 1.89902i
\(392\) 362.838 + 209.485i 0.925608 + 0.534400i
\(393\) −319.845 479.381i −0.813855 1.21980i
\(394\) −28.3200 49.0517i −0.0718782 0.124497i
\(395\) 103.167i 0.261183i
\(396\) 144.583 + 1109.77i 0.365108 + 2.80244i
\(397\) 149.918 259.665i 0.377626 0.654068i −0.613090 0.790013i \(-0.710074\pi\)
0.990716 + 0.135945i \(0.0434071\pi\)
\(398\) 527.998 + 304.840i 1.32663 + 0.765930i
\(399\) −10.7552 165.804i −0.0269553 0.415548i
\(400\) 261.482 452.900i 0.653704 1.13225i
\(401\) 599.374 + 346.049i 1.49470 + 0.862964i 0.999981 0.00609030i \(-0.00193861\pi\)
0.494716 + 0.869054i \(0.335272\pi\)
\(402\) −338.709 + 685.670i −0.842561 + 1.70565i
\(403\) 67.9283 170.729i 0.168557 0.423645i
\(404\) 533.877i 1.32148i
\(405\) −398.386 + 396.245i −0.983669 + 0.978382i
\(406\) −196.745 340.772i −0.484594 0.839341i
\(407\) −334.112 + 192.900i −0.820915 + 0.473956i
\(408\) 1157.02 + 571.549i 2.83584 + 1.40086i
\(409\) −38.5099 −0.0941562 −0.0470781 0.998891i \(-0.514991\pi\)
−0.0470781 + 0.998891i \(0.514991\pi\)
\(410\) 25.2763i 0.0616496i
\(411\) 393.411 + 589.640i 0.957204 + 1.43465i
\(412\) −469.961 813.996i −1.14068 1.97572i
\(413\) 404.167 233.346i 0.978613 0.565003i
\(414\) 390.716 939.688i 0.943758 2.26978i
\(415\) 725.796 1.74890
\(416\) 162.687 128.500i 0.391075 0.308895i
\(417\) −39.7363 612.581i −0.0952908 1.46902i
\(418\) 298.911 517.729i 0.715099 1.23859i
\(419\) −367.296 212.058i −0.876601 0.506106i −0.00706489 0.999975i \(-0.502249\pi\)
−0.869536 + 0.493869i \(0.835582\pi\)
\(420\) 375.828 760.812i 0.894829 1.81146i
\(421\) −179.602 + 311.079i −0.426607 + 0.738905i −0.996569 0.0827660i \(-0.973625\pi\)
0.569962 + 0.821671i \(0.306958\pi\)
\(422\) −242.150 139.805i −0.573815 0.331292i
\(423\) −287.444 119.517i −0.679538 0.282547i
\(424\) 137.083 0.323310
\(425\) −537.388 + 310.261i −1.26444 + 0.730026i
\(426\) 662.826 + 327.425i 1.55593 + 0.768603i
\(427\) 57.4518 99.5094i 0.134548 0.233043i
\(428\) 763.362 440.728i 1.78356 1.02974i
\(429\) −380.614 422.490i −0.887212 0.984825i
\(430\) −137.191 + 237.622i −0.319049 + 0.552609i
\(431\) −720.368 + 415.905i −1.67139 + 0.964976i −0.704525 + 0.709679i \(0.748840\pi\)
−0.966863 + 0.255298i \(0.917827\pi\)
\(432\) −117.932 599.209i −0.272990 1.38706i
\(433\) 148.493 257.198i 0.342941 0.593990i −0.642037 0.766674i \(-0.721910\pi\)
0.984977 + 0.172683i \(0.0552437\pi\)
\(434\) 207.153 + 119.600i 0.477312 + 0.275576i
\(435\) 402.510 268.557i 0.925311 0.617372i
\(436\) 318.785 0.731158
\(437\) −320.478 + 185.028i −0.733358 + 0.423405i
\(438\) −684.235 + 44.3842i −1.56218 + 0.101334i
\(439\) −446.011 −1.01597 −0.507985 0.861366i \(-0.669610\pi\)
−0.507985 + 0.861366i \(0.669610\pi\)
\(440\) 1403.98 810.587i 3.19086 1.84224i
\(441\) −90.3220 + 217.228i −0.204812 + 0.492581i
\(442\) −1221.98 + 178.350i −2.76467 + 0.403507i
\(443\) −293.632 169.529i −0.662826 0.382683i 0.130527 0.991445i \(-0.458333\pi\)
−0.793353 + 0.608762i \(0.791666\pi\)
\(444\) 563.126 375.720i 1.26830 0.846217i
\(445\) 288.023 498.870i 0.647242 1.12106i
\(446\) 483.687i 1.08450i
\(447\) −541.351 + 35.1158i −1.21108 + 0.0785588i
\(448\) −81.3496 140.902i −0.181584 0.314513i
\(449\) −75.7448 43.7313i −0.168697 0.0973971i 0.413274 0.910607i \(-0.364385\pi\)
−0.581971 + 0.813209i \(0.697718\pi\)
\(450\) 680.088 + 282.776i 1.51131 + 0.628391i
\(451\) −7.50504 + 12.9991i −0.0166409 + 0.0288229i
\(452\) 1583.83i 3.50404i
\(453\) −258.881 127.883i −0.571480 0.282302i
\(454\) −161.164 279.145i −0.354987 0.614856i
\(455\) 62.2704 + 426.652i 0.136858 + 0.937696i
\(456\) −246.686 + 499.382i −0.540979 + 1.09514i
\(457\) −0.590571 −0.00129228 −0.000646139 1.00000i \(-0.500206\pi\)
−0.000646139 1.00000i \(0.500206\pi\)
\(458\) 642.880 371.167i 1.40367 0.810408i
\(459\) −234.311 + 685.702i −0.510482 + 1.49390i
\(460\) −1889.96 −4.10860
\(461\) −51.3324 + 29.6368i −0.111350 + 0.0642880i −0.554641 0.832090i \(-0.687144\pi\)
0.443291 + 0.896378i \(0.353811\pi\)
\(462\) 615.788 410.857i 1.33287 0.889300i
\(463\) −113.399 196.412i −0.244922 0.424217i 0.717188 0.696880i \(-0.245429\pi\)
−0.962110 + 0.272663i \(0.912096\pi\)
\(464\) 525.913i 1.13343i
\(465\) −130.275 + 263.724i −0.280162 + 0.567148i
\(466\) −1093.15 −2.34581
\(467\) 67.2592i 0.144024i −0.997404 0.0720119i \(-0.977058\pi\)
0.997404 0.0720119i \(-0.0229420\pi\)
\(468\) 714.449 + 696.555i 1.52660 + 1.48837i
\(469\) 344.351 0.734225
\(470\) 849.282i 1.80698i
\(471\) 329.990 220.171i 0.700615 0.467453i
\(472\) −1564.48 −3.31458
\(473\) −141.109 + 81.4695i −0.298328 + 0.172240i
\(474\) −69.9424 + 141.589i −0.147558 + 0.298710i
\(475\) −133.912 231.942i −0.281919 0.488299i
\(476\) 1094.35i 2.29905i
\(477\) 9.94433 + 76.3293i 0.0208477 + 0.160019i
\(478\) −341.559 591.598i −0.714559 1.23765i
\(479\) 29.6998i 0.0620038i −0.999519 0.0310019i \(-0.990130\pi\)
0.999519 0.0310019i \(-0.00986979\pi\)
\(480\) −276.069 + 184.194i −0.575143 + 0.383738i
\(481\) −127.162 + 319.604i −0.264369 + 0.664458i
\(482\) −960.699 + 554.660i −1.99315 + 1.15075i
\(483\) −457.270 + 29.6617i −0.946729 + 0.0614114i
\(484\) 781.193 1.61403
\(485\) 163.120 + 94.1772i 0.336329 + 0.194180i
\(486\) 815.388 273.727i 1.67775 0.563225i
\(487\) −17.9042 + 31.0109i −0.0367642 + 0.0636775i −0.883822 0.467823i \(-0.845038\pi\)
0.847058 + 0.531501i \(0.178372\pi\)
\(488\) −333.584 + 192.595i −0.683573 + 0.394661i
\(489\) −4.22577 2.08746i −0.00864166 0.00426884i
\(490\) 641.821 1.30984
\(491\) 708.405 + 408.998i 1.44278 + 0.832989i 0.998034 0.0626676i \(-0.0199608\pi\)
0.444746 + 0.895657i \(0.353294\pi\)
\(492\) 11.6650 23.6141i 0.0237093 0.0479961i
\(493\) 312.011 540.419i 0.632882 1.09618i
\(494\) −76.9777 527.420i −0.155825 1.06765i
\(495\) 553.190 + 722.946i 1.11756 + 1.46050i
\(496\) −159.850 276.868i −0.322278 0.558201i
\(497\) 332.879i 0.669777i
\(498\) −996.096 492.055i −2.00019 0.988062i
\(499\) 171.943 + 297.814i 0.344575 + 0.596822i 0.985276 0.170968i \(-0.0546896\pi\)
−0.640701 + 0.767790i \(0.721356\pi\)
\(500\) 111.169i 0.222338i
\(501\) −366.280 + 741.482i −0.731097 + 1.48000i
\(502\) 473.018 819.291i 0.942267 1.63205i
\(503\) 667.525 + 385.396i 1.32709 + 0.766195i 0.984848 0.173418i \(-0.0554812\pi\)
0.342240 + 0.939613i \(0.388815\pi\)
\(504\) −547.746 + 419.129i −1.08680 + 0.831605i
\(505\) 217.128 + 376.077i 0.429956 + 0.744706i
\(506\) −1427.84 824.367i −2.82183 1.62918i
\(507\) −499.780 85.2589i −0.985759 0.168164i
\(508\) −63.7244 110.374i −0.125442 0.217271i
\(509\) −327.879 189.301i −0.644164 0.371908i 0.142053 0.989859i \(-0.454630\pi\)
−0.786217 + 0.617951i \(0.787963\pi\)
\(510\) 1972.76 127.967i 3.86816 0.250916i
\(511\) 154.369 + 267.375i 0.302092 + 0.523239i
\(512\) 1089.43i 2.12779i
\(513\) −295.956 101.131i −0.576912 0.197137i
\(514\) −129.991 + 225.151i −0.252901 + 0.438037i
\(515\) −662.105 382.266i −1.28564 0.742265i
\(516\) 237.831 158.682i 0.460913 0.307523i
\(517\) −252.168 + 436.768i −0.487753 + 0.844813i
\(518\) −387.791 223.891i −0.748631 0.432222i
\(519\) 97.0384 + 145.440i 0.186972 + 0.280232i
\(520\) 534.347 1343.01i 1.02759 2.58272i
\(521\) 941.779i 1.80764i −0.427915 0.903819i \(-0.640752\pi\)
0.427915 0.903819i \(-0.359248\pi\)
\(522\) −734.482 + 95.6897i −1.40705 + 0.183314i
\(523\) 28.7721 + 49.8347i 0.0550135 + 0.0952862i 0.892221 0.451600i \(-0.149146\pi\)
−0.837207 + 0.546886i \(0.815813\pi\)
\(524\) 1418.77 819.125i 2.70757 1.56321i
\(525\) −21.4673 330.944i −0.0408901 0.630369i
\(526\) −21.5276 −0.0409269
\(527\) 379.339i 0.719808i
\(528\) −987.321 + 64.0444i −1.86993 + 0.121296i
\(529\) 245.788 + 425.717i 0.464628 + 0.804758i
\(530\) 181.864 104.999i 0.343140 0.198112i
\(531\) −113.491 871.120i −0.213731 1.64053i
\(532\) 472.332 0.887842
\(533\) 1.93275 + 13.2424i 0.00362618 + 0.0248451i
\(534\) −733.499 + 489.394i −1.37359 + 0.916467i
\(535\) 358.488 620.919i 0.670071 1.16060i
\(536\) −999.708 577.182i −1.86513 1.07683i
\(537\) 14.5142 + 21.7538i 0.0270283 + 0.0405098i
\(538\) −315.506 + 546.473i −0.586443 + 1.01575i
\(539\) 330.076 + 190.569i 0.612386 + 0.353561i
\(540\) −1050.76 1203.06i −1.94585 2.22788i
\(541\) 376.905 0.696683 0.348341 0.937368i \(-0.386745\pi\)
0.348341 + 0.937368i \(0.386745\pi\)
\(542\) 721.197 416.383i 1.33062 0.768235i
\(543\) −62.0866 957.138i −0.114340 1.76269i
\(544\) −213.998 + 370.656i −0.393379 + 0.681352i
\(545\) 224.560 129.650i 0.412037 0.237890i
\(546\) 203.788 627.762i 0.373239 1.14975i
\(547\) −399.375 + 691.739i −0.730120 + 1.26460i 0.226712 + 0.973962i \(0.427202\pi\)
−0.956832 + 0.290643i \(0.906131\pi\)
\(548\) −1745.09 + 1007.53i −3.18447 + 1.83855i
\(549\) −131.437 171.771i −0.239412 0.312880i
\(550\) 596.626 1033.39i 1.08477 1.87888i
\(551\) 233.250 + 134.667i 0.423322 + 0.244405i
\(552\) 1377.25 + 680.336i 2.49501 + 1.23249i
\(553\) 71.1075 0.128585
\(554\) 666.928 385.051i 1.20384 0.695038i
\(555\) 243.875 493.690i 0.439414 0.889532i
\(556\) 1745.09 3.13864
\(557\) −357.720 + 206.530i −0.642226 + 0.370789i −0.785472 0.618898i \(-0.787580\pi\)
0.143245 + 0.989687i \(0.454246\pi\)
\(558\) 357.584 273.619i 0.640832 0.490357i
\(559\) −53.7055 + 134.982i −0.0960743 + 0.241470i
\(560\) 649.688 + 375.098i 1.16016 + 0.669817i
\(561\) 1052.55 + 519.941i 1.87620 + 0.926812i
\(562\) −213.858 + 370.414i −0.380531 + 0.659099i
\(563\) 331.849i 0.589430i −0.955585 0.294715i \(-0.904775\pi\)
0.955585 0.294715i \(-0.0952247\pi\)
\(564\) 391.941 793.430i 0.694932 1.40679i
\(565\) 644.143 + 1115.69i 1.14008 + 1.97467i
\(566\) −38.8521 22.4313i −0.0686433 0.0396312i
\(567\) −273.110 274.586i −0.481675 0.484278i
\(568\) −557.952 + 966.401i −0.982310 + 1.70141i
\(569\) 299.019i 0.525517i 0.964862 + 0.262759i \(0.0846323\pi\)
−0.964862 + 0.262759i \(0.915368\pi\)
\(570\) 55.2319 + 851.465i 0.0968980 + 1.49380i
\(571\) −115.115 199.385i −0.201602 0.349186i 0.747442 0.664327i \(-0.231282\pi\)
−0.949045 + 0.315141i \(0.897948\pi\)
\(572\) 1268.56 1001.98i 2.21776 1.75172i
\(573\) −35.9267 53.8466i −0.0626993 0.0939731i
\(574\) −17.4216 −0.0303512
\(575\) −639.672 + 369.315i −1.11247 + 0.642287i
\(576\) −303.692 + 39.5656i −0.527242 + 0.0686902i
\(577\) 903.438 1.56575 0.782876 0.622178i \(-0.213752\pi\)
0.782876 + 0.622178i \(0.213752\pi\)
\(578\) 1322.03 763.277i 2.28726 1.32055i
\(579\) −23.9555 11.8336i −0.0413740 0.0204380i
\(580\) 687.775 + 1191.26i 1.18582 + 2.05390i
\(581\) 500.251i 0.861017i
\(582\) −160.021 239.838i −0.274950 0.412093i
\(583\) 124.705 0.213903
\(584\) 1034.98i 1.77222i
\(585\) 786.565 + 200.105i 1.34456 + 0.342059i
\(586\) 700.710 1.19575
\(587\) 206.546i 0.351868i −0.984402 0.175934i \(-0.943706\pi\)
0.984402 0.175934i \(-0.0562945\pi\)
\(588\) −599.614 296.199i −1.01975 0.503740i
\(589\) −163.727 −0.277974
\(590\) −2075.55 + 1198.32i −3.51788 + 2.03105i
\(591\) 26.6440 + 39.9338i 0.0450829 + 0.0675698i
\(592\) 299.238 + 518.296i 0.505470 + 0.875500i
\(593\) 854.227i 1.44052i 0.693705 + 0.720259i \(0.255977\pi\)
−0.693705 + 0.720259i \(0.744023\pi\)
\(594\) −269.086 1367.22i −0.453007 2.30172i
\(595\) −445.072 770.887i −0.748020 1.29561i
\(596\) 1542.17i 2.58753i
\(597\) −463.301 228.863i −0.776049 0.383355i
\(598\) −1454.57 + 212.297i −2.43239 + 0.355011i
\(599\) 170.718 98.5643i 0.285006 0.164548i −0.350682 0.936495i \(-0.614050\pi\)
0.635687 + 0.771947i \(0.280717\pi\)
\(600\) −492.385 + 996.765i −0.820642 + 1.66128i
\(601\) −590.228 −0.982077 −0.491038 0.871138i \(-0.663383\pi\)
−0.491038 + 0.871138i \(0.663383\pi\)
\(602\) −163.780 94.5583i −0.272060 0.157074i
\(603\) 248.859 598.517i 0.412702 0.992565i
\(604\) 410.416 710.861i 0.679497 1.17692i
\(605\) 550.292 317.711i 0.909574 0.525143i
\(606\) −43.0286 663.337i −0.0710044 1.09462i
\(607\) −42.1306 −0.0694079 −0.0347040 0.999398i \(-0.511049\pi\)
−0.0347040 + 0.999398i \(0.511049\pi\)
\(608\) −159.979 92.3638i −0.263123 0.151914i
\(609\) 185.101 + 277.428i 0.303943 + 0.455547i
\(610\) −295.037 + 511.018i −0.483667 + 0.837735i
\(611\) 64.9402 + 444.944i 0.106285 + 0.728222i
\(612\) −1902.09 790.874i −3.10798 1.29228i
\(613\) 217.681 + 377.035i 0.355108 + 0.615066i 0.987137 0.159880i \(-0.0511106\pi\)
−0.632028 + 0.774945i \(0.717777\pi\)
\(614\) 1924.86i 3.13495i
\(615\) −1.38676 21.3785i −0.00225489 0.0347618i
\(616\) 558.693 + 967.685i 0.906969 + 1.57092i
\(617\) 210.880i 0.341783i 0.985290 + 0.170891i \(0.0546647\pi\)
−0.985290 + 0.170891i \(0.945335\pi\)
\(618\) 649.527 + 973.505i 1.05102 + 1.57525i
\(619\) 62.1645 107.672i 0.100427 0.173945i −0.811433 0.584445i \(-0.801312\pi\)
0.911861 + 0.410500i \(0.134646\pi\)
\(620\) −724.160 418.094i −1.16800 0.674345i
\(621\) −278.909 + 816.217i −0.449129 + 1.31436i
\(622\) 766.986 + 1328.46i 1.23310 + 2.13578i
\(623\) 343.844 + 198.518i 0.551916 + 0.318649i
\(624\) −655.393 + 590.433i −1.05031 + 0.946206i
\(625\) 334.223 + 578.892i 0.534758 + 0.926227i
\(626\) 388.479 + 224.289i 0.620574 + 0.358288i
\(627\) −224.412 + 454.291i −0.357914 + 0.724546i
\(628\) 563.858 + 976.630i 0.897863 + 1.55514i
\(629\) 710.122i 1.12897i
\(630\) −405.644 + 975.592i −0.643880 + 1.54856i
\(631\) 272.744 472.406i 0.432241 0.748663i −0.564825 0.825210i \(-0.691056\pi\)
0.997066 + 0.0765478i \(0.0243898\pi\)
\(632\) −206.436 119.186i −0.326640 0.188586i
\(633\) 212.479 + 104.961i 0.335670 + 0.165815i
\(634\) 728.500 1261.80i 1.14905 1.99022i
\(635\) −89.7782 51.8335i −0.141383 0.0816275i
\(636\) −218.361 + 14.1644i −0.343335 + 0.0222711i
\(637\) 336.254 49.0768i 0.527872 0.0770436i
\(638\) 1199.98i 1.88085i
\(639\) −578.577 240.568i −0.905441 0.376476i
\(640\) 639.011 + 1106.80i 0.998455 + 1.72938i
\(641\) 443.357 255.972i 0.691665 0.399333i −0.112571 0.993644i \(-0.535908\pi\)
0.804235 + 0.594311i \(0.202575\pi\)
\(642\) −912.950 + 609.124i −1.42204 + 0.948792i
\(643\) −565.972 −0.880206 −0.440103 0.897947i \(-0.645058\pi\)
−0.440103 + 0.897947i \(0.645058\pi\)
\(644\) 1302.64i 2.02274i
\(645\) 102.998 208.506i 0.159687 0.323264i
\(646\) 550.191 + 952.958i 0.851688 + 1.47517i
\(647\) 443.043 255.791i 0.684765 0.395349i −0.116883 0.993146i \(-0.537290\pi\)
0.801648 + 0.597796i \(0.203957\pi\)
\(648\) 332.637 + 1254.94i 0.513329 + 1.93663i
\(649\) −1423.22 −2.19294
\(650\) −153.647 1052.73i −0.236380 1.61958i
\(651\) −181.770 89.7915i −0.279217 0.137929i
\(652\) 6.69932 11.6036i 0.0102750 0.0177969i
\(653\) −91.9247 53.0728i −0.140773 0.0812753i 0.427959 0.903798i \(-0.359233\pi\)
−0.568732 + 0.822523i \(0.692566\pi\)
\(654\) −396.087 + 25.6929i −0.605638 + 0.0392858i
\(655\) 666.276 1154.02i 1.01722 1.76187i
\(656\) 20.1650 + 11.6423i 0.0307394 + 0.0177474i
\(657\) 576.285 75.0796i 0.877146 0.114276i
\(658\) −585.363 −0.889610
\(659\) −762.630 + 440.305i −1.15725 + 0.668141i −0.950644 0.310283i \(-0.899576\pi\)
−0.206610 + 0.978423i \(0.566243\pi\)
\(660\) −2152.65 + 1436.26i −3.26159 + 2.17615i
\(661\) 36.9113 63.9322i 0.0558416 0.0967205i −0.836753 0.547580i \(-0.815549\pi\)
0.892595 + 0.450860i \(0.148882\pi\)
\(662\) 375.313 216.687i 0.566939 0.327322i
\(663\) 1023.76 217.890i 1.54413 0.328642i
\(664\) 838.491 1452.31i 1.26279 2.18721i
\(665\) 332.723 192.097i 0.500335 0.288868i
\(666\) −669.397 + 512.215i −1.00510 + 0.769092i
\(667\) 371.398 643.281i 0.556819 0.964439i
\(668\) −2036.04 1175.51i −3.04796 1.75974i
\(669\) 26.5370 + 409.099i 0.0396666 + 0.611507i
\(670\) −1768.37 −2.63936
\(671\) −303.463 + 175.204i −0.452255 + 0.261109i
\(672\) −126.955 190.279i −0.188921 0.283153i
\(673\) −984.011 −1.46213 −0.731063 0.682310i \(-0.760976\pi\)
−0.731063 + 0.682310i \(0.760976\pi\)
\(674\) 18.0942 10.4467i 0.0268460 0.0154996i
\(675\) −590.727 201.857i −0.875152 0.299048i
\(676\) 333.830 1402.09i 0.493831 2.07410i
\(677\) −976.039 563.516i −1.44171 0.832372i −0.443747 0.896152i \(-0.646351\pi\)
−0.997964 + 0.0637796i \(0.979685\pi\)
\(678\) −127.651 1967.89i −0.188276 2.90249i
\(679\) −64.9112 + 112.429i −0.0955982 + 0.165581i
\(680\) 2984.01i 4.38825i
\(681\) 151.626 + 227.256i 0.222653 + 0.333710i
\(682\) −364.731 631.733i −0.534796 0.926294i
\(683\) 590.806 + 341.102i 0.865016 + 0.499417i 0.865689 0.500583i \(-0.166881\pi\)
−0.000672920 1.00000i \(0.500214\pi\)
\(684\) 341.349 820.960i 0.499049 1.20023i
\(685\) −819.523 + 1419.45i −1.19638 + 2.07220i
\(686\) 1271.62i 1.85367i
\(687\) −523.379 + 349.201i −0.761832 + 0.508298i
\(688\) 126.381 + 218.898i 0.183693 + 0.318165i
\(689\) 87.2509 68.9160i 0.126634 0.100023i
\(690\) 2348.25 152.324i 3.40327 0.220759i
\(691\) 478.083 0.691872 0.345936 0.938258i \(-0.387561\pi\)
0.345936 + 0.938258i \(0.387561\pi\)
\(692\) −430.442 + 248.516i −0.622026 + 0.359127i
\(693\) −498.287 + 381.284i −0.719029 + 0.550193i
\(694\) 507.423 0.731158
\(695\) 1229.28 709.727i 1.76875 1.02119i
\(696\) −72.3704 1115.67i −0.103980 1.60298i
\(697\) −13.8141 23.9268i −0.0198194 0.0343283i
\(698\) 967.768i 1.38649i
\(699\) 924.574 59.9743i 1.32271 0.0858001i
\(700\) 942.773 1.34682
\(701\) 573.375i 0.817939i −0.912548 0.408970i \(-0.865888\pi\)
0.912548 0.408970i \(-0.134112\pi\)
\(702\) −943.836 807.881i −1.34450 1.15083i
\(703\) 306.496 0.435983
\(704\) 496.166i 0.704781i
\(705\) −46.5949 718.315i −0.0660920 1.01889i
\(706\) −1729.82 −2.45018
\(707\) −259.209 + 149.654i −0.366632 + 0.211675i
\(708\) 2492.08 161.653i 3.51989 0.228324i
\(709\) 511.795 + 886.454i 0.721854 + 1.25029i 0.960256 + 0.279121i \(0.0900431\pi\)
−0.238402 + 0.971167i \(0.576624\pi\)
\(710\) 1709.46i 2.40769i
\(711\) 51.3886 123.592i 0.0722765 0.173828i
\(712\) −665.490 1152.66i −0.934676 1.61891i
\(713\) 451.541i 0.633298i
\(714\) 88.2007 + 1359.72i 0.123530 + 1.90437i
\(715\) 486.099 1221.75i 0.679858 1.70874i
\(716\) −64.3820 + 37.1710i −0.0899190 + 0.0519147i
\(717\) 321.345 + 481.629i 0.448180 + 0.671728i
\(718\) −1909.83 −2.65993
\(719\) 116.126 + 67.0454i 0.161511 + 0.0932482i 0.578577 0.815628i \(-0.303608\pi\)
−0.417066 + 0.908876i \(0.636942\pi\)
\(720\) 1121.48 858.143i 1.55761 1.19187i
\(721\) 263.475 456.353i 0.365430 0.632944i
\(722\) 695.276 401.418i 0.962987 0.555981i
\(723\) 782.121 521.834i 1.08177 0.721763i
\(724\) 2726.64 3.76608
\(725\) 465.567 + 268.795i 0.642161 + 0.370752i
\(726\) −970.625 + 62.9614i −1.33695 + 0.0867237i
\(727\) −104.008 + 180.148i −0.143065 + 0.247796i −0.928649 0.370958i \(-0.879029\pi\)
0.785584 + 0.618755i \(0.212363\pi\)
\(728\) 925.665 + 368.296i 1.27152 + 0.505902i
\(729\) −674.630 + 276.252i −0.925419 + 0.378946i
\(730\) −792.743 1373.07i −1.08595 1.88092i
\(731\) 299.913i 0.410278i
\(732\) 511.468 341.254i 0.698727 0.466194i
\(733\) 30.2381 + 52.3739i 0.0412525 + 0.0714515i 0.885914 0.463849i \(-0.153532\pi\)
−0.844662 + 0.535300i \(0.820199\pi\)
\(734\) 184.106i 0.250825i
\(735\) −542.847 + 35.2128i −0.738568 + 0.0479086i
\(736\) −254.730 + 441.205i −0.346100 + 0.599463i
\(737\) −909.439 525.065i −1.23397 0.712436i
\(738\) −12.5904 + 30.2805i −0.0170602 + 0.0410304i
\(739\) −62.0946 107.551i −0.0840251 0.145536i 0.820950 0.571000i \(-0.193444\pi\)
−0.904975 + 0.425464i \(0.860111\pi\)
\(740\) 1355.63 + 782.671i 1.83193 + 1.05766i
\(741\) 94.0434 + 441.864i 0.126914 + 0.596308i
\(742\) 72.3702 + 125.349i 0.0975340 + 0.168934i
\(743\) −188.132 108.618i −0.253206 0.146189i 0.368025 0.929816i \(-0.380034\pi\)
−0.621231 + 0.783627i \(0.713367\pi\)
\(744\) 377.205 + 565.352i 0.506996 + 0.759882i
\(745\) −627.201 1086.34i −0.841880 1.45818i
\(746\) 2172.05i 2.91159i
\(747\) 869.486 + 361.526i 1.16397 + 0.483971i
\(748\) −1668.66 + 2890.20i −2.23082 + 3.86390i
\(749\) 427.966 + 247.086i 0.571383 + 0.329888i
\(750\) −8.95985 138.127i −0.0119465 0.184169i
\(751\) −478.854 + 829.400i −0.637622 + 1.10439i 0.348331 + 0.937372i \(0.386749\pi\)
−0.985953 + 0.167022i \(0.946585\pi\)
\(752\) 677.543 + 391.179i 0.900987 + 0.520185i
\(753\) −355.125 + 718.901i −0.471614 + 0.954716i
\(754\) 663.147 + 839.576i 0.879505 + 1.11350i
\(755\) 667.665i 0.884325i
\(756\) 829.202 724.231i 1.09683 0.957977i
\(757\) −23.2017 40.1865i −0.0306496 0.0530866i 0.850294 0.526308i \(-0.176424\pi\)
−0.880943 + 0.473222i \(0.843091\pi\)
\(758\) 421.445 243.322i 0.555996 0.321005i
\(759\) 1252.89 + 618.905i 1.65071 + 0.815422i
\(760\) −1287.93 −1.69464
\(761\) 901.092i 1.18409i −0.805905 0.592044i \(-0.798321\pi\)
0.805905 0.592044i \(-0.201679\pi\)
\(762\) 88.0727 + 132.003i 0.115581 + 0.173232i
\(763\) 89.3605 + 154.777i 0.117117 + 0.202853i
\(764\) 159.363 92.0084i 0.208591 0.120430i
\(765\) −1661.53 + 216.467i −2.17193 + 0.282963i
\(766\) −275.876 −0.360151
\(767\) −995.765 + 786.514i −1.29826 + 1.02544i
\(768\) −100.202 1544.73i −0.130471 2.01136i
\(769\) 73.2129 126.809i 0.0952054 0.164901i −0.814489 0.580179i \(-0.802983\pi\)
0.909694 + 0.415279i \(0.136316\pi\)
\(770\) 1482.40