Properties

Label 117.3.k.a.29.18
Level $117$
Weight $3$
Character 117.29
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(29,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.29");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 29.18
Character \(\chi\) \(=\) 117.29
Dual form 117.3.k.a.113.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.28020i q^{2} +(1.42433 - 2.64032i) q^{3} +2.36108 q^{4} +(2.95232 - 1.70452i) q^{5} +(3.38014 + 1.82343i) q^{6} +(-5.94919 - 10.3043i) q^{7} +8.14347i q^{8} +(-4.94255 - 7.52139i) q^{9} +(2.18213 + 3.77956i) q^{10} +0.388888i q^{11} +(3.36297 - 6.23401i) q^{12} +(-0.0928942 + 12.9997i) q^{13} +(13.1916 - 7.61616i) q^{14} +(-0.295390 - 10.2229i) q^{15} -0.980943 q^{16} +(15.0463 + 8.68699i) q^{17} +(9.62889 - 6.32745i) q^{18} +(-0.621191 + 1.07593i) q^{19} +(6.97067 - 4.02452i) q^{20} +(-35.6802 + 1.03098i) q^{21} -0.497854 q^{22} +(26.5009 + 15.3003i) q^{23} +(21.5013 + 11.5990i) q^{24} +(-6.68922 + 11.5861i) q^{25} +(-16.6422 - 0.118923i) q^{26} +(-26.8987 + 2.33692i) q^{27} +(-14.0465 - 24.3293i) q^{28} +31.0599i q^{29} +(13.0873 - 0.378159i) q^{30} +(-5.37627 - 9.31197i) q^{31} +31.3181i q^{32} +(1.02679 + 0.553906i) q^{33} +(-11.1211 + 19.2623i) q^{34} +(-35.1278 - 20.2810i) q^{35} +(-11.6698 - 17.7586i) q^{36} +(-19.8258 - 34.3393i) q^{37} +(-1.37741 - 0.795249i) q^{38} +(34.1909 + 18.7611i) q^{39} +(13.8807 + 24.0421i) q^{40} +(-10.3721 - 5.98834i) q^{41} +(-1.31987 - 45.6779i) q^{42} +(-22.6657 - 39.2581i) q^{43} +0.918196i q^{44} +(-27.4123 - 13.7808i) q^{45} +(-19.5875 + 33.9265i) q^{46} +(-19.2574 - 11.1183i) q^{47} +(-1.39719 + 2.59000i) q^{48} +(-46.2857 + 80.1692i) q^{49} +(-14.8325 - 8.56355i) q^{50} +(44.3674 - 27.3539i) q^{51} +(-0.219331 + 30.6933i) q^{52} -62.8432i q^{53} +(-2.99173 - 34.4357i) q^{54} +(0.662867 + 1.14812i) q^{55} +(83.9127 - 48.4470i) q^{56} +(1.95602 + 3.17263i) q^{57} -39.7630 q^{58} +86.0767i q^{59} +(-0.697442 - 24.1370i) q^{60} +(51.8074 + 89.7331i) q^{61} +(11.9212 - 6.88271i) q^{62} +(-48.0985 + 95.6756i) q^{63} -44.0172 q^{64} +(21.8839 + 38.5375i) q^{65} +(-0.709111 + 1.31449i) q^{66} +(35.6269 - 61.7076i) q^{67} +(35.5256 + 20.5107i) q^{68} +(78.1438 - 48.1781i) q^{69} +(25.9638 - 44.9706i) q^{70} +(-21.8910 - 12.6388i) q^{71} +(61.2502 - 40.2495i) q^{72} +38.2777 q^{73} +(43.9612 - 25.3810i) q^{74} +(21.0632 + 34.1641i) q^{75} +(-1.46668 + 2.54037i) q^{76} +(4.00721 - 2.31357i) q^{77} +(-24.0180 + 43.7713i) q^{78} +(25.4640 - 44.1049i) q^{79} +(-2.89605 + 1.67204i) q^{80} +(-32.1425 + 74.3496i) q^{81} +(7.66628 - 13.2784i) q^{82} +(-83.8496 - 48.4106i) q^{83} +(-84.2441 + 2.43424i) q^{84} +59.2286 q^{85} +(50.2582 - 29.0166i) q^{86} +(82.0081 + 44.2397i) q^{87} -3.16689 q^{88} +(-126.762 + 73.1861i) q^{89} +(17.6422 - 35.0933i) q^{90} +(134.505 - 76.3803i) q^{91} +(62.5709 + 36.1253i) q^{92} +(-32.2441 + 0.931698i) q^{93} +(14.2336 - 24.6534i) q^{94} +4.23533i q^{95} +(82.6896 + 44.6074i) q^{96} +(-53.4485 - 92.5755i) q^{97} +(-102.633 - 59.2550i) q^{98} +(2.92497 - 1.92209i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - q^{3} - 98 q^{4} - 6 q^{5} + 12 q^{6} - q^{7} - 3 q^{9} - 6 q^{10} - 39 q^{12} + 4 q^{13} - 6 q^{14} - 25 q^{15} + 166 q^{16} + 34 q^{18} + 5 q^{19} + 21 q^{20} - 91 q^{21} + 30 q^{22} - 75 q^{23}+ \cdots + 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.28020i 0.640101i 0.947401 + 0.320050i \(0.103700\pi\)
−0.947401 + 0.320050i \(0.896300\pi\)
\(3\) 1.42433 2.64032i 0.474778 0.880106i
\(4\) 2.36108 0.590271
\(5\) 2.95232 1.70452i 0.590463 0.340904i −0.174818 0.984601i \(-0.555934\pi\)
0.765281 + 0.643697i \(0.222600\pi\)
\(6\) 3.38014 + 1.82343i 0.563356 + 0.303906i
\(7\) −5.94919 10.3043i −0.849884 1.47204i −0.881311 0.472537i \(-0.843338\pi\)
0.0314269 0.999506i \(-0.489995\pi\)
\(8\) 8.14347i 1.01793i
\(9\) −4.94255 7.52139i −0.549172 0.835709i
\(10\) 2.18213 + 3.77956i 0.218213 + 0.377956i
\(11\) 0.388888i 0.0353534i 0.999844 + 0.0176767i \(0.00562696\pi\)
−0.999844 + 0.0176767i \(0.994373\pi\)
\(12\) 3.36297 6.23401i 0.280248 0.519501i
\(13\) −0.0928942 + 12.9997i −0.00714571 + 0.999974i
\(14\) 13.1916 7.61616i 0.942255 0.544011i
\(15\) −0.295390 10.2229i −0.0196927 0.681524i
\(16\) −0.980943 −0.0613089
\(17\) 15.0463 + 8.68699i 0.885077 + 0.511000i 0.872329 0.488919i \(-0.162609\pi\)
0.0127482 + 0.999919i \(0.495942\pi\)
\(18\) 9.62889 6.32745i 0.534938 0.351525i
\(19\) −0.621191 + 1.07593i −0.0326942 + 0.0566281i −0.881910 0.471419i \(-0.843742\pi\)
0.849215 + 0.528047i \(0.177075\pi\)
\(20\) 6.97067 4.02452i 0.348533 0.201226i
\(21\) −35.6802 + 1.03098i −1.69906 + 0.0490945i
\(22\) −0.497854 −0.0226297
\(23\) 26.5009 + 15.3003i 1.15221 + 0.665231i 0.949426 0.313992i \(-0.101666\pi\)
0.202788 + 0.979223i \(0.435000\pi\)
\(24\) 21.5013 + 11.5990i 0.895889 + 0.483292i
\(25\) −6.68922 + 11.5861i −0.267569 + 0.463443i
\(26\) −16.6422 0.118923i −0.640084 0.00457397i
\(27\) −26.8987 + 2.33692i −0.996247 + 0.0865528i
\(28\) −14.0465 24.3293i −0.501662 0.868904i
\(29\) 31.0599i 1.07103i 0.844525 + 0.535516i \(0.179883\pi\)
−0.844525 + 0.535516i \(0.820117\pi\)
\(30\) 13.0873 0.378159i 0.436244 0.0126053i
\(31\) −5.37627 9.31197i −0.173428 0.300386i 0.766188 0.642616i \(-0.222151\pi\)
−0.939616 + 0.342230i \(0.888818\pi\)
\(32\) 31.3181i 0.978690i
\(33\) 1.02679 + 0.553906i 0.0311147 + 0.0167850i
\(34\) −11.1211 + 19.2623i −0.327091 + 0.566539i
\(35\) −35.1278 20.2810i −1.00365 0.579458i
\(36\) −11.6698 17.7586i −0.324160 0.493295i
\(37\) −19.8258 34.3393i −0.535832 0.928088i −0.999123 0.0418816i \(-0.986665\pi\)
0.463291 0.886206i \(-0.346669\pi\)
\(38\) −1.37741 0.795249i −0.0362477 0.0209276i
\(39\) 34.1909 + 18.7611i 0.876691 + 0.481055i
\(40\) 13.8807 + 24.0421i 0.347018 + 0.601052i
\(41\) −10.3721 5.98834i −0.252978 0.146057i 0.368149 0.929767i \(-0.379992\pi\)
−0.621127 + 0.783710i \(0.713325\pi\)
\(42\) −1.31987 45.6779i −0.0314254 1.08757i
\(43\) −22.6657 39.2581i −0.527108 0.912978i −0.999501 0.0315902i \(-0.989943\pi\)
0.472393 0.881388i \(-0.343390\pi\)
\(44\) 0.918196i 0.0208681i
\(45\) −27.4123 13.7808i −0.609162 0.306241i
\(46\) −19.5875 + 33.9265i −0.425815 + 0.737533i
\(47\) −19.2574 11.1183i −0.409733 0.236559i 0.280942 0.959725i \(-0.409353\pi\)
−0.690675 + 0.723165i \(0.742686\pi\)
\(48\) −1.39719 + 2.59000i −0.0291081 + 0.0539583i
\(49\) −46.2857 + 80.1692i −0.944606 + 1.63611i
\(50\) −14.8325 8.56355i −0.296650 0.171271i
\(51\) 44.3674 27.3539i 0.869949 0.536350i
\(52\) −0.219331 + 30.6933i −0.00421790 + 0.590256i
\(53\) 62.8432i 1.18572i −0.805305 0.592861i \(-0.797998\pi\)
0.805305 0.592861i \(-0.202002\pi\)
\(54\) −2.99173 34.4357i −0.0554025 0.637699i
\(55\) 0.662867 + 1.14812i 0.0120521 + 0.0208749i
\(56\) 83.9127 48.4470i 1.49844 0.865126i
\(57\) 1.95602 + 3.17263i 0.0343162 + 0.0556602i
\(58\) −39.7630 −0.685569
\(59\) 86.0767i 1.45893i 0.684020 + 0.729464i \(0.260230\pi\)
−0.684020 + 0.729464i \(0.739770\pi\)
\(60\) −0.697442 24.1370i −0.0116240 0.402284i
\(61\) 51.8074 + 89.7331i 0.849302 + 1.47103i 0.881832 + 0.471563i \(0.156310\pi\)
−0.0325305 + 0.999471i \(0.510357\pi\)
\(62\) 11.9212 6.88271i 0.192277 0.111011i
\(63\) −48.0985 + 95.6756i −0.763467 + 1.51866i
\(64\) −44.0172 −0.687769
\(65\) 21.8839 + 38.5375i 0.336676 + 0.592884i
\(66\) −0.709111 + 1.31449i −0.0107441 + 0.0199166i
\(67\) 35.6269 61.7076i 0.531745 0.921009i −0.467569 0.883957i \(-0.654870\pi\)
0.999313 0.0370522i \(-0.0117968\pi\)
\(68\) 35.5256 + 20.5107i 0.522436 + 0.301628i
\(69\) 78.1438 48.1781i 1.13252 0.698233i
\(70\) 25.9638 44.9706i 0.370911 0.642437i
\(71\) −21.8910 12.6388i −0.308325 0.178011i 0.337852 0.941199i \(-0.390300\pi\)
−0.646177 + 0.763188i \(0.723633\pi\)
\(72\) 61.2502 40.2495i 0.850697 0.559020i
\(73\) 38.2777 0.524353 0.262176 0.965020i \(-0.415560\pi\)
0.262176 + 0.965020i \(0.415560\pi\)
\(74\) 43.9612 25.3810i 0.594070 0.342986i
\(75\) 21.0632 + 34.1641i 0.280843 + 0.455521i
\(76\) −1.46668 + 2.54037i −0.0192985 + 0.0334259i
\(77\) 4.00721 2.31357i 0.0520417 0.0300463i
\(78\) −24.0180 + 43.7713i −0.307924 + 0.561170i
\(79\) 25.4640 44.1049i 0.322329 0.558290i −0.658639 0.752459i \(-0.728868\pi\)
0.980968 + 0.194169i \(0.0622010\pi\)
\(80\) −2.89605 + 1.67204i −0.0362007 + 0.0209005i
\(81\) −32.1425 + 74.3496i −0.396821 + 0.917896i
\(82\) 7.66628 13.2784i 0.0934912 0.161932i
\(83\) −83.8496 48.4106i −1.01024 0.583260i −0.0989755 0.995090i \(-0.531557\pi\)
−0.911261 + 0.411830i \(0.864890\pi\)
\(84\) −84.2441 + 2.43424i −1.00291 + 0.0289791i
\(85\) 59.2286 0.696807
\(86\) 50.2582 29.0166i 0.584398 0.337402i
\(87\) 82.0081 + 44.2397i 0.942622 + 0.508503i
\(88\) −3.16689 −0.0359874
\(89\) −126.762 + 73.1861i −1.42429 + 0.822316i −0.996662 0.0816370i \(-0.973985\pi\)
−0.427631 + 0.903953i \(0.640652\pi\)
\(90\) 17.6422 35.0933i 0.196025 0.389925i
\(91\) 134.505 76.3803i 1.47808 0.839344i
\(92\) 62.5709 + 36.1253i 0.680118 + 0.392667i
\(93\) −32.2441 + 0.931698i −0.346711 + 0.0100183i
\(94\) 14.2336 24.6534i 0.151422 0.262270i
\(95\) 4.23533i 0.0445824i
\(96\) 82.6896 + 44.6074i 0.861350 + 0.464660i
\(97\) −53.4485 92.5755i −0.551016 0.954387i −0.998202 0.0599460i \(-0.980907\pi\)
0.447186 0.894441i \(-0.352426\pi\)
\(98\) −102.633 59.2550i −1.04727 0.604643i
\(99\) 2.92497 1.92209i 0.0295452 0.0194151i
\(100\) −15.7938 + 27.3557i −0.157938 + 0.273557i
\(101\) 142.272i 1.40863i −0.709887 0.704315i \(-0.751254\pi\)
0.709887 0.704315i \(-0.248746\pi\)
\(102\) 35.0184 + 56.7992i 0.343318 + 0.556855i
\(103\) −45.7825 79.2975i −0.444490 0.769879i 0.553527 0.832831i \(-0.313282\pi\)
−0.998017 + 0.0629525i \(0.979948\pi\)
\(104\) −105.862 0.756481i −1.01791 0.00727386i
\(105\) −103.582 + 63.8615i −0.986495 + 0.608205i
\(106\) 80.4520 0.758981
\(107\) 58.7386 33.9128i 0.548959 0.316942i −0.199743 0.979848i \(-0.564011\pi\)
0.748702 + 0.662907i \(0.230677\pi\)
\(108\) −63.5100 + 5.51768i −0.588056 + 0.0510896i
\(109\) −0.979347 −0.00898483 −0.00449242 0.999990i \(-0.501430\pi\)
−0.00449242 + 0.999990i \(0.501430\pi\)
\(110\) −1.46982 + 0.848603i −0.0133620 + 0.00771457i
\(111\) −118.905 + 3.43577i −1.07122 + 0.0309529i
\(112\) 5.83581 + 10.1079i 0.0521055 + 0.0902493i
\(113\) 37.4854i 0.331729i −0.986149 0.165865i \(-0.946959\pi\)
0.986149 0.165865i \(-0.0530414\pi\)
\(114\) −4.06160 + 2.50410i −0.0356281 + 0.0219658i
\(115\) 104.319 0.907120
\(116\) 73.3351i 0.632199i
\(117\) 98.2346 63.5528i 0.839612 0.543186i
\(118\) −110.196 −0.933860
\(119\) 206.722i 1.73716i
\(120\) 83.2495 2.40550i 0.693746 0.0200459i
\(121\) 120.849 0.998750
\(122\) −114.876 + 66.3239i −0.941610 + 0.543639i
\(123\) −30.5845 + 18.8563i −0.248654 + 0.153303i
\(124\) −12.6938 21.9863i −0.102370 0.177309i
\(125\) 130.834i 1.04667i
\(126\) −122.484 61.5757i −0.972096 0.488696i
\(127\) 99.3066 + 172.004i 0.781942 + 1.35436i 0.930809 + 0.365506i \(0.119104\pi\)
−0.148867 + 0.988857i \(0.547563\pi\)
\(128\) 68.9214i 0.538448i
\(129\) −135.937 + 3.92792i −1.05378 + 0.0304490i
\(130\) −49.3357 + 28.0159i −0.379505 + 0.215507i
\(131\) −54.3776 + 31.3949i −0.415096 + 0.239656i −0.692977 0.720960i \(-0.743701\pi\)
0.277881 + 0.960616i \(0.410368\pi\)
\(132\) 2.42433 + 1.30782i 0.0183661 + 0.00990771i
\(133\) 14.7823 0.111145
\(134\) 78.9982 + 45.6096i 0.589539 + 0.340370i
\(135\) −75.4300 + 52.7487i −0.558741 + 0.390731i
\(136\) −70.7423 + 122.529i −0.520164 + 0.900950i
\(137\) 35.3721 20.4221i 0.258190 0.149066i −0.365318 0.930883i \(-0.619040\pi\)
0.623509 + 0.781816i \(0.285707\pi\)
\(138\) 61.6776 + 100.040i 0.446939 + 0.724926i
\(139\) 33.2143 0.238952 0.119476 0.992837i \(-0.461879\pi\)
0.119476 + 0.992837i \(0.461879\pi\)
\(140\) −82.9396 47.8852i −0.592426 0.342037i
\(141\) −56.7848 + 35.0096i −0.402729 + 0.248295i
\(142\) 16.1802 28.0250i 0.113945 0.197359i
\(143\) −5.05541 0.0361254i −0.0353525 0.000252625i
\(144\) 4.84836 + 7.37805i 0.0336691 + 0.0512365i
\(145\) 52.9423 + 91.6987i 0.365119 + 0.632405i
\(146\) 49.0032i 0.335639i
\(147\) 145.746 + 236.397i 0.991468 + 1.60814i
\(148\) −46.8103 81.0779i −0.316286 0.547824i
\(149\) 176.203i 1.18257i 0.806463 + 0.591285i \(0.201379\pi\)
−0.806463 + 0.591285i \(0.798621\pi\)
\(150\) −43.7369 + 26.9652i −0.291580 + 0.179768i
\(151\) −47.8186 + 82.8242i −0.316679 + 0.548505i −0.979793 0.200014i \(-0.935901\pi\)
0.663114 + 0.748519i \(0.269235\pi\)
\(152\) −8.76183 5.05865i −0.0576436 0.0332806i
\(153\) −9.02888 156.105i −0.0590123 1.02029i
\(154\) 2.96183 + 5.13004i 0.0192327 + 0.0333120i
\(155\) −31.7449 18.3279i −0.204806 0.118245i
\(156\) 80.7277 + 44.2966i 0.517485 + 0.283953i
\(157\) −139.108 240.942i −0.886038 1.53466i −0.844519 0.535526i \(-0.820114\pi\)
−0.0415193 0.999138i \(-0.513220\pi\)
\(158\) 56.4631 + 32.5990i 0.357362 + 0.206323i
\(159\) −165.926 89.5097i −1.04356 0.562954i
\(160\) 53.3823 + 92.4608i 0.333639 + 0.577880i
\(161\) 364.098i 2.26148i
\(162\) −95.1824 41.1488i −0.587546 0.254005i
\(163\) 132.114 228.828i 0.810513 1.40385i −0.101992 0.994785i \(-0.532522\pi\)
0.912505 0.409065i \(-0.134145\pi\)
\(164\) −24.4894 14.1390i −0.149326 0.0862133i
\(165\) 3.97554 0.114874i 0.0240942 0.000696204i
\(166\) 61.9753 107.344i 0.373345 0.646653i
\(167\) 129.454 + 74.7404i 0.775175 + 0.447547i 0.834718 0.550678i \(-0.185631\pi\)
−0.0595426 + 0.998226i \(0.518964\pi\)
\(168\) −8.39579 290.561i −0.0499749 1.72953i
\(169\) −168.983 2.41519i −0.999898 0.0142910i
\(170\) 75.8246i 0.446027i
\(171\) 11.1628 0.645638i 0.0652794 0.00377566i
\(172\) −53.5155 92.6916i −0.311137 0.538905i
\(173\) −119.431 + 68.9533i −0.690351 + 0.398574i −0.803743 0.594976i \(-0.797162\pi\)
0.113393 + 0.993550i \(0.463828\pi\)
\(174\) −56.6358 + 104.987i −0.325493 + 0.603373i
\(175\) 159.182 0.909610
\(176\) 0.381477i 0.00216748i
\(177\) 227.270 + 122.602i 1.28401 + 0.692667i
\(178\) −93.6930 162.281i −0.526365 0.911691i
\(179\) −217.128 + 125.359i −1.21301 + 0.700331i −0.963413 0.268020i \(-0.913631\pi\)
−0.249595 + 0.968350i \(0.580297\pi\)
\(180\) −64.7228 32.5377i −0.359571 0.180765i
\(181\) −50.9136 −0.281290 −0.140645 0.990060i \(-0.544918\pi\)
−0.140645 + 0.990060i \(0.544918\pi\)
\(182\) 97.7821 + 172.194i 0.537264 + 0.946119i
\(183\) 310.715 8.97814i 1.69789 0.0490609i
\(184\) −124.598 + 215.809i −0.677161 + 1.17288i
\(185\) −117.064 67.5869i −0.632778 0.365334i
\(186\) −1.19276 41.2790i −0.00641269 0.221930i
\(187\) −3.37826 + 5.85133i −0.0180656 + 0.0312905i
\(188\) −45.4684 26.2512i −0.241853 0.139634i
\(189\) 184.106 + 263.269i 0.974104 + 1.39296i
\(190\) −5.42207 −0.0285372
\(191\) 255.354 147.428i 1.33693 0.771877i 0.350579 0.936533i \(-0.385985\pi\)
0.986351 + 0.164656i \(0.0526515\pi\)
\(192\) −62.6952 + 116.219i −0.326538 + 0.605309i
\(193\) −167.362 + 289.879i −0.867159 + 1.50196i −0.00227209 + 0.999997i \(0.500723\pi\)
−0.864887 + 0.501966i \(0.832610\pi\)
\(194\) 118.515 68.4249i 0.610904 0.352705i
\(195\) 132.921 2.89033i 0.681647 0.0148222i
\(196\) −109.284 + 189.286i −0.557574 + 0.965746i
\(197\) 70.7200 40.8302i 0.358985 0.207260i −0.309651 0.950850i \(-0.600212\pi\)
0.668635 + 0.743591i \(0.266879\pi\)
\(198\) 2.46067 + 3.74456i 0.0124276 + 0.0189119i
\(199\) 8.22234 14.2415i 0.0413183 0.0715654i −0.844627 0.535356i \(-0.820178\pi\)
0.885945 + 0.463790i \(0.153511\pi\)
\(200\) −94.3508 54.4735i −0.471754 0.272367i
\(201\) −112.183 181.959i −0.558125 0.905266i
\(202\) 182.136 0.901665
\(203\) 320.051 184.781i 1.57661 0.910253i
\(204\) 104.755 64.5848i 0.513506 0.316592i
\(205\) −40.8290 −0.199166
\(206\) 101.517 58.6108i 0.492800 0.284518i
\(207\) −15.9025 274.946i −0.0768235 1.32824i
\(208\) 0.0911239 12.7519i 0.000438096 0.0613074i
\(209\) −0.418417 0.241573i −0.00200200 0.00115585i
\(210\) −81.7556 132.606i −0.389312 0.631456i
\(211\) 28.1476 48.7530i 0.133401 0.231057i −0.791585 0.611060i \(-0.790744\pi\)
0.924985 + 0.380003i \(0.124077\pi\)
\(212\) 148.378i 0.699897i
\(213\) −64.5506 + 39.7974i −0.303054 + 0.186842i
\(214\) 43.4152 + 75.1973i 0.202875 + 0.351389i
\(215\) −133.832 77.2681i −0.622476 0.359387i
\(216\) −19.0307 219.049i −0.0881050 1.01411i
\(217\) −63.9689 + 110.797i −0.294787 + 0.510587i
\(218\) 1.25376i 0.00575120i
\(219\) 54.5203 101.065i 0.248951 0.461486i
\(220\) 1.56508 + 2.71081i 0.00711402 + 0.0123218i
\(221\) −114.326 + 194.790i −0.517311 + 0.881403i
\(222\) −4.39848 152.222i −0.0198130 0.685687i
\(223\) 255.002 1.14351 0.571754 0.820425i \(-0.306263\pi\)
0.571754 + 0.820425i \(0.306263\pi\)
\(224\) 322.711 186.317i 1.44067 0.831773i
\(225\) 120.205 6.95248i 0.534245 0.0308999i
\(226\) 47.9888 0.212340
\(227\) 4.66796 2.69505i 0.0205637 0.0118725i −0.489683 0.871901i \(-0.662887\pi\)
0.510247 + 0.860028i \(0.329554\pi\)
\(228\) 4.61834 + 7.49085i 0.0202559 + 0.0328546i
\(229\) 25.9402 + 44.9298i 0.113276 + 0.196200i 0.917089 0.398682i \(-0.130532\pi\)
−0.803813 + 0.594882i \(0.797199\pi\)
\(230\) 133.549i 0.580648i
\(231\) −0.400937 13.8756i −0.00173566 0.0600676i
\(232\) −252.936 −1.09024
\(233\) 239.911i 1.02966i 0.857292 + 0.514830i \(0.172145\pi\)
−0.857292 + 0.514830i \(0.827855\pi\)
\(234\) 81.3603 + 125.760i 0.347694 + 0.537436i
\(235\) −75.8053 −0.322576
\(236\) 203.234i 0.861163i
\(237\) −80.1817 130.053i −0.338319 0.548747i
\(238\) 264.646 1.11196
\(239\) 367.788 212.343i 1.53886 0.888463i 0.539958 0.841692i \(-0.318440\pi\)
0.998906 0.0467711i \(-0.0148931\pi\)
\(240\) 0.289761 + 10.0280i 0.00120734 + 0.0417835i
\(241\) −87.7783 152.037i −0.364226 0.630857i 0.624426 0.781084i \(-0.285333\pi\)
−0.988652 + 0.150227i \(0.952000\pi\)
\(242\) 154.711i 0.639301i
\(243\) 150.525 + 190.765i 0.619444 + 0.785041i
\(244\) 122.322 + 211.867i 0.501318 + 0.868309i
\(245\) 315.580i 1.28808i
\(246\) −24.1398 39.1543i −0.0981293 0.159164i
\(247\) −13.9291 8.17522i −0.0563930 0.0330981i
\(248\) 75.8317 43.7815i 0.305773 0.176538i
\(249\) −247.249 + 152.437i −0.992969 + 0.612196i
\(250\) −167.493 −0.669974
\(251\) −192.539 111.163i −0.767088 0.442879i 0.0647468 0.997902i \(-0.479376\pi\)
−0.831835 + 0.555023i \(0.812709\pi\)
\(252\) −113.565 + 225.898i −0.450653 + 0.896421i
\(253\) −5.95010 + 10.3059i −0.0235182 + 0.0407347i
\(254\) −220.200 + 127.132i −0.866929 + 0.500522i
\(255\) 84.3613 156.382i 0.330829 0.613264i
\(256\) −264.302 −1.03243
\(257\) −166.959 96.3938i −0.649646 0.375073i 0.138675 0.990338i \(-0.455716\pi\)
−0.788321 + 0.615265i \(0.789049\pi\)
\(258\) −5.02853 174.027i −0.0194904 0.674523i
\(259\) −235.895 + 408.581i −0.910790 + 1.57753i
\(260\) 51.6698 + 90.9902i 0.198730 + 0.349962i
\(261\) 233.614 153.515i 0.895072 0.588181i
\(262\) −40.1918 69.6143i −0.153404 0.265704i
\(263\) 33.4747i 0.127280i 0.997973 + 0.0636402i \(0.0202710\pi\)
−0.997973 + 0.0636402i \(0.979729\pi\)
\(264\) −4.51071 + 8.36160i −0.0170860 + 0.0316727i
\(265\) −107.118 185.533i −0.404217 0.700125i
\(266\) 18.9244i 0.0711442i
\(267\) 12.6830 + 438.934i 0.0475020 + 1.64395i
\(268\) 84.1181 145.697i 0.313874 0.543645i
\(269\) 189.997 + 109.695i 0.706308 + 0.407787i 0.809692 0.586854i \(-0.199634\pi\)
−0.103385 + 0.994641i \(0.532967\pi\)
\(270\) −67.5289 96.5656i −0.250107 0.357651i
\(271\) −95.0457 164.624i −0.350722 0.607468i 0.635654 0.771974i \(-0.280730\pi\)
−0.986376 + 0.164506i \(0.947397\pi\)
\(272\) −14.7596 8.52144i −0.0542631 0.0313288i
\(273\) −10.0880 463.927i −0.0369523 1.69937i
\(274\) 26.1444 + 45.2834i 0.0954174 + 0.165268i
\(275\) −4.50568 2.60136i −0.0163843 0.00945947i
\(276\) 184.504 113.752i 0.668493 0.412147i
\(277\) −138.346 239.622i −0.499443 0.865061i 0.500556 0.865704i \(-0.333129\pi\)
−1.00000 0.000642640i \(0.999795\pi\)
\(278\) 42.5210i 0.152953i
\(279\) −43.4665 + 86.4618i −0.155794 + 0.309899i
\(280\) 165.158 286.062i 0.589850 1.02165i
\(281\) −294.212 169.863i −1.04702 0.604496i −0.125204 0.992131i \(-0.539959\pi\)
−0.921813 + 0.387635i \(0.873292\pi\)
\(282\) −44.8193 72.6960i −0.158934 0.257787i
\(283\) −104.166 + 180.421i −0.368079 + 0.637531i −0.989265 0.146132i \(-0.953318\pi\)
0.621186 + 0.783663i \(0.286651\pi\)
\(284\) −51.6866 29.8413i −0.181995 0.105075i
\(285\) 11.1826 + 6.03252i 0.0392372 + 0.0211667i
\(286\) 0.0462478 6.47194i 0.000161706 0.0226292i
\(287\) 142.503i 0.496526i
\(288\) 235.555 154.791i 0.817900 0.537469i
\(289\) 6.42771 + 11.1331i 0.0222412 + 0.0385229i
\(290\) −117.393 + 67.7768i −0.404803 + 0.233713i
\(291\) −320.557 + 9.26254i −1.10157 + 0.0318300i
\(292\) 90.3770 0.309510
\(293\) 0.824535i 0.00281411i −0.999999 0.00140706i \(-0.999552\pi\)
0.999999 0.00140706i \(-0.000447880\pi\)
\(294\) −302.635 + 186.584i −1.02937 + 0.634639i
\(295\) 146.720 + 254.126i 0.497354 + 0.861443i
\(296\) 279.641 161.451i 0.944732 0.545441i
\(297\) −0.908801 10.4606i −0.00305994 0.0352207i
\(298\) −225.575 −0.756963
\(299\) −201.361 + 343.082i −0.673447 + 1.14743i
\(300\) 49.7320 + 80.6643i 0.165773 + 0.268881i
\(301\) −269.685 + 467.107i −0.895962 + 1.55185i
\(302\) −106.032 61.2174i −0.351098 0.202707i
\(303\) −375.642 202.642i −1.23974 0.668787i
\(304\) 0.609353 1.05543i 0.00200445 0.00347181i
\(305\) 305.904 + 176.614i 1.00296 + 0.579061i
\(306\) 199.846 11.5588i 0.653091 0.0377738i
\(307\) −316.281 −1.03023 −0.515116 0.857121i \(-0.672251\pi\)
−0.515116 + 0.857121i \(0.672251\pi\)
\(308\) 9.46137 5.46252i 0.0307187 0.0177355i
\(309\) −274.580 + 7.93402i −0.888609 + 0.0256764i
\(310\) 23.4634 40.6398i 0.0756885 0.131096i
\(311\) −56.9212 + 32.8634i −0.183026 + 0.105670i −0.588714 0.808342i \(-0.700365\pi\)
0.405688 + 0.914012i \(0.367032\pi\)
\(312\) −152.781 + 278.433i −0.489682 + 0.892413i
\(313\) 48.7457 84.4300i 0.155737 0.269744i −0.777590 0.628772i \(-0.783558\pi\)
0.933327 + 0.359027i \(0.116891\pi\)
\(314\) 308.454 178.086i 0.982339 0.567154i
\(315\) 21.0792 + 364.449i 0.0669181 + 1.15698i
\(316\) 60.1226 104.135i 0.190261 0.329542i
\(317\) 199.509 + 115.187i 0.629366 + 0.363365i 0.780507 0.625148i \(-0.214961\pi\)
−0.151140 + 0.988512i \(0.548295\pi\)
\(318\) 114.590 212.419i 0.360347 0.667983i
\(319\) −12.0788 −0.0378647
\(320\) −129.953 + 75.0282i −0.406102 + 0.234463i
\(321\) −5.87703 203.392i −0.0183085 0.633619i
\(322\) 466.118 1.44757
\(323\) −18.6933 + 10.7926i −0.0578739 + 0.0334135i
\(324\) −75.8911 + 175.546i −0.234232 + 0.541808i
\(325\) −149.994 88.0339i −0.461519 0.270874i
\(326\) 292.945 + 169.132i 0.898605 + 0.518810i
\(327\) −1.39492 + 2.58579i −0.00426580 + 0.00790760i
\(328\) 48.7659 84.4649i 0.148676 0.257515i
\(329\) 264.579i 0.804192i
\(330\) 0.147061 + 5.08949i 0.000445641 + 0.0154227i
\(331\) −31.9013 55.2546i −0.0963785 0.166932i 0.813805 0.581139i \(-0.197393\pi\)
−0.910183 + 0.414206i \(0.864059\pi\)
\(332\) −197.976 114.302i −0.596313 0.344282i
\(333\) −160.289 + 318.841i −0.481348 + 0.957480i
\(334\) −95.6828 + 165.727i −0.286475 + 0.496190i
\(335\) 242.907i 0.725096i
\(336\) 35.0003 1.01134i 0.104167 0.00300993i
\(337\) −175.733 304.378i −0.521463 0.903200i −0.999688 0.0249629i \(-0.992053\pi\)
0.478226 0.878237i \(-0.341280\pi\)
\(338\) 3.09193 216.332i 0.00914771 0.640035i
\(339\) −98.9733 53.3917i −0.291957 0.157498i
\(340\) 139.844 0.411305
\(341\) 3.62131 2.09076i 0.0106197 0.00613127i
\(342\) 0.826547 + 14.2906i 0.00241680 + 0.0417854i
\(343\) 518.429 1.51146
\(344\) 319.697 184.577i 0.929351 0.536561i
\(345\) 148.585 275.435i 0.430680 0.798361i
\(346\) −88.2741 152.895i −0.255128 0.441894i
\(347\) 303.213i 0.873812i −0.899507 0.436906i \(-0.856074\pi\)
0.899507 0.436906i \(-0.143926\pi\)
\(348\) 193.628 + 104.454i 0.556402 + 0.300154i
\(349\) 130.278 0.373290 0.186645 0.982427i \(-0.440239\pi\)
0.186645 + 0.982427i \(0.440239\pi\)
\(350\) 203.785i 0.582242i
\(351\) −27.8805 349.891i −0.0794317 0.996840i
\(352\) −12.1792 −0.0346000
\(353\) 555.897i 1.57478i −0.616455 0.787390i \(-0.711432\pi\)
0.616455 0.787390i \(-0.288568\pi\)
\(354\) −156.955 + 290.951i −0.443376 + 0.821896i
\(355\) −86.1724 −0.242739
\(356\) −299.296 + 172.799i −0.840719 + 0.485390i
\(357\) −545.812 294.442i −1.52889 0.824766i
\(358\) −160.485 277.968i −0.448282 0.776447i
\(359\) 387.457i 1.07927i 0.841900 + 0.539633i \(0.181437\pi\)
−0.841900 + 0.539633i \(0.818563\pi\)
\(360\) 112.224 223.231i 0.311733 0.620087i
\(361\) 179.728 + 311.298i 0.497862 + 0.862323i
\(362\) 65.1796i 0.180054i
\(363\) 172.129 319.079i 0.474185 0.879006i
\(364\) 317.578 180.340i 0.872467 0.495440i
\(365\) 113.008 65.2452i 0.309611 0.178754i
\(366\) 11.4938 + 397.777i 0.0314039 + 1.08682i
\(367\) 355.512 0.968697 0.484349 0.874875i \(-0.339057\pi\)
0.484349 + 0.874875i \(0.339057\pi\)
\(368\) −25.9959 15.0087i −0.0706410 0.0407846i
\(369\) 6.22402 + 107.610i 0.0168673 + 0.291627i
\(370\) 86.5248 149.865i 0.233851 0.405042i
\(371\) −647.555 + 373.866i −1.74543 + 1.00773i
\(372\) −76.1312 + 2.19982i −0.204654 + 0.00591349i
\(373\) 80.4668 0.215729 0.107864 0.994166i \(-0.465599\pi\)
0.107864 + 0.994166i \(0.465599\pi\)
\(374\) −7.49087 4.32486i −0.0200291 0.0115638i
\(375\) 345.442 + 186.351i 0.921180 + 0.496935i
\(376\) 90.5414 156.822i 0.240802 0.417081i
\(377\) −403.769 2.88529i −1.07101 0.00765328i
\(378\) −337.038 + 235.692i −0.891634 + 0.623525i
\(379\) −43.1053 74.6606i −0.113734 0.196994i 0.803539 0.595252i \(-0.202948\pi\)
−0.917273 + 0.398259i \(0.869615\pi\)
\(380\) 9.99997i 0.0263157i
\(381\) 595.591 17.2097i 1.56323 0.0451697i
\(382\) 188.738 + 326.904i 0.494079 + 0.855770i
\(383\) 210.045i 0.548419i −0.961670 0.274210i \(-0.911584\pi\)
0.961670 0.274210i \(-0.0884162\pi\)
\(384\) 181.974 + 98.1671i 0.473891 + 0.255643i
\(385\) 7.88704 13.6608i 0.0204858 0.0354825i
\(386\) −371.104 214.257i −0.961408 0.555069i
\(387\) −183.249 + 364.512i −0.473512 + 0.941891i
\(388\) −126.196 218.579i −0.325249 0.563347i
\(389\) 530.326 + 306.184i 1.36331 + 0.787105i 0.990062 0.140629i \(-0.0449123\pi\)
0.373243 + 0.927734i \(0.378246\pi\)
\(390\) 3.70021 + 170.166i 0.00948772 + 0.436323i
\(391\) 265.827 + 460.427i 0.679865 + 1.17756i
\(392\) −652.855 376.926i −1.66545 0.961546i
\(393\) 5.44069 + 188.291i 0.0138440 + 0.479112i
\(394\) 52.2709 + 90.5358i 0.132667 + 0.229786i
\(395\) 173.615i 0.439533i
\(396\) 6.90611 4.53823i 0.0174397 0.0114602i
\(397\) 5.75102 9.96106i 0.0144862 0.0250908i −0.858691 0.512493i \(-0.828722\pi\)
0.873178 + 0.487402i \(0.162055\pi\)
\(398\) 18.2320 + 10.5263i 0.0458091 + 0.0264479i
\(399\) 21.0550 39.0300i 0.0527693 0.0978196i
\(400\) 6.56174 11.3653i 0.0164044 0.0284132i
\(401\) 126.952 + 73.2957i 0.316588 + 0.182782i 0.649871 0.760045i \(-0.274823\pi\)
−0.333282 + 0.942827i \(0.608156\pi\)
\(402\) 232.944 143.617i 0.579462 0.357256i
\(403\) 121.552 69.0247i 0.301618 0.171277i
\(404\) 335.915i 0.831474i
\(405\) 31.8357 + 274.291i 0.0786066 + 0.677262i
\(406\) 236.557 + 409.730i 0.582654 + 1.00919i
\(407\) 13.3541 7.71000i 0.0328111 0.0189435i
\(408\) 222.755 + 361.304i 0.545969 + 0.885550i
\(409\) −33.5225 −0.0819622 −0.0409811 0.999160i \(-0.513048\pi\)
−0.0409811 + 0.999160i \(0.513048\pi\)
\(410\) 52.2693i 0.127486i
\(411\) −3.53911 122.481i −0.00861098 0.298008i
\(412\) −108.096 187.228i −0.262369 0.454437i
\(413\) 886.960 512.087i 2.14760 1.23992i
\(414\) 351.986 20.3584i 0.850209 0.0491748i
\(415\) −330.067 −0.795343
\(416\) −407.125 2.90927i −0.978665 0.00699343i
\(417\) 47.3083 87.6963i 0.113449 0.210303i
\(418\) 0.309263 0.535658i 0.000739863 0.00128148i
\(419\) −507.592 293.058i −1.21144 0.699423i −0.248364 0.968667i \(-0.579893\pi\)
−0.963072 + 0.269244i \(0.913226\pi\)
\(420\) −244.566 + 150.782i −0.582300 + 0.359006i
\(421\) 14.6994 25.4601i 0.0349154 0.0604752i −0.848040 0.529933i \(-0.822217\pi\)
0.882955 + 0.469458i \(0.155550\pi\)
\(422\) 62.4137 + 36.0346i 0.147900 + 0.0853900i
\(423\) 11.5559 + 199.795i 0.0273188 + 0.472329i
\(424\) 511.762 1.20699
\(425\) −201.296 + 116.218i −0.473638 + 0.273455i
\(426\) −50.9487 82.6378i −0.119598 0.193985i
\(427\) 616.424 1067.68i 1.44362 2.50042i
\(428\) 138.687 80.0709i 0.324035 0.187082i
\(429\) −7.29597 + 13.2964i −0.0170069 + 0.0309940i
\(430\) 98.9188 171.332i 0.230044 0.398447i
\(431\) −309.247 + 178.544i −0.717510 + 0.414255i −0.813836 0.581095i \(-0.802624\pi\)
0.0963253 + 0.995350i \(0.469291\pi\)
\(432\) 26.3861 2.29239i 0.0610789 0.00530646i
\(433\) −66.0808 + 114.455i −0.152612 + 0.264331i −0.932187 0.361978i \(-0.882102\pi\)
0.779575 + 0.626309i \(0.215435\pi\)
\(434\) −141.843 81.8930i −0.326827 0.188694i
\(435\) 317.521 9.17481i 0.729934 0.0210915i
\(436\) −2.31232 −0.00530349
\(437\) −32.9242 + 19.0088i −0.0753415 + 0.0434984i
\(438\) 129.384 + 69.7970i 0.295397 + 0.159354i
\(439\) −241.481 −0.550071 −0.275036 0.961434i \(-0.588690\pi\)
−0.275036 + 0.961434i \(0.588690\pi\)
\(440\) −9.34967 + 5.39803i −0.0212493 + 0.0122683i
\(441\) 831.753 48.1073i 1.88606 0.109087i
\(442\) −249.371 146.360i −0.564187 0.331131i
\(443\) −390.576 225.499i −0.881661 0.509028i −0.0104556 0.999945i \(-0.503328\pi\)
−0.871206 + 0.490918i \(0.836662\pi\)
\(444\) −280.745 + 8.11215i −0.632308 + 0.0182706i
\(445\) −249.495 + 432.137i −0.560662 + 0.971095i
\(446\) 326.454i 0.731961i
\(447\) 465.231 + 250.972i 1.04079 + 0.561458i
\(448\) 261.867 + 453.566i 0.584524 + 1.01243i
\(449\) 687.272 + 396.797i 1.53067 + 0.883734i 0.999331 + 0.0365769i \(0.0116454\pi\)
0.531342 + 0.847157i \(0.321688\pi\)
\(450\) 8.90058 + 153.887i 0.0197791 + 0.341971i
\(451\) 2.32879 4.03358i 0.00516362 0.00894365i
\(452\) 88.5062i 0.195810i
\(453\) 150.573 + 244.226i 0.332390 + 0.539129i
\(454\) 3.45020 + 5.97593i 0.00759957 + 0.0131628i
\(455\) 266.910 454.765i 0.586615 0.999484i
\(456\) −25.8362 + 15.9288i −0.0566583 + 0.0349316i
\(457\) 439.912 0.962609 0.481304 0.876554i \(-0.340163\pi\)
0.481304 + 0.876554i \(0.340163\pi\)
\(458\) −57.5192 + 33.2087i −0.125588 + 0.0725081i
\(459\) −425.027 198.507i −0.925984 0.432476i
\(460\) 246.305 0.535446
\(461\) 510.523 294.750i 1.10742 0.639372i 0.169264 0.985571i \(-0.445861\pi\)
0.938161 + 0.346199i \(0.112528\pi\)
\(462\) 17.7636 0.513280i 0.0384493 0.00111100i
\(463\) −98.6145 170.805i −0.212990 0.368910i 0.739659 0.672982i \(-0.234987\pi\)
−0.952649 + 0.304072i \(0.901654\pi\)
\(464\) 30.4680i 0.0656638i
\(465\) −93.6068 + 57.7115i −0.201305 + 0.124111i
\(466\) −307.134 −0.659086
\(467\) 822.756i 1.76179i 0.473313 + 0.880895i \(0.343058\pi\)
−0.473313 + 0.880895i \(0.656942\pi\)
\(468\) 231.940 150.053i 0.495599 0.320627i
\(469\) −847.805 −1.80769
\(470\) 97.0461i 0.206481i
\(471\) −834.300 + 24.1072i −1.77134 + 0.0511830i
\(472\) −700.963 −1.48509
\(473\) 15.2670 8.81439i 0.0322769 0.0186351i
\(474\) 166.494 102.649i 0.351253 0.216558i
\(475\) −8.31056 14.3943i −0.0174959 0.0303038i
\(476\) 488.089i 1.02540i
\(477\) −472.668 + 310.606i −0.990919 + 0.651165i
\(478\) 271.841 + 470.843i 0.568706 + 0.985028i
\(479\) 472.641i 0.986724i −0.869824 0.493362i \(-0.835768\pi\)
0.869824 0.493362i \(-0.164232\pi\)
\(480\) 320.160 9.25106i 0.667000 0.0192730i
\(481\) 448.241 254.539i 0.931893 0.529186i
\(482\) 194.637 112.374i 0.403812 0.233141i
\(483\) −961.333 518.597i −1.99034 1.07370i
\(484\) 285.334 0.589533
\(485\) −315.594 182.208i −0.650709 0.375687i
\(486\) −244.218 + 192.702i −0.502505 + 0.396506i
\(487\) −254.911 + 441.518i −0.523431 + 0.906609i 0.476197 + 0.879338i \(0.342015\pi\)
−0.999628 + 0.0272702i \(0.991319\pi\)
\(488\) −730.738 + 421.892i −1.49741 + 0.864533i
\(489\) −416.003 674.749i −0.850722 1.37985i
\(490\) −404.006 −0.824501
\(491\) −377.657 218.041i −0.769160 0.444075i 0.0634150 0.997987i \(-0.479801\pi\)
−0.832575 + 0.553913i \(0.813134\pi\)
\(492\) −72.2125 + 44.5212i −0.146773 + 0.0904903i
\(493\) −269.817 + 467.338i −0.547297 + 0.947946i
\(494\) 10.4659 17.8320i 0.0211861 0.0360972i
\(495\) 5.35919 10.6603i 0.0108267 0.0215360i
\(496\) 5.27381 + 9.13451i 0.0106327 + 0.0184163i
\(497\) 300.763i 0.605156i
\(498\) −195.150 316.529i −0.391867 0.635600i
\(499\) −81.6627 141.444i −0.163653 0.283455i 0.772523 0.634986i \(-0.218994\pi\)
−0.936176 + 0.351532i \(0.885661\pi\)
\(500\) 308.909i 0.617819i
\(501\) 381.724 235.345i 0.761925 0.469750i
\(502\) 142.310 246.489i 0.283487 0.491014i
\(503\) 91.9955 + 53.1136i 0.182894 + 0.105594i 0.588652 0.808387i \(-0.299659\pi\)
−0.405758 + 0.913981i \(0.632992\pi\)
\(504\) −779.131 391.688i −1.54590 0.777159i
\(505\) −242.505 420.031i −0.480208 0.831744i
\(506\) −13.1936 7.61733i −0.0260743 0.0150540i
\(507\) −247.065 + 442.728i −0.487307 + 0.873231i
\(508\) 234.471 + 406.116i 0.461558 + 0.799441i
\(509\) 781.981 + 451.477i 1.53631 + 0.886988i 0.999050 + 0.0435700i \(0.0138731\pi\)
0.537258 + 0.843418i \(0.319460\pi\)
\(510\) 200.201 + 107.999i 0.392551 + 0.211764i
\(511\) −227.722 394.425i −0.445639 0.771869i
\(512\) 62.6743i 0.122411i
\(513\) 14.1948 30.3929i 0.0276702 0.0592454i
\(514\) 123.404 213.741i 0.240085 0.415839i
\(515\) −270.328 156.074i −0.524910 0.303057i
\(516\) −320.959 + 9.27415i −0.622014 + 0.0179732i
\(517\) 4.32376 7.48897i 0.00836318 0.0144854i
\(518\) −523.067 301.993i −1.00978 0.582997i
\(519\) 11.9495 + 413.547i 0.0230241 + 0.796816i
\(520\) −313.829 + 178.211i −0.603517 + 0.342714i
\(521\) 712.668i 1.36789i 0.729536 + 0.683943i \(0.239736\pi\)
−0.729536 + 0.683943i \(0.760264\pi\)
\(522\) 196.530 + 299.073i 0.376495 + 0.572936i
\(523\) −132.996 230.356i −0.254295 0.440452i 0.710409 0.703789i \(-0.248510\pi\)
−0.964704 + 0.263337i \(0.915177\pi\)
\(524\) −128.390 + 74.1261i −0.245019 + 0.141462i
\(525\) 226.728 420.290i 0.431863 0.800553i
\(526\) −42.8544 −0.0814723
\(527\) 186.814i 0.354487i
\(528\) −1.00722 0.543350i −0.00190761 0.00102907i
\(529\) 203.699 + 352.817i 0.385064 + 0.666951i
\(530\) 237.520 137.132i 0.448150 0.258740i
\(531\) 647.416 425.438i 1.21924 0.801202i
\(532\) 34.9023 0.0656059
\(533\) 78.8099 134.278i 0.147861 0.251928i
\(534\) −561.923 + 16.2368i −1.05229 + 0.0304061i
\(535\) 115.610 200.242i 0.216093 0.374285i
\(536\) 502.514 + 290.127i 0.937526 + 0.541281i
\(537\) 21.7245 + 751.841i 0.0404554 + 1.40008i
\(538\) −140.431 + 243.234i −0.261025 + 0.452108i
\(539\) −31.1768 17.9999i −0.0578419 0.0333951i
\(540\) −178.097 + 124.544i −0.329809 + 0.230637i
\(541\) −160.358 −0.296410 −0.148205 0.988957i \(-0.547350\pi\)
−0.148205 + 0.988957i \(0.547350\pi\)
\(542\) 210.752 121.678i 0.388841 0.224497i
\(543\) −72.5179 + 134.428i −0.133551 + 0.247565i
\(544\) −272.060 + 471.222i −0.500110 + 0.866216i
\(545\) −2.89134 + 1.66932i −0.00530521 + 0.00306297i
\(546\) 593.920 12.9146i 1.08777 0.0236532i
\(547\) −26.1612 + 45.3124i −0.0478266 + 0.0828381i −0.888948 0.458009i \(-0.848563\pi\)
0.841121 + 0.540847i \(0.181896\pi\)
\(548\) 83.5165 48.2183i 0.152402 0.0879895i
\(549\) 418.856 833.173i 0.762944 1.51762i
\(550\) 3.33026 5.76818i 0.00605502 0.0104876i
\(551\) −33.4184 19.2941i −0.0606505 0.0350166i
\(552\) 392.337 + 636.362i 0.710755 + 1.15283i
\(553\) −605.960 −1.09577
\(554\) 306.764 177.110i 0.553726 0.319694i
\(555\) −345.189 + 212.820i −0.621962 + 0.383459i
\(556\) 78.4218 0.141046
\(557\) −408.417 + 235.800i −0.733245 + 0.423339i −0.819608 0.572925i \(-0.805809\pi\)
0.0863633 + 0.996264i \(0.472475\pi\)
\(558\) −110.689 55.6458i −0.198367 0.0997237i
\(559\) 512.447 290.999i 0.916722 0.520571i
\(560\) 34.4583 + 19.8945i 0.0615327 + 0.0355259i
\(561\) 10.6376 + 17.2539i 0.0189618 + 0.0307557i
\(562\) 217.459 376.650i 0.386938 0.670196i
\(563\) 276.668i 0.491417i 0.969344 + 0.245709i \(0.0790206\pi\)
−0.969344 + 0.245709i \(0.920979\pi\)
\(564\) −134.074 + 82.6605i −0.237719 + 0.146561i
\(565\) −63.8946 110.669i −0.113088 0.195874i
\(566\) −230.976 133.354i −0.408084 0.235608i
\(567\) 957.342 111.114i 1.68843 0.195969i
\(568\) 102.924 178.269i 0.181204 0.313854i
\(569\) 137.321i 0.241338i 0.992693 + 0.120669i \(0.0385039\pi\)
−0.992693 + 0.120669i \(0.961496\pi\)
\(570\) −7.72284 + 14.3160i −0.0135488 + 0.0251158i
\(571\) 232.326 + 402.400i 0.406875 + 0.704728i 0.994538 0.104378i \(-0.0332852\pi\)
−0.587663 + 0.809106i \(0.699952\pi\)
\(572\) −11.9362 0.0852951i −0.0208676 0.000149117i
\(573\) −25.5491 884.202i −0.0445883 1.54311i
\(574\) −182.433 −0.317827
\(575\) −354.541 + 204.694i −0.616593 + 0.355990i
\(576\) 217.557 + 331.070i 0.377703 + 0.574775i
\(577\) 882.703 1.52981 0.764907 0.644141i \(-0.222785\pi\)
0.764907 + 0.644141i \(0.222785\pi\)
\(578\) −14.2526 + 8.22877i −0.0246586 + 0.0142366i
\(579\) 526.993 + 854.772i 0.910179 + 1.47629i
\(580\) 125.001 + 216.508i 0.215519 + 0.373290i
\(581\) 1152.02i 1.98281i
\(582\) −11.8579 410.378i −0.0203744 0.705117i
\(583\) 24.4390 0.0419193
\(584\) 311.714i 0.533756i
\(585\) 181.693 355.071i 0.310586 0.606959i
\(586\) 1.05557 0.00180132
\(587\) 134.791i 0.229626i 0.993387 + 0.114813i \(0.0366269\pi\)
−0.993387 + 0.114813i \(0.963373\pi\)
\(588\) 344.118 + 558.152i 0.585235 + 0.949239i
\(589\) 13.3587 0.0226804
\(590\) −325.332 + 187.831i −0.551410 + 0.318357i
\(591\) −7.07580 244.879i −0.0119726 0.414347i
\(592\) 19.4480 + 33.6848i 0.0328513 + 0.0569001i
\(593\) 50.7063i 0.0855080i 0.999086 + 0.0427540i \(0.0136132\pi\)
−0.999086 + 0.0427540i \(0.986387\pi\)
\(594\) 13.3916 1.16345i 0.0225448 0.00195867i
\(595\) −352.362 610.309i −0.592206 1.02573i
\(596\) 416.030i 0.698037i
\(597\) −25.8908 41.9943i −0.0433681 0.0703422i
\(598\) −439.214 257.782i −0.734471 0.431074i
\(599\) 144.221 83.2662i 0.240770 0.139009i −0.374761 0.927122i \(-0.622275\pi\)
0.615531 + 0.788113i \(0.288942\pi\)
\(600\) −278.214 + 171.528i −0.463691 + 0.285879i
\(601\) −79.1116 −0.131633 −0.0658166 0.997832i \(-0.520965\pi\)
−0.0658166 + 0.997832i \(0.520965\pi\)
\(602\) −597.992 345.251i −0.993341 0.573506i
\(603\) −640.214 + 37.0290i −1.06172 + 0.0614080i
\(604\) −112.904 + 195.555i −0.186927 + 0.323767i
\(605\) 356.784 205.989i 0.589725 0.340478i
\(606\) 259.423 480.898i 0.428091 0.793561i
\(607\) 366.740 0.604185 0.302092 0.953279i \(-0.402315\pi\)
0.302092 + 0.953279i \(0.402315\pi\)
\(608\) −33.6962 19.4545i −0.0554213 0.0319975i
\(609\) −32.0223 1108.23i −0.0525818 1.81975i
\(610\) −226.101 + 391.618i −0.370657 + 0.641997i
\(611\) 146.323 249.307i 0.239481 0.408032i
\(612\) −21.3179 368.577i −0.0348332 0.602250i
\(613\) 603.549 + 1045.38i 0.984582 + 1.70535i 0.643778 + 0.765212i \(0.277366\pi\)
0.340804 + 0.940134i \(0.389301\pi\)
\(614\) 404.903i 0.659452i
\(615\) −58.1541 + 107.801i −0.0945595 + 0.175287i
\(616\) 18.8405 + 32.6326i 0.0305852 + 0.0529750i
\(617\) 157.601i 0.255430i −0.991811 0.127715i \(-0.959236\pi\)
0.991811 0.127715i \(-0.0407644\pi\)
\(618\) −10.1571 351.518i −0.0164355 0.568799i
\(619\) −269.359 + 466.544i −0.435152 + 0.753706i −0.997308 0.0733253i \(-0.976639\pi\)
0.562156 + 0.827031i \(0.309972\pi\)
\(620\) −74.9523 43.2737i −0.120891 0.0697964i
\(621\) −748.595 349.627i −1.20547 0.563007i
\(622\) −42.0718 72.8705i −0.0676396 0.117155i
\(623\) 1508.26 + 870.796i 2.42097 + 1.39775i
\(624\) −33.5393 18.4036i −0.0537490 0.0294930i
\(625\) 55.7781 + 96.6104i 0.0892449 + 0.154577i
\(626\) 108.087 + 62.4043i 0.172664 + 0.0996874i
\(627\) −1.23380 + 0.760673i −0.00196778 + 0.00121319i
\(628\) −328.446 568.885i −0.523003 0.905867i
\(629\) 688.906i 1.09524i
\(630\) −466.569 + 26.9856i −0.740585 + 0.0428343i
\(631\) 511.749 886.375i 0.811012 1.40471i −0.101144 0.994872i \(-0.532250\pi\)
0.912156 0.409842i \(-0.134416\pi\)
\(632\) 359.167 + 207.365i 0.568302 + 0.328109i
\(633\) −88.6319 143.759i −0.140019 0.227108i
\(634\) −147.462 + 255.412i −0.232590 + 0.402858i
\(635\) 586.369 + 338.540i 0.923416 + 0.533134i
\(636\) −391.765 211.340i −0.615983 0.332296i
\(637\) −1037.87 609.146i −1.62931 0.956273i
\(638\) 15.4633i 0.0242372i
\(639\) 13.1362 + 227.119i 0.0205575 + 0.355429i
\(640\) 117.478 + 203.478i 0.183559 + 0.317934i
\(641\) 824.358 475.943i 1.28605 0.742501i 0.308102 0.951353i \(-0.400306\pi\)
0.977947 + 0.208853i \(0.0669729\pi\)
\(642\) 260.382 7.52378i 0.405580 0.0117193i
\(643\) −76.8350 −0.119495 −0.0597473 0.998214i \(-0.519029\pi\)
−0.0597473 + 0.998214i \(0.519029\pi\)
\(644\) 859.666i 1.33488i
\(645\) −394.634 + 243.304i −0.611836 + 0.377216i
\(646\) −13.8166 23.9311i −0.0213880 0.0370451i
\(647\) 189.920 109.651i 0.293540 0.169475i −0.345997 0.938236i \(-0.612459\pi\)
0.639537 + 0.768760i \(0.279126\pi\)
\(648\) −605.464 261.751i −0.934357 0.403937i
\(649\) −33.4742 −0.0515781
\(650\) 112.701 192.022i 0.173386 0.295419i
\(651\) 201.427 + 326.710i 0.309412 + 0.501859i
\(652\) 311.931 540.281i 0.478422 0.828652i
\(653\) 796.282 + 459.733i 1.21942 + 0.704033i 0.964794 0.263007i \(-0.0847141\pi\)
0.254627 + 0.967039i \(0.418047\pi\)
\(654\) −3.31033 1.78577i −0.00506166 0.00273054i
\(655\) −107.027 + 185.376i −0.163399 + 0.283016i
\(656\) 10.1744 + 5.87422i 0.0155098 + 0.00895460i
\(657\) −189.190 287.902i −0.287960 0.438207i
\(658\) −338.714 −0.514764
\(659\) −205.439 + 118.610i −0.311744 + 0.179985i −0.647706 0.761890i \(-0.724272\pi\)
0.335963 + 0.941875i \(0.390938\pi\)
\(660\) 9.38659 0.271226i 0.0142221 0.000410949i
\(661\) 288.800 500.216i 0.436914 0.756756i −0.560536 0.828130i \(-0.689405\pi\)
0.997450 + 0.0713735i \(0.0227382\pi\)
\(662\) 70.7370 40.8401i 0.106854 0.0616919i
\(663\) 351.470 + 579.302i 0.530120 + 0.873759i
\(664\) 394.230 682.827i 0.593720 1.02835i
\(665\) 43.6421 25.1968i 0.0656272 0.0378899i
\(666\) −408.180 205.202i −0.612883 0.308111i
\(667\) −475.227 + 823.117i −0.712484 + 1.23406i
\(668\) 305.652 + 176.468i 0.457563 + 0.264174i
\(669\) 363.208 673.287i 0.542913 1.00641i
\(670\) 310.970 0.464134
\(671\) −34.8961 + 20.1473i −0.0520061 + 0.0300257i
\(672\) −32.2884 1117.44i −0.0480483 1.66285i
\(673\) 372.561 0.553582 0.276791 0.960930i \(-0.410729\pi\)
0.276791 + 0.960930i \(0.410729\pi\)
\(674\) 389.666 224.974i 0.578139 0.333789i
\(675\) 152.855 327.282i 0.226453 0.484863i
\(676\) −398.983 5.70246i −0.590211 0.00843559i
\(677\) 685.482 + 395.763i 1.01253 + 0.584584i 0.911931 0.410343i \(-0.134591\pi\)
0.100598 + 0.994927i \(0.467924\pi\)
\(678\) 68.3521 126.706i 0.100814 0.186882i
\(679\) −635.951 + 1101.50i −0.936599 + 1.62224i
\(680\) 482.326i 0.709304i
\(681\) −0.467047 16.1635i −0.000685826 0.0237350i
\(682\) 2.67660 + 4.63601i 0.00392463 + 0.00679766i
\(683\) −352.092 203.280i −0.515508 0.297629i 0.219587 0.975593i \(-0.429529\pi\)
−0.735095 + 0.677964i \(0.762862\pi\)
\(684\) 26.3563 1.52441i 0.0385325 0.00222866i
\(685\) 69.6197 120.585i 0.101635 0.176036i
\(686\) 663.694i 0.967483i
\(687\) 155.576 4.49540i 0.226458 0.00654352i
\(688\) 22.2337 + 38.5099i 0.0323164 + 0.0559737i
\(689\) 816.941 + 5.83777i 1.18569 + 0.00847282i
\(690\) 352.612 + 190.218i 0.511031 + 0.275679i
\(691\) −1045.70 −1.51332 −0.756658 0.653811i \(-0.773169\pi\)
−0.756658 + 0.653811i \(0.773169\pi\)
\(692\) −281.986 + 162.805i −0.407494 + 0.235267i
\(693\) −37.2071 18.7049i −0.0536898 0.0269912i
\(694\) 388.173 0.559328
\(695\) 98.0591 56.6145i 0.141092 0.0814596i
\(696\) −360.265 + 667.830i −0.517622 + 0.959526i
\(697\) −104.041 180.205i −0.149270 0.258544i
\(698\) 166.782i 0.238943i
\(699\) 633.440 + 341.713i 0.906209 + 0.488860i
\(700\) 375.842 0.536917
\(701\) 1179.32i 1.68234i −0.540772 0.841169i \(-0.681868\pi\)
0.540772 0.841169i \(-0.318132\pi\)
\(702\) 447.931 35.6927i 0.638078 0.0508443i
\(703\) 49.2624 0.0700745
\(704\) 17.1177i 0.0243150i
\(705\) −107.972 + 200.150i −0.153152 + 0.283901i
\(706\) 711.661 1.00802
\(707\) −1466.01 + 846.401i −2.07356 + 1.19717i
\(708\) 536.603 + 289.474i 0.757914 + 0.408861i
\(709\) 33.3380 + 57.7431i 0.0470211 + 0.0814430i 0.888578 0.458725i \(-0.151694\pi\)
−0.841557 + 0.540168i \(0.818361\pi\)
\(710\) 110.318i 0.155377i
\(711\) −457.587 + 26.4661i −0.643582 + 0.0372238i
\(712\) −595.989 1032.28i −0.837063 1.44984i
\(713\) 329.034i 0.461479i
\(714\) 376.944 698.750i 0.527933 0.978641i
\(715\) −14.9867 + 8.51039i −0.0209605 + 0.0119026i
\(716\) −512.659 + 295.984i −0.716004 + 0.413385i
\(717\) −36.7986 1273.52i −0.0513231 1.77619i
\(718\) −496.022 −0.690839
\(719\) −1116.38 644.541i −1.55268 0.896441i −0.997922 0.0644306i \(-0.979477\pi\)
−0.554760 0.832011i \(-0.687190\pi\)
\(720\) 26.8899 + 13.5182i 0.0373471 + 0.0187753i
\(721\) −544.737 + 943.512i −0.755530 + 1.30862i
\(722\) −398.525 + 230.088i −0.551973 + 0.318682i
\(723\) −526.450 + 15.2118i −0.728147 + 0.0210399i
\(724\) −120.211 −0.166038
\(725\) −359.863 207.767i −0.496362 0.286575i
\(726\) 408.485 + 220.360i 0.562652 + 0.303526i
\(727\) 157.164 272.216i 0.216182 0.374438i −0.737456 0.675395i \(-0.763973\pi\)
0.953637 + 0.300958i \(0.0973063\pi\)
\(728\) 622.000 + 1095.34i 0.854396 + 1.50459i
\(729\) 718.078 125.720i 0.985017 0.172456i
\(730\) 83.5270 + 144.673i 0.114421 + 0.198182i
\(731\) 787.586i 1.07741i
\(732\) 733.624 21.1981i 1.00222 0.0289592i
\(733\) 364.601 + 631.508i 0.497410 + 0.861539i 0.999996 0.00298843i \(-0.000951249\pi\)
−0.502586 + 0.864527i \(0.667618\pi\)
\(734\) 455.127i 0.620064i
\(735\) 833.230 + 449.491i 1.13365 + 0.611552i
\(736\) −479.176 + 829.958i −0.651055 + 1.12766i
\(737\) 23.9973 + 13.8549i 0.0325608 + 0.0187990i
\(738\) −137.763 + 7.96800i −0.186670 + 0.0107967i
\(739\) 626.860 + 1085.75i 0.848254 + 1.46922i 0.882765 + 0.469815i \(0.155679\pi\)
−0.0345112 + 0.999404i \(0.510987\pi\)
\(740\) −276.398 159.578i −0.373510 0.215646i
\(741\) −41.4248 + 25.1329i −0.0559040 + 0.0339176i
\(742\) −478.624 829.001i −0.645046 1.11725i
\(743\) 883.125 + 509.873i 1.18859 + 0.686235i 0.957987 0.286812i \(-0.0925954\pi\)
0.230607 + 0.973047i \(0.425929\pi\)
\(744\) −7.58725 262.579i −0.0101979 0.352929i
\(745\) 300.341 + 520.206i 0.403143 + 0.698264i
\(746\) 103.014i 0.138088i
\(747\) 50.3159 + 869.937i 0.0673572 + 1.16457i
\(748\) −7.97637 + 13.8155i −0.0106636 + 0.0184699i
\(749\) −698.895 403.507i −0.933104 0.538728i
\(750\) −238.567 + 442.236i −0.318089 + 0.589648i
\(751\) 430.676 745.953i 0.573470 0.993280i −0.422736 0.906253i \(-0.638930\pi\)
0.996206 0.0870265i \(-0.0277365\pi\)
\(752\) 18.8904 + 10.9064i 0.0251203 + 0.0145032i
\(753\) −567.744 + 350.032i −0.753976 + 0.464850i
\(754\) 3.69375 516.906i 0.00489887 0.685551i
\(755\) 326.031i 0.431829i
\(756\) 434.689 + 621.601i 0.574986 + 0.822223i
\(757\) −561.757 972.991i −0.742083 1.28533i −0.951545 0.307509i \(-0.900505\pi\)
0.209462 0.977817i \(-0.432829\pi\)
\(758\) 95.5806 55.1835i 0.126096 0.0728014i
\(759\) 18.7359 + 30.3892i 0.0246849 + 0.0400384i
\(760\) −34.4903 −0.0453819
\(761\) 16.6977i 0.0219417i −0.999940 0.0109709i \(-0.996508\pi\)
0.999940 0.0109709i \(-0.00349220\pi\)
\(762\) 22.0318 + 762.477i 0.0289132 + 1.00063i
\(763\) 5.82632 + 10.0915i 0.00763607 + 0.0132261i
\(764\) 602.911 348.091i 0.789151 0.455617i
\(765\) −292.740 445.481i −0.382667 0.582328i
\(766\) 268.899 0.351044
\(767\) −1118.97 7.99603i −1.45889 0.0104251i
\(768\) −376.454 + 697.841i −0.490175 + 0.908648i
\(769\) −407.017 + 704.973i −0.529280 + 0.916740i 0.470137 + 0.882594i \(0.344205\pi\)
−0.999417