Properties

Label 117.3.k.a.29.17
Level $117$
Weight $3$
Character 117.29
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(29,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.29");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 29.17
Character \(\chi\) \(=\) 117.29
Dual form 117.3.k.a.113.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.15571i q^{2} +(2.85130 - 0.932773i) q^{3} +2.66432 q^{4} +(-3.81803 + 2.20434i) q^{5} +(1.07802 + 3.29529i) q^{6} +(2.07846 + 3.60000i) q^{7} +7.70206i q^{8} +(7.25987 - 5.31924i) q^{9} +(-2.54759 - 4.41256i) q^{10} -1.19738i q^{11} +(7.59680 - 2.48521i) q^{12} +(5.79208 - 11.6384i) q^{13} +(-4.16057 + 2.40211i) q^{14} +(-8.83022 + 9.84661i) q^{15} +1.75592 q^{16} +(-4.88116 - 2.81814i) q^{17} +(6.14752 + 8.39034i) q^{18} +(-5.38154 + 9.32111i) q^{19} +(-10.1725 + 5.87308i) q^{20} +(9.28430 + 8.32596i) q^{21} +1.38383 q^{22} +(-18.2404 - 10.5311i) q^{23} +(7.18427 + 21.9609i) q^{24} +(-2.78175 + 4.81813i) q^{25} +(13.4506 + 6.69399i) q^{26} +(15.7385 - 21.9386i) q^{27} +(5.53769 + 9.59156i) q^{28} -3.47455i q^{29} +(-11.3799 - 10.2052i) q^{30} +(-22.8806 - 39.6303i) q^{31} +32.8376i q^{32} +(-1.11689 - 3.41410i) q^{33} +(3.25697 - 5.64123i) q^{34} +(-15.8713 - 9.16327i) q^{35} +(19.3426 - 14.1722i) q^{36} +(4.09898 + 7.09965i) q^{37} +(-10.7725 - 6.21953i) q^{38} +(5.65902 - 38.5872i) q^{39} +(-16.9780 - 29.4067i) q^{40} +(-58.4348 - 33.7374i) q^{41} +(-9.62243 + 10.7300i) q^{42} +(-26.9088 - 46.6073i) q^{43} -3.19021i q^{44} +(-15.9930 + 36.3123i) q^{45} +(12.1709 - 21.0806i) q^{46} +(51.4209 + 29.6879i) q^{47} +(5.00666 - 1.63787i) q^{48} +(15.8600 - 27.4703i) q^{49} +(-5.56838 - 3.21491i) q^{50} +(-16.5464 - 3.48236i) q^{51} +(15.4320 - 31.0084i) q^{52} +37.7140i q^{53} +(25.3547 + 18.1892i) q^{54} +(2.63944 + 4.57165i) q^{55} +(-27.7274 + 16.0084i) q^{56} +(-6.64994 + 31.5971i) q^{57} +4.01558 q^{58} -41.4775i q^{59} +(-23.5266 + 26.2346i) q^{60} +(29.9579 + 51.8886i) q^{61} +(45.8013 - 26.4434i) q^{62} +(34.2386 + 15.0797i) q^{63} -30.9272 q^{64} +(3.54062 + 57.2034i) q^{65} +(3.94573 - 1.29080i) q^{66} +(-27.5080 + 47.6453i) q^{67} +(-13.0050 - 7.50844i) q^{68} +(-61.8319 - 13.0132i) q^{69} +(10.5901 - 18.3426i) q^{70} +(62.4404 + 36.0500i) q^{71} +(40.9691 + 55.9159i) q^{72} +11.5245 q^{73} +(-8.20517 + 4.73726i) q^{74} +(-3.43739 + 16.3327i) q^{75} +(-14.3382 + 24.8345i) q^{76} +(4.31057 - 2.48871i) q^{77} +(44.5958 + 6.54021i) q^{78} +(-65.9834 + 114.287i) q^{79} +(-6.70416 + 3.87065i) q^{80} +(24.4114 - 77.2339i) q^{81} +(38.9908 - 67.5340i) q^{82} +(-28.0525 - 16.1961i) q^{83} +(24.7364 + 22.1830i) q^{84} +24.8486 q^{85} +(53.8648 - 31.0988i) q^{86} +(-3.24096 - 9.90698i) q^{87} +9.22230 q^{88} +(73.3992 - 42.3771i) q^{89} +(-41.9666 - 18.4833i) q^{90} +(53.9367 - 3.33843i) q^{91} +(-48.5982 - 28.0582i) q^{92} +(-102.206 - 91.6557i) q^{93} +(-34.3107 + 59.4279i) q^{94} -47.4511i q^{95} +(30.6300 + 93.6299i) q^{96} +(29.7342 + 51.5011i) q^{97} +(31.7479 + 18.3296i) q^{98} +(-6.36916 - 8.69284i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - q^{3} - 98 q^{4} - 6 q^{5} + 12 q^{6} - q^{7} - 3 q^{9} - 6 q^{10} - 39 q^{12} + 4 q^{13} - 6 q^{14} - 25 q^{15} + 166 q^{16} + 34 q^{18} + 5 q^{19} + 21 q^{20} - 91 q^{21} + 30 q^{22} - 75 q^{23}+ \cdots + 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.15571i 0.577857i 0.957351 + 0.288929i \(0.0932990\pi\)
−0.957351 + 0.288929i \(0.906701\pi\)
\(3\) 2.85130 0.932773i 0.950435 0.310924i
\(4\) 2.66432 0.666081
\(5\) −3.81803 + 2.20434i −0.763607 + 0.440869i −0.830589 0.556886i \(-0.811996\pi\)
0.0669825 + 0.997754i \(0.478663\pi\)
\(6\) 1.07802 + 3.29529i 0.179670 + 0.549216i
\(7\) 2.07846 + 3.60000i 0.296923 + 0.514285i 0.975430 0.220308i \(-0.0707063\pi\)
−0.678508 + 0.734593i \(0.737373\pi\)
\(8\) 7.70206i 0.962757i
\(9\) 7.25987 5.31924i 0.806652 0.591026i
\(10\) −2.54759 4.41256i −0.254759 0.441256i
\(11\) 1.19738i 0.108853i −0.998518 0.0544265i \(-0.982667\pi\)
0.998518 0.0544265i \(-0.0173330\pi\)
\(12\) 7.59680 2.48521i 0.633066 0.207101i
\(13\) 5.79208 11.6384i 0.445545 0.895260i
\(14\) −4.16057 + 2.40211i −0.297184 + 0.171579i
\(15\) −8.83022 + 9.84661i −0.588682 + 0.656441i
\(16\) 1.75592 0.109745
\(17\) −4.88116 2.81814i −0.287127 0.165773i 0.349518 0.936930i \(-0.386345\pi\)
−0.636646 + 0.771157i \(0.719679\pi\)
\(18\) 6.14752 + 8.39034i 0.341529 + 0.466130i
\(19\) −5.38154 + 9.32111i −0.283239 + 0.490585i −0.972181 0.234232i \(-0.924742\pi\)
0.688941 + 0.724817i \(0.258076\pi\)
\(20\) −10.1725 + 5.87308i −0.508624 + 0.293654i
\(21\) 9.28430 + 8.32596i 0.442110 + 0.396474i
\(22\) 1.38383 0.0629015
\(23\) −18.2404 10.5311i −0.793059 0.457873i 0.0479795 0.998848i \(-0.484722\pi\)
−0.841038 + 0.540976i \(0.818055\pi\)
\(24\) 7.18427 + 21.9609i 0.299345 + 0.915038i
\(25\) −2.78175 + 4.81813i −0.111270 + 0.192725i
\(26\) 13.4506 + 6.69399i 0.517332 + 0.257461i
\(27\) 15.7385 21.9386i 0.582906 0.812540i
\(28\) 5.53769 + 9.59156i 0.197775 + 0.342556i
\(29\) 3.47455i 0.119812i −0.998204 0.0599059i \(-0.980920\pi\)
0.998204 0.0599059i \(-0.0190801\pi\)
\(30\) −11.3799 10.2052i −0.379329 0.340174i
\(31\) −22.8806 39.6303i −0.738083 1.27840i −0.953358 0.301843i \(-0.902398\pi\)
0.215275 0.976554i \(-0.430935\pi\)
\(32\) 32.8376i 1.02617i
\(33\) −1.11689 3.41410i −0.0338450 0.103458i
\(34\) 3.25697 5.64123i 0.0957931 0.165919i
\(35\) −15.8713 9.16327i −0.453464 0.261808i
\(36\) 19.3426 14.1722i 0.537296 0.393671i
\(37\) 4.09898 + 7.09965i 0.110783 + 0.191882i 0.916086 0.400981i \(-0.131331\pi\)
−0.805303 + 0.592863i \(0.797997\pi\)
\(38\) −10.7725 6.21953i −0.283488 0.163672i
\(39\) 5.65902 38.5872i 0.145103 0.989417i
\(40\) −16.9780 29.4067i −0.424449 0.735168i
\(41\) −58.4348 33.7374i −1.42524 0.822863i −0.428500 0.903542i \(-0.640958\pi\)
−0.996740 + 0.0806793i \(0.974291\pi\)
\(42\) −9.62243 + 10.7300i −0.229105 + 0.255476i
\(43\) −26.9088 46.6073i −0.625785 1.08389i −0.988388 0.151948i \(-0.951445\pi\)
0.362603 0.931944i \(-0.381888\pi\)
\(44\) 3.19021i 0.0725049i
\(45\) −15.9930 + 36.3123i −0.355400 + 0.806939i
\(46\) 12.1709 21.0806i 0.264585 0.458275i
\(47\) 51.4209 + 29.6879i 1.09406 + 0.631657i 0.934655 0.355556i \(-0.115709\pi\)
0.159407 + 0.987213i \(0.449042\pi\)
\(48\) 5.00666 1.63787i 0.104305 0.0341224i
\(49\) 15.8600 27.4703i 0.323674 0.560619i
\(50\) −5.56838 3.21491i −0.111368 0.0642981i
\(51\) −16.5464 3.48236i −0.324439 0.0682816i
\(52\) 15.4320 31.0084i 0.296769 0.596316i
\(53\) 37.7140i 0.711584i 0.934565 + 0.355792i \(0.115789\pi\)
−0.934565 + 0.355792i \(0.884211\pi\)
\(54\) 25.3547 + 18.1892i 0.469532 + 0.336836i
\(55\) 2.63944 + 4.57165i 0.0479898 + 0.0831208i
\(56\) −27.7274 + 16.0084i −0.495132 + 0.285864i
\(57\) −6.64994 + 31.5971i −0.116666 + 0.554335i
\(58\) 4.01558 0.0692342
\(59\) 41.4775i 0.703008i −0.936186 0.351504i \(-0.885670\pi\)
0.936186 0.351504i \(-0.114330\pi\)
\(60\) −23.5266 + 26.2346i −0.392110 + 0.437243i
\(61\) 29.9579 + 51.8886i 0.491113 + 0.850633i 0.999948 0.0102316i \(-0.00325689\pi\)
−0.508835 + 0.860864i \(0.669924\pi\)
\(62\) 45.8013 26.4434i 0.738731 0.426506i
\(63\) 34.2386 + 15.0797i 0.543470 + 0.239360i
\(64\) −30.9272 −0.483237
\(65\) 3.54062 + 57.2034i 0.0544711 + 0.880053i
\(66\) 3.94573 1.29080i 0.0597837 0.0195576i
\(67\) −27.5080 + 47.6453i −0.410567 + 0.711124i −0.994952 0.100353i \(-0.968003\pi\)
0.584384 + 0.811477i \(0.301336\pi\)
\(68\) −13.0050 7.50844i −0.191250 0.110418i
\(69\) −61.8319 13.0132i −0.896114 0.188597i
\(70\) 10.5901 18.3426i 0.151288 0.262038i
\(71\) 62.4404 + 36.0500i 0.879442 + 0.507746i 0.870475 0.492213i \(-0.163812\pi\)
0.00896786 + 0.999960i \(0.497145\pi\)
\(72\) 40.9691 + 55.9159i 0.569015 + 0.776610i
\(73\) 11.5245 0.157870 0.0789352 0.996880i \(-0.474848\pi\)
0.0789352 + 0.996880i \(0.474848\pi\)
\(74\) −8.20517 + 4.73726i −0.110881 + 0.0640170i
\(75\) −3.43739 + 16.3327i −0.0458319 + 0.217769i
\(76\) −14.3382 + 24.8345i −0.188660 + 0.326769i
\(77\) 4.31057 2.48871i 0.0559815 0.0323209i
\(78\) 44.5958 + 6.54021i 0.571742 + 0.0838488i
\(79\) −65.9834 + 114.287i −0.835232 + 1.44666i 0.0586088 + 0.998281i \(0.481334\pi\)
−0.893841 + 0.448384i \(0.852000\pi\)
\(80\) −6.70416 + 3.87065i −0.0838019 + 0.0483831i
\(81\) 24.4114 77.2339i 0.301376 0.953506i
\(82\) 38.9908 67.5340i 0.475497 0.823585i
\(83\) −28.0525 16.1961i −0.337981 0.195134i 0.321398 0.946944i \(-0.395847\pi\)
−0.659379 + 0.751811i \(0.729181\pi\)
\(84\) 24.7364 + 22.1830i 0.294481 + 0.264084i
\(85\) 24.8486 0.292336
\(86\) 53.8648 31.0988i 0.626335 0.361614i
\(87\) −3.24096 9.90698i −0.0372524 0.113873i
\(88\) 9.22230 0.104799
\(89\) 73.3992 42.3771i 0.824711 0.476147i −0.0273276 0.999627i \(-0.508700\pi\)
0.852038 + 0.523480i \(0.175366\pi\)
\(90\) −41.9666 18.4833i −0.466296 0.205371i
\(91\) 53.9367 3.33843i 0.592711 0.0366860i
\(92\) −48.5982 28.0582i −0.528241 0.304980i
\(93\) −102.206 91.6557i −1.09898 0.985545i
\(94\) −34.3107 + 59.4279i −0.365007 + 0.632211i
\(95\) 47.4511i 0.499485i
\(96\) 30.6300 + 93.6299i 0.319062 + 0.975311i
\(97\) 29.7342 + 51.5011i 0.306538 + 0.530939i 0.977603 0.210460i \(-0.0674961\pi\)
−0.671065 + 0.741399i \(0.734163\pi\)
\(98\) 31.7479 + 18.3296i 0.323958 + 0.187037i
\(99\) −6.36916 8.69284i −0.0643350 0.0878065i
\(100\) −7.41148 + 12.8371i −0.0741148 + 0.128371i
\(101\) 91.5231i 0.906170i 0.891467 + 0.453085i \(0.149677\pi\)
−0.891467 + 0.453085i \(0.850323\pi\)
\(102\) 4.02461 19.1229i 0.0394570 0.187479i
\(103\) 63.5803 + 110.124i 0.617284 + 1.06917i 0.989979 + 0.141214i \(0.0451005\pi\)
−0.372695 + 0.927954i \(0.621566\pi\)
\(104\) 89.6394 + 44.6109i 0.861918 + 0.428951i
\(105\) −53.8010 11.3230i −0.512391 0.107838i
\(106\) −43.5866 −0.411194
\(107\) 109.268 63.0859i 1.02120 0.589588i 0.106745 0.994286i \(-0.465957\pi\)
0.914450 + 0.404699i \(0.132624\pi\)
\(108\) 41.9323 58.4515i 0.388262 0.541217i
\(109\) −161.530 −1.48193 −0.740965 0.671543i \(-0.765632\pi\)
−0.740965 + 0.671543i \(0.765632\pi\)
\(110\) −5.28352 + 3.05044i −0.0480320 + 0.0277313i
\(111\) 18.3098 + 16.4198i 0.164953 + 0.147926i
\(112\) 3.64961 + 6.32130i 0.0325858 + 0.0564402i
\(113\) 174.160i 1.54124i −0.637296 0.770619i \(-0.719947\pi\)
0.637296 0.770619i \(-0.280053\pi\)
\(114\) −36.5172 7.68544i −0.320326 0.0674161i
\(115\) 92.8564 0.807447
\(116\) 9.25731i 0.0798044i
\(117\) −19.8576 115.303i −0.169723 0.985492i
\(118\) 47.9361 0.406239
\(119\) 23.4296i 0.196887i
\(120\) −75.8391 68.0109i −0.631993 0.566757i
\(121\) 119.566 0.988151
\(122\) −59.9684 + 34.6228i −0.491544 + 0.283793i
\(123\) −198.085 41.6891i −1.61045 0.338936i
\(124\) −60.9612 105.588i −0.491623 0.851516i
\(125\) 134.745i 1.07796i
\(126\) −17.4278 + 39.5700i −0.138316 + 0.314048i
\(127\) 124.490 + 215.623i 0.980236 + 1.69782i 0.661445 + 0.749993i \(0.269943\pi\)
0.318791 + 0.947825i \(0.396723\pi\)
\(128\) 95.6073i 0.746932i
\(129\) −120.199 107.792i −0.931776 0.835596i
\(130\) −66.1108 + 4.09195i −0.508545 + 0.0314765i
\(131\) 24.0170 13.8662i 0.183336 0.105849i −0.405523 0.914085i \(-0.632911\pi\)
0.588859 + 0.808236i \(0.299577\pi\)
\(132\) −2.97574 9.09627i −0.0225435 0.0689111i
\(133\) −44.7413 −0.336401
\(134\) −55.0643 31.7914i −0.410928 0.237249i
\(135\) −11.7298 + 118.455i −0.0868876 + 0.877446i
\(136\) 21.7055 37.5950i 0.159599 0.276434i
\(137\) −168.362 + 97.2037i −1.22892 + 0.709516i −0.966804 0.255520i \(-0.917753\pi\)
−0.262115 + 0.965037i \(0.584420\pi\)
\(138\) 15.0395 71.4600i 0.108982 0.517826i
\(139\) −29.3031 −0.210814 −0.105407 0.994429i \(-0.533615\pi\)
−0.105407 + 0.994429i \(0.533615\pi\)
\(140\) −42.2862 24.4139i −0.302044 0.174385i
\(141\) 174.309 + 36.6851i 1.23623 + 0.260178i
\(142\) −41.6635 + 72.1633i −0.293405 + 0.508192i
\(143\) −13.9356 6.93533i −0.0974516 0.0484988i
\(144\) 12.7477 9.34015i 0.0885260 0.0648621i
\(145\) 7.65909 + 13.2659i 0.0528213 + 0.0914892i
\(146\) 13.3191i 0.0912265i
\(147\) 19.5981 93.1201i 0.133321 0.633470i
\(148\) 10.9210 + 18.9158i 0.0737907 + 0.127809i
\(149\) 86.7158i 0.581985i 0.956725 + 0.290993i \(0.0939855\pi\)
−0.956725 + 0.290993i \(0.906015\pi\)
\(150\) −18.8759 3.97264i −0.125840 0.0264843i
\(151\) −17.7929 + 30.8181i −0.117834 + 0.204094i −0.918909 0.394470i \(-0.870928\pi\)
0.801075 + 0.598563i \(0.204262\pi\)
\(152\) −71.7917 41.4490i −0.472314 0.272690i
\(153\) −50.4270 + 5.50473i −0.329588 + 0.0359786i
\(154\) 2.87624 + 4.98179i 0.0186769 + 0.0323493i
\(155\) 174.718 + 100.873i 1.12721 + 0.650795i
\(156\) 15.0775 102.809i 0.0966503 0.659032i
\(157\) 40.5945 + 70.3117i 0.258564 + 0.447845i 0.965857 0.259074i \(-0.0834175\pi\)
−0.707294 + 0.706920i \(0.750084\pi\)
\(158\) −132.083 76.2579i −0.835966 0.482645i
\(159\) 35.1786 + 107.534i 0.221249 + 0.676314i
\(160\) −72.3852 125.375i −0.452408 0.783593i
\(161\) 87.5536i 0.543811i
\(162\) 89.2604 + 28.2126i 0.550990 + 0.174152i
\(163\) 22.6376 39.2095i 0.138881 0.240549i −0.788192 0.615429i \(-0.788983\pi\)
0.927073 + 0.374880i \(0.122316\pi\)
\(164\) −155.689 89.8873i −0.949325 0.548093i
\(165\) 11.7902 + 10.5732i 0.0714555 + 0.0640797i
\(166\) 18.7181 32.4206i 0.112759 0.195305i
\(167\) 173.506 + 100.174i 1.03896 + 0.599842i 0.919538 0.393002i \(-0.128563\pi\)
0.119420 + 0.992844i \(0.461897\pi\)
\(168\) −64.1270 + 71.5082i −0.381708 + 0.425644i
\(169\) −101.904 134.821i −0.602980 0.797756i
\(170\) 28.7179i 0.168929i
\(171\) 10.5119 + 96.2957i 0.0614730 + 0.563133i
\(172\) −71.6937 124.177i −0.416824 0.721960i
\(173\) 163.868 94.6091i 0.947212 0.546873i 0.0549983 0.998486i \(-0.482485\pi\)
0.892214 + 0.451613i \(0.149151\pi\)
\(174\) 11.4496 3.74563i 0.0658026 0.0215266i
\(175\) −23.1270 −0.132154
\(176\) 2.10251i 0.0119461i
\(177\) −38.6891 118.265i −0.218582 0.668164i
\(178\) 48.9758 + 84.8286i 0.275145 + 0.476565i
\(179\) −78.8621 + 45.5311i −0.440571 + 0.254364i −0.703840 0.710359i \(-0.748533\pi\)
0.263269 + 0.964722i \(0.415199\pi\)
\(180\) −42.6105 + 96.7476i −0.236725 + 0.537487i
\(181\) −324.465 −1.79262 −0.896312 0.443423i \(-0.853764\pi\)
−0.896312 + 0.443423i \(0.853764\pi\)
\(182\) 3.85827 + 62.3355i 0.0211993 + 0.342503i
\(183\) 133.819 + 120.006i 0.731253 + 0.655772i
\(184\) 81.1109 140.488i 0.440820 0.763523i
\(185\) −31.3001 18.0711i −0.169190 0.0976818i
\(186\) 105.928 118.120i 0.569504 0.635056i
\(187\) −3.37439 + 5.84462i −0.0180449 + 0.0312546i
\(188\) 137.002 + 79.0981i 0.728734 + 0.420734i
\(189\) 111.691 + 11.0600i 0.590955 + 0.0585184i
\(190\) 54.8399 0.288631
\(191\) 208.761 120.528i 1.09299 0.631038i 0.158619 0.987340i \(-0.449296\pi\)
0.934371 + 0.356301i \(0.115962\pi\)
\(192\) −88.1828 + 28.8480i −0.459285 + 0.150250i
\(193\) 54.5580 94.4973i 0.282684 0.489623i −0.689361 0.724418i \(-0.742109\pi\)
0.972045 + 0.234795i \(0.0754418\pi\)
\(194\) −59.5205 + 34.3642i −0.306807 + 0.177135i
\(195\) 63.4532 + 159.802i 0.325401 + 0.819496i
\(196\) 42.2562 73.1899i 0.215593 0.373418i
\(197\) 50.5241 29.1701i 0.256467 0.148072i −0.366255 0.930515i \(-0.619360\pi\)
0.622722 + 0.782443i \(0.286027\pi\)
\(198\) 10.0464 7.36093i 0.0507396 0.0371764i
\(199\) −40.2524 + 69.7192i −0.202273 + 0.350348i −0.949261 0.314491i \(-0.898166\pi\)
0.746987 + 0.664839i \(0.231500\pi\)
\(200\) −37.1095 21.4252i −0.185548 0.107126i
\(201\) −33.9915 + 161.510i −0.169112 + 0.803532i
\(202\) −105.775 −0.523637
\(203\) 12.5084 7.22170i 0.0616175 0.0355749i
\(204\) −44.0849 9.27814i −0.216102 0.0454811i
\(205\) 297.475 1.45110
\(206\) −127.272 + 73.4807i −0.617826 + 0.356702i
\(207\) −188.440 + 20.5706i −0.910337 + 0.0993746i
\(208\) 10.1704 20.4360i 0.0488962 0.0982502i
\(209\) 11.1609 + 6.44377i 0.0534016 + 0.0308314i
\(210\) 13.0862 62.1786i 0.0623150 0.296089i
\(211\) −100.746 + 174.497i −0.477469 + 0.827000i −0.999666 0.0258242i \(-0.991779\pi\)
0.522198 + 0.852824i \(0.325112\pi\)
\(212\) 100.482i 0.473973i
\(213\) 211.663 + 44.5468i 0.993723 + 0.209140i
\(214\) 72.9092 + 126.283i 0.340697 + 0.590105i
\(215\) 205.477 + 118.632i 0.955707 + 0.551778i
\(216\) 168.972 + 121.218i 0.782278 + 0.561197i
\(217\) 95.1127 164.740i 0.438307 0.759170i
\(218\) 186.683i 0.856344i
\(219\) 32.8600 10.7498i 0.150045 0.0490857i
\(220\) 7.03232 + 12.1803i 0.0319651 + 0.0553652i
\(221\) −61.0707 + 40.4859i −0.276338 + 0.183194i
\(222\) −18.9766 + 21.1609i −0.0854804 + 0.0953194i
\(223\) 279.259 1.25228 0.626141 0.779710i \(-0.284633\pi\)
0.626141 + 0.779710i \(0.284633\pi\)
\(224\) −118.215 + 68.2515i −0.527746 + 0.304694i
\(225\) 5.43364 + 49.7758i 0.0241495 + 0.221226i
\(226\) 201.279 0.890616
\(227\) 156.883 90.5764i 0.691115 0.399015i −0.112915 0.993605i \(-0.536019\pi\)
0.804029 + 0.594589i \(0.202685\pi\)
\(228\) −17.7176 + 84.1848i −0.0777088 + 0.369232i
\(229\) −92.1879 159.674i −0.402567 0.697267i 0.591468 0.806329i \(-0.298549\pi\)
−0.994035 + 0.109062i \(0.965215\pi\)
\(230\) 107.315i 0.466589i
\(231\) 9.96935 11.1169i 0.0431574 0.0481249i
\(232\) 26.7611 0.115350
\(233\) 365.754i 1.56976i 0.619648 + 0.784880i \(0.287275\pi\)
−0.619648 + 0.784880i \(0.712725\pi\)
\(234\) 133.257 22.9497i 0.569474 0.0980755i
\(235\) −261.769 −1.11391
\(236\) 110.509i 0.468261i
\(237\) −81.5352 + 387.413i −0.344031 + 1.63465i
\(238\) 27.0779 0.113773
\(239\) −383.341 + 221.322i −1.60394 + 0.926033i −0.613246 + 0.789892i \(0.710137\pi\)
−0.990690 + 0.136141i \(0.956530\pi\)
\(240\) −15.5052 + 17.2898i −0.0646048 + 0.0720410i
\(241\) −169.035 292.778i −0.701392 1.21485i −0.967978 0.251035i \(-0.919229\pi\)
0.266586 0.963811i \(-0.414104\pi\)
\(242\) 138.184i 0.571010i
\(243\) −2.43734 242.988i −0.0100302 0.999950i
\(244\) 79.8175 + 138.248i 0.327121 + 0.566590i
\(245\) 139.844i 0.570790i
\(246\) 48.1807 228.929i 0.195856 0.930608i
\(247\) 77.3122 + 116.621i 0.313005 + 0.472150i
\(248\) 305.235 176.227i 1.23079 0.710594i
\(249\) −95.0933 20.0134i −0.381901 0.0803752i
\(250\) 155.727 0.622906
\(251\) −165.872 95.7661i −0.660843 0.381538i 0.131755 0.991282i \(-0.457939\pi\)
−0.792598 + 0.609744i \(0.791272\pi\)
\(252\) 91.2227 + 40.1772i 0.361995 + 0.159433i
\(253\) −12.6097 + 21.8407i −0.0498408 + 0.0863268i
\(254\) −249.199 + 143.875i −0.981097 + 0.566436i
\(255\) 70.8509 23.1781i 0.277847 0.0908945i
\(256\) −234.203 −0.914857
\(257\) −348.494 201.203i −1.35601 0.782892i −0.366926 0.930250i \(-0.619590\pi\)
−0.989083 + 0.147358i \(0.952923\pi\)
\(258\) 124.577 138.916i 0.482855 0.538434i
\(259\) −17.0391 + 29.5127i −0.0657882 + 0.113949i
\(260\) 9.43336 + 152.408i 0.0362822 + 0.586186i
\(261\) −18.4819 25.2247i −0.0708120 0.0966465i
\(262\) 16.0254 + 27.7568i 0.0611657 + 0.105942i
\(263\) 120.218i 0.457102i −0.973532 0.228551i \(-0.926601\pi\)
0.973532 0.228551i \(-0.0733988\pi\)
\(264\) 26.2956 8.60231i 0.0996045 0.0325845i
\(265\) −83.1345 143.993i −0.313715 0.543370i
\(266\) 51.7082i 0.194392i
\(267\) 169.755 189.295i 0.635788 0.708969i
\(268\) −73.2903 + 126.942i −0.273471 + 0.473666i
\(269\) −263.310 152.022i −0.978849 0.565138i −0.0769263 0.997037i \(-0.524511\pi\)
−0.901922 + 0.431898i \(0.857844\pi\)
\(270\) −136.900 13.5563i −0.507038 0.0502086i
\(271\) −132.718 229.874i −0.489734 0.848245i 0.510196 0.860058i \(-0.329573\pi\)
−0.999930 + 0.0118135i \(0.996240\pi\)
\(272\) −8.57093 4.94843i −0.0315108 0.0181927i
\(273\) 150.676 59.8296i 0.551927 0.219156i
\(274\) −112.340 194.578i −0.409999 0.710139i
\(275\) 5.76914 + 3.33082i 0.0209787 + 0.0121121i
\(276\) −164.740 34.6713i −0.596885 0.125621i
\(277\) −138.120 239.230i −0.498627 0.863647i 0.501372 0.865232i \(-0.332829\pi\)
−0.999999 + 0.00158455i \(0.999496\pi\)
\(278\) 33.8661i 0.121820i
\(279\) −376.913 166.004i −1.35094 0.594995i
\(280\) 70.5760 122.241i 0.252057 0.436576i
\(281\) 43.7580 + 25.2637i 0.155723 + 0.0899065i 0.575836 0.817565i \(-0.304677\pi\)
−0.420114 + 0.907471i \(0.638010\pi\)
\(282\) −42.3975 + 201.451i −0.150346 + 0.714365i
\(283\) 76.0755 131.767i 0.268818 0.465606i −0.699739 0.714399i \(-0.746700\pi\)
0.968557 + 0.248792i \(0.0800336\pi\)
\(284\) 166.361 + 96.0488i 0.585780 + 0.338200i
\(285\) −44.2611 135.297i −0.155302 0.474728i
\(286\) 8.01526 16.1056i 0.0280254 0.0563131i
\(287\) 280.487i 0.977307i
\(288\) 174.671 + 238.396i 0.606496 + 0.827765i
\(289\) −128.616 222.770i −0.445039 0.770829i
\(290\) −15.3316 + 8.85172i −0.0528677 + 0.0305232i
\(291\) 132.820 + 119.110i 0.456426 + 0.409313i
\(292\) 30.7051 0.105154
\(293\) 285.933i 0.975882i 0.872877 + 0.487941i \(0.162252\pi\)
−0.872877 + 0.487941i \(0.837748\pi\)
\(294\) 107.620 + 22.6498i 0.366055 + 0.0770403i
\(295\) 91.4306 + 158.362i 0.309934 + 0.536822i
\(296\) −54.6819 + 31.5706i −0.184736 + 0.106657i
\(297\) −26.2689 18.8449i −0.0884473 0.0634510i
\(298\) −100.219 −0.336304
\(299\) −228.214 + 151.291i −0.763258 + 0.505991i
\(300\) −9.15832 + 43.5156i −0.0305277 + 0.145052i
\(301\) 111.858 193.743i 0.371620 0.643664i
\(302\) −35.6170 20.5635i −0.117937 0.0680909i
\(303\) 85.3703 + 260.960i 0.281750 + 0.861255i
\(304\) −9.44955 + 16.3671i −0.0310841 + 0.0538392i
\(305\) −228.760 132.075i −0.750034 0.433032i
\(306\) −6.36190 58.2792i −0.0207905 0.190455i
\(307\) 225.537 0.734647 0.367323 0.930093i \(-0.380274\pi\)
0.367323 + 0.930093i \(0.380274\pi\)
\(308\) 11.4848 6.63073i 0.0372882 0.0215283i
\(309\) 284.008 + 254.692i 0.919119 + 0.824246i
\(310\) −116.581 + 201.924i −0.376067 + 0.651366i
\(311\) 387.790 223.890i 1.24691 0.719905i 0.276419 0.961037i \(-0.410852\pi\)
0.970492 + 0.241132i \(0.0775188\pi\)
\(312\) 297.201 + 43.5861i 0.952568 + 0.139699i
\(313\) −143.843 + 249.143i −0.459562 + 0.795985i −0.998938 0.0460803i \(-0.985327\pi\)
0.539376 + 0.842065i \(0.318660\pi\)
\(314\) −81.2603 + 46.9156i −0.258791 + 0.149413i
\(315\) −163.965 + 17.8988i −0.520523 + 0.0568216i
\(316\) −175.801 + 304.496i −0.556332 + 0.963596i
\(317\) −373.302 215.526i −1.17761 0.679893i −0.222149 0.975013i \(-0.571307\pi\)
−0.955460 + 0.295119i \(0.904641\pi\)
\(318\) −124.279 + 40.6564i −0.390813 + 0.127850i
\(319\) −4.16036 −0.0130419
\(320\) 118.081 68.1741i 0.369003 0.213044i
\(321\) 252.711 281.799i 0.787263 0.877879i
\(322\) 101.187 0.314245
\(323\) 52.5364 30.3319i 0.162651 0.0939068i
\(324\) 65.0399 205.776i 0.200741 0.635112i
\(325\) 39.9631 + 60.2820i 0.122963 + 0.185483i
\(326\) 45.3150 + 26.1626i 0.139003 + 0.0802534i
\(327\) −460.572 + 150.671i −1.40848 + 0.460768i
\(328\) 259.847 450.068i 0.792217 1.37216i
\(329\) 246.820i 0.750213i
\(330\) −12.2195 + 13.6261i −0.0370289 + 0.0412911i
\(331\) −37.8138 65.4955i −0.114241 0.197872i 0.803235 0.595662i \(-0.203110\pi\)
−0.917476 + 0.397791i \(0.869777\pi\)
\(332\) −74.7408 43.1516i −0.225123 0.129975i
\(333\) 67.5228 + 29.7391i 0.202771 + 0.0893065i
\(334\) −115.772 + 200.523i −0.346623 + 0.600369i
\(335\) 242.548i 0.724025i
\(336\) 16.3025 + 14.6197i 0.0485193 + 0.0435110i
\(337\) 179.237 + 310.448i 0.531861 + 0.921211i 0.999308 + 0.0371897i \(0.0118406\pi\)
−0.467447 + 0.884021i \(0.654826\pi\)
\(338\) 155.814 117.772i 0.460989 0.348436i
\(339\) −162.452 496.583i −0.479208 1.46485i
\(340\) 66.2047 0.194720
\(341\) −47.4526 + 27.3968i −0.139157 + 0.0803425i
\(342\) −111.290 + 12.1487i −0.325410 + 0.0355226i
\(343\) 335.547 0.978270
\(344\) 358.972 207.253i 1.04352 0.602479i
\(345\) 264.762 86.6139i 0.767425 0.251055i
\(346\) 109.341 + 189.384i 0.316015 + 0.547353i
\(347\) 401.016i 1.15567i 0.816155 + 0.577833i \(0.196102\pi\)
−0.816155 + 0.577833i \(0.803898\pi\)
\(348\) −8.63497 26.3954i −0.0248131 0.0758489i
\(349\) −620.263 −1.77726 −0.888629 0.458628i \(-0.848341\pi\)
−0.888629 + 0.458628i \(0.848341\pi\)
\(350\) 26.7282i 0.0763663i
\(351\) −164.171 310.240i −0.467724 0.883875i
\(352\) 39.3191 0.111702
\(353\) 91.5844i 0.259446i −0.991550 0.129723i \(-0.958591\pi\)
0.991550 0.129723i \(-0.0414088\pi\)
\(354\) 136.681 44.7135i 0.386103 0.126309i
\(355\) −317.866 −0.895397
\(356\) 195.559 112.906i 0.549324 0.317152i
\(357\) −21.8545 66.8048i −0.0612170 0.187128i
\(358\) −52.6209 91.1421i −0.146986 0.254587i
\(359\) 539.362i 1.50240i 0.660074 + 0.751201i \(0.270525\pi\)
−0.660074 + 0.751201i \(0.729475\pi\)
\(360\) −279.679 123.179i −0.776886 0.342164i
\(361\) 122.578 + 212.311i 0.339551 + 0.588120i
\(362\) 374.989i 1.03588i
\(363\) 340.920 111.528i 0.939173 0.307240i
\(364\) 143.705 8.89465i 0.394794 0.0244359i
\(365\) −44.0011 + 25.4040i −0.120551 + 0.0696001i
\(366\) −138.693 + 154.657i −0.378942 + 0.422560i
\(367\) 242.757 0.661463 0.330731 0.943725i \(-0.392705\pi\)
0.330731 + 0.943725i \(0.392705\pi\)
\(368\) −32.0286 18.4917i −0.0870342 0.0502492i
\(369\) −603.686 + 65.8999i −1.63601 + 0.178590i
\(370\) 20.8851 36.1740i 0.0564461 0.0977676i
\(371\) −135.770 + 78.3869i −0.365957 + 0.211286i
\(372\) −272.309 244.200i −0.732012 0.656453i
\(373\) 216.538 0.580531 0.290266 0.956946i \(-0.406256\pi\)
0.290266 + 0.956946i \(0.406256\pi\)
\(374\) −6.75471 3.89983i −0.0180607 0.0104274i
\(375\) −125.686 384.198i −0.335163 1.02453i
\(376\) −228.658 + 396.047i −0.608132 + 1.05332i
\(377\) −40.4381 20.1248i −0.107263 0.0533815i
\(378\) −12.7822 + 129.082i −0.0338153 + 0.341488i
\(379\) 282.977 + 490.130i 0.746641 + 1.29322i 0.949424 + 0.313996i \(0.101668\pi\)
−0.202783 + 0.979224i \(0.564999\pi\)
\(380\) 126.425i 0.332697i
\(381\) 556.086 + 498.686i 1.45954 + 1.30889i
\(382\) 139.296 + 241.268i 0.364650 + 0.631593i
\(383\) 191.318i 0.499525i −0.968307 0.249762i \(-0.919648\pi\)
0.968307 0.249762i \(-0.0803525\pi\)
\(384\) 89.1799 + 272.605i 0.232239 + 0.709910i
\(385\) −10.9719 + 19.0040i −0.0284985 + 0.0493609i
\(386\) 109.212 + 63.0535i 0.282932 + 0.163351i
\(387\) −443.270 195.229i −1.14540 0.504468i
\(388\) 79.2214 + 137.216i 0.204179 + 0.353648i
\(389\) 458.688 + 264.823i 1.17915 + 0.680780i 0.955817 0.293963i \(-0.0949742\pi\)
0.223329 + 0.974743i \(0.428308\pi\)
\(390\) −184.685 + 73.3338i −0.473552 + 0.188035i
\(391\) 59.3561 + 102.808i 0.151806 + 0.262935i
\(392\) 211.578 + 122.155i 0.539740 + 0.311619i
\(393\) 55.5458 61.9393i 0.141338 0.157606i
\(394\) 33.7123 + 58.3914i 0.0855642 + 0.148202i
\(395\) 581.800i 1.47291i
\(396\) −16.9695 23.1605i −0.0428523 0.0584862i
\(397\) 247.437 428.574i 0.623267 1.07953i −0.365606 0.930770i \(-0.619138\pi\)
0.988873 0.148761i \(-0.0475285\pi\)
\(398\) −80.5755 46.5203i −0.202451 0.116885i
\(399\) −127.571 + 41.7335i −0.319727 + 0.104595i
\(400\) −4.88452 + 8.46024i −0.0122113 + 0.0211506i
\(401\) 135.312 + 78.1223i 0.337436 + 0.194819i 0.659138 0.752022i \(-0.270921\pi\)
−0.321702 + 0.946841i \(0.604255\pi\)
\(402\) −186.659 39.2845i −0.464327 0.0977226i
\(403\) −593.758 + 36.7508i −1.47335 + 0.0911931i
\(404\) 243.847i 0.603582i
\(405\) 77.0465 + 348.693i 0.190238 + 0.860970i
\(406\) 8.34622 + 14.4561i 0.0205572 + 0.0356061i
\(407\) 8.50099 4.90805i 0.0208870 0.0120591i
\(408\) 26.8213 127.441i 0.0657386 0.312356i
\(409\) 59.9988 0.146696 0.0733481 0.997306i \(-0.476632\pi\)
0.0733481 + 0.997306i \(0.476632\pi\)
\(410\) 343.796i 0.838527i
\(411\) −389.382 + 434.201i −0.947401 + 1.05645i
\(412\) 169.398 + 293.407i 0.411161 + 0.712152i
\(413\) 149.319 86.2093i 0.361547 0.208739i
\(414\) −23.7737 217.783i −0.0574244 0.526045i
\(415\) 142.807 0.344113
\(416\) 382.176 + 190.198i 0.918692 + 0.457206i
\(417\) −83.5521 + 27.3332i −0.200365 + 0.0655472i
\(418\) −7.44715 + 12.8988i −0.0178162 + 0.0308585i
\(419\) 246.976 + 142.592i 0.589442 + 0.340314i 0.764877 0.644177i \(-0.222800\pi\)
−0.175435 + 0.984491i \(0.556133\pi\)
\(420\) −143.343 30.1682i −0.341294 0.0718289i
\(421\) 193.967 335.961i 0.460729 0.798006i −0.538268 0.842773i \(-0.680921\pi\)
0.998997 + 0.0447674i \(0.0142547\pi\)
\(422\) −201.669 116.434i −0.477888 0.275909i
\(423\) 531.226 57.9899i 1.25585 0.137092i
\(424\) −290.475 −0.685083
\(425\) 27.1563 15.6787i 0.0638973 0.0368911i
\(426\) −51.4833 + 244.622i −0.120853 + 0.574230i
\(427\) −124.533 + 215.697i −0.291645 + 0.505144i
\(428\) 291.125 168.081i 0.680199 0.392713i
\(429\) −46.2037 6.77601i −0.107701 0.0157949i
\(430\) −137.105 + 237.473i −0.318849 + 0.552262i
\(431\) 187.461 108.231i 0.434945 0.251116i −0.266506 0.963833i \(-0.585869\pi\)
0.701451 + 0.712718i \(0.252536\pi\)
\(432\) 27.6354 38.5223i 0.0639709 0.0891721i
\(433\) 41.6487 72.1376i 0.0961863 0.166600i −0.813917 0.580981i \(-0.802669\pi\)
0.910103 + 0.414382i \(0.136002\pi\)
\(434\) 190.392 + 109.923i 0.438692 + 0.253279i
\(435\) 34.2125 + 30.6810i 0.0786494 + 0.0705311i
\(436\) −430.369 −0.987086
\(437\) 196.323 113.347i 0.449251 0.259375i
\(438\) 12.4237 + 37.9767i 0.0283645 + 0.0867049i
\(439\) 285.081 0.649388 0.324694 0.945819i \(-0.394739\pi\)
0.324694 + 0.945819i \(0.394739\pi\)
\(440\) −35.2111 + 20.3291i −0.0800251 + 0.0462025i
\(441\) −30.9797 283.794i −0.0702487 0.643525i
\(442\) −46.7902 70.5803i −0.105860 0.159684i
\(443\) 434.480 + 250.847i 0.980767 + 0.566246i 0.902502 0.430686i \(-0.141728\pi\)
0.0782655 + 0.996933i \(0.475062\pi\)
\(444\) 48.7833 + 43.7478i 0.109872 + 0.0985310i
\(445\) −186.827 + 323.594i −0.419836 + 0.727178i
\(446\) 322.744i 0.723641i
\(447\) 80.8861 + 247.253i 0.180953 + 0.553139i
\(448\) −64.2809 111.338i −0.143484 0.248522i
\(449\) −153.082 88.3819i −0.340940 0.196842i 0.319748 0.947503i \(-0.396402\pi\)
−0.660688 + 0.750661i \(0.729735\pi\)
\(450\) −57.5266 + 6.27974i −0.127837 + 0.0139550i
\(451\) −40.3965 + 69.9688i −0.0895710 + 0.155142i
\(452\) 464.018i 1.02659i
\(453\) −21.9865 + 104.469i −0.0485354 + 0.230615i
\(454\) 104.681 + 181.312i 0.230574 + 0.399366i
\(455\) −198.573 + 131.641i −0.436425 + 0.289321i
\(456\) −243.362 51.2182i −0.533689 0.112321i
\(457\) 159.859 0.349802 0.174901 0.984586i \(-0.444040\pi\)
0.174901 + 0.984586i \(0.444040\pi\)
\(458\) 184.538 106.543i 0.402921 0.232626i
\(459\) −138.648 + 62.7326i −0.302065 + 0.136672i
\(460\) 247.399 0.537825
\(461\) 85.3515 49.2777i 0.185144 0.106893i −0.404563 0.914510i \(-0.632576\pi\)
0.589707 + 0.807617i \(0.299243\pi\)
\(462\) 12.8479 + 11.5217i 0.0278093 + 0.0249388i
\(463\) −192.657 333.692i −0.416107 0.720718i 0.579437 0.815017i \(-0.303272\pi\)
−0.995544 + 0.0942990i \(0.969939\pi\)
\(464\) 6.10102i 0.0131487i
\(465\) 592.265 + 124.648i 1.27369 + 0.268061i
\(466\) −422.707 −0.907097
\(467\) 511.214i 1.09468i −0.836912 0.547338i \(-0.815641\pi\)
0.836912 0.547338i \(-0.184359\pi\)
\(468\) −52.9070 307.203i −0.113049 0.656417i
\(469\) −228.697 −0.487627
\(470\) 302.530i 0.643681i
\(471\) 181.332 + 162.615i 0.384994 + 0.345254i
\(472\) 319.462 0.676826
\(473\) −55.8068 + 32.2201i −0.117985 + 0.0681185i
\(474\) −447.739 94.2315i −0.944597 0.198801i
\(475\) −29.9402 51.8579i −0.0630320 0.109175i
\(476\) 62.4240i 0.131143i
\(477\) 200.610 + 273.798i 0.420565 + 0.574001i
\(478\) −255.785 443.032i −0.535115 0.926846i
\(479\) 71.9581i 0.150226i −0.997175 0.0751128i \(-0.976068\pi\)
0.997175 0.0751128i \(-0.0239317\pi\)
\(480\) −323.339 289.963i −0.673622 0.604090i
\(481\) 106.370 6.58380i 0.221144 0.0136877i
\(482\) 338.368 195.357i 0.702008 0.405304i
\(483\) −81.6676 249.642i −0.169084 0.516857i
\(484\) 318.563 0.658189
\(485\) −227.052 131.089i −0.468149 0.270286i
\(486\) 280.824 2.81687i 0.577828 0.00579602i
\(487\) −7.75168 + 13.4263i −0.0159172 + 0.0275694i −0.873874 0.486152i \(-0.838400\pi\)
0.857957 + 0.513721i \(0.171733\pi\)
\(488\) −399.649 + 230.737i −0.818952 + 0.472822i
\(489\) 27.9732 132.914i 0.0572048 0.271808i
\(490\) −161.619 −0.329835
\(491\) −583.945 337.141i −1.18930 0.686641i −0.231151 0.972918i \(-0.574249\pi\)
−0.958147 + 0.286277i \(0.907582\pi\)
\(492\) −527.762 111.073i −1.07269 0.225759i
\(493\) −9.79176 + 16.9598i −0.0198616 + 0.0344013i
\(494\) −134.781 + 89.3509i −0.272835 + 0.180872i
\(495\) 43.4797 + 19.1497i 0.0878377 + 0.0386863i
\(496\) −40.1764 69.5876i −0.0810008 0.140298i
\(497\) 299.714i 0.603046i
\(498\) 23.1298 109.901i 0.0464454 0.220684i
\(499\) −339.947 588.805i −0.681256 1.17997i −0.974598 0.223962i \(-0.928101\pi\)
0.293342 0.956007i \(-0.405232\pi\)
\(500\) 359.004i 0.718008i
\(501\) 588.157 + 123.784i 1.17397 + 0.247074i
\(502\) 110.678 191.700i 0.220475 0.381873i
\(503\) 80.1083 + 46.2505i 0.159261 + 0.0919494i 0.577512 0.816382i \(-0.304024\pi\)
−0.418251 + 0.908331i \(0.637357\pi\)
\(504\) −116.145 + 263.708i −0.230446 + 0.523229i
\(505\) −201.748 349.438i −0.399502 0.691957i
\(506\) −25.2416 14.5732i −0.0498845 0.0288009i
\(507\) −416.315 289.362i −0.821135 0.570734i
\(508\) 331.682 + 574.489i 0.652917 + 1.13088i
\(509\) −204.617 118.136i −0.401999 0.232094i 0.285347 0.958424i \(-0.407891\pi\)
−0.687346 + 0.726330i \(0.741224\pi\)
\(510\) 26.7873 + 81.8834i 0.0525240 + 0.160556i
\(511\) 23.9533 + 41.4883i 0.0468753 + 0.0811904i
\(512\) 111.757i 0.218275i
\(513\) 119.795 + 264.763i 0.233518 + 0.516108i
\(514\) 232.534 402.760i 0.452400 0.783580i
\(515\) −485.503 280.305i −0.942725 0.544282i
\(516\) −320.249 287.193i −0.620638 0.556575i
\(517\) 35.5477 61.5705i 0.0687577 0.119092i
\(518\) −34.1082 19.6924i −0.0658460 0.0380162i
\(519\) 378.988 422.610i 0.730227 0.814278i
\(520\) −440.584 + 27.2701i −0.847277 + 0.0524424i
\(521\) 114.601i 0.219963i 0.993934 + 0.109981i \(0.0350791\pi\)
−0.993934 + 0.109981i \(0.964921\pi\)
\(522\) 29.1526 21.3598i 0.0558479 0.0409192i
\(523\) 294.538 + 510.154i 0.563169 + 0.975438i 0.997217 + 0.0745483i \(0.0237515\pi\)
−0.434048 + 0.900890i \(0.642915\pi\)
\(524\) 63.9891 36.9441i 0.122117 0.0705041i
\(525\) −65.9421 + 21.5722i −0.125604 + 0.0410900i
\(526\) 138.937 0.264140
\(527\) 257.923i 0.489417i
\(528\) −1.96116 5.99488i −0.00371432 0.0113539i
\(529\) −42.6931 73.9466i −0.0807052 0.139786i
\(530\) 166.415 96.0797i 0.313990 0.181282i
\(531\) −220.629 301.121i −0.415497 0.567083i
\(532\) −119.205 −0.224070
\(533\) −731.107 + 484.677i −1.37168 + 0.909338i
\(534\) 218.771 + 196.189i 0.409683 + 0.367395i
\(535\) −278.126 + 481.728i −0.519861 + 0.900426i
\(536\) −366.967 211.868i −0.684639 0.395277i
\(537\) −182.390 + 203.383i −0.339646 + 0.378740i
\(538\) 175.694 304.311i 0.326569 0.565635i
\(539\) −32.8925 18.9905i −0.0610251 0.0352328i
\(540\) −31.2520 + 315.603i −0.0578742 + 0.584450i
\(541\) −151.415 −0.279880 −0.139940 0.990160i \(-0.544691\pi\)
−0.139940 + 0.990160i \(0.544691\pi\)
\(542\) 265.669 153.384i 0.490164 0.282997i
\(543\) −925.149 + 302.652i −1.70377 + 0.557371i
\(544\) 92.5409 160.286i 0.170112 0.294643i
\(545\) 616.729 356.068i 1.13161 0.653336i
\(546\) 69.1459 + 174.138i 0.126641 + 0.318935i
\(547\) 458.959 794.940i 0.839048 1.45327i −0.0516444 0.998666i \(-0.516446\pi\)
0.890692 0.454607i \(-0.150220\pi\)
\(548\) −448.570 + 258.982i −0.818559 + 0.472595i
\(549\) 493.498 + 217.351i 0.898904 + 0.395904i
\(550\) −3.84947 + 6.66748i −0.00699904 + 0.0121227i
\(551\) 32.3866 + 18.6984i 0.0587779 + 0.0339354i
\(552\) 100.228 476.233i 0.181573 0.862740i
\(553\) −548.575 −0.991998
\(554\) 276.482 159.627i 0.499065 0.288135i
\(555\) −106.102 22.3304i −0.191176 0.0402349i
\(556\) −78.0730 −0.140419
\(557\) −368.714 + 212.877i −0.661964 + 0.382185i −0.793025 0.609189i \(-0.791495\pi\)
0.131061 + 0.991374i \(0.458162\pi\)
\(558\) 191.853 435.604i 0.343822 0.780652i
\(559\) −698.291 + 43.2209i −1.24918 + 0.0773183i
\(560\) −27.8686 16.0900i −0.0497654 0.0287321i
\(561\) −4.16972 + 19.8123i −0.00743265 + 0.0353161i
\(562\) −29.1976 + 50.5718i −0.0519531 + 0.0899854i
\(563\) 978.187i 1.73745i 0.495291 + 0.868727i \(0.335061\pi\)
−0.495291 + 0.868727i \(0.664939\pi\)
\(564\) 464.415 + 97.7410i 0.823430 + 0.173300i
\(565\) 383.908 + 664.948i 0.679483 + 1.17690i
\(566\) 152.285 + 87.9216i 0.269054 + 0.155338i
\(567\) 328.780 72.6466i 0.579859 0.128124i
\(568\) −277.659 + 480.920i −0.488836 + 0.846689i
\(569\) 700.782i 1.23160i 0.787901 + 0.615802i \(0.211168\pi\)
−0.787901 + 0.615802i \(0.788832\pi\)
\(570\) 156.365 51.1532i 0.274325 0.0897424i
\(571\) −389.201 674.116i −0.681613 1.18059i −0.974489 0.224437i \(-0.927946\pi\)
0.292876 0.956150i \(-0.405388\pi\)
\(572\) −37.1289 18.4780i −0.0649107 0.0323041i
\(573\) 482.816 538.390i 0.842611 0.939598i
\(574\) 324.163 0.564744
\(575\) 101.480 58.5896i 0.176487 0.101895i
\(576\) −224.527 + 164.509i −0.389804 + 0.285606i
\(577\) 986.504 1.70971 0.854856 0.518866i \(-0.173646\pi\)
0.854856 + 0.518866i \(0.173646\pi\)
\(578\) 257.458 148.644i 0.445429 0.257169i
\(579\) 67.4171 320.331i 0.116437 0.553248i
\(580\) 20.4063 + 35.3447i 0.0351833 + 0.0609392i
\(581\) 134.652i 0.231758i
\(582\) −137.657 + 153.502i −0.236524 + 0.263749i
\(583\) 45.1580 0.0774580
\(584\) 88.7626i 0.151991i
\(585\) 329.983 + 396.456i 0.564074 + 0.677703i
\(586\) −330.457 −0.563921
\(587\) 609.714i 1.03869i −0.854563 0.519347i \(-0.826175\pi\)
0.854563 0.519347i \(-0.173825\pi\)
\(588\) 52.2158 248.102i 0.0888023 0.421942i
\(589\) 492.531 0.836216
\(590\) −183.022 + 105.668i −0.310206 + 0.179098i
\(591\) 116.850 130.300i 0.197716 0.220474i
\(592\) 7.19748 + 12.4664i 0.0121579 + 0.0210581i
\(593\) 1034.59i 1.74467i 0.488911 + 0.872334i \(0.337394\pi\)
−0.488911 + 0.872334i \(0.662606\pi\)
\(594\) 21.7794 30.3593i 0.0366656 0.0511099i
\(595\) 51.6468 + 89.4549i 0.0868013 + 0.150344i
\(596\) 231.039i 0.387649i
\(597\) −49.7397 + 236.337i −0.0833161 + 0.395875i
\(598\) −174.850 263.750i −0.292391 0.441054i
\(599\) −859.469 + 496.214i −1.43484 + 0.828405i −0.997485 0.0708843i \(-0.977418\pi\)
−0.437355 + 0.899289i \(0.644085\pi\)
\(600\) −125.795 26.4750i −0.209659 0.0441250i
\(601\) 432.270 0.719251 0.359625 0.933097i \(-0.382904\pi\)
0.359625 + 0.933097i \(0.382904\pi\)
\(602\) 223.912 + 129.275i 0.371946 + 0.214743i
\(603\) 53.7320 + 492.220i 0.0891077 + 0.816286i
\(604\) −47.4059 + 82.1095i −0.0784867 + 0.135943i
\(605\) −456.508 + 263.565i −0.754559 + 0.435645i
\(606\) −301.596 + 98.6637i −0.497682 + 0.162811i
\(607\) 535.692 0.882525 0.441262 0.897378i \(-0.354531\pi\)
0.441262 + 0.897378i \(0.354531\pi\)
\(608\) −306.082 176.717i −0.503425 0.290653i
\(609\) 28.9289 32.2587i 0.0475023 0.0529700i
\(610\) 152.641 264.382i 0.250231 0.433413i
\(611\) 643.352 426.501i 1.05295 0.698038i
\(612\) −134.354 + 14.6664i −0.219532 + 0.0239647i
\(613\) −343.288 594.593i −0.560014 0.969972i −0.997494 0.0707444i \(-0.977463\pi\)
0.437481 0.899228i \(-0.355871\pi\)
\(614\) 260.656i 0.424521i
\(615\) 848.191 277.476i 1.37917 0.451181i
\(616\) 19.1682 + 33.2003i 0.0311172 + 0.0538965i
\(617\) 198.229i 0.321278i 0.987013 + 0.160639i \(0.0513555\pi\)
−0.987013 + 0.160639i \(0.948644\pi\)
\(618\) −294.351 + 328.232i −0.476296 + 0.531119i
\(619\) −348.839 + 604.207i −0.563552 + 0.976101i 0.433630 + 0.901091i \(0.357232\pi\)
−0.997183 + 0.0750105i \(0.976101\pi\)
\(620\) 465.504 + 268.759i 0.750813 + 0.433482i
\(621\) −518.112 + 234.424i −0.834318 + 0.377495i
\(622\) 258.753 + 448.174i 0.416002 + 0.720537i
\(623\) 305.115 + 176.158i 0.489751 + 0.282758i
\(624\) 9.93677 67.7561i 0.0159243 0.108583i
\(625\) 227.480 + 394.007i 0.363968 + 0.630411i
\(626\) −287.939 166.241i −0.459966 0.265561i
\(627\) 37.8338 + 7.96252i 0.0603409 + 0.0126994i
\(628\) 108.157 + 187.333i 0.172224 + 0.298301i
\(629\) 46.2061i 0.0734596i
\(630\) −20.6859 189.497i −0.0328348 0.300788i
\(631\) −169.170 + 293.012i −0.268099 + 0.464361i −0.968371 0.249515i \(-0.919729\pi\)
0.700272 + 0.713876i \(0.253062\pi\)
\(632\) −880.241 508.207i −1.39279 0.804126i
\(633\) −124.491 + 591.517i −0.196668 + 0.934466i
\(634\) 249.087 431.431i 0.392881 0.680490i
\(635\) −950.614 548.837i −1.49703 0.864310i
\(636\) 93.7271 + 286.505i 0.147370 + 0.450480i
\(637\) −227.848 343.695i −0.357689 0.539553i
\(638\) 4.80819i 0.00753634i
\(639\) 645.068 70.4172i 1.00950 0.110199i
\(640\) −210.751 365.032i −0.329299 0.570362i
\(641\) −97.0449 + 56.0289i −0.151396 + 0.0874086i −0.573784 0.819006i \(-0.694525\pi\)
0.422388 + 0.906415i \(0.361192\pi\)
\(642\) 325.679 + 292.062i 0.507289 + 0.454925i
\(643\) 133.008 0.206855 0.103427 0.994637i \(-0.467019\pi\)
0.103427 + 0.994637i \(0.467019\pi\)
\(644\) 233.271i 0.362222i
\(645\) 696.535 + 146.593i 1.07990 + 0.227276i
\(646\) 35.0550 + 60.7171i 0.0542647 + 0.0939893i
\(647\) 513.330 296.371i 0.793400 0.458070i −0.0477580 0.998859i \(-0.515208\pi\)
0.841158 + 0.540789i \(0.181874\pi\)
\(648\) 594.860 + 188.018i 0.917994 + 0.290151i
\(649\) −49.6644 −0.0765245
\(650\) −69.6688 + 46.1859i −0.107183 + 0.0710553i
\(651\) 117.530 558.442i 0.180538 0.857822i
\(652\) 60.3139 104.467i 0.0925060 0.160225i
\(653\) −759.015 438.217i −1.16235 0.671083i −0.210484 0.977597i \(-0.567504\pi\)
−0.951866 + 0.306514i \(0.900837\pi\)
\(654\) −174.133 532.290i −0.266258 0.813899i
\(655\) −61.1319 + 105.884i −0.0933311 + 0.161654i
\(656\) −102.607 59.2401i −0.156413 0.0903050i
\(657\) 83.6666 61.3017i 0.127346 0.0933056i
\(658\) −285.254 −0.433516
\(659\) 482.911 278.809i 0.732794 0.423079i −0.0866495 0.996239i \(-0.527616\pi\)
0.819443 + 0.573160i \(0.194283\pi\)
\(660\) 31.4128 + 28.1703i 0.0475951 + 0.0426823i
\(661\) 312.862 541.893i 0.473317 0.819808i −0.526217 0.850350i \(-0.676390\pi\)
0.999533 + 0.0305420i \(0.00972334\pi\)
\(662\) 75.6941 43.7020i 0.114342 0.0660151i
\(663\) −136.367 + 172.403i −0.205682 + 0.260034i
\(664\) 124.743 216.062i 0.187866 0.325394i
\(665\) 170.824 98.6251i 0.256878 0.148308i
\(666\) −34.3699 + 78.0371i −0.0516064 + 0.117173i
\(667\) −36.5907 + 63.3769i −0.0548586 + 0.0950179i
\(668\) 462.276 + 266.895i 0.692030 + 0.399544i
\(669\) 796.252 260.485i 1.19021 0.389365i
\(670\) 280.317 0.418383
\(671\) 62.1305 35.8710i 0.0925939 0.0534591i
\(672\) −273.404 + 304.874i −0.406851 + 0.453681i
\(673\) −176.438 −0.262167 −0.131083 0.991371i \(-0.541846\pi\)
−0.131083 + 0.991371i \(0.541846\pi\)
\(674\) −358.789 + 207.147i −0.532328 + 0.307340i
\(675\) 61.9225 + 136.858i 0.0917370 + 0.202752i
\(676\) −271.504 359.206i −0.401634 0.531370i
\(677\) −104.644 60.4161i −0.154570 0.0892409i 0.420720 0.907190i \(-0.361777\pi\)
−0.575290 + 0.817950i \(0.695111\pi\)
\(678\) 573.908 187.748i 0.846472 0.276914i
\(679\) −123.603 + 214.086i −0.182036 + 0.315296i
\(680\) 191.385i 0.281449i
\(681\) 362.834 404.597i 0.532796 0.594122i
\(682\) −31.6629 54.8417i −0.0464265 0.0804130i
\(683\) 0.634589 + 0.366380i 0.000929120 + 0.000536428i 0.500464 0.865757i \(-0.333163\pi\)
−0.499535 + 0.866293i \(0.666496\pi\)
\(684\) 28.0070 + 256.563i 0.0409460 + 0.375092i
\(685\) 428.541 742.254i 0.625607 1.08358i
\(686\) 387.796i 0.565300i
\(687\) −411.795 369.289i −0.599411 0.537538i
\(688\) −47.2496 81.8387i −0.0686767 0.118952i
\(689\) 438.929 + 218.442i 0.637053 + 0.317042i
\(690\) 100.101 + 305.989i 0.145074 + 0.443462i
\(691\) 1152.96 1.66854 0.834271 0.551354i \(-0.185889\pi\)
0.834271 + 0.551354i \(0.185889\pi\)
\(692\) 436.597 252.069i 0.630920 0.364262i
\(693\) 18.0562 40.9967i 0.0260551 0.0591583i
\(694\) −463.460 −0.667810
\(695\) 111.880 64.5941i 0.160979 0.0929412i
\(696\) 76.3041 24.9621i 0.109632 0.0358650i
\(697\) 190.153 + 329.355i 0.272817 + 0.472533i
\(698\) 716.847i 1.02700i
\(699\) 341.165 + 1042.88i 0.488076 + 1.49195i
\(700\) −61.6178 −0.0880255
\(701\) 678.495i 0.967896i 0.875097 + 0.483948i \(0.160798\pi\)
−0.875097 + 0.483948i \(0.839202\pi\)
\(702\) 358.549 189.735i 0.510753 0.270278i
\(703\) −88.2355 −0.125513
\(704\) 37.0316i 0.0526018i
\(705\) −746.383 + 244.171i −1.05870 + 0.346342i
\(706\) 105.845 0.149923
\(707\) −329.483 + 190.227i −0.466030 + 0.269062i
\(708\) −103.080 315.096i −0.145594 0.445051i
\(709\) −247.180 428.129i −0.348632 0.603848i 0.637375 0.770554i \(-0.280020\pi\)
−0.986007 + 0.166706i \(0.946687\pi\)
\(710\) 367.362i 0.517412i
\(711\) 128.887 + 1180.69i 0.181275 + 1.66060i
\(712\) 326.391 + 565.325i 0.458414 + 0.793996i
\(713\) 963.827i 1.35179i
\(714\) 77.2073 25.2575i 0.108133 0.0353747i
\(715\) 68.4944 4.23948i 0.0957963 0.00592934i
\(716\) −210.114 + 121.310i −0.293456 + 0.169427i
\(717\) −886.578 + 988.625i −1.23651 + 1.37884i
\(718\) −623.349 −0.868174
\(719\) 51.9602 + 29.9992i 0.0722673 + 0.0417236i 0.535698 0.844409i \(-0.320048\pi\)
−0.463431 + 0.886133i \(0.653382\pi\)
\(720\) −28.0824 + 63.7614i −0.0390033 + 0.0885575i
\(721\) −264.298 + 457.778i −0.366572 + 0.634921i
\(722\) −245.371 + 141.665i −0.339849 + 0.196212i
\(723\) −755.067 677.127i −1.04435 0.936552i
\(724\) −864.480 −1.19403
\(725\) 16.7408 + 9.66531i 0.0230908 + 0.0133315i
\(726\) 128.895 + 394.006i 0.177541 + 0.542708i
\(727\) −429.204 + 743.403i −0.590377 + 1.02256i 0.403805 + 0.914845i \(0.367687\pi\)
−0.994182 + 0.107717i \(0.965646\pi\)
\(728\) 25.7127 + 415.424i 0.0353197 + 0.570637i
\(729\) −233.602 690.559i −0.320442 0.947268i
\(730\) −29.3598 50.8527i −0.0402189 0.0696612i
\(731\) 303.331i 0.414953i
\(732\) 356.538 + 319.736i 0.487074 + 0.436797i
\(733\) −720.827 1248.51i −0.983393 1.70329i −0.648871 0.760899i \(-0.724758\pi\)
−0.334522 0.942388i \(-0.608575\pi\)
\(734\) 280.558i 0.382231i
\(735\) 130.442 + 398.737i 0.177473 + 0.542499i
\(736\) 345.815 598.969i 0.469857 0.813816i
\(737\) 57.0496 + 32.9376i 0.0774079 + 0.0446915i
\(738\) −76.1614 697.689i −0.103200 0.945378i
\(739\) −534.141 925.158i −0.722788 1.25191i −0.959878 0.280418i \(-0.909527\pi\)
0.237090 0.971488i \(-0.423806\pi\)
\(740\) −83.3937 48.1473i −0.112694 0.0650640i
\(741\) 329.222 + 260.407i 0.444294 + 0.351427i
\(742\) −90.5929 156.912i −0.122093 0.211471i
\(743\) 350.296 + 202.244i 0.471462 + 0.272199i 0.716851 0.697226i \(-0.245583\pi\)
−0.245390 + 0.969425i \(0.578916\pi\)
\(744\) 705.937 787.193i 0.948840 1.05805i
\(745\) −191.151 331.084i −0.256579 0.444408i
\(746\) 250.256i 0.335464i
\(747\) −289.808 + 31.6361i −0.387963 + 0.0423509i
\(748\) −8.99047 + 15.5720i −0.0120194 + 0.0208181i
\(749\) 454.218 + 262.243i 0.606432 + 0.350124i
\(750\) 444.024 145.257i 0.592032 0.193677i
\(751\) −304.195 + 526.882i −0.405054 + 0.701574i −0.994328 0.106360i \(-0.966081\pi\)
0.589274 + 0.807933i \(0.299414\pi\)
\(752\) 90.2909 + 52.1295i 0.120068 + 0.0693211i
\(753\) −562.279 118.338i −0.746718 0.157155i
\(754\) 23.2586 46.7349i 0.0308469 0.0619826i
\(755\) 156.886i 0.207796i
\(756\) 297.580 + 29.4673i 0.393624 + 0.0389780i
\(757\) 395.079 + 684.296i 0.521900 + 0.903958i 0.999675 + 0.0254758i \(0.00811008\pi\)
−0.477775 + 0.878482i \(0.658557\pi\)
\(758\) −566.451 + 327.040i −0.747296 + 0.431452i
\(759\) −15.5818 + 74.0364i −0.0205293 + 0.0975447i
\(760\) 365.471 0.480883
\(761\) 1002.58i 1.31744i −0.752386 0.658722i \(-0.771097\pi\)
0.752386 0.658722i \(-0.228903\pi\)
\(762\) −576.338 + 642.677i −0.756350 + 0.843408i
\(763\) −335.734 581.509i −0.440019 0.762135i
\(764\) 556.207 321.127i 0.728020 0.420323i
\(765\) 180.398 132.176i 0.235814 0.172779i
\(766\) 221.109 0.288654
\(767\) −482.731 240.241i −0.629375 0.313222i
\(768\) −667.785 + 218.459i −0.869512 + 0.284451i
\(769\) −101.034 + 174.996i −0.131384 + 0.227563i −0.924210 0.381884i \(-0.875275\pi\)
0.792826 + 0.609447i \(0.208609\pi\)