Properties

Label 117.3.k.a.29.16
Level $117$
Weight $3$
Character 117.29
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(29,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.29");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 29.16
Character \(\chi\) \(=\) 117.29
Dual form 117.3.k.a.113.11

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.13140i q^{2} +(-2.34643 + 1.86930i) q^{3} +2.71993 q^{4} +(-7.06649 + 4.07984i) q^{5} +(-2.11493 - 2.65475i) q^{6} +(-3.97102 - 6.87801i) q^{7} +7.60294i q^{8} +(2.01145 - 8.77235i) q^{9} +(-4.61594 - 7.99504i) q^{10} +4.00036i q^{11} +(-6.38212 + 5.08436i) q^{12} +(-12.9709 - 0.869283i) q^{13} +(7.78178 - 4.49282i) q^{14} +(8.95458 - 22.7824i) q^{15} +2.27776 q^{16} +(-1.60230 - 0.925090i) q^{17} +(9.92504 + 2.27575i) q^{18} +(-14.4514 + 25.0305i) q^{19} +(-19.2204 + 11.0969i) q^{20} +(22.1748 + 8.71573i) q^{21} -4.52601 q^{22} +(-13.0031 - 7.50735i) q^{23} +(-14.2122 - 17.8397i) q^{24} +(20.7902 - 36.0097i) q^{25} +(0.983507 - 14.6753i) q^{26} +(11.6784 + 24.3437i) q^{27} +(-10.8009 - 18.7077i) q^{28} +11.4917i q^{29} +(25.7761 + 10.1312i) q^{30} +(26.0477 + 45.1159i) q^{31} +32.9888i q^{32} +(-7.47787 - 9.38656i) q^{33} +(1.04665 - 1.81285i) q^{34} +(56.1224 + 32.4023i) q^{35} +(5.47100 - 23.8602i) q^{36} +(21.4744 + 37.1948i) q^{37} +(-28.3196 - 16.3503i) q^{38} +(32.0602 - 22.2068i) q^{39} +(-31.0188 - 53.7261i) q^{40} +(35.1449 + 20.2909i) q^{41} +(-9.86098 + 25.0885i) q^{42} +(-18.3431 - 31.7712i) q^{43} +10.8807i q^{44} +(21.5759 + 70.1961i) q^{45} +(8.49383 - 14.7117i) q^{46} +(-62.5840 - 36.1329i) q^{47} +(-5.34460 + 4.25781i) q^{48} +(-7.03800 + 12.1902i) q^{49} +(40.7414 + 23.5221i) q^{50} +(5.48896 - 0.824526i) q^{51} +(-35.2800 - 2.36439i) q^{52} +66.2582i q^{53} +(-27.5425 + 13.2130i) q^{54} +(-16.3208 - 28.2685i) q^{55} +(52.2931 - 30.1914i) q^{56} +(-12.8804 - 85.7463i) q^{57} -13.0017 q^{58} -4.32590i q^{59} +(24.3558 - 61.9667i) q^{60} +(-7.13924 - 12.3655i) q^{61} +(-51.0441 + 29.4703i) q^{62} +(-68.3238 + 21.0004i) q^{63} -28.2125 q^{64} +(95.2054 - 46.7765i) q^{65} +(10.6200 - 8.46047i) q^{66} +(44.8949 - 77.7602i) q^{67} +(-4.35816 - 2.51618i) q^{68} +(44.5444 - 6.69124i) q^{69} +(-36.6600 + 63.4969i) q^{70} +(-77.9009 - 44.9761i) q^{71} +(66.6956 + 15.2929i) q^{72} +44.6797 q^{73} +(-42.0823 + 24.2962i) q^{74} +(18.5302 + 123.357i) q^{75} +(-39.3068 + 68.0813i) q^{76} +(27.5145 - 15.8855i) q^{77} +(25.1248 + 36.2730i) q^{78} +(-10.9688 + 18.9985i) q^{79} +(-16.0958 + 9.29290i) q^{80} +(-72.9082 - 35.2902i) q^{81} +(-22.9571 + 39.7629i) q^{82} +(-101.145 - 58.3960i) q^{83} +(60.3138 + 23.7062i) q^{84} +15.0969 q^{85} +(35.9460 - 20.7534i) q^{86} +(-21.4815 - 26.9645i) q^{87} -30.4145 q^{88} +(20.9089 - 12.0718i) q^{89} +(-79.4200 + 24.4110i) q^{90} +(45.5288 + 92.6659i) q^{91} +(-35.3676 - 20.4195i) q^{92} +(-145.454 - 57.1703i) q^{93} +(40.8808 - 70.8075i) q^{94} -235.837i q^{95} +(-61.6659 - 77.4059i) q^{96} +(46.7356 + 80.9485i) q^{97} +(-13.7920 - 7.96280i) q^{98} +(35.0926 + 8.04651i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - q^{3} - 98 q^{4} - 6 q^{5} + 12 q^{6} - q^{7} - 3 q^{9} - 6 q^{10} - 39 q^{12} + 4 q^{13} - 6 q^{14} - 25 q^{15} + 166 q^{16} + 34 q^{18} + 5 q^{19} + 21 q^{20} - 91 q^{21} + 30 q^{22} - 75 q^{23}+ \cdots + 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.13140i 0.565700i 0.959164 + 0.282850i \(0.0912799\pi\)
−0.959164 + 0.282850i \(0.908720\pi\)
\(3\) −2.34643 + 1.86930i −0.782143 + 0.623099i
\(4\) 2.71993 0.679983
\(5\) −7.06649 + 4.07984i −1.41330 + 0.815968i −0.995698 0.0926619i \(-0.970462\pi\)
−0.417601 + 0.908630i \(0.637129\pi\)
\(6\) −2.11493 2.65475i −0.352488 0.442458i
\(7\) −3.97102 6.87801i −0.567289 0.982573i −0.996833 0.0795268i \(-0.974659\pi\)
0.429544 0.903046i \(-0.358674\pi\)
\(8\) 7.60294i 0.950367i
\(9\) 2.01145 8.77235i 0.223494 0.974705i
\(10\) −4.61594 7.99504i −0.461594 0.799504i
\(11\) 4.00036i 0.363669i 0.983329 + 0.181835i \(0.0582036\pi\)
−0.983329 + 0.181835i \(0.941796\pi\)
\(12\) −6.38212 + 5.08436i −0.531844 + 0.423697i
\(13\) −12.9709 0.869283i −0.997762 0.0668679i
\(14\) 7.78178 4.49282i 0.555842 0.320915i
\(15\) 8.95458 22.7824i 0.596972 1.51883i
\(16\) 2.27776 0.142360
\(17\) −1.60230 0.925090i −0.0942531 0.0544171i 0.452133 0.891951i \(-0.350663\pi\)
−0.546386 + 0.837534i \(0.683997\pi\)
\(18\) 9.92504 + 2.27575i 0.551391 + 0.126431i
\(19\) −14.4514 + 25.0305i −0.760599 + 1.31740i 0.181943 + 0.983309i \(0.441761\pi\)
−0.942542 + 0.334087i \(0.891572\pi\)
\(20\) −19.2204 + 11.0969i −0.961019 + 0.554845i
\(21\) 22.1748 + 8.71573i 1.05594 + 0.415035i
\(22\) −4.52601 −0.205728
\(23\) −13.0031 7.50735i −0.565353 0.326407i 0.189938 0.981796i \(-0.439171\pi\)
−0.755291 + 0.655389i \(0.772505\pi\)
\(24\) −14.2122 17.8397i −0.592173 0.743323i
\(25\) 20.7902 36.0097i 0.831609 1.44039i
\(26\) 0.983507 14.6753i 0.0378272 0.564434i
\(27\) 11.6784 + 24.3437i 0.432534 + 0.901618i
\(28\) −10.8009 18.7077i −0.385747 0.668133i
\(29\) 11.4917i 0.396266i 0.980175 + 0.198133i \(0.0634878\pi\)
−0.980175 + 0.198133i \(0.936512\pi\)
\(30\) 25.7761 + 10.1312i 0.859202 + 0.337707i
\(31\) 26.0477 + 45.1159i 0.840247 + 1.45535i 0.889686 + 0.456573i \(0.150923\pi\)
−0.0494388 + 0.998777i \(0.515743\pi\)
\(32\) 32.9888i 1.03090i
\(33\) −7.47787 9.38656i −0.226602 0.284441i
\(34\) 1.04665 1.81285i 0.0307838 0.0533190i
\(35\) 56.1224 + 32.4023i 1.60350 + 0.925779i
\(36\) 5.47100 23.8602i 0.151972 0.662783i
\(37\) 21.4744 + 37.1948i 0.580390 + 1.00527i 0.995433 + 0.0954635i \(0.0304333\pi\)
−0.415043 + 0.909802i \(0.636233\pi\)
\(38\) −28.3196 16.3503i −0.745252 0.430271i
\(39\) 32.0602 22.2068i 0.822057 0.569405i
\(40\) −31.0188 53.7261i −0.775470 1.34315i
\(41\) 35.1449 + 20.2909i 0.857192 + 0.494900i 0.863071 0.505083i \(-0.168538\pi\)
−0.00587914 + 0.999983i \(0.501871\pi\)
\(42\) −9.86098 + 25.0885i −0.234785 + 0.597346i
\(43\) −18.3431 31.7712i −0.426584 0.738865i 0.569983 0.821657i \(-0.306950\pi\)
−0.996567 + 0.0827913i \(0.973617\pi\)
\(44\) 10.8807i 0.247289i
\(45\) 21.5759 + 70.1961i 0.479465 + 1.55991i
\(46\) 8.49383 14.7117i 0.184648 0.319820i
\(47\) −62.5840 36.1329i −1.33157 0.768784i −0.346033 0.938222i \(-0.612471\pi\)
−0.985541 + 0.169438i \(0.945805\pi\)
\(48\) −5.34460 + 4.25781i −0.111346 + 0.0887044i
\(49\) −7.03800 + 12.1902i −0.143633 + 0.248779i
\(50\) 40.7414 + 23.5221i 0.814829 + 0.470442i
\(51\) 5.48896 0.824526i 0.107627 0.0161672i
\(52\) −35.2800 2.36439i −0.678461 0.0454690i
\(53\) 66.2582i 1.25016i 0.780563 + 0.625078i \(0.214933\pi\)
−0.780563 + 0.625078i \(0.785067\pi\)
\(54\) −27.5425 + 13.2130i −0.510045 + 0.244685i
\(55\) −16.3208 28.2685i −0.296743 0.513973i
\(56\) 52.2931 30.1914i 0.933805 0.539132i
\(57\) −12.8804 85.7463i −0.225972 1.50432i
\(58\) −13.0017 −0.224168
\(59\) 4.32590i 0.0733203i −0.999328 0.0366602i \(-0.988328\pi\)
0.999328 0.0366602i \(-0.0116719\pi\)
\(60\) 24.3558 61.9667i 0.405931 1.03278i
\(61\) −7.13924 12.3655i −0.117037 0.202714i 0.801555 0.597921i \(-0.204006\pi\)
−0.918592 + 0.395207i \(0.870673\pi\)
\(62\) −51.0441 + 29.4703i −0.823292 + 0.475328i
\(63\) −68.3238 + 21.0004i −1.08450 + 0.333340i
\(64\) −28.2125 −0.440821
\(65\) 95.2054 46.7765i 1.46470 0.719638i
\(66\) 10.6200 8.46047i 0.160909 0.128189i
\(67\) 44.8949 77.7602i 0.670073 1.16060i −0.307810 0.951448i \(-0.599596\pi\)
0.977883 0.209153i \(-0.0670706\pi\)
\(68\) −4.35816 2.51618i −0.0640905 0.0370027i
\(69\) 44.5444 6.69124i 0.645570 0.0969746i
\(70\) −36.6600 + 63.4969i −0.523714 + 0.907099i
\(71\) −77.9009 44.9761i −1.09720 0.633466i −0.161713 0.986838i \(-0.551702\pi\)
−0.935483 + 0.353371i \(0.885035\pi\)
\(72\) 66.6956 + 15.2929i 0.926328 + 0.212401i
\(73\) 44.6797 0.612050 0.306025 0.952023i \(-0.401001\pi\)
0.306025 + 0.952023i \(0.401001\pi\)
\(74\) −42.0823 + 24.2962i −0.568679 + 0.328327i
\(75\) 18.5302 + 123.357i 0.247069 + 1.64476i
\(76\) −39.3068 + 68.0813i −0.517194 + 0.895807i
\(77\) 27.5145 15.8855i 0.357331 0.206305i
\(78\) 25.1248 + 36.2730i 0.322112 + 0.465038i
\(79\) −10.9688 + 18.9985i −0.138845 + 0.240487i −0.927060 0.374913i \(-0.877672\pi\)
0.788214 + 0.615401i \(0.211006\pi\)
\(80\) −16.0958 + 9.29290i −0.201197 + 0.116161i
\(81\) −72.9082 35.2902i −0.900101 0.435682i
\(82\) −22.9571 + 39.7629i −0.279965 + 0.484914i
\(83\) −101.145 58.3960i −1.21861 0.703566i −0.253991 0.967207i \(-0.581743\pi\)
−0.964621 + 0.263640i \(0.915077\pi\)
\(84\) 60.3138 + 23.7062i 0.718022 + 0.282217i
\(85\) 15.0969 0.177610
\(86\) 35.9460 20.7534i 0.417976 0.241319i
\(87\) −21.4815 26.9645i −0.246913 0.309937i
\(88\) −30.4145 −0.345619
\(89\) 20.9089 12.0718i 0.234932 0.135638i −0.377913 0.925841i \(-0.623358\pi\)
0.612845 + 0.790203i \(0.290025\pi\)
\(90\) −79.4200 + 24.4110i −0.882444 + 0.271233i
\(91\) 45.5288 + 92.6659i 0.500316 + 1.01831i
\(92\) −35.3676 20.4195i −0.384430 0.221951i
\(93\) −145.454 57.1703i −1.56402 0.614734i
\(94\) 40.8808 70.8075i 0.434902 0.753272i
\(95\) 235.837i 2.48250i
\(96\) −61.6659 77.4059i −0.642353 0.806311i
\(97\) 46.7356 + 80.9485i 0.481811 + 0.834521i 0.999782 0.0208774i \(-0.00664596\pi\)
−0.517971 + 0.855398i \(0.673313\pi\)
\(98\) −13.7920 7.96280i −0.140734 0.0812531i
\(99\) 35.0926 + 8.04651i 0.354470 + 0.0812779i
\(100\) 56.5480 97.9440i 0.565480 0.979440i
\(101\) 45.2880i 0.448396i 0.974544 + 0.224198i \(0.0719763\pi\)
−0.974544 + 0.224198i \(0.928024\pi\)
\(102\) 0.932869 + 6.21021i 0.00914577 + 0.0608844i
\(103\) 33.9722 + 58.8416i 0.329827 + 0.571278i 0.982477 0.186382i \(-0.0596761\pi\)
−0.652650 + 0.757659i \(0.726343\pi\)
\(104\) 6.60910 98.6170i 0.0635491 0.948240i
\(105\) −192.257 + 28.8799i −1.83102 + 0.275047i
\(106\) −74.9646 −0.707213
\(107\) −9.46031 + 5.46191i −0.0884141 + 0.0510459i −0.543555 0.839373i \(-0.682922\pi\)
0.455141 + 0.890419i \(0.349589\pi\)
\(108\) 31.7645 + 66.2131i 0.294116 + 0.613085i
\(109\) −23.9383 −0.219617 −0.109809 0.993953i \(-0.535024\pi\)
−0.109809 + 0.993953i \(0.535024\pi\)
\(110\) 31.9830 18.4654i 0.290755 0.167867i
\(111\) −119.916 47.1328i −1.08033 0.424620i
\(112\) −9.04503 15.6664i −0.0807592 0.139879i
\(113\) 145.831i 1.29054i 0.763953 + 0.645271i \(0.223256\pi\)
−0.763953 + 0.645271i \(0.776744\pi\)
\(114\) 97.0134 14.5729i 0.850995 0.127832i
\(115\) 122.515 1.06535
\(116\) 31.2567i 0.269454i
\(117\) −33.7159 + 112.037i −0.288170 + 0.957579i
\(118\) 4.89433 0.0414773
\(119\) 14.6942i 0.123481i
\(120\) 173.213 + 68.0811i 1.44345 + 0.567342i
\(121\) 104.997 0.867745
\(122\) 13.9904 8.07735i 0.114675 0.0662078i
\(123\) −120.395 + 18.0851i −0.978818 + 0.147033i
\(124\) 70.8479 + 122.712i 0.571354 + 0.989614i
\(125\) 135.291i 1.08233i
\(126\) −23.7599 77.3016i −0.188571 0.613505i
\(127\) −28.2184 48.8757i −0.222192 0.384848i 0.733281 0.679925i \(-0.237988\pi\)
−0.955473 + 0.295078i \(0.904655\pi\)
\(128\) 100.036i 0.781528i
\(129\) 102.431 + 40.2601i 0.794036 + 0.312094i
\(130\) 52.9229 + 107.715i 0.407099 + 0.828580i
\(131\) 112.286 64.8284i 0.857146 0.494873i −0.00590977 0.999983i \(-0.501881\pi\)
0.863055 + 0.505109i \(0.168548\pi\)
\(132\) −20.3393 25.5308i −0.154086 0.193415i
\(133\) 229.547 1.72592
\(134\) 87.9780 + 50.7941i 0.656552 + 0.379061i
\(135\) −181.844 124.378i −1.34699 0.921321i
\(136\) 7.03340 12.1822i 0.0517162 0.0895751i
\(137\) 154.418 89.1533i 1.12714 0.650754i 0.183925 0.982940i \(-0.441120\pi\)
0.943214 + 0.332186i \(0.107786\pi\)
\(138\) 7.57048 + 50.3975i 0.0548585 + 0.365199i
\(139\) 5.92693 0.0426398 0.0213199 0.999773i \(-0.493213\pi\)
0.0213199 + 0.999773i \(0.493213\pi\)
\(140\) 152.649 + 88.1320i 1.09035 + 0.629514i
\(141\) 214.392 32.2049i 1.52051 0.228404i
\(142\) 50.8860 88.1372i 0.358352 0.620684i
\(143\) 3.47745 51.8883i 0.0243178 0.362855i
\(144\) 4.58159 19.9813i 0.0318166 0.138759i
\(145\) −46.8844 81.2062i −0.323341 0.560043i
\(146\) 50.5506i 0.346237i
\(147\) −6.27291 41.7595i −0.0426729 0.284078i
\(148\) 58.4090 + 101.167i 0.394656 + 0.683563i
\(149\) 21.2861i 0.142860i −0.997446 0.0714300i \(-0.977244\pi\)
0.997446 0.0714300i \(-0.0227562\pi\)
\(150\) −139.567 + 20.9650i −0.930444 + 0.139767i
\(151\) −73.3882 + 127.112i −0.486014 + 0.841802i −0.999871 0.0160745i \(-0.994883\pi\)
0.513856 + 0.857876i \(0.328216\pi\)
\(152\) −190.306 109.873i −1.25201 0.722848i
\(153\) −11.3382 + 12.1952i −0.0741056 + 0.0797071i
\(154\) 17.9729 + 31.1300i 0.116707 + 0.202143i
\(155\) −368.131 212.541i −2.37504 1.37123i
\(156\) 87.2017 60.4009i 0.558985 0.387185i
\(157\) −13.6091 23.5716i −0.0866820 0.150138i 0.819425 0.573187i \(-0.194293\pi\)
−0.906107 + 0.423049i \(0.860960\pi\)
\(158\) −21.4949 12.4101i −0.136044 0.0785449i
\(159\) −123.856 155.470i −0.778971 0.977800i
\(160\) −134.589 233.115i −0.841182 1.45697i
\(161\) 119.247i 0.740667i
\(162\) 39.9274 82.4884i 0.246465 0.509187i
\(163\) −105.196 + 182.204i −0.645371 + 1.11782i 0.338844 + 0.940843i \(0.389964\pi\)
−0.984216 + 0.176974i \(0.943369\pi\)
\(164\) 95.5916 + 55.1899i 0.582876 + 0.336524i
\(165\) 91.1380 + 35.8215i 0.552352 + 0.217100i
\(166\) 66.0693 114.435i 0.398008 0.689370i
\(167\) 38.3622 + 22.1484i 0.229714 + 0.132625i 0.610440 0.792062i \(-0.290993\pi\)
−0.380726 + 0.924688i \(0.624326\pi\)
\(168\) −66.2651 + 168.593i −0.394435 + 1.00353i
\(169\) 167.489 + 22.5508i 0.991057 + 0.133437i
\(170\) 17.0806i 0.100474i
\(171\) 190.508 + 177.120i 1.11408 + 1.03579i
\(172\) −49.8920 86.4155i −0.290070 0.502416i
\(173\) 51.0591 29.4790i 0.295139 0.170399i −0.345118 0.938559i \(-0.612161\pi\)
0.640257 + 0.768161i \(0.278828\pi\)
\(174\) 30.5077 24.3041i 0.175331 0.139679i
\(175\) −330.234 −1.88705
\(176\) 9.11186i 0.0517719i
\(177\) 8.08640 + 10.1504i 0.0456859 + 0.0573469i
\(178\) 13.6580 + 23.6564i 0.0767303 + 0.132901i
\(179\) 202.873 117.129i 1.13337 0.654351i 0.188589 0.982056i \(-0.439608\pi\)
0.944780 + 0.327705i \(0.106275\pi\)
\(180\) 58.6850 + 190.929i 0.326028 + 1.06072i
\(181\) −257.758 −1.42408 −0.712040 0.702139i \(-0.752228\pi\)
−0.712040 + 0.702139i \(0.752228\pi\)
\(182\) −104.842 + 51.5113i −0.576057 + 0.283029i
\(183\) 39.8666 + 15.6695i 0.217850 + 0.0856254i
\(184\) 57.0779 98.8619i 0.310206 0.537293i
\(185\) −303.498 175.225i −1.64053 0.947160i
\(186\) 64.6825 164.567i 0.347755 0.884767i
\(187\) 3.70070 6.40979i 0.0197898 0.0342770i
\(188\) −170.224 98.2789i −0.905447 0.522760i
\(189\) 121.061 176.993i 0.640533 0.936474i
\(190\) 266.827 1.40435
\(191\) 144.292 83.3072i 0.755457 0.436163i −0.0722051 0.997390i \(-0.523004\pi\)
0.827662 + 0.561226i \(0.189670\pi\)
\(192\) 66.1987 52.7376i 0.344785 0.274675i
\(193\) −67.7322 + 117.316i −0.350944 + 0.607852i −0.986415 0.164272i \(-0.947473\pi\)
0.635471 + 0.772125i \(0.280806\pi\)
\(194\) −91.5852 + 52.8767i −0.472089 + 0.272561i
\(195\) −135.953 + 287.725i −0.697197 + 1.47551i
\(196\) −19.1429 + 33.1564i −0.0976678 + 0.169166i
\(197\) −67.0955 + 38.7376i −0.340586 + 0.196638i −0.660531 0.750798i \(-0.729669\pi\)
0.319945 + 0.947436i \(0.396336\pi\)
\(198\) −9.10383 + 39.7038i −0.0459790 + 0.200524i
\(199\) −12.3535 + 21.3969i −0.0620781 + 0.107522i −0.895394 0.445274i \(-0.853106\pi\)
0.833316 + 0.552797i \(0.186439\pi\)
\(200\) 273.780 + 158.067i 1.36890 + 0.790334i
\(201\) 40.0145 + 266.381i 0.199077 + 1.32528i
\(202\) −51.2389 −0.253658
\(203\) 79.0402 45.6339i 0.389360 0.224797i
\(204\) 14.9296 2.24265i 0.0731843 0.0109934i
\(205\) −331.135 −1.61529
\(206\) −66.5734 + 38.4362i −0.323172 + 0.186583i
\(207\) −92.0122 + 98.9672i −0.444503 + 0.478103i
\(208\) −29.5446 1.98002i −0.142041 0.00951931i
\(209\) −100.131 57.8108i −0.479097 0.276606i
\(210\) −32.6747 217.519i −0.155594 1.03581i
\(211\) −179.209 + 310.398i −0.849330 + 1.47108i 0.0324778 + 0.999472i \(0.489660\pi\)
−0.881807 + 0.471610i \(0.843673\pi\)
\(212\) 180.218i 0.850084i
\(213\) 266.863 40.0869i 1.25288 0.188201i
\(214\) −6.17961 10.7034i −0.0288767 0.0500159i
\(215\) 259.243 + 149.674i 1.20578 + 0.696158i
\(216\) −185.083 + 88.7903i −0.856868 + 0.411066i
\(217\) 206.872 358.312i 0.953325 1.65121i
\(218\) 27.0838i 0.124238i
\(219\) −104.838 + 83.5197i −0.478711 + 0.381368i
\(220\) −44.3916 76.8885i −0.201780 0.349493i
\(221\) 19.9792 + 13.3921i 0.0904034 + 0.0605978i
\(222\) 53.3261 135.674i 0.240208 0.611142i
\(223\) −338.585 −1.51832 −0.759160 0.650904i \(-0.774390\pi\)
−0.759160 + 0.650904i \(0.774390\pi\)
\(224\) 226.897 130.999i 1.01293 0.584818i
\(225\) −274.071 254.811i −1.21810 1.13249i
\(226\) −164.994 −0.730061
\(227\) −284.389 + 164.192i −1.25282 + 0.723314i −0.971668 0.236350i \(-0.924049\pi\)
−0.281148 + 0.959664i \(0.590715\pi\)
\(228\) −35.0338 233.224i −0.153657 1.02291i
\(229\) −94.7010 164.027i −0.413541 0.716275i 0.581733 0.813380i \(-0.302375\pi\)
−0.995274 + 0.0971052i \(0.969042\pi\)
\(230\) 138.614i 0.602669i
\(231\) −34.8661 + 88.7071i −0.150935 + 0.384013i
\(232\) −87.3708 −0.376598
\(233\) 13.4331i 0.0576527i −0.999584 0.0288264i \(-0.990823\pi\)
0.999584 0.0288264i \(-0.00917699\pi\)
\(234\) −126.758 38.1462i −0.541703 0.163018i
\(235\) 589.666 2.50922
\(236\) 11.7662i 0.0498566i
\(237\) −9.77639 65.0825i −0.0412506 0.274610i
\(238\) −16.6250 −0.0698531
\(239\) −130.900 + 75.5752i −0.547699 + 0.316214i −0.748193 0.663481i \(-0.769078\pi\)
0.200494 + 0.979695i \(0.435745\pi\)
\(240\) 20.3964 51.8929i 0.0849849 0.216220i
\(241\) 4.55604 + 7.89130i 0.0189047 + 0.0327440i 0.875323 0.483539i \(-0.160649\pi\)
−0.856418 + 0.516283i \(0.827315\pi\)
\(242\) 118.794i 0.490884i
\(243\) 237.042 53.4812i 0.975480 0.220087i
\(244\) −19.4183 33.6334i −0.0795830 0.137842i
\(245\) 114.856i 0.468799i
\(246\) −20.4615 136.215i −0.0831769 0.553718i
\(247\) 209.206 312.106i 0.846988 1.26359i
\(248\) −343.013 + 198.039i −1.38312 + 0.798543i
\(249\) 346.489 52.0479i 1.39152 0.209028i
\(250\) −153.069 −0.612275
\(251\) −49.5787 28.6243i −0.197525 0.114041i 0.397976 0.917396i \(-0.369713\pi\)
−0.595500 + 0.803355i \(0.703046\pi\)
\(252\) −185.836 + 57.1197i −0.737445 + 0.226666i
\(253\) 30.0321 52.0172i 0.118704 0.205601i
\(254\) 55.2980 31.9263i 0.217709 0.125694i
\(255\) −35.4238 + 28.2206i −0.138917 + 0.110669i
\(256\) −226.030 −0.882931
\(257\) 233.785 + 134.976i 0.909668 + 0.525197i 0.880324 0.474373i \(-0.157325\pi\)
0.0293434 + 0.999569i \(0.490658\pi\)
\(258\) −45.5503 + 115.890i −0.176552 + 0.449187i
\(259\) 170.551 295.403i 0.658498 1.14055i
\(260\) 258.952 127.229i 0.995970 0.489342i
\(261\) 100.809 + 23.1150i 0.386243 + 0.0885632i
\(262\) 73.3469 + 127.041i 0.279950 + 0.484888i
\(263\) 423.518i 1.61034i 0.593047 + 0.805168i \(0.297925\pi\)
−0.593047 + 0.805168i \(0.702075\pi\)
\(264\) 71.3654 56.8538i 0.270324 0.215355i
\(265\) −270.323 468.213i −1.02009 1.76684i
\(266\) 259.710i 0.976352i
\(267\) −26.4955 + 67.4105i −0.0992341 + 0.252474i
\(268\) 122.111 211.503i 0.455638 0.789189i
\(269\) 31.0174 + 17.9079i 0.115306 + 0.0665722i 0.556544 0.830818i \(-0.312127\pi\)
−0.441238 + 0.897390i \(0.645460\pi\)
\(270\) 140.722 205.738i 0.521192 0.761994i
\(271\) 113.086 + 195.871i 0.417292 + 0.722771i 0.995666 0.0930007i \(-0.0296459\pi\)
−0.578374 + 0.815772i \(0.696313\pi\)
\(272\) −3.64966 2.10713i −0.0134179 0.00774681i
\(273\) −280.050 132.327i −1.02583 0.484714i
\(274\) 100.868 + 174.709i 0.368132 + 0.637623i
\(275\) 144.052 + 83.1684i 0.523825 + 0.302431i
\(276\) 121.158 18.1997i 0.438977 0.0659411i
\(277\) 245.696 + 425.558i 0.886990 + 1.53631i 0.843416 + 0.537261i \(0.180541\pi\)
0.0435736 + 0.999050i \(0.486126\pi\)
\(278\) 6.70573i 0.0241213i
\(279\) 448.166 137.751i 1.60633 0.493731i
\(280\) −246.352 + 426.695i −0.879830 + 1.52391i
\(281\) −296.149 170.981i −1.05391 0.608475i −0.130168 0.991492i \(-0.541552\pi\)
−0.923741 + 0.383017i \(0.874885\pi\)
\(282\) 36.4367 + 242.563i 0.129208 + 0.860153i
\(283\) 17.3221 30.0028i 0.0612089 0.106017i −0.833797 0.552071i \(-0.813838\pi\)
0.895006 + 0.446054i \(0.147171\pi\)
\(284\) −211.885 122.332i −0.746075 0.430746i
\(285\) 440.851 + 553.376i 1.54684 + 1.94167i
\(286\) 58.7065 + 3.93439i 0.205267 + 0.0137566i
\(287\) 322.302i 1.12300i
\(288\) 289.389 + 66.3552i 1.00482 + 0.230400i
\(289\) −142.788 247.317i −0.494078 0.855767i
\(290\) 91.8768 53.0451i 0.316816 0.182914i
\(291\) −260.979 102.577i −0.896834 0.352498i
\(292\) 121.526 0.416184
\(293\) 509.607i 1.73927i −0.493691 0.869637i \(-0.664353\pi\)
0.493691 0.869637i \(-0.335647\pi\)
\(294\) 47.2467 7.09718i 0.160703 0.0241401i
\(295\) 17.6490 + 30.5689i 0.0598271 + 0.103624i
\(296\) −282.790 + 163.269i −0.955371 + 0.551584i
\(297\) −97.3835 + 46.7179i −0.327891 + 0.157299i
\(298\) 24.0831 0.0808159
\(299\) 162.136 + 108.681i 0.542261 + 0.363480i
\(300\) 50.4008 + 335.524i 0.168003 + 1.11841i
\(301\) −145.682 + 252.328i −0.483993 + 0.838300i
\(302\) −143.815 83.0315i −0.476208 0.274939i
\(303\) −84.6568 106.265i −0.279396 0.350710i
\(304\) −32.9168 + 57.0135i −0.108279 + 0.187544i
\(305\) 100.899 + 58.2540i 0.330816 + 0.190997i
\(306\) −13.7977 12.8280i −0.0450904 0.0419216i
\(307\) −71.8316 −0.233979 −0.116990 0.993133i \(-0.537324\pi\)
−0.116990 + 0.993133i \(0.537324\pi\)
\(308\) 74.8376 43.2075i 0.242979 0.140284i
\(309\) −189.706 74.5634i −0.613935 0.241305i
\(310\) 240.469 416.504i 0.775705 1.34356i
\(311\) −100.786 + 58.1890i −0.324072 + 0.187103i −0.653206 0.757180i \(-0.726576\pi\)
0.329134 + 0.944283i \(0.393243\pi\)
\(312\) 168.837 + 243.752i 0.541143 + 0.781256i
\(313\) 160.351 277.737i 0.512304 0.887337i −0.487594 0.873071i \(-0.662125\pi\)
0.999898 0.0142666i \(-0.00454135\pi\)
\(314\) 26.6689 15.3973i 0.0849329 0.0490360i
\(315\) 397.131 427.150i 1.26073 1.35603i
\(316\) −29.8343 + 51.6746i −0.0944125 + 0.163527i
\(317\) 513.217 + 296.306i 1.61898 + 0.934719i 0.987184 + 0.159584i \(0.0510152\pi\)
0.631796 + 0.775135i \(0.282318\pi\)
\(318\) 175.899 140.131i 0.553142 0.440664i
\(319\) −45.9710 −0.144110
\(320\) 199.364 115.103i 0.623011 0.359696i
\(321\) 11.9880 30.5001i 0.0373458 0.0950160i
\(322\) −134.917 −0.418996
\(323\) 46.3110 26.7377i 0.143378 0.0827792i
\(324\) −198.305 95.9870i −0.612053 0.296256i
\(325\) −300.971 + 449.006i −0.926064 + 1.38156i
\(326\) −206.146 119.018i −0.632349 0.365087i
\(327\) 56.1695 44.7478i 0.171772 0.136843i
\(328\) −154.270 + 267.204i −0.470337 + 0.814647i
\(329\) 573.937i 1.74449i
\(330\) −40.5285 + 103.114i −0.122814 + 0.312466i
\(331\) −34.2548 59.3310i −0.103489 0.179248i 0.809631 0.586939i \(-0.199667\pi\)
−0.913120 + 0.407691i \(0.866334\pi\)
\(332\) −275.107 158.833i −0.828636 0.478413i
\(333\) 369.481 113.566i 1.10955 0.341039i
\(334\) −25.0588 + 43.4031i −0.0750262 + 0.129949i
\(335\) 732.656i 2.18703i
\(336\) 50.5088 + 19.8523i 0.150324 + 0.0590843i
\(337\) 299.382 + 518.545i 0.888373 + 1.53871i 0.841798 + 0.539793i \(0.181497\pi\)
0.0465755 + 0.998915i \(0.485169\pi\)
\(338\) −25.5140 + 189.497i −0.0754851 + 0.560642i
\(339\) −272.602 342.183i −0.804136 1.00939i
\(340\) 41.0625 0.120772
\(341\) −180.480 + 104.200i −0.529266 + 0.305572i
\(342\) −200.394 + 215.541i −0.585947 + 0.630238i
\(343\) −277.368 −0.808652
\(344\) 241.555 139.462i 0.702193 0.405412i
\(345\) −287.473 + 229.018i −0.833256 + 0.663819i
\(346\) 33.3526 + 57.7683i 0.0963947 + 0.166960i
\(347\) 198.188i 0.571147i −0.958357 0.285573i \(-0.907816\pi\)
0.958357 0.285573i \(-0.0921841\pi\)
\(348\) −58.4281 73.3416i −0.167897 0.210752i
\(349\) 303.509 0.869653 0.434826 0.900514i \(-0.356810\pi\)
0.434826 + 0.900514i \(0.356810\pi\)
\(350\) 373.627i 1.06750i
\(351\) −130.318 325.911i −0.371277 0.928522i
\(352\) −131.967 −0.374907
\(353\) 302.626i 0.857297i 0.903471 + 0.428648i \(0.141010\pi\)
−0.903471 + 0.428648i \(0.858990\pi\)
\(354\) −11.4842 + 9.14896i −0.0324412 + 0.0258445i
\(355\) 733.982 2.06755
\(356\) 56.8708 32.8344i 0.159749 0.0922314i
\(357\) −27.4679 34.4789i −0.0769408 0.0965795i
\(358\) 132.520 + 229.531i 0.370167 + 0.641148i
\(359\) 107.705i 0.300014i −0.988685 0.150007i \(-0.952070\pi\)
0.988685 0.150007i \(-0.0479296\pi\)
\(360\) −533.697 + 164.040i −1.48249 + 0.455668i
\(361\) −237.185 410.816i −0.657022 1.13800i
\(362\) 291.628i 0.805602i
\(363\) −246.368 + 196.271i −0.678700 + 0.540691i
\(364\) 123.835 + 252.045i 0.340207 + 0.692431i
\(365\) −315.729 + 182.286i −0.865010 + 0.499414i
\(366\) −17.7284 + 45.1051i −0.0484383 + 0.123238i
\(367\) −64.2993 −0.175202 −0.0876012 0.996156i \(-0.527920\pi\)
−0.0876012 + 0.996156i \(0.527920\pi\)
\(368\) −29.6180 17.0999i −0.0804836 0.0464672i
\(369\) 248.691 267.489i 0.673959 0.724902i
\(370\) 198.249 343.378i 0.535809 0.928048i
\(371\) 455.725 263.113i 1.22837 0.709199i
\(372\) −395.625 155.499i −1.06351 0.418009i
\(373\) −209.099 −0.560588 −0.280294 0.959914i \(-0.590432\pi\)
−0.280294 + 0.959914i \(0.590432\pi\)
\(374\) 7.25205 + 4.18697i 0.0193905 + 0.0111951i
\(375\) −252.900 317.451i −0.674399 0.846537i
\(376\) 274.716 475.822i 0.730627 1.26548i
\(377\) 9.98956 149.058i 0.0264975 0.395379i
\(378\) 200.251 + 136.968i 0.529763 + 0.362350i
\(379\) −105.972 183.549i −0.279610 0.484298i 0.691678 0.722206i \(-0.256872\pi\)
−0.971288 + 0.237908i \(0.923538\pi\)
\(380\) 641.462i 1.68806i
\(381\) 157.576 + 61.9347i 0.413584 + 0.162558i
\(382\) 94.2539 + 163.252i 0.246738 + 0.427362i
\(383\) 232.095i 0.605991i −0.952992 0.302996i \(-0.902013\pi\)
0.952992 0.302996i \(-0.0979868\pi\)
\(384\) −186.996 234.726i −0.486970 0.611266i
\(385\) −129.621 + 224.510i −0.336677 + 0.583142i
\(386\) −132.731 76.6322i −0.343862 0.198529i
\(387\) −315.604 + 97.0061i −0.815515 + 0.250662i
\(388\) 127.118 + 220.174i 0.327623 + 0.567460i
\(389\) −106.814 61.6691i −0.274586 0.158532i 0.356384 0.934340i \(-0.384010\pi\)
−0.630970 + 0.775807i \(0.717343\pi\)
\(390\) −325.532 153.818i −0.834698 0.394404i
\(391\) 13.8900 + 24.0581i 0.0355242 + 0.0615297i
\(392\) −92.6811 53.5095i −0.236431 0.136504i
\(393\) −142.288 + 362.011i −0.362055 + 0.921148i
\(394\) −43.8278 75.9119i −0.111238 0.192670i
\(395\) 179.004i 0.453174i
\(396\) 95.4494 + 21.8860i 0.241034 + 0.0552676i
\(397\) 254.354 440.555i 0.640691 1.10971i −0.344587 0.938754i \(-0.611981\pi\)
0.985279 0.170956i \(-0.0546855\pi\)
\(398\) −24.2085 13.9768i −0.0608254 0.0351176i
\(399\) −538.615 + 429.092i −1.34991 + 1.07542i
\(400\) 47.3551 82.0215i 0.118388 0.205054i
\(401\) −438.023 252.893i −1.09233 0.630655i −0.158132 0.987418i \(-0.550547\pi\)
−0.934195 + 0.356762i \(0.883881\pi\)
\(402\) −301.383 + 45.2724i −0.749710 + 0.112618i
\(403\) −298.643 607.836i −0.741050 1.50828i
\(404\) 123.180i 0.304902i
\(405\) 659.184 48.0757i 1.62761 0.118705i
\(406\) 51.6302 + 89.4261i 0.127168 + 0.220261i
\(407\) −148.793 + 85.9055i −0.365584 + 0.211070i
\(408\) 6.26882 + 41.7322i 0.0153647 + 0.102285i
\(409\) 368.824 0.901769 0.450885 0.892582i \(-0.351109\pi\)
0.450885 + 0.892582i \(0.351109\pi\)
\(410\) 374.646i 0.913771i
\(411\) −195.677 + 497.845i −0.476099 + 1.21130i
\(412\) 92.4021 + 160.045i 0.224277 + 0.388459i
\(413\) −29.7536 + 17.1782i −0.0720425 + 0.0415938i
\(414\) −111.972 104.103i −0.270463 0.251456i
\(415\) 952.986 2.29635
\(416\) 28.6766 427.895i 0.0689342 1.02859i
\(417\) −13.9071 + 11.0792i −0.0333504 + 0.0265688i
\(418\) 65.4071 113.288i 0.156476 0.271025i
\(419\) 488.999 + 282.323i 1.16706 + 0.673803i 0.952986 0.303014i \(-0.0979929\pi\)
0.214075 + 0.976817i \(0.431326\pi\)
\(420\) −522.925 + 78.5513i −1.24506 + 0.187027i
\(421\) −183.363 + 317.594i −0.435541 + 0.754379i −0.997340 0.0728949i \(-0.976776\pi\)
0.561799 + 0.827274i \(0.310110\pi\)
\(422\) −351.185 202.757i −0.832192 0.480466i
\(423\) −442.854 + 476.329i −1.04694 + 1.12607i
\(424\) −503.757 −1.18811
\(425\) −66.6245 + 38.4657i −0.156764 + 0.0905075i
\(426\) 45.3543 + 301.929i 0.106466 + 0.708753i
\(427\) −56.7002 + 98.2076i −0.132787 + 0.229994i
\(428\) −25.7314 + 14.8560i −0.0601201 + 0.0347104i
\(429\) 88.8352 + 128.253i 0.207075 + 0.298957i
\(430\) −169.341 + 293.308i −0.393817 + 0.682111i
\(431\) −55.7008 + 32.1589i −0.129236 + 0.0746145i −0.563224 0.826304i \(-0.690439\pi\)
0.433988 + 0.900919i \(0.357106\pi\)
\(432\) 26.6006 + 55.4490i 0.0615755 + 0.128354i
\(433\) −401.064 + 694.664i −0.926246 + 1.60430i −0.136701 + 0.990612i \(0.543650\pi\)
−0.789545 + 0.613692i \(0.789683\pi\)
\(434\) 405.395 + 234.055i 0.934089 + 0.539296i
\(435\) 261.810 + 102.903i 0.601861 + 0.236560i
\(436\) −65.1105 −0.149336
\(437\) 375.826 216.983i 0.860014 0.496529i
\(438\) −94.4942 118.613i −0.215740 0.270807i
\(439\) −384.741 −0.876403 −0.438201 0.898877i \(-0.644384\pi\)
−0.438201 + 0.898877i \(0.644384\pi\)
\(440\) 214.924 124.086i 0.488463 0.282014i
\(441\) 92.7799 + 86.2597i 0.210385 + 0.195600i
\(442\) −15.1518 + 22.6044i −0.0342802 + 0.0511413i
\(443\) 341.114 + 196.942i 0.770010 + 0.444565i 0.832878 0.553457i \(-0.186692\pi\)
−0.0628685 + 0.998022i \(0.520025\pi\)
\(444\) −326.165 128.198i −0.734605 0.288734i
\(445\) −98.5018 + 170.610i −0.221352 + 0.383393i
\(446\) 383.076i 0.858914i
\(447\) 39.7901 + 49.9464i 0.0890159 + 0.111737i
\(448\) 112.033 + 194.046i 0.250073 + 0.433138i
\(449\) 630.717 + 364.144i 1.40471 + 0.811012i 0.994872 0.101144i \(-0.0322504\pi\)
0.409842 + 0.912156i \(0.365584\pi\)
\(450\) 288.293 310.085i 0.640651 0.689077i
\(451\) −81.1709 + 140.592i −0.179980 + 0.311734i
\(452\) 396.651i 0.877547i
\(453\) −65.4103 435.444i −0.144394 0.961244i
\(454\) −185.767 321.758i −0.409179 0.708719i
\(455\) −699.791 469.073i −1.53800 1.03093i
\(456\) 651.924 97.9289i 1.42966 0.214756i
\(457\) −452.813 −0.990837 −0.495419 0.868654i \(-0.664985\pi\)
−0.495419 + 0.868654i \(0.664985\pi\)
\(458\) 185.580 107.145i 0.405197 0.233941i
\(459\) 3.80772 49.8095i 0.00829569 0.108518i
\(460\) 333.233 0.724420
\(461\) −198.203 + 114.432i −0.429940 + 0.248226i −0.699321 0.714808i \(-0.746514\pi\)
0.269381 + 0.963034i \(0.413181\pi\)
\(462\) −100.363 39.4475i −0.217236 0.0853842i
\(463\) 129.217 + 223.811i 0.279087 + 0.483393i 0.971158 0.238436i \(-0.0766348\pi\)
−0.692071 + 0.721830i \(0.743301\pi\)
\(464\) 26.1754i 0.0564124i
\(465\) 1261.10 189.436i 2.71203 0.407389i
\(466\) 15.1982 0.0326142
\(467\) 363.509i 0.778393i −0.921155 0.389196i \(-0.872753\pi\)
0.921155 0.389196i \(-0.127247\pi\)
\(468\) −91.7050 + 304.732i −0.195951 + 0.651138i
\(469\) −713.114 −1.52050
\(470\) 667.148i 1.41946i
\(471\) 75.9950 + 29.8696i 0.161348 + 0.0634175i
\(472\) 32.8895 0.0696812
\(473\) 127.096 73.3791i 0.268703 0.155136i
\(474\) 73.6344 11.0610i 0.155347 0.0233355i
\(475\) 600.895 + 1040.78i 1.26504 + 2.19112i
\(476\) 39.9672i 0.0839648i
\(477\) 581.240 + 133.275i 1.21853 + 0.279402i
\(478\) −85.5058 148.100i −0.178882 0.309834i
\(479\) 649.207i 1.35534i −0.735367 0.677669i \(-0.762990\pi\)
0.735367 0.677669i \(-0.237010\pi\)
\(480\) 751.566 + 295.401i 1.56576 + 0.615418i
\(481\) −246.210 501.118i −0.511871 1.04182i
\(482\) −8.92822 + 5.15471i −0.0185233 + 0.0106944i
\(483\) −222.909 279.805i −0.461509 0.579307i
\(484\) 285.585 0.590052
\(485\) −660.514 381.348i −1.36188 0.786285i
\(486\) 60.5086 + 268.189i 0.124503 + 0.551830i
\(487\) 238.062 412.335i 0.488833 0.846684i −0.511084 0.859531i \(-0.670756\pi\)
0.999917 + 0.0128467i \(0.00408935\pi\)
\(488\) 94.0144 54.2792i 0.192652 0.111228i
\(489\) −93.7600 624.170i −0.191738 1.27642i
\(490\) 129.948 0.265200
\(491\) −526.634 304.052i −1.07257 0.619251i −0.143691 0.989623i \(-0.545897\pi\)
−0.928884 + 0.370371i \(0.879230\pi\)
\(492\) −327.465 + 49.1903i −0.665580 + 0.0999802i
\(493\) 10.6309 18.4132i 0.0215637 0.0373493i
\(494\) 353.117 + 236.696i 0.714812 + 0.479142i
\(495\) −280.810 + 86.3115i −0.567293 + 0.174367i
\(496\) 59.3303 + 102.763i 0.119618 + 0.207184i
\(497\) 714.404i 1.43743i
\(498\) 58.8870 + 392.017i 0.118247 + 0.787184i
\(499\) 41.7382 + 72.2927i 0.0836437 + 0.144875i 0.904812 0.425810i \(-0.140011\pi\)
−0.821169 + 0.570685i \(0.806678\pi\)
\(500\) 367.983i 0.735966i
\(501\) −131.416 + 19.7407i −0.262308 + 0.0394027i
\(502\) 32.3855 56.0933i 0.0645130 0.111740i
\(503\) 294.128 + 169.815i 0.584747 + 0.337604i 0.763018 0.646378i \(-0.223717\pi\)
−0.178270 + 0.983982i \(0.557050\pi\)
\(504\) −159.665 519.461i −0.316795 1.03068i
\(505\) −184.768 320.028i −0.365877 0.633718i
\(506\) 58.8523 + 33.9784i 0.116309 + 0.0671509i
\(507\) −435.154 + 260.173i −0.858292 + 0.513161i
\(508\) −76.7521 132.939i −0.151087 0.261690i
\(509\) 60.3639 + 34.8511i 0.118593 + 0.0684698i 0.558123 0.829758i \(-0.311522\pi\)
−0.439530 + 0.898228i \(0.644855\pi\)
\(510\) −31.9288 40.0785i −0.0626055 0.0785852i
\(511\) −177.424 307.307i −0.347209 0.601384i
\(512\) 144.411i 0.282053i
\(513\) −778.104 59.4827i −1.51677 0.115951i
\(514\) −152.711 + 264.504i −0.297104 + 0.514599i
\(515\) −480.129 277.203i −0.932289 0.538257i
\(516\) 278.604 + 109.505i 0.539931 + 0.212218i
\(517\) 144.545 250.358i 0.279583 0.484252i
\(518\) 334.219 + 192.961i 0.645210 + 0.372512i
\(519\) −64.7015 + 164.615i −0.124666 + 0.317177i
\(520\) 355.638 + 723.840i 0.683920 + 1.39200i
\(521\) 256.792i 0.492884i 0.969158 + 0.246442i \(0.0792614\pi\)
−0.969158 + 0.246442i \(0.920739\pi\)
\(522\) −26.1523 + 114.056i −0.0501002 + 0.218498i
\(523\) 207.295 + 359.045i 0.396357 + 0.686511i 0.993273 0.115793i \(-0.0369409\pi\)
−0.596916 + 0.802303i \(0.703608\pi\)
\(524\) 305.411 176.329i 0.582844 0.336505i
\(525\) 774.869 617.305i 1.47594 1.17582i
\(526\) −479.169 −0.910967
\(527\) 96.3857i 0.182895i
\(528\) −17.0328 21.3803i −0.0322591 0.0404930i
\(529\) −151.779 262.889i −0.286917 0.496956i
\(530\) 529.737 305.844i 0.999504 0.577064i
\(531\) −37.9483 8.70132i −0.0714657 0.0163867i
\(532\) 624.352 1.17359
\(533\) −438.222 293.742i −0.822180 0.551111i
\(534\) −76.2683 29.9770i −0.142825 0.0561368i
\(535\) 44.5675 77.1931i 0.0833037 0.144286i
\(536\) 591.206 + 341.333i 1.10300 + 0.636815i
\(537\) −257.078 + 654.065i −0.478731 + 1.21800i
\(538\) −20.2610 + 35.0931i −0.0376599 + 0.0652289i
\(539\) −48.7651 28.1545i −0.0904733 0.0522348i
\(540\) −494.603 338.301i −0.915931 0.626483i
\(541\) 262.571 0.485344 0.242672 0.970108i \(-0.421976\pi\)
0.242672 + 0.970108i \(0.421976\pi\)
\(542\) −221.609 + 127.946i −0.408872 + 0.236062i
\(543\) 604.811 481.827i 1.11383 0.887343i
\(544\) 30.5176 52.8581i 0.0560986 0.0971656i
\(545\) 169.160 97.6645i 0.310385 0.179201i
\(546\) 149.715 316.849i 0.274203 0.580310i
\(547\) 341.315 591.174i 0.623976 1.08076i −0.364762 0.931101i \(-0.618850\pi\)
0.988738 0.149657i \(-0.0478169\pi\)
\(548\) 420.007 242.491i 0.766435 0.442502i
\(549\) −122.835 + 37.7553i −0.223743 + 0.0687711i
\(550\) −94.0968 + 162.980i −0.171085 + 0.296328i
\(551\) −287.644 166.071i −0.522040 0.301400i
\(552\) 50.8731 + 338.668i 0.0921614 + 0.613529i
\(553\) 174.229 0.315061
\(554\) −481.477 + 277.981i −0.869092 + 0.501770i
\(555\) 1039.68 156.176i 1.87330 0.281399i
\(556\) 16.1208 0.0289943
\(557\) −88.9427 + 51.3511i −0.159682 + 0.0921923i −0.577711 0.816241i \(-0.696054\pi\)
0.418030 + 0.908433i \(0.362721\pi\)
\(558\) 155.852 + 507.055i 0.279304 + 0.908700i
\(559\) 210.309 + 428.047i 0.376223 + 0.765736i
\(560\) 127.833 + 73.8046i 0.228274 + 0.131794i
\(561\) 3.29840 + 21.9578i 0.00587950 + 0.0391405i
\(562\) 193.449 335.063i 0.344214 0.596197i
\(563\) 546.016i 0.969834i 0.874560 + 0.484917i \(0.161150\pi\)
−0.874560 + 0.484917i \(0.838850\pi\)
\(564\) 583.131 87.5952i 1.03392 0.155311i
\(565\) −594.969 1030.52i −1.05304 1.82392i
\(566\) 33.9452 + 19.5983i 0.0599738 + 0.0346259i
\(567\) 46.7934 + 641.601i 0.0825280 + 1.13157i
\(568\) 341.951 592.276i 0.602026 1.04274i
\(569\) 469.135i 0.824491i 0.911073 + 0.412245i \(0.135255\pi\)
−0.911073 + 0.412245i \(0.864745\pi\)
\(570\) −626.090 + 498.779i −1.09840 + 0.875050i
\(571\) 56.3026 + 97.5189i 0.0986035 + 0.170786i 0.911107 0.412170i \(-0.135229\pi\)
−0.812503 + 0.582957i \(0.801896\pi\)
\(572\) 9.45842 141.133i 0.0165357 0.246735i
\(573\) −182.845 + 465.200i −0.319102 + 0.811867i
\(574\) 364.653 0.635284
\(575\) −540.675 + 312.159i −0.940305 + 0.542885i
\(576\) −56.7480 + 247.490i −0.0985208 + 0.429670i
\(577\) 369.071 0.639638 0.319819 0.947479i \(-0.396378\pi\)
0.319819 + 0.947479i \(0.396378\pi\)
\(578\) 279.814 161.551i 0.484108 0.279500i
\(579\) −60.3691 401.884i −0.104264 0.694100i
\(580\) −127.522 220.875i −0.219866 0.380820i
\(581\) 927.567i 1.59650i
\(582\) 116.056 295.272i 0.199408 0.507339i
\(583\) −265.057 −0.454643
\(584\) 339.697i 0.581673i
\(585\) −218.839 929.263i −0.374084 1.58848i
\(586\) 576.570 0.983908
\(587\) 304.408i 0.518582i −0.965799 0.259291i \(-0.916511\pi\)
0.965799 0.259291i \(-0.0834889\pi\)
\(588\) −17.0619 113.583i −0.0290168 0.193168i
\(589\) −1505.70 −2.55636
\(590\) −34.5857 + 19.9681i −0.0586199 + 0.0338442i
\(591\) 85.0226 216.317i 0.143862 0.366018i
\(592\) 48.9136 + 84.7208i 0.0826243 + 0.143110i
\(593\) 812.895i 1.37082i 0.728158 + 0.685409i \(0.240377\pi\)
−0.728158 + 0.685409i \(0.759623\pi\)
\(594\) −52.8567 110.180i −0.0889843 0.185488i
\(595\) −59.9501 103.837i −0.100756 0.174515i
\(596\) 57.8968i 0.0971423i
\(597\) −11.0106 73.2988i −0.0184432 0.122779i
\(598\) −122.961 + 183.441i −0.205621 + 0.306758i
\(599\) 714.222 412.356i 1.19236 0.688407i 0.233516 0.972353i \(-0.424977\pi\)
0.958840 + 0.283946i \(0.0916435\pi\)
\(600\) −937.878 + 140.884i −1.56313 + 0.234806i
\(601\) 14.8864 0.0247694 0.0123847 0.999923i \(-0.496058\pi\)
0.0123847 + 0.999923i \(0.496058\pi\)
\(602\) −285.484 164.824i −0.474227 0.273795i
\(603\) −591.836 550.244i −0.981486 0.912511i
\(604\) −199.611 + 345.736i −0.330482 + 0.572411i
\(605\) −741.961 + 428.372i −1.22638 + 0.708052i
\(606\) 120.228 95.7808i 0.198397 0.158054i
\(607\) 425.032 0.700218 0.350109 0.936709i \(-0.386144\pi\)
0.350109 + 0.936709i \(0.386144\pi\)
\(608\) −825.727 476.734i −1.35810 0.784102i
\(609\) −100.159 + 254.826i −0.164464 + 0.418434i
\(610\) −65.9086 + 114.157i −0.108047 + 0.187143i
\(611\) 780.361 + 523.079i 1.27719 + 0.856103i
\(612\) −30.8390 + 33.1701i −0.0503906 + 0.0541995i
\(613\) −353.559 612.383i −0.576769 0.998993i −0.995847 0.0910431i \(-0.970980\pi\)
0.419078 0.907950i \(-0.362353\pi\)
\(614\) 81.2703i 0.132362i
\(615\) 776.983 618.989i 1.26339 1.00649i
\(616\) 120.777 + 209.191i 0.196066 + 0.339596i
\(617\) 340.821i 0.552384i 0.961102 + 0.276192i \(0.0890726\pi\)
−0.961102 + 0.276192i \(0.910927\pi\)
\(618\) 84.3610 214.633i 0.136507 0.347303i
\(619\) −209.801 + 363.386i −0.338935 + 0.587053i −0.984233 0.176878i \(-0.943400\pi\)
0.645297 + 0.763931i \(0.276733\pi\)
\(620\) −1001.29 578.096i −1.61499 0.932413i
\(621\) 30.9007 404.218i 0.0497595 0.650914i
\(622\) −65.8351 114.030i −0.105844 0.183328i
\(623\) −166.059 95.8744i −0.266548 0.153892i
\(624\) 73.0255 50.5817i 0.117028 0.0810604i
\(625\) −32.2114 55.7918i −0.0515383 0.0892669i
\(626\) 314.231 + 181.422i 0.501967 + 0.289811i
\(627\) 343.016 51.5263i 0.547075 0.0821791i
\(628\) −37.0157 64.1131i −0.0589423 0.102091i
\(629\) 79.4632i 0.126333i
\(630\) 483.277 + 449.315i 0.767107 + 0.713198i
\(631\) −12.5405 + 21.7208i −0.0198740 + 0.0344228i −0.875791 0.482690i \(-0.839660\pi\)
0.855917 + 0.517113i \(0.172993\pi\)
\(632\) −144.444 83.3949i −0.228551 0.131954i
\(633\) −159.727 1063.32i −0.252334 1.67981i
\(634\) −335.241 + 580.654i −0.528771 + 0.915858i
\(635\) 398.810 + 230.253i 0.628047 + 0.362603i
\(636\) −336.881 422.868i −0.529687 0.664887i
\(637\) 101.886 152.000i 0.159947 0.238618i
\(638\) 52.0117i 0.0815230i
\(639\) −551.240 + 592.907i −0.862660 + 0.927867i
\(640\) −408.129 706.901i −0.637702 1.10453i
\(641\) 950.859 548.978i 1.48340 0.856441i 0.483577 0.875302i \(-0.339337\pi\)
0.999822 + 0.0188614i \(0.00600411\pi\)
\(642\) 34.5079 + 13.5632i 0.0537506 + 0.0211265i
\(643\) −221.450 −0.344401 −0.172200 0.985062i \(-0.555088\pi\)
−0.172200 + 0.985062i \(0.555088\pi\)
\(644\) 324.345i 0.503641i
\(645\) −888.081 + 133.403i −1.37687 + 0.206827i
\(646\) 30.2510 + 52.3963i 0.0468282 + 0.0811088i
\(647\) 33.9957 19.6274i 0.0525436 0.0303361i −0.473498 0.880795i \(-0.657009\pi\)
0.526042 + 0.850459i \(0.323676\pi\)
\(648\) 268.309 554.316i 0.414058 0.855426i
\(649\) 17.3052 0.0266643
\(650\) −508.006 340.518i −0.781548 0.523875i
\(651\) 184.383 + 1227.46i 0.283230 + 1.88550i
\(652\) −286.125 + 495.583i −0.438842 + 0.760096i
\(653\) 79.9523 + 46.1605i 0.122438 + 0.0706898i 0.559968 0.828514i \(-0.310813\pi\)
−0.437530 + 0.899204i \(0.644147\pi\)
\(654\) 50.6277 + 63.5502i 0.0774124 + 0.0971716i
\(655\) −528.979 + 916.219i −0.807602 + 1.39881i
\(656\) 80.0515 + 46.2178i 0.122030 + 0.0704539i
\(657\) 89.8708 391.946i 0.136790 0.596569i
\(658\) −649.353 −0.986859
\(659\) −638.277 + 368.509i −0.968554 + 0.559195i −0.898795 0.438369i \(-0.855556\pi\)
−0.0697589 + 0.997564i \(0.522223\pi\)
\(660\) 247.889 + 97.4322i 0.375590 + 0.147624i
\(661\) 293.632 508.586i 0.444224 0.769419i −0.553774 0.832667i \(-0.686813\pi\)
0.997998 + 0.0632484i \(0.0201460\pi\)
\(662\) 67.1271 38.7559i 0.101400 0.0585436i
\(663\) −71.9135 + 5.92338i −0.108467 + 0.00893422i
\(664\) 443.981 768.998i 0.668646 1.15813i
\(665\) −1622.09 + 936.515i −2.43924 + 1.40829i
\(666\) 128.489 + 418.031i 0.192926 + 0.627674i
\(667\) 86.2724 149.428i 0.129344 0.224030i
\(668\) 104.343 + 60.2423i 0.156202 + 0.0901830i
\(669\) 794.466 632.917i 1.18754 0.946064i
\(670\) −828.928 −1.23721
\(671\) 49.4666 28.5596i 0.0737207 0.0425627i
\(672\) −287.521 + 731.519i −0.427859 + 1.08857i
\(673\) 117.694 0.174880 0.0874399 0.996170i \(-0.472131\pi\)
0.0874399 + 0.996170i \(0.472131\pi\)
\(674\) −586.682 + 338.721i −0.870448 + 0.502553i
\(675\) 1119.41 + 85.5737i 1.65838 + 0.126776i
\(676\) 455.558 + 61.3366i 0.673902 + 0.0907346i
\(677\) −638.175 368.450i −0.942651 0.544240i −0.0518606 0.998654i \(-0.516515\pi\)
−0.890790 + 0.454415i \(0.849848\pi\)
\(678\) 387.146 308.422i 0.571011 0.454900i
\(679\) 371.176 642.896i 0.546651 0.946828i
\(680\) 114.781i 0.168795i
\(681\) 360.375 916.874i 0.529185 1.34636i
\(682\) −117.892 204.195i −0.172862 0.299406i
\(683\) 495.258 + 285.937i 0.725122 + 0.418649i 0.816635 0.577155i \(-0.195837\pi\)
−0.0915131 + 0.995804i \(0.529170\pi\)
\(684\) 518.170 + 481.755i 0.757558 + 0.704320i
\(685\) −727.463 + 1260.00i −1.06199 + 1.83942i
\(686\) 313.814i 0.457455i
\(687\) 528.824 + 207.853i 0.769759 + 0.302552i
\(688\) −41.7812 72.3672i −0.0607285 0.105185i
\(689\) 57.5971 859.429i 0.0835953 1.24736i
\(690\) −259.111 325.247i −0.375523 0.471373i
\(691\) 729.078 1.05511 0.527553 0.849522i \(-0.323110\pi\)
0.527553 + 0.849522i \(0.323110\pi\)
\(692\) 138.877 80.1809i 0.200690 0.115868i
\(693\) −84.0093 273.320i −0.121226 0.394401i
\(694\) 224.230 0.323098
\(695\) −41.8826 + 24.1809i −0.0602627 + 0.0347927i
\(696\) 205.009 163.322i 0.294554 0.234658i
\(697\) −37.5418 65.0243i −0.0538620 0.0932917i
\(698\) 343.390i 0.491963i
\(699\) 25.1105 + 31.5198i 0.0359234 + 0.0450927i
\(700\) −898.213 −1.28316
\(701\) 179.270i 0.255735i 0.991791 + 0.127868i \(0.0408133\pi\)
−0.991791 + 0.127868i \(0.959187\pi\)
\(702\) 368.736 147.442i 0.525265 0.210031i
\(703\) −1241.34 −1.76578
\(704\) 112.860i 0.160313i
\(705\) −1383.61 + 1102.26i −1.96256 + 1.56349i
\(706\) −342.391 −0.484973
\(707\) 311.491 179.840i 0.440582 0.254370i
\(708\) 21.9944 + 27.6084i 0.0310656 + 0.0389950i
\(709\) −295.470 511.768i −0.416741 0.721817i 0.578868 0.815421i \(-0.303495\pi\)
−0.995610 + 0.0936039i \(0.970161\pi\)
\(710\) 830.428i 1.16962i
\(711\) 144.598 + 134.436i 0.203373 + 0.189081i
\(712\) 91.7808 + 158.969i 0.128906 + 0.223271i
\(713\) 782.196i 1.09705i
\(714\) 39.0095 31.0772i 0.0546351 0.0435254i
\(715\) 187.123 + 380.856i 0.261710 + 0.532666i
\(716\) 551.801 318.583i 0.770672 0.444948i
\(717\) 165.875 422.023i 0.231346 0.588596i
\(718\) 121.857 0.169718
\(719\) 513.432 + 296.430i 0.714092 + 0.412281i 0.812574 0.582858i \(-0.198065\pi\)
−0.0984823 + 0.995139i \(0.531399\pi\)
\(720\) 49.1447 + 159.890i 0.0682566 + 0.222069i
\(721\) 269.809 467.322i 0.374215 0.648159i
\(722\) 464.798 268.351i 0.643765 0.371678i
\(723\) −25.4416 9.99976i −0.0351890 0.0138309i
\(724\) −701.085 −0.968350
\(725\) 413.814 + 238.916i 0.570778 + 0.329539i
\(726\) −222.061 278.741i −0.305869 0.383941i
\(727\) 223.764 387.571i 0.307791 0.533110i −0.670088 0.742282i \(-0.733744\pi\)
0.977879 + 0.209172i \(0.0670769\pi\)
\(728\) −704.533 + 346.152i −0.967765 + 0.475484i
\(729\) −456.229 + 568.591i −0.625828 + 0.779961i
\(730\) −206.239 357.216i −0.282519 0.489337i
\(731\) 67.8762i 0.0928538i
\(732\) 108.434 + 42.6198i 0.148134 + 0.0582238i
\(733\) −239.454 414.746i −0.326677 0.565820i 0.655174 0.755478i \(-0.272595\pi\)
−0.981850 + 0.189658i \(0.939262\pi\)
\(734\) 72.7482i 0.0991121i
\(735\) 214.700 + 269.501i 0.292108 + 0.366668i
\(736\) 247.659 428.957i 0.336493 0.582822i
\(737\) 311.069 + 179.596i 0.422075 + 0.243685i
\(738\) 302.637 + 281.369i 0.410077 + 0.381259i
\(739\) −102.545 177.613i −0.138762 0.240343i 0.788266 0.615334i \(-0.210979\pi\)
−0.927028 + 0.374991i \(0.877646\pi\)
\(740\) −825.494 476.599i −1.11553 0.644053i
\(741\) 92.5327 + 1123.40i 0.124875 + 1.51606i
\(742\) 297.686 + 515.607i 0.401194 + 0.694888i
\(743\) 1218.62 + 703.570i 1.64013 + 0.946932i 0.980784 + 0.195095i \(0.0625015\pi\)
0.659349 + 0.751837i \(0.270832\pi\)
\(744\) 434.662 1105.88i 0.584223 1.48639i
\(745\) 86.8440 + 150.418i 0.116569 + 0.201904i
\(746\) 236.575i 0.317125i
\(747\) −715.717 + 769.817i −0.958122 + 1.03054i
\(748\) 10.0656 17.4342i 0.0134567 0.0233078i
\(749\) 75.1342 + 43.3787i 0.100313 + 0.0579155i
\(750\) 359.165 286.131i 0.478886 0.381508i
\(751\) −657.236 + 1138.37i −0.875148 + 1.51580i −0.0185422 + 0.999828i \(0.505903\pi\)
−0.856605 + 0.515972i \(0.827431\pi\)
\(752\) −142.551 82.3020i −0.189563 0.109444i
\(753\) 169.840 25.5126i 0.225551 0.0338812i
\(754\) 168.644 + 11.3022i 0.223666 + 0.0149896i
\(755\) 1197.65i 1.58629i
\(756\) 329.277 481.410i 0.435552 0.636786i
\(757\) −76.2314 132.037i −0.100702 0.174421i 0.811272 0.584669i \(-0.198776\pi\)
−0.911974 + 0.410248i \(0.865442\pi\)
\(758\) 207.668 119.897i 0.273968 0.158175i
\(759\) 26.7674 + 178.194i 0.0352667 + 0.234774i
\(760\) 1793.06 2.35929
\(761\) 375.644i 0.493619i −0.969064 0.246810i \(-0.920618\pi\)
0.969064 0.246810i \(-0.0793823\pi\)
\(762\) −70.0729 + 178.281i −0.0919592 + 0.233965i
\(763\) 95.0594 + 164.648i 0.124586 + 0.215790i
\(764\) 392.465 226.590i 0.513698 0.296584i
\(765\) 30.3666 132.435i 0.0396949 0.173118i
\(766\) 262.592 0.342810
\(767\) −3.76043 + 56.1108i −0.00490278 + 0.0731562i
\(768\) 530.364 422.518i 0.690578 0.550154i
\(769\) 16.3675 28.3494i 0.0212842 0.0368653i −0.855187 0.518319i \(-0.826558\pi\)
0.876471 + 0.481454i \(0.159891\pi\)
\(770\)