Properties

Label 117.3.k.a.29.15
Level $117$
Weight $3$
Character 117.29
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(29,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.29");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 29.15
Character \(\chi\) \(=\) 117.29
Dual form 117.3.k.a.113.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.306140i q^{2} +(-0.721810 + 2.91187i) q^{3} +3.90628 q^{4} +(5.23834 - 3.02436i) q^{5} +(-0.891441 - 0.220975i) q^{6} +(0.307870 + 0.533246i) q^{7} +2.42043i q^{8} +(-7.95798 - 4.20363i) q^{9} +(0.925877 + 1.60367i) q^{10} -1.57095i q^{11} +(-2.81959 + 11.3746i) q^{12} +(8.42234 + 9.90273i) q^{13} +(-0.163248 + 0.0942513i) q^{14} +(5.02545 + 17.4364i) q^{15} +14.8841 q^{16} +(-6.92854 - 4.00019i) q^{17} +(1.28690 - 2.43626i) q^{18} +(-13.8170 + 23.9317i) q^{19} +(20.4624 - 11.8140i) q^{20} +(-1.77497 + 0.511574i) q^{21} +0.480931 q^{22} +(-18.1819 - 10.4973i) q^{23} +(-7.04798 - 1.74709i) q^{24} +(5.79345 - 10.0345i) q^{25} +(-3.03163 + 2.57842i) q^{26} +(17.9846 - 20.1384i) q^{27} +(1.20262 + 2.08301i) q^{28} -48.8876i q^{29} +(-5.33797 + 1.53849i) q^{30} +(-16.9689 - 29.3909i) q^{31} +14.2383i q^{32} +(4.57440 + 1.13393i) q^{33} +(1.22462 - 2.12111i) q^{34} +(3.22545 + 1.86221i) q^{35} +(-31.0861 - 16.4206i) q^{36} +(-6.37439 - 11.0408i) q^{37} +(-7.32647 - 4.22994i) q^{38} +(-34.9148 + 17.3769i) q^{39} +(7.32024 + 12.6790i) q^{40} +(-20.7315 - 11.9693i) q^{41} +(-0.156613 - 0.543389i) q^{42} +(28.2980 + 49.0136i) q^{43} -6.13656i q^{44} +(-54.3999 + 2.04771i) q^{45} +(3.21365 - 5.56621i) q^{46} +(13.5831 + 7.84221i) q^{47} +(-10.7435 + 43.3406i) q^{48} +(24.3104 - 42.1069i) q^{49} +(3.07198 + 1.77361i) q^{50} +(16.6491 - 17.2876i) q^{51} +(32.9000 + 38.6828i) q^{52} -28.8222i q^{53} +(6.16517 + 5.50581i) q^{54} +(-4.75111 - 8.22916i) q^{55} +(-1.29068 + 0.745177i) q^{56} +(-59.7129 - 57.5074i) q^{57} +14.9665 q^{58} +43.1040i q^{59} +(19.6308 + 68.1113i) q^{60} +(-31.2772 - 54.1737i) q^{61} +(8.99775 - 5.19485i) q^{62} +(-0.208450 - 5.53773i) q^{63} +55.1776 q^{64} +(74.0685 + 26.4017i) q^{65} +(-0.347141 + 1.40041i) q^{66} +(-13.6099 + 23.5730i) q^{67} +(-27.0648 - 15.6259i) q^{68} +(43.6907 - 45.3662i) q^{69} +(-0.570099 + 0.987440i) q^{70} +(-110.895 - 64.0252i) q^{71} +(10.1746 - 19.2617i) q^{72} +27.8685 q^{73} +(3.38002 - 1.95146i) q^{74} +(25.0375 + 24.1128i) q^{75} +(-53.9730 + 93.4840i) q^{76} +(0.837702 - 0.483647i) q^{77} +(-5.31976 - 10.6888i) q^{78} +(-26.8055 + 46.4286i) q^{79} +(77.9680 - 45.0149i) q^{80} +(45.6589 + 66.9049i) q^{81} +(3.66430 - 6.34675i) q^{82} +(137.735 + 79.5215i) q^{83} +(-6.93351 + 1.99835i) q^{84} -48.3920 q^{85} +(-15.0050 + 8.66317i) q^{86} +(142.354 + 35.2876i) q^{87} +3.80237 q^{88} +(-91.3979 + 52.7686i) q^{89} +(-0.626885 - 16.6540i) q^{90} +(-2.68761 + 7.53993i) q^{91} +(-71.0235 - 41.0054i) q^{92} +(97.8309 - 28.1965i) q^{93} +(-2.40082 + 4.15834i) q^{94} +167.150i q^{95} +(-41.4602 - 10.2774i) q^{96} +(-46.6339 - 80.7723i) q^{97} +(12.8906 + 7.44240i) q^{98} +(-6.60370 + 12.5016i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - q^{3} - 98 q^{4} - 6 q^{5} + 12 q^{6} - q^{7} - 3 q^{9} - 6 q^{10} - 39 q^{12} + 4 q^{13} - 6 q^{14} - 25 q^{15} + 166 q^{16} + 34 q^{18} + 5 q^{19} + 21 q^{20} - 91 q^{21} + 30 q^{22} - 75 q^{23}+ \cdots + 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.306140i 0.153070i 0.997067 + 0.0765351i \(0.0243857\pi\)
−0.997067 + 0.0765351i \(0.975614\pi\)
\(3\) −0.721810 + 2.91187i −0.240603 + 0.970624i
\(4\) 3.90628 0.976570
\(5\) 5.23834 3.02436i 1.04767 0.604871i 0.125672 0.992072i \(-0.459891\pi\)
0.921995 + 0.387201i \(0.126558\pi\)
\(6\) −0.891441 0.220975i −0.148573 0.0368292i
\(7\) 0.307870 + 0.533246i 0.0439814 + 0.0761780i 0.887178 0.461427i \(-0.152662\pi\)
−0.843197 + 0.537605i \(0.819329\pi\)
\(8\) 2.42043i 0.302554i
\(9\) −7.95798 4.20363i −0.884220 0.467071i
\(10\) 0.925877 + 1.60367i 0.0925877 + 0.160367i
\(11\) 1.57095i 0.142814i −0.997447 0.0714068i \(-0.977251\pi\)
0.997447 0.0714068i \(-0.0227488\pi\)
\(12\) −2.81959 + 11.3746i −0.234966 + 0.947881i
\(13\) 8.42234 + 9.90273i 0.647873 + 0.761749i
\(14\) −0.163248 + 0.0942513i −0.0116606 + 0.00673223i
\(15\) 5.02545 + 17.4364i 0.335030 + 1.16242i
\(16\) 14.8841 0.930258
\(17\) −6.92854 4.00019i −0.407561 0.235306i 0.282180 0.959361i \(-0.408942\pi\)
−0.689741 + 0.724056i \(0.742276\pi\)
\(18\) 1.28690 2.43626i 0.0714945 0.135348i
\(19\) −13.8170 + 23.9317i −0.727210 + 1.25956i 0.230848 + 0.972990i \(0.425850\pi\)
−0.958058 + 0.286575i \(0.907483\pi\)
\(20\) 20.4624 11.8140i 1.02312 0.590699i
\(21\) −1.77497 + 0.511574i −0.0845222 + 0.0243607i
\(22\) 0.480931 0.0218605
\(23\) −18.1819 10.4973i −0.790517 0.456405i 0.0496277 0.998768i \(-0.484197\pi\)
−0.840144 + 0.542363i \(0.817530\pi\)
\(24\) −7.04798 1.74709i −0.293666 0.0727954i
\(25\) 5.79345 10.0345i 0.231738 0.401382i
\(26\) −3.03163 + 2.57842i −0.116601 + 0.0991699i
\(27\) 17.9846 20.1384i 0.666096 0.745866i
\(28\) 1.20262 + 2.08301i 0.0429509 + 0.0743931i
\(29\) 48.8876i 1.68578i −0.538087 0.842889i \(-0.680853\pi\)
0.538087 0.842889i \(-0.319147\pi\)
\(30\) −5.33797 + 1.53849i −0.177932 + 0.0512831i
\(31\) −16.9689 29.3909i −0.547383 0.948095i −0.998453 0.0556061i \(-0.982291\pi\)
0.451070 0.892489i \(-0.351042\pi\)
\(32\) 14.2383i 0.444948i
\(33\) 4.57440 + 1.13393i 0.138618 + 0.0343614i
\(34\) 1.22462 2.12111i 0.0360183 0.0623854i
\(35\) 3.22545 + 1.86221i 0.0921557 + 0.0532061i
\(36\) −31.0861 16.4206i −0.863502 0.456127i
\(37\) −6.37439 11.0408i −0.172281 0.298399i 0.766936 0.641723i \(-0.221780\pi\)
−0.939217 + 0.343324i \(0.888447\pi\)
\(38\) −7.32647 4.22994i −0.192802 0.111314i
\(39\) −34.9148 + 17.3769i −0.895252 + 0.445561i
\(40\) 7.32024 + 12.6790i 0.183006 + 0.316976i
\(41\) −20.7315 11.9693i −0.505647 0.291935i 0.225396 0.974267i \(-0.427633\pi\)
−0.731042 + 0.682332i \(0.760966\pi\)
\(42\) −0.156613 0.543389i −0.00372889 0.0129378i
\(43\) 28.2980 + 49.0136i 0.658094 + 1.13985i 0.981109 + 0.193458i \(0.0619702\pi\)
−0.323015 + 0.946394i \(0.604696\pi\)
\(44\) 6.13656i 0.139467i
\(45\) −54.3999 + 2.04771i −1.20889 + 0.0455046i
\(46\) 3.21365 5.56621i 0.0698620 0.121004i
\(47\) 13.5831 + 7.84221i 0.289002 + 0.166856i 0.637492 0.770457i \(-0.279972\pi\)
−0.348489 + 0.937313i \(0.613305\pi\)
\(48\) −10.7435 + 43.3406i −0.223823 + 0.902930i
\(49\) 24.3104 42.1069i 0.496131 0.859325i
\(50\) 3.07198 + 1.77361i 0.0614396 + 0.0354722i
\(51\) 16.6491 17.2876i 0.326454 0.338973i
\(52\) 32.9000 + 38.6828i 0.632693 + 0.743901i
\(53\) 28.8222i 0.543815i −0.962323 0.271908i \(-0.912345\pi\)
0.962323 0.271908i \(-0.0876545\pi\)
\(54\) 6.16517 + 5.50581i 0.114170 + 0.101959i
\(55\) −4.75111 8.22916i −0.0863838 0.149621i
\(56\) −1.29068 + 0.745177i −0.0230479 + 0.0133067i
\(57\) −59.7129 57.5074i −1.04759 1.00890i
\(58\) 14.9665 0.258042
\(59\) 43.1040i 0.730576i 0.930895 + 0.365288i \(0.119029\pi\)
−0.930895 + 0.365288i \(0.880971\pi\)
\(60\) 19.6308 + 68.1113i 0.327180 + 1.13519i
\(61\) −31.2772 54.1737i −0.512741 0.888094i −0.999891 0.0147756i \(-0.995297\pi\)
0.487149 0.873319i \(-0.338037\pi\)
\(62\) 8.99775 5.19485i 0.145125 0.0837879i
\(63\) −0.208450 5.53773i −0.00330873 0.0879005i
\(64\) 55.1776 0.862149
\(65\) 74.0685 + 26.4017i 1.13951 + 0.406180i
\(66\) −0.347141 + 1.40041i −0.00525971 + 0.0212183i
\(67\) −13.6099 + 23.5730i −0.203132 + 0.351835i −0.949536 0.313658i \(-0.898445\pi\)
0.746404 + 0.665493i \(0.231779\pi\)
\(68\) −27.0648 15.6259i −0.398012 0.229792i
\(69\) 43.6907 45.3662i 0.633198 0.657482i
\(70\) −0.570099 + 0.987440i −0.00814427 + 0.0141063i
\(71\) −110.895 64.0252i −1.56190 0.901763i −0.997065 0.0765591i \(-0.975607\pi\)
−0.564835 0.825204i \(-0.691060\pi\)
\(72\) 10.1746 19.2617i 0.141314 0.267524i
\(73\) 27.8685 0.381760 0.190880 0.981613i \(-0.438866\pi\)
0.190880 + 0.981613i \(0.438866\pi\)
\(74\) 3.38002 1.95146i 0.0456760 0.0263710i
\(75\) 25.0375 + 24.1128i 0.333834 + 0.321504i
\(76\) −53.9730 + 93.4840i −0.710171 + 1.23005i
\(77\) 0.837702 0.483647i 0.0108792 0.00628114i
\(78\) −5.31976 10.6888i −0.0682021 0.137036i
\(79\) −26.8055 + 46.4286i −0.339311 + 0.587703i −0.984303 0.176486i \(-0.943527\pi\)
0.644993 + 0.764189i \(0.276860\pi\)
\(80\) 77.9680 45.0149i 0.974601 0.562686i
\(81\) 45.6589 + 66.9049i 0.563690 + 0.825986i
\(82\) 3.66430 6.34675i 0.0446866 0.0773994i
\(83\) 137.735 + 79.5215i 1.65946 + 0.958090i 0.972964 + 0.230956i \(0.0741854\pi\)
0.686496 + 0.727133i \(0.259148\pi\)
\(84\) −6.93351 + 1.99835i −0.0825418 + 0.0237899i
\(85\) −48.3920 −0.569318
\(86\) −15.0050 + 8.66317i −0.174477 + 0.100734i
\(87\) 142.354 + 35.2876i 1.63626 + 0.405604i
\(88\) 3.80237 0.0432088
\(89\) −91.3979 + 52.7686i −1.02694 + 0.592905i −0.916107 0.400933i \(-0.868686\pi\)
−0.110835 + 0.993839i \(0.535353\pi\)
\(90\) −0.626885 16.6540i −0.00696539 0.185044i
\(91\) −2.68761 + 7.53993i −0.0295341 + 0.0828564i
\(92\) −71.0235 41.0054i −0.771995 0.445711i
\(93\) 97.8309 28.1965i 1.05195 0.303188i
\(94\) −2.40082 + 4.15834i −0.0255406 + 0.0442376i
\(95\) 167.150i 1.75947i
\(96\) −41.4602 10.2774i −0.431877 0.107056i
\(97\) −46.6339 80.7723i −0.480762 0.832704i 0.518994 0.854778i \(-0.326307\pi\)
−0.999756 + 0.0220735i \(0.992973\pi\)
\(98\) 12.8906 + 7.44240i 0.131537 + 0.0759429i
\(99\) −6.60370 + 12.5016i −0.0667040 + 0.126279i
\(100\) 22.6308 39.1977i 0.226308 0.391977i
\(101\) 126.382i 1.25130i 0.780102 + 0.625652i \(0.215167\pi\)
−0.780102 + 0.625652i \(0.784833\pi\)
\(102\) 5.29244 + 5.09697i 0.0518867 + 0.0499703i
\(103\) −55.1093 95.4521i −0.535042 0.926720i −0.999161 0.0409470i \(-0.986963\pi\)
0.464120 0.885773i \(-0.346371\pi\)
\(104\) −23.9689 + 20.3857i −0.230470 + 0.196016i
\(105\) −7.75069 + 8.04793i −0.0738161 + 0.0766469i
\(106\) 8.82364 0.0832419
\(107\) 43.5421 25.1390i 0.406935 0.234944i −0.282537 0.959256i \(-0.591176\pi\)
0.689472 + 0.724312i \(0.257843\pi\)
\(108\) 70.2528 78.6661i 0.650489 0.728390i
\(109\) −92.5282 −0.848882 −0.424441 0.905456i \(-0.639529\pi\)
−0.424441 + 0.905456i \(0.639529\pi\)
\(110\) 2.51928 1.45451i 0.0229025 0.0132228i
\(111\) 36.7504 10.5921i 0.331084 0.0954239i
\(112\) 4.58237 + 7.93689i 0.0409140 + 0.0708651i
\(113\) 151.769i 1.34309i 0.740966 + 0.671543i \(0.234368\pi\)
−0.740966 + 0.671543i \(0.765632\pi\)
\(114\) 17.6053 18.2805i 0.154433 0.160355i
\(115\) −126.990 −1.10426
\(116\) 190.969i 1.64628i
\(117\) −25.3974 114.210i −0.217072 0.976156i
\(118\) −13.1959 −0.111829
\(119\) 4.92615i 0.0413962i
\(120\) −42.2035 + 12.1637i −0.351696 + 0.101365i
\(121\) 118.532 0.979604
\(122\) 16.5848 9.57522i 0.135941 0.0784854i
\(123\) 49.8174 51.7279i 0.405019 0.420552i
\(124\) −66.2851 114.809i −0.534557 0.925880i
\(125\) 81.1320i 0.649056i
\(126\) 1.69532 0.0638149i 0.0134549 0.000506467i
\(127\) −16.1533 27.9783i −0.127191 0.220301i 0.795396 0.606090i \(-0.207263\pi\)
−0.922587 + 0.385788i \(0.873929\pi\)
\(128\) 73.8455i 0.576918i
\(129\) −163.147 + 47.0217i −1.26471 + 0.364509i
\(130\) −8.08262 + 22.6753i −0.0621740 + 0.174426i
\(131\) 2.31769 1.33812i 0.0176923 0.0102146i −0.491128 0.871088i \(-0.663415\pi\)
0.508820 + 0.860873i \(0.330082\pi\)
\(132\) 17.8689 + 4.42943i 0.135370 + 0.0335563i
\(133\) −17.0153 −0.127935
\(134\) −7.21664 4.16653i −0.0538555 0.0310935i
\(135\) 33.3037 159.883i 0.246694 1.18432i
\(136\) 9.68219 16.7700i 0.0711926 0.123309i
\(137\) 11.7960 6.81045i 0.0861025 0.0497113i −0.456331 0.889810i \(-0.650837\pi\)
0.542433 + 0.840099i \(0.317503\pi\)
\(138\) 13.8884 + 13.3755i 0.100641 + 0.0969238i
\(139\) 55.9416 0.402457 0.201229 0.979544i \(-0.435507\pi\)
0.201229 + 0.979544i \(0.435507\pi\)
\(140\) 12.5995 + 7.27433i 0.0899964 + 0.0519595i
\(141\) −32.6399 + 33.8917i −0.231489 + 0.240367i
\(142\) 19.6007 33.9494i 0.138033 0.239080i
\(143\) 15.5567 13.2311i 0.108788 0.0925250i
\(144\) −118.448 62.5674i −0.822552 0.434496i
\(145\) −147.853 256.090i −1.01968 1.76614i
\(146\) 8.53166i 0.0584361i
\(147\) 105.062 + 101.182i 0.714710 + 0.688313i
\(148\) −24.9001 43.1283i −0.168244 0.291407i
\(149\) 100.302i 0.673171i −0.941653 0.336586i \(-0.890728\pi\)
0.941653 0.336586i \(-0.109272\pi\)
\(150\) −7.38190 + 7.66500i −0.0492127 + 0.0511000i
\(151\) 35.1292 60.8455i 0.232643 0.402950i −0.725942 0.687756i \(-0.758596\pi\)
0.958585 + 0.284806i \(0.0919292\pi\)
\(152\) −57.9251 33.4431i −0.381086 0.220020i
\(153\) 38.3218 + 60.9585i 0.250470 + 0.398422i
\(154\) 0.148064 + 0.256454i 0.000961454 + 0.00166529i
\(155\) −177.777 102.640i −1.14695 0.662192i
\(156\) −136.387 + 67.8789i −0.874275 + 0.435121i
\(157\) 44.5950 + 77.2408i 0.284045 + 0.491980i 0.972377 0.233416i \(-0.0749903\pi\)
−0.688332 + 0.725395i \(0.741657\pi\)
\(158\) −14.2136 8.20625i −0.0899598 0.0519383i
\(159\) 83.9266 + 20.8042i 0.527840 + 0.130844i
\(160\) 43.0618 + 74.5853i 0.269136 + 0.466158i
\(161\) 12.9272i 0.0802933i
\(162\) −20.4823 + 13.9780i −0.126434 + 0.0862841i
\(163\) −128.595 + 222.733i −0.788925 + 1.36646i 0.137701 + 0.990474i \(0.456029\pi\)
−0.926626 + 0.375984i \(0.877305\pi\)
\(164\) −80.9831 46.7556i −0.493799 0.285095i
\(165\) 27.3917 7.89472i 0.166010 0.0478468i
\(166\) −24.3447 + 42.1663i −0.146655 + 0.254014i
\(167\) 141.423 + 81.6504i 0.846843 + 0.488925i 0.859584 0.510994i \(-0.170723\pi\)
−0.0127417 + 0.999919i \(0.504056\pi\)
\(168\) −1.23823 4.29618i −0.00737041 0.0255725i
\(169\) −27.1283 + 166.808i −0.160522 + 0.987032i
\(170\) 14.8148i 0.0871456i
\(171\) 210.556 132.367i 1.23132 0.774074i
\(172\) 110.540 + 191.461i 0.642674 + 1.11314i
\(173\) 237.609 137.184i 1.37346 0.792970i 0.382102 0.924120i \(-0.375200\pi\)
0.991363 + 0.131150i \(0.0418670\pi\)
\(174\) −10.8029 + 43.5804i −0.0620859 + 0.250462i
\(175\) 7.13451 0.0407686
\(176\) 23.3822i 0.132853i
\(177\) −125.513 31.1129i −0.709114 0.175779i
\(178\) −16.1546 27.9806i −0.0907561 0.157194i
\(179\) −231.140 + 133.449i −1.29128 + 0.745524i −0.978882 0.204426i \(-0.934467\pi\)
−0.312403 + 0.949950i \(0.601134\pi\)
\(180\) −212.501 + 7.99891i −1.18056 + 0.0444384i
\(181\) 256.842 1.41902 0.709508 0.704697i \(-0.248917\pi\)
0.709508 + 0.704697i \(0.248917\pi\)
\(182\) −2.30828 0.822785i −0.0126828 0.00452080i
\(183\) 180.323 51.9721i 0.985372 0.284000i
\(184\) 25.4080 44.0080i 0.138087 0.239174i
\(185\) −66.7824 38.5568i −0.360986 0.208415i
\(186\) 8.63207 + 29.9500i 0.0464090 + 0.161021i
\(187\) −6.28410 + 10.8844i −0.0336048 + 0.0582053i
\(188\) 53.0594 + 30.6339i 0.282231 + 0.162946i
\(189\) 16.2756 + 3.39021i 0.0861144 + 0.0179376i
\(190\) −51.1713 −0.269323
\(191\) 83.4394 48.1738i 0.436856 0.252219i −0.265407 0.964136i \(-0.585506\pi\)
0.702263 + 0.711918i \(0.252173\pi\)
\(192\) −39.8277 + 160.670i −0.207436 + 0.836822i
\(193\) −76.3158 + 132.183i −0.395418 + 0.684885i −0.993155 0.116808i \(-0.962734\pi\)
0.597736 + 0.801693i \(0.296067\pi\)
\(194\) 24.7277 14.2765i 0.127462 0.0735903i
\(195\) −130.342 + 196.621i −0.668419 + 1.00831i
\(196\) 94.9633 164.481i 0.484507 0.839190i
\(197\) −135.576 + 78.2746i −0.688201 + 0.397333i −0.802938 0.596063i \(-0.796731\pi\)
0.114737 + 0.993396i \(0.463398\pi\)
\(198\) −3.82724 2.02166i −0.0193295 0.0102104i
\(199\) −2.35518 + 4.07929i −0.0118351 + 0.0204989i −0.871882 0.489716i \(-0.837101\pi\)
0.860047 + 0.510214i \(0.170434\pi\)
\(200\) 24.2879 + 14.0226i 0.121440 + 0.0701132i
\(201\) −58.8177 56.6454i −0.292625 0.281818i
\(202\) −38.6905 −0.191537
\(203\) 26.0691 15.0510i 0.128419 0.0741429i
\(204\) 65.0362 67.5303i 0.318805 0.331031i
\(205\) −144.798 −0.706333
\(206\) 29.2217 16.8712i 0.141853 0.0818989i
\(207\) 100.564 + 159.967i 0.485817 + 0.772790i
\(208\) 125.359 + 147.393i 0.602688 + 0.708623i
\(209\) 37.5955 + 21.7058i 0.179883 + 0.103855i
\(210\) −2.46379 2.37280i −0.0117324 0.0112990i
\(211\) 158.647 274.785i 0.751881 1.30230i −0.195028 0.980798i \(-0.562480\pi\)
0.946910 0.321499i \(-0.104187\pi\)
\(212\) 112.588i 0.531074i
\(213\) 266.478 276.698i 1.25107 1.29905i
\(214\) 7.69607 + 13.3300i 0.0359629 + 0.0622896i
\(215\) 296.469 + 171.167i 1.37893 + 0.796124i
\(216\) 48.7436 + 43.5304i 0.225665 + 0.201530i
\(217\) 10.4484 18.0971i 0.0481493 0.0833970i
\(218\) 28.3266i 0.129939i
\(219\) −20.1157 + 81.1494i −0.0918527 + 0.370545i
\(220\) −18.5592 32.1454i −0.0843598 0.146115i
\(221\) −18.7417 102.303i −0.0848040 0.462907i
\(222\) 3.24266 + 11.2508i 0.0146066 + 0.0506791i
\(223\) 328.042 1.47104 0.735521 0.677502i \(-0.236937\pi\)
0.735521 + 0.677502i \(0.236937\pi\)
\(224\) −7.59254 + 4.38355i −0.0338953 + 0.0195694i
\(225\) −88.2857 + 55.5012i −0.392381 + 0.246672i
\(226\) −46.4625 −0.205586
\(227\) −103.945 + 60.0129i −0.457909 + 0.264374i −0.711165 0.703026i \(-0.751832\pi\)
0.253256 + 0.967399i \(0.418499\pi\)
\(228\) −233.255 224.640i −1.02305 0.985264i
\(229\) 61.4253 + 106.392i 0.268233 + 0.464593i 0.968406 0.249381i \(-0.0802270\pi\)
−0.700173 + 0.713973i \(0.746894\pi\)
\(230\) 38.8769i 0.169030i
\(231\) 0.803657 + 2.78838i 0.00347904 + 0.0120709i
\(232\) 118.329 0.510039
\(233\) 146.633i 0.629324i −0.949204 0.314662i \(-0.898109\pi\)
0.949204 0.314662i \(-0.101891\pi\)
\(234\) 34.9643 7.77516i 0.149420 0.0332272i
\(235\) 94.8706 0.403705
\(236\) 168.376i 0.713458i
\(237\) −115.845 111.567i −0.488799 0.470746i
\(238\) 1.50809 0.00633653
\(239\) −134.259 + 77.5146i −0.561754 + 0.324329i −0.753849 0.657048i \(-0.771805\pi\)
0.192095 + 0.981376i \(0.438472\pi\)
\(240\) 74.7994 + 259.525i 0.311664 + 1.08135i
\(241\) 223.189 + 386.575i 0.926097 + 1.60405i 0.789788 + 0.613380i \(0.210191\pi\)
0.136309 + 0.990666i \(0.456476\pi\)
\(242\) 36.2875i 0.149948i
\(243\) −227.775 + 84.6602i −0.937347 + 0.348396i
\(244\) −122.178 211.618i −0.500728 0.867286i
\(245\) 294.094i 1.20038i
\(246\) 15.8360 + 15.2511i 0.0643739 + 0.0619964i
\(247\) −353.361 + 64.7353i −1.43061 + 0.262086i
\(248\) 71.1387 41.0719i 0.286850 0.165613i
\(249\) −330.975 + 343.668i −1.32922 + 1.38019i
\(250\) −24.8378 −0.0993510
\(251\) 267.883 + 154.662i 1.06726 + 0.616185i 0.927432 0.373991i \(-0.122011\pi\)
0.139831 + 0.990175i \(0.455344\pi\)
\(252\) −0.814263 21.6319i −0.00323120 0.0858409i
\(253\) −16.4907 + 28.5628i −0.0651808 + 0.112897i
\(254\) 8.56528 4.94517i 0.0337216 0.0194692i
\(255\) 34.9299 140.911i 0.136980 0.552594i
\(256\) 198.103 0.773840
\(257\) 12.7353 + 7.35271i 0.0495535 + 0.0286098i 0.524572 0.851366i \(-0.324225\pi\)
−0.475019 + 0.879976i \(0.657559\pi\)
\(258\) −14.3952 49.9459i −0.0557955 0.193589i
\(259\) 3.92496 6.79823i 0.0151543 0.0262480i
\(260\) 289.332 + 103.132i 1.11282 + 0.396663i
\(261\) −205.506 + 389.046i −0.787378 + 1.49060i
\(262\) 0.409651 + 0.709537i 0.00156356 + 0.00270816i
\(263\) 102.835i 0.391009i 0.980703 + 0.195504i \(0.0626343\pi\)
−0.980703 + 0.195504i \(0.937366\pi\)
\(264\) −2.74459 + 11.0720i −0.0103962 + 0.0419395i
\(265\) −87.1686 150.980i −0.328938 0.569738i
\(266\) 5.20908i 0.0195830i
\(267\) −87.6834 304.228i −0.328402 1.13943i
\(268\) −53.1639 + 92.0826i −0.198373 + 0.343592i
\(269\) −310.001 178.979i −1.15242 0.665351i −0.202945 0.979190i \(-0.565051\pi\)
−0.949476 + 0.313839i \(0.898385\pi\)
\(270\) 48.9468 + 10.1956i 0.181284 + 0.0377615i
\(271\) 129.545 + 224.378i 0.478025 + 0.827964i 0.999683 0.0251911i \(-0.00801942\pi\)
−0.521657 + 0.853155i \(0.674686\pi\)
\(272\) −103.125 59.5394i −0.379137 0.218895i
\(273\) −20.0154 13.2684i −0.0733163 0.0486021i
\(274\) 2.08495 + 3.61125i 0.00760932 + 0.0131797i
\(275\) −15.7638 9.10122i −0.0573228 0.0330953i
\(276\) 170.668 177.213i 0.618362 0.642076i
\(277\) −70.4088 121.952i −0.254184 0.440259i 0.710490 0.703707i \(-0.248473\pi\)
−0.964673 + 0.263449i \(0.915140\pi\)
\(278\) 17.1260i 0.0616042i
\(279\) 11.4891 + 305.223i 0.0411797 + 1.09399i
\(280\) −4.50736 + 7.80697i −0.0160977 + 0.0278820i
\(281\) −203.585 117.540i −0.724503 0.418292i 0.0919046 0.995768i \(-0.470705\pi\)
−0.816408 + 0.577476i \(0.804038\pi\)
\(282\) −10.3756 9.99240i −0.0367929 0.0354340i
\(283\) 123.871 214.551i 0.437706 0.758129i −0.559806 0.828624i \(-0.689124\pi\)
0.997512 + 0.0704944i \(0.0224577\pi\)
\(284\) −433.186 250.100i −1.52530 0.880634i
\(285\) −486.719 120.651i −1.70779 0.423335i
\(286\) 4.05056 + 4.76253i 0.0141628 + 0.0166522i
\(287\) 14.7400i 0.0513588i
\(288\) 59.8528 113.309i 0.207822 0.393432i
\(289\) −112.497 194.850i −0.389263 0.674223i
\(290\) 78.3994 45.2639i 0.270343 0.156082i
\(291\) 268.859 77.4897i 0.923915 0.266287i
\(292\) 108.862 0.372815
\(293\) 497.182i 1.69687i −0.529301 0.848434i \(-0.677546\pi\)
0.529301 0.848434i \(-0.322454\pi\)
\(294\) −30.9759 + 32.1638i −0.105360 + 0.109401i
\(295\) 130.362 + 225.793i 0.441904 + 0.765400i
\(296\) 26.7234 15.4288i 0.0902817 0.0521242i
\(297\) −31.6364 28.2529i −0.106520 0.0951275i
\(298\) 30.7066 0.103042
\(299\) −49.1819 268.462i −0.164488 0.897867i
\(300\) 97.8036 + 94.1914i 0.326012 + 0.313971i
\(301\) −17.4242 + 30.1796i −0.0578877 + 0.100264i
\(302\) 18.6273 + 10.7544i 0.0616796 + 0.0356108i
\(303\) −368.007 91.2236i −1.21455 0.301068i
\(304\) −205.654 + 356.203i −0.676493 + 1.17172i
\(305\) −327.681 189.187i −1.07437 0.620285i
\(306\) −18.6619 + 11.7319i −0.0609865 + 0.0383394i
\(307\) −101.797 −0.331587 −0.165793 0.986161i \(-0.553018\pi\)
−0.165793 + 0.986161i \(0.553018\pi\)
\(308\) 3.27230 1.88926i 0.0106243 0.00613397i
\(309\) 317.723 91.5729i 1.02823 0.296352i
\(310\) 31.4222 54.4248i 0.101362 0.175564i
\(311\) 221.012 127.602i 0.710650 0.410294i −0.100651 0.994922i \(-0.532093\pi\)
0.811302 + 0.584628i \(0.198759\pi\)
\(312\) −42.0595 84.5089i −0.134806 0.270862i
\(313\) 132.574 229.625i 0.423559 0.733626i −0.572725 0.819747i \(-0.694114\pi\)
0.996285 + 0.0861210i \(0.0274472\pi\)
\(314\) −23.6465 + 13.6523i −0.0753074 + 0.0434787i
\(315\) −17.8400 28.3781i −0.0566349 0.0900891i
\(316\) −104.710 + 181.363i −0.331360 + 0.573933i
\(317\) −106.667 61.5840i −0.336488 0.194271i 0.322230 0.946661i \(-0.395568\pi\)
−0.658718 + 0.752390i \(0.728901\pi\)
\(318\) −6.36899 + 25.6933i −0.0200283 + 0.0807965i
\(319\) −76.7999 −0.240752
\(320\) 289.039 166.877i 0.903246 0.521489i
\(321\) 41.7725 + 144.935i 0.130132 + 0.451509i
\(322\) 3.95754 0.0122905
\(323\) 191.463 110.541i 0.592765 0.342233i
\(324\) 178.356 + 261.349i 0.550483 + 0.806633i
\(325\) 148.164 27.1434i 0.455889 0.0835182i
\(326\) −68.1874 39.3680i −0.209164 0.120761i
\(327\) 66.7878 269.430i 0.204244 0.823945i
\(328\) 28.9710 50.1792i 0.0883261 0.152985i
\(329\) 9.65752i 0.0293542i
\(330\) 2.41689 + 8.38569i 0.00732392 + 0.0254112i
\(331\) −282.112 488.633i −0.852303 1.47623i −0.879124 0.476592i \(-0.841872\pi\)
0.0268211 0.999640i \(-0.491462\pi\)
\(332\) 538.032 + 310.633i 1.62058 + 0.935641i
\(333\) 4.31592 + 114.658i 0.0129607 + 0.344318i
\(334\) −24.9965 + 43.2952i −0.0748398 + 0.129626i
\(335\) 164.644i 0.491475i
\(336\) −26.4188 + 7.61433i −0.0786274 + 0.0226617i
\(337\) 232.929 + 403.445i 0.691184 + 1.19717i 0.971450 + 0.237244i \(0.0762439\pi\)
−0.280266 + 0.959922i \(0.590423\pi\)
\(338\) −51.0668 8.30506i −0.151085 0.0245712i
\(339\) −441.931 109.548i −1.30363 0.323151i
\(340\) −189.033 −0.555979
\(341\) −46.1717 + 26.6572i −0.135401 + 0.0781737i
\(342\) 40.5228 + 64.4595i 0.118488 + 0.188478i
\(343\) 60.1090 0.175245
\(344\) −118.634 + 68.4934i −0.344866 + 0.199109i
\(345\) 91.6630 369.780i 0.265690 1.07183i
\(346\) 41.9975 + 72.7418i 0.121380 + 0.210236i
\(347\) 390.942i 1.12663i 0.826241 + 0.563317i \(0.190475\pi\)
−0.826241 + 0.563317i \(0.809525\pi\)
\(348\) 556.076 + 137.843i 1.59792 + 0.396101i
\(349\) 568.350 1.62851 0.814256 0.580507i \(-0.197145\pi\)
0.814256 + 0.580507i \(0.197145\pi\)
\(350\) 2.18416i 0.00624046i
\(351\) 350.897 + 8.48422i 0.999708 + 0.0241716i
\(352\) 22.3677 0.0635447
\(353\) 612.552i 1.73528i 0.497196 + 0.867638i \(0.334363\pi\)
−0.497196 + 0.867638i \(0.665637\pi\)
\(354\) 9.52491 38.4246i 0.0269065 0.108544i
\(355\) −774.540 −2.18180
\(356\) −357.026 + 206.129i −1.00288 + 0.579013i
\(357\) 14.3443 + 3.55575i 0.0401802 + 0.00996007i
\(358\) −40.8540 70.7613i −0.114117 0.197657i
\(359\) 403.717i 1.12456i 0.826947 + 0.562280i \(0.190076\pi\)
−0.826947 + 0.562280i \(0.809924\pi\)
\(360\) −4.95633 131.671i −0.0137676 0.365753i
\(361\) −201.318 348.694i −0.557669 0.965911i
\(362\) 78.6297i 0.217209i
\(363\) −85.5577 + 345.150i −0.235696 + 0.950827i
\(364\) −10.4985 + 29.4531i −0.0288421 + 0.0809150i
\(365\) 145.985 84.2842i 0.399958 0.230916i
\(366\) 15.9107 + 55.2042i 0.0434720 + 0.150831i
\(367\) −560.461 −1.52714 −0.763572 0.645723i \(-0.776556\pi\)
−0.763572 + 0.645723i \(0.776556\pi\)
\(368\) −270.621 156.243i −0.735384 0.424574i
\(369\) 114.666 + 182.400i 0.310749 + 0.494308i
\(370\) 11.8038 20.4448i 0.0319022 0.0552561i
\(371\) 15.3693 8.87348i 0.0414268 0.0239177i
\(372\) 382.155 110.143i 1.02730 0.296084i
\(373\) 182.480 0.489224 0.244612 0.969621i \(-0.421339\pi\)
0.244612 + 0.969621i \(0.421339\pi\)
\(374\) −3.33215 1.92382i −0.00890949 0.00514390i
\(375\) −236.246 58.5619i −0.629989 0.156165i
\(376\) −18.9815 + 32.8770i −0.0504828 + 0.0874388i
\(377\) 484.121 411.748i 1.28414 1.09217i
\(378\) −1.03788 + 4.98262i −0.00274571 + 0.0131815i
\(379\) −150.775 261.150i −0.397823 0.689050i 0.595634 0.803256i \(-0.296901\pi\)
−0.993457 + 0.114206i \(0.963568\pi\)
\(380\) 652.934i 1.71825i
\(381\) 93.1287 26.8412i 0.244432 0.0704494i
\(382\) 14.7479 + 25.5442i 0.0386072 + 0.0668696i
\(383\) 196.029i 0.511825i 0.966700 + 0.255913i \(0.0823759\pi\)
−0.966700 + 0.255913i \(0.917624\pi\)
\(384\) −215.028 53.3024i −0.559970 0.138808i
\(385\) 2.92544 5.06702i 0.00759855 0.0131611i
\(386\) −40.4665 23.3633i −0.104835 0.0605268i
\(387\) −19.1598 509.004i −0.0495085 1.31526i
\(388\) −182.165 315.519i −0.469498 0.813194i
\(389\) −343.282 198.194i −0.882474 0.509496i −0.0110004 0.999939i \(-0.503502\pi\)
−0.871473 + 0.490443i \(0.836835\pi\)
\(390\) −60.1935 39.9028i −0.154342 0.102315i
\(391\) 83.9826 + 145.462i 0.214789 + 0.372026i
\(392\) 101.917 + 58.8417i 0.259992 + 0.150106i
\(393\) 2.22349 + 7.71467i 0.00565775 + 0.0196302i
\(394\) −23.9630 41.5052i −0.0608198 0.105343i
\(395\) 324.278i 0.820957i
\(396\) −25.7959 + 48.8347i −0.0651411 + 0.123320i
\(397\) −363.884 + 630.265i −0.916583 + 1.58757i −0.112017 + 0.993706i \(0.535731\pi\)
−0.804566 + 0.593863i \(0.797602\pi\)
\(398\) −1.24883 0.721015i −0.00313777 0.00181160i
\(399\) 12.2818 49.5464i 0.0307815 0.124176i
\(400\) 86.2304 149.355i 0.215576 0.373389i
\(401\) 563.043 + 325.073i 1.40410 + 0.810656i 0.994810 0.101750i \(-0.0324440\pi\)
0.409287 + 0.912406i \(0.365777\pi\)
\(402\) 17.3414 18.0065i 0.0431379 0.0447922i
\(403\) 148.133 415.579i 0.367576 1.03121i
\(404\) 493.682i 1.22199i
\(405\) 441.521 + 212.382i 1.09018 + 0.524399i
\(406\) 4.60772 + 7.98080i 0.0113491 + 0.0196571i
\(407\) −17.3445 + 10.0138i −0.0426154 + 0.0246040i
\(408\) 41.8435 + 40.2981i 0.102558 + 0.0987698i
\(409\) 430.699 1.05305 0.526527 0.850159i \(-0.323494\pi\)
0.526527 + 0.850159i \(0.323494\pi\)
\(410\) 44.3286i 0.108118i
\(411\) 11.3166 + 39.2644i 0.0275344 + 0.0955339i
\(412\) −215.272 372.863i −0.522506 0.905006i
\(413\) −22.9850 + 13.2704i −0.0556538 + 0.0321317i
\(414\) −48.9725 + 30.7868i −0.118291 + 0.0743641i
\(415\) 962.005 2.31808
\(416\) −140.999 + 119.920i −0.338939 + 0.288270i
\(417\) −40.3792 + 162.895i −0.0968326 + 0.390635i
\(418\) −6.64502 + 11.5095i −0.0158972 + 0.0275347i
\(419\) 177.836 + 102.674i 0.424430 + 0.245045i 0.696971 0.717100i \(-0.254531\pi\)
−0.272541 + 0.962144i \(0.587864\pi\)
\(420\) −30.2763 + 31.4374i −0.0720865 + 0.0748510i
\(421\) 28.6735 49.6640i 0.0681082 0.117967i −0.829960 0.557822i \(-0.811637\pi\)
0.898069 + 0.439856i \(0.144970\pi\)
\(422\) 84.1226 + 48.5682i 0.199343 + 0.115091i
\(423\) −75.1283 119.507i −0.177608 0.282522i
\(424\) 69.7622 0.164533
\(425\) −80.2803 + 46.3499i −0.188895 + 0.109058i
\(426\) 84.7083 + 81.5797i 0.198846 + 0.191502i
\(427\) 19.2586 33.3569i 0.0451021 0.0781192i
\(428\) 170.087 98.2001i 0.397401 0.229439i
\(429\) 27.2982 + 54.8494i 0.0636322 + 0.127854i
\(430\) −52.4010 + 90.7612i −0.121863 + 0.211072i
\(431\) −596.019 + 344.111i −1.38287 + 0.798402i −0.992499 0.122254i \(-0.960988\pi\)
−0.390375 + 0.920656i \(0.627655\pi\)
\(432\) 267.685 299.742i 0.619641 0.693848i
\(433\) 67.6852 117.234i 0.156317 0.270749i −0.777221 0.629228i \(-0.783371\pi\)
0.933538 + 0.358479i \(0.116705\pi\)
\(434\) 5.54027 + 3.19867i 0.0127656 + 0.00737022i
\(435\) 852.422 245.682i 1.95959 0.564786i
\(436\) −361.441 −0.828993
\(437\) 502.438 290.083i 1.14974 0.663805i
\(438\) −24.8431 6.15824i −0.0567194 0.0140599i
\(439\) −430.958 −0.981680 −0.490840 0.871250i \(-0.663310\pi\)
−0.490840 + 0.871250i \(0.663310\pi\)
\(440\) 19.9181 11.4997i 0.0452684 0.0261357i
\(441\) −370.464 + 232.894i −0.840054 + 0.528104i
\(442\) 31.3189 5.73758i 0.0708573 0.0129810i
\(443\) −600.974 346.972i −1.35660 0.783233i −0.367436 0.930049i \(-0.619764\pi\)
−0.989164 + 0.146815i \(0.953098\pi\)
\(444\) 143.557 41.3755i 0.323327 0.0931881i
\(445\) −319.182 + 552.839i −0.717263 + 1.24234i
\(446\) 100.427i 0.225173i
\(447\) 292.068 + 72.3993i 0.653396 + 0.161967i
\(448\) 16.9875 + 29.4232i 0.0379185 + 0.0656768i
\(449\) 258.289 + 149.123i 0.575253 + 0.332122i 0.759245 0.650805i \(-0.225569\pi\)
−0.183992 + 0.982928i \(0.558902\pi\)
\(450\) −16.9912 27.0278i −0.0377581 0.0600618i
\(451\) −18.8032 + 32.5682i −0.0416923 + 0.0722132i
\(452\) 592.851i 1.31162i
\(453\) 151.818 + 146.210i 0.335138 + 0.322760i
\(454\) −18.3724 31.8218i −0.0404677 0.0700922i
\(455\) 8.72483 + 47.6250i 0.0191755 + 0.104670i
\(456\) 139.193 144.531i 0.305247 0.316953i
\(457\) −287.081 −0.628186 −0.314093 0.949392i \(-0.601700\pi\)
−0.314093 + 0.949392i \(0.601700\pi\)
\(458\) −32.5708 + 18.8048i −0.0711153 + 0.0410584i
\(459\) −205.164 + 67.5877i −0.446981 + 0.147250i
\(460\) −496.060 −1.07839
\(461\) 247.094 142.660i 0.535995 0.309457i −0.207459 0.978244i \(-0.566519\pi\)
0.743454 + 0.668787i \(0.233186\pi\)
\(462\) −0.853636 + 0.246032i −0.00184770 + 0.000532536i
\(463\) 79.9846 + 138.537i 0.172753 + 0.299217i 0.939381 0.342874i \(-0.111400\pi\)
−0.766628 + 0.642091i \(0.778067\pi\)
\(464\) 727.649i 1.56821i
\(465\) 427.195 443.578i 0.918699 0.953931i
\(466\) 44.8901 0.0963307
\(467\) 28.8347i 0.0617446i 0.999523 + 0.0308723i \(0.00982851\pi\)
−0.999523 + 0.0308723i \(0.990171\pi\)
\(468\) −99.2092 446.137i −0.211985 0.953284i
\(469\) −16.7602 −0.0357361
\(470\) 29.0437i 0.0617951i
\(471\) −257.104 + 74.1017i −0.545869 + 0.157328i
\(472\) −104.330 −0.221038
\(473\) 76.9979 44.4548i 0.162786 0.0939847i
\(474\) 34.1551 35.4650i 0.0720572 0.0748206i
\(475\) 160.096 + 277.295i 0.337044 + 0.583778i
\(476\) 19.2429i 0.0404263i
\(477\) −121.158 + 229.367i −0.254000 + 0.480853i
\(478\) −23.7303 41.1021i −0.0496450 0.0859877i
\(479\) 746.658i 1.55878i −0.626536 0.779392i \(-0.715528\pi\)
0.626536 0.779392i \(-0.284472\pi\)
\(480\) −248.265 + 71.5541i −0.517219 + 0.149071i
\(481\) 55.6465 156.113i 0.115689 0.324559i
\(482\) −118.346 + 68.3272i −0.245532 + 0.141758i
\(483\) 37.6424 + 9.33099i 0.0779345 + 0.0193188i
\(484\) 463.019 0.956652
\(485\) −488.568 282.075i −1.00736 0.581598i
\(486\) −25.9179 69.7312i −0.0533290 0.143480i
\(487\) 201.902 349.705i 0.414584 0.718081i −0.580801 0.814046i \(-0.697260\pi\)
0.995385 + 0.0959652i \(0.0305937\pi\)
\(488\) 131.124 75.7043i 0.268696 0.155132i
\(489\) −555.748 535.222i −1.13650 1.09452i
\(490\) 90.0339 0.183743
\(491\) −364.055 210.187i −0.741456 0.428080i 0.0811426 0.996703i \(-0.474143\pi\)
−0.822598 + 0.568623i \(0.807476\pi\)
\(492\) 194.601 202.064i 0.395530 0.410698i
\(493\) −195.560 + 338.720i −0.396673 + 0.687058i
\(494\) −19.8181 108.178i −0.0401176 0.218984i
\(495\) 3.21684 + 85.4594i 0.00649867 + 0.172645i
\(496\) −252.567 437.458i −0.509207 0.881972i
\(497\) 78.8456i 0.158643i
\(498\) −105.211 101.325i −0.211266 0.203463i
\(499\) −186.101 322.337i −0.372948 0.645965i 0.617069 0.786909i \(-0.288320\pi\)
−0.990018 + 0.140944i \(0.954986\pi\)
\(500\) 316.924i 0.633848i
\(501\) −339.836 + 352.869i −0.678315 + 0.704328i
\(502\) −47.3484 + 82.0098i −0.0943195 + 0.163366i
\(503\) 143.625 + 82.9219i 0.285537 + 0.164855i 0.635927 0.771749i \(-0.280618\pi\)
−0.350391 + 0.936604i \(0.613951\pi\)
\(504\) 13.4037 0.504538i 0.0265946 0.00100107i
\(505\) 382.223 + 662.030i 0.756878 + 1.31095i
\(506\) −8.74423 5.04848i −0.0172811 0.00997724i
\(507\) −466.143 199.398i −0.919414 0.393290i
\(508\) −63.0992 109.291i −0.124211 0.215140i
\(509\) −253.659 146.450i −0.498347 0.287721i 0.229683 0.973265i \(-0.426231\pi\)
−0.728031 + 0.685544i \(0.759564\pi\)
\(510\) 43.1386 + 10.6934i 0.0845856 + 0.0209675i
\(511\) 8.57986 + 14.8607i 0.0167903 + 0.0290817i
\(512\) 356.029i 0.695370i
\(513\) 233.453 + 708.654i 0.455075 + 1.38139i
\(514\) −2.25096 + 3.89878i −0.00437930 + 0.00758517i
\(515\) −577.362 333.340i −1.12109 0.647263i
\(516\) −637.298 + 183.680i −1.23507 + 0.355968i
\(517\) 12.3197 21.3384i 0.0238292 0.0412735i
\(518\) 2.08121 + 1.20159i 0.00401778 + 0.00231967i
\(519\) 227.953 + 790.908i 0.439215 + 1.52391i
\(520\) −63.9035 + 179.278i −0.122891 + 0.344764i
\(521\) 811.721i 1.55801i −0.627020 0.779003i \(-0.715725\pi\)
0.627020 0.779003i \(-0.284275\pi\)
\(522\) −119.103 62.9135i −0.228166 0.120524i
\(523\) −267.247 462.886i −0.510989 0.885059i −0.999919 0.0127359i \(-0.995946\pi\)
0.488930 0.872323i \(-0.337387\pi\)
\(524\) 9.05353 5.22706i 0.0172777 0.00997530i
\(525\) −5.14976 + 20.7748i −0.00980906 + 0.0395710i
\(526\) −31.4820 −0.0598517
\(527\) 271.515i 0.515209i
\(528\) 68.0859 + 16.8775i 0.128951 + 0.0319650i
\(529\) −44.1127 76.4055i −0.0833889 0.144434i
\(530\) 46.2212 26.6858i 0.0872098 0.0503506i
\(531\) 181.193 343.021i 0.341230 0.645990i
\(532\) −66.4666 −0.124937
\(533\) −56.0787 306.109i −0.105213 0.574313i
\(534\) 93.1363 26.8434i 0.174413 0.0502686i
\(535\) 152.059 263.373i 0.284222 0.492287i
\(536\) −57.0567 32.9417i −0.106449 0.0614584i
\(537\) −221.746 769.374i −0.412935 1.43273i
\(538\) 54.7928 94.9039i 0.101845 0.176401i
\(539\) −66.1478 38.1905i −0.122723 0.0708543i
\(540\) 130.094 624.549i 0.240914 1.15657i
\(541\) 177.353 0.327825 0.163913 0.986475i \(-0.447589\pi\)
0.163913 + 0.986475i \(0.447589\pi\)
\(542\) −68.6912 + 39.6589i −0.126737 + 0.0731714i
\(543\) −185.391 + 747.891i −0.341420 + 1.37733i
\(544\) 56.9562 98.6510i 0.104699 0.181344i
\(545\) −484.694 + 279.838i −0.889346 + 0.513464i
\(546\) 4.06198 6.12751i 0.00743952 0.0112225i
\(547\) 43.1845 74.7978i 0.0789480 0.136742i −0.823848 0.566810i \(-0.808177\pi\)
0.902796 + 0.430068i \(0.141511\pi\)
\(548\) 46.0786 26.6035i 0.0840851 0.0485466i
\(549\) 21.1769 + 562.592i 0.0385736 + 1.02476i
\(550\) 2.78625 4.82592i 0.00506591 0.00877441i
\(551\) 1169.96 + 675.479i 2.12335 + 1.22592i
\(552\) 109.806 + 105.750i 0.198924 + 0.191577i
\(553\) −33.0104 −0.0596934
\(554\) 37.3343 21.5550i 0.0673905 0.0389079i
\(555\) 160.477 166.631i 0.289147 0.300236i
\(556\) 218.523 0.393028
\(557\) 670.505 387.116i 1.20378 0.695002i 0.242386 0.970180i \(-0.422070\pi\)
0.961393 + 0.275178i \(0.0887367\pi\)
\(558\) −93.4412 + 3.51729i −0.167457 + 0.00630338i
\(559\) −247.033 + 693.037i −0.441920 + 1.23978i
\(560\) 48.0080 + 27.7174i 0.0857285 + 0.0494954i
\(561\) −27.1580 26.1550i −0.0484100 0.0466220i
\(562\) 35.9838 62.3257i 0.0640280 0.110900i
\(563\) 425.709i 0.756143i 0.925776 + 0.378072i \(0.123413\pi\)
−0.925776 + 0.378072i \(0.876587\pi\)
\(564\) −127.501 + 132.390i −0.226065 + 0.234735i
\(565\) 459.003 + 795.016i 0.812394 + 1.40711i
\(566\) 65.6826 + 37.9219i 0.116047 + 0.0669997i
\(567\) −21.6198 + 44.9454i −0.0381301 + 0.0792688i
\(568\) 154.968 268.413i 0.272832 0.472559i
\(569\) 858.981i 1.50963i 0.655936 + 0.754816i \(0.272274\pi\)
−0.655936 + 0.754816i \(0.727726\pi\)
\(570\) 36.9360 149.004i 0.0648000 0.261411i
\(571\) 97.9094 + 169.584i 0.171470 + 0.296995i 0.938934 0.344097i \(-0.111815\pi\)
−0.767464 + 0.641092i \(0.778482\pi\)
\(572\) 60.7688 51.6843i 0.106239 0.0903571i
\(573\) 80.0484 + 277.737i 0.139701 + 0.484707i
\(574\) 4.51250 0.00786151
\(575\) −210.672 + 121.631i −0.366385 + 0.211533i
\(576\) −439.102 231.946i −0.762330 0.402685i
\(577\) 150.939 0.261593 0.130796 0.991409i \(-0.458247\pi\)
0.130796 + 0.991409i \(0.458247\pi\)
\(578\) 59.6515 34.4398i 0.103203 0.0595845i
\(579\) −329.814 317.633i −0.569626 0.548588i
\(580\) −577.557 1000.36i −0.995787 1.72475i
\(581\) 97.9289i 0.168552i
\(582\) 23.7227 + 82.3087i 0.0407607 + 0.141424i
\(583\) −45.2782 −0.0776642
\(584\) 67.4537i 0.115503i
\(585\) −478.452 521.461i −0.817867 0.891386i
\(586\) 152.208 0.259740
\(587\) 936.372i 1.59518i −0.603198 0.797591i \(-0.706107\pi\)
0.603198 0.797591i \(-0.293893\pi\)
\(588\) 410.403 + 395.245i 0.697964 + 0.672186i
\(589\) 937.834 1.59225
\(590\) −69.1244 + 39.9090i −0.117160 + 0.0676423i
\(591\) −130.066 451.278i −0.220077 0.763584i
\(592\) −94.8772 164.332i −0.160265 0.277588i
\(593\) 86.5327i 0.145924i 0.997335 + 0.0729618i \(0.0232451\pi\)
−0.997335 + 0.0729618i \(0.976755\pi\)
\(594\) 8.64934 9.68517i 0.0145612 0.0163050i
\(595\) −14.8984 25.8048i −0.0250394 0.0433695i
\(596\) 391.809i 0.657398i
\(597\) −10.1784 9.80244i −0.0170492 0.0164195i
\(598\) 82.1871 15.0566i 0.137437 0.0251782i
\(599\) 351.701 203.055i 0.587147 0.338989i −0.176822 0.984243i \(-0.556582\pi\)
0.763969 + 0.645253i \(0.223248\pi\)
\(600\) −58.3634 + 60.6016i −0.0972723 + 0.101003i
\(601\) −124.589 −0.207303 −0.103651 0.994614i \(-0.533053\pi\)
−0.103651 + 0.994614i \(0.533053\pi\)
\(602\) −9.23919 5.33425i −0.0153475 0.00886088i
\(603\) 207.399 130.382i 0.343946 0.216223i
\(604\) 137.224 237.679i 0.227192 0.393509i
\(605\) 620.911 358.483i 1.02630 0.592534i
\(606\) 27.9272 112.662i 0.0460845 0.185911i
\(607\) −1061.72 −1.74912 −0.874560 0.484917i \(-0.838850\pi\)
−0.874560 + 0.484917i \(0.838850\pi\)
\(608\) −340.748 196.731i −0.560441 0.323571i
\(609\) 25.0096 + 86.7738i 0.0410667 + 0.142486i
\(610\) 57.9177 100.316i 0.0949471 0.164453i
\(611\) 36.7423 + 200.560i 0.0601347 + 0.328248i
\(612\) 149.696 + 238.121i 0.244601 + 0.389087i
\(613\) 148.204 + 256.696i 0.241768 + 0.418754i 0.961218 0.275790i \(-0.0889394\pi\)
−0.719450 + 0.694544i \(0.755606\pi\)
\(614\) 31.1642i 0.0507560i
\(615\) 104.517 421.634i 0.169946 0.685583i
\(616\) 1.17063 + 2.02760i 0.00190038 + 0.00329156i
\(617\) 412.450i 0.668477i 0.942489 + 0.334238i \(0.108479\pi\)
−0.942489 + 0.334238i \(0.891521\pi\)
\(618\) 28.0341 + 97.2677i 0.0453627 + 0.157391i
\(619\) 184.087 318.849i 0.297395 0.515103i −0.678144 0.734929i \(-0.737216\pi\)
0.975539 + 0.219826i \(0.0705490\pi\)
\(620\) −694.447 400.939i −1.12008 0.646676i
\(621\) −538.393 + 177.364i −0.866977 + 0.285610i
\(622\) 39.0640 + 67.6608i 0.0628038 + 0.108779i
\(623\) −56.2772 32.4917i −0.0903327 0.0521536i
\(624\) −519.676 + 258.640i −0.832815 + 0.414487i
\(625\) 390.208 + 675.860i 0.624333 + 1.08138i
\(626\) 70.2975 + 40.5863i 0.112296 + 0.0648343i
\(627\) −90.3413 + 93.8059i −0.144085 + 0.149611i
\(628\) 174.200 + 301.724i 0.277389 + 0.480452i
\(629\) 101.995i 0.162154i
\(630\) 8.68767 5.46154i 0.0137900 0.00866911i
\(631\) −148.481 + 257.176i −0.235310 + 0.407569i −0.959363 0.282176i \(-0.908944\pi\)
0.724053 + 0.689745i \(0.242277\pi\)
\(632\) −112.377 64.8809i −0.177812 0.102660i
\(633\) 685.624 + 660.302i 1.08313 + 1.04313i
\(634\) 18.8534 32.6550i 0.0297371 0.0515063i
\(635\) −169.233 97.7065i −0.266508 0.153868i
\(636\) 327.841 + 81.2669i 0.515473 + 0.127778i
\(637\) 621.724 113.899i 0.976019 0.178805i
\(638\) 23.5115i 0.0368520i
\(639\) 613.361 + 975.673i 0.959876 + 1.52687i
\(640\) 223.335 + 386.827i 0.348961 + 0.604418i
\(641\) 440.939 254.577i 0.687893 0.397155i −0.114929 0.993374i \(-0.536664\pi\)
0.802822 + 0.596218i \(0.203331\pi\)
\(642\) −44.3703 + 12.7882i −0.0691126 + 0.0199194i
\(643\) 615.541 0.957295 0.478648 0.878007i \(-0.341127\pi\)
0.478648 + 0.878007i \(0.341127\pi\)
\(644\) 50.4973i 0.0784120i
\(645\) −712.409 + 739.730i −1.10451 + 1.14687i
\(646\) 33.8411 + 58.6146i 0.0523857 + 0.0907346i
\(647\) 145.240 83.8541i 0.224481 0.129604i −0.383542 0.923523i \(-0.625296\pi\)
0.608024 + 0.793919i \(0.291963\pi\)
\(648\) −161.939 + 110.514i −0.249905 + 0.170547i
\(649\) 67.7142 0.104336
\(650\) 8.30970 + 45.3589i 0.0127841 + 0.0697830i
\(651\) 45.1548 + 43.4871i 0.0693622 + 0.0668004i
\(652\) −502.327 + 870.056i −0.770440 + 1.33444i
\(653\) −980.552 566.122i −1.50161 0.866956i −0.999998 0.00186411i \(-0.999407\pi\)
−0.501613 0.865092i \(-0.667260\pi\)
\(654\) 82.4834 + 20.4464i 0.126121 + 0.0312636i
\(655\) 8.09388 14.0190i 0.0123571 0.0214031i
\(656\) −308.570 178.153i −0.470382 0.271575i
\(657\) −221.777 117.149i −0.337560 0.178309i
\(658\) −2.95655 −0.00449324
\(659\) 241.022 139.154i 0.365739 0.211160i −0.305856 0.952078i \(-0.598943\pi\)
0.671595 + 0.740918i \(0.265609\pi\)
\(660\) 106.999 30.8390i 0.162120 0.0467257i
\(661\) 277.015 479.804i 0.419084 0.725876i −0.576763 0.816911i \(-0.695684\pi\)
0.995848 + 0.0910359i \(0.0290178\pi\)
\(662\) 149.590 86.3660i 0.225967 0.130462i
\(663\) 311.420 + 19.2696i 0.469713 + 0.0290643i
\(664\) −192.476 + 333.378i −0.289874 + 0.502076i
\(665\) −89.1320 + 51.4604i −0.134033 + 0.0773840i
\(666\) −35.1014 + 1.32128i −0.0527047 + 0.00198390i
\(667\) −513.188 + 888.868i −0.769398 + 1.33264i
\(668\) 552.436 + 318.949i 0.827001 + 0.477469i
\(669\) −236.784 + 955.217i −0.353938 + 1.42783i
\(670\) −50.4042 −0.0752302
\(671\) −85.1042 + 49.1349i −0.126832 + 0.0732264i
\(672\) −7.28397 25.2726i −0.0108392 0.0376080i
\(673\) 599.236 0.890395 0.445198 0.895432i \(-0.353133\pi\)
0.445198 + 0.895432i \(0.353133\pi\)
\(674\) −123.511 + 71.3090i −0.183250 + 0.105800i
\(675\) −97.8868 297.138i −0.145017 0.440204i
\(676\) −105.971 + 651.600i −0.156761 + 0.963906i
\(677\) 703.476 + 406.152i 1.03911 + 0.599929i 0.919581 0.392901i \(-0.128529\pi\)
0.119528 + 0.992831i \(0.461862\pi\)
\(678\) 33.5371 135.293i 0.0494648 0.199547i
\(679\) 28.7143 49.7347i 0.0422891 0.0732469i
\(680\) 117.130i 0.172249i
\(681\) −99.7209 345.993i −0.146433 0.508066i
\(682\) −8.16085 14.1350i −0.0119661 0.0207258i
\(683\) −142.444 82.2401i −0.208556 0.120410i 0.392084 0.919929i \(-0.371754\pi\)
−0.600640 + 0.799519i \(0.705088\pi\)
\(684\) 822.489 517.061i 1.20247 0.755937i
\(685\) 41.1944 71.3509i 0.0601379 0.104162i
\(686\) 18.4018i 0.0268248i
\(687\) −354.136 + 102.068i −0.515482 + 0.148570i
\(688\) 421.191 + 729.525i 0.612197 + 1.06036i
\(689\) 285.419 242.751i 0.414251 0.352323i
\(690\) 113.204 + 28.0617i 0.164064 + 0.0406692i
\(691\) −422.774 −0.611830 −0.305915 0.952059i \(-0.598962\pi\)
−0.305915 + 0.952059i \(0.598962\pi\)
\(692\) 928.168 535.878i 1.34128 0.774390i
\(693\) −8.69949 + 0.327464i −0.0125534 + 0.000472531i
\(694\) −119.683 −0.172454
\(695\) 293.041 169.187i 0.421642 0.243435i
\(696\) −85.4111 + 344.559i −0.122717 + 0.495056i
\(697\) 95.7594 + 165.860i 0.137388 + 0.237963i
\(698\) 173.995i 0.249276i
\(699\) 426.975 + 105.841i 0.610837 + 0.151417i
\(700\) 27.8694 0.0398134
\(701\) 524.630i 0.748402i −0.927348 0.374201i \(-0.877917\pi\)
0.927348 0.374201i \(-0.122083\pi\)
\(702\) −2.59736 + 107.424i −0.00369995 + 0.153025i
\(703\) 352.299 0.501137
\(704\) 86.6811i 0.123127i
\(705\) −68.4785 + 276.251i −0.0971327 + 0.391845i
\(706\) −187.527 −0.265619
\(707\) −67.3925 + 38.9091i −0.0953218 + 0.0550341i
\(708\) −490.289 121.536i −0.692499 0.171660i
\(709\) −13.9544 24.1697i −0.0196818 0.0340899i 0.856017 0.516948i \(-0.172932\pi\)
−0.875699 + 0.482858i \(0.839599\pi\)
\(710\) 237.118i 0.333969i
\(711\) 408.487 256.797i 0.574524 0.361177i
\(712\) −127.723 221.222i −0.179386 0.310705i
\(713\) 712.510i 0.999313i
\(714\) −1.08856 + 4.39137i −0.00152459 + 0.00615038i
\(715\) 41.4757 116.358i 0.0580080 0.162738i
\(716\) −902.897 + 521.288i −1.26103 + 0.728056i
\(717\) −128.803 446.896i −0.179641 0.623286i
\(718\) −123.594 −0.172137
\(719\) −772.065 445.752i −1.07380 0.619961i −0.144586 0.989492i \(-0.546185\pi\)
−0.929218 + 0.369531i \(0.879518\pi\)
\(720\) −809.694 + 30.4783i −1.12458 + 0.0423310i
\(721\) 33.9330 58.7736i 0.0470637 0.0815168i
\(722\) 106.749 61.6317i 0.147852 0.0853624i
\(723\) −1286.76 + 370.865i −1.77975 + 0.512952i
\(724\) 1003.30 1.38577
\(725\) −490.565 283.228i −0.676641 0.390659i
\(726\) −105.664 26.1926i −0.145543 0.0360780i
\(727\) 363.448 629.511i 0.499929 0.865903i −0.500071 0.865984i \(-0.666693\pi\)
1.00000 8.19289e-5i \(2.60788e-5\pi\)
\(728\) −18.2499 6.50517i −0.0250685 0.00893567i
\(729\) −82.1090 724.361i −0.112632 0.993637i
\(730\) 25.8028 + 44.6917i 0.0353463 + 0.0612216i
\(731\) 452.790i 0.619412i
\(732\) 704.392 203.017i 0.962285 0.277346i
\(733\) 57.5796 + 99.7308i 0.0785534 + 0.136058i 0.902626 0.430426i \(-0.141637\pi\)
−0.824073 + 0.566484i \(0.808303\pi\)
\(734\) 171.580i 0.233760i
\(735\) 856.362 + 212.280i 1.16512 + 0.288816i
\(736\) 149.464 258.880i 0.203077 0.351739i
\(737\) 37.0319 + 21.3804i 0.0502469 + 0.0290100i
\(738\) −55.8398 + 35.1040i −0.0756637 + 0.0475663i
\(739\) −273.890 474.391i −0.370622 0.641936i 0.619039 0.785360i \(-0.287522\pi\)
−0.989661 + 0.143424i \(0.954189\pi\)
\(740\) −260.871 150.614i −0.352528 0.203532i
\(741\) 66.5588 1075.67i 0.0898229 1.45164i
\(742\) 2.71653 + 4.70517i 0.00366109 + 0.00634120i
\(743\) 71.8996 + 41.5113i 0.0967694 + 0.0558698i 0.547604 0.836738i \(-0.315540\pi\)
−0.450834 + 0.892608i \(0.648873\pi\)
\(744\) 68.2476 + 236.793i 0.0917306 + 0.318270i
\(745\) −303.350 525.418i −0.407182 0.705259i
\(746\) 55.8646i 0.0748855i
\(747\) −761.815 1211.82i −1.01983 1.62225i
\(748\) −24.5475 + 42.5174i −0.0328175 + 0.0568415i
\(749\) 26.8106 + 15.4791i 0.0357951 + 0.0206663i
\(750\) 17.9281 72.3243i 0.0239042 0.0964325i
\(751\) 213.802 370.317i 0.284690 0.493098i −0.687844 0.725859i \(-0.741443\pi\)
0.972534 + 0.232761i \(0.0747759\pi\)
\(752\) 202.173 + 116.724i 0.268847 + 0.155219i
\(753\) −643.717 + 668.404i −0.854870 + 0.887655i
\(754\) 126.053 + 148.209i 0.167179 + 0.196563i
\(755\) 424.972i 0.562877i
\(756\) 63.5771 + 13.2431i 0.0840967 + 0.0175173i
\(757\) −59.7285 103.453i −0.0789016 0.136662i 0.823875 0.566772i \(-0.191808\pi\)
−0.902776 + 0.430110i \(0.858475\pi\)
\(758\) 79.9485 46.1583i 0.105473 0.0608949i
\(759\) −71.2680 68.6359i −0.0938973 0.0904293i
\(760\) −404.575 −0.532335
\(761\) 392.322i 0.515535i 0.966207 + 0.257767i \(0.0829868\pi\)
−0.966207 + 0.257767i \(0.917013\pi\)
\(762\) 8.21718 + 28.5105i 0.0107837 + 0.0374153i
\(763\) −28.4866 49.3402i −0.0373350 0.0646661i
\(764\) 325.938 188.180i 0.426620 0.246309i
\(765\) 385.103 + 203.422i 0.503403 + 0.265912i
\(766\) −60.0124 −0.0783451
\(767\) −426.847 + 363.036i −0.556515 + 0.473320i
\(768\) −142.993 + 576.851i −0.186189 + 0.751108i
\(769\) 605.521 1048.79i 0.787414 1.36384i −0.140132 0.990133i \(-0.544753\pi\)
0.927546 0.373708i \(-0.121914\pi\)