Properties

Label 117.3.k.a.29.14
Level $117$
Weight $3$
Character 117.29
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(29,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.29");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 29.14
Character \(\chi\) \(=\) 117.29
Dual form 117.3.k.a.113.13

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.376029i q^{2} +(-2.92720 - 0.656887i) q^{3} +3.85860 q^{4} +(0.994641 - 0.574256i) q^{5} +(-0.247009 + 1.10071i) q^{6} +(-2.57212 - 4.45503i) q^{7} -2.95506i q^{8} +(8.13700 + 3.84568i) q^{9} +(-0.215937 - 0.374014i) q^{10} -15.0728i q^{11} +(-11.2949 - 2.53467i) q^{12} +(12.9040 - 1.57671i) q^{13} +(-1.67522 + 0.967190i) q^{14} +(-3.28873 + 1.02760i) q^{15} +14.3232 q^{16} +(-24.4307 - 14.1051i) q^{17} +(1.44609 - 3.05975i) q^{18} +(10.6901 - 18.5158i) q^{19} +(3.83792 - 2.21583i) q^{20} +(4.60264 + 14.7304i) q^{21} -5.66781 q^{22} +(12.5928 + 7.27045i) q^{23} +(-1.94114 + 8.65006i) q^{24} +(-11.8405 + 20.5083i) q^{25} +(-0.592890 - 4.85229i) q^{26} +(-21.2924 - 16.6022i) q^{27} +(-9.92477 - 17.1902i) q^{28} +53.9734i q^{29} +(0.386406 + 1.23666i) q^{30} +(20.6940 + 35.8431i) q^{31} -17.2062i q^{32} +(-9.90113 + 44.1211i) q^{33} +(-5.30391 + 9.18664i) q^{34} +(-5.11666 - 2.95411i) q^{35} +(31.3974 + 14.8390i) q^{36} +(26.5470 + 45.9807i) q^{37} +(-6.96249 - 4.01980i) q^{38} +(-38.8084 - 3.86114i) q^{39} +(-1.69696 - 2.93923i) q^{40} +(-24.9941 - 14.4303i) q^{41} +(5.53904 - 1.73073i) q^{42} +(-21.0292 - 36.4236i) q^{43} -58.1599i q^{44} +(10.3018 - 0.847651i) q^{45} +(2.73390 - 4.73525i) q^{46} +(3.48340 + 2.01114i) q^{47} +(-41.9269 - 9.40874i) q^{48} +(11.2684 - 19.5175i) q^{49} +(7.71171 + 4.45236i) q^{50} +(62.2480 + 57.3365i) q^{51} +(49.7915 - 6.08391i) q^{52} -12.6540i q^{53} +(-6.24290 + 8.00658i) q^{54} +(-8.65564 - 14.9920i) q^{55} +(-13.1649 + 7.60076i) q^{56} +(-43.4549 + 47.1774i) q^{57} +20.2956 q^{58} +22.0040i q^{59} +(-12.6899 + 3.96508i) q^{60} +(-5.17426 - 8.96208i) q^{61} +(13.4780 - 7.78155i) q^{62} +(-3.79666 - 46.1421i) q^{63} +50.8229 q^{64} +(11.9294 - 8.97848i) q^{65} +(16.5908 + 3.72311i) q^{66} +(-37.0115 + 64.1058i) q^{67} +(-94.2683 - 54.4258i) q^{68} +(-32.0857 - 29.5541i) q^{69} +(-1.11083 + 1.92401i) q^{70} +(34.1908 + 19.7401i) q^{71} +(11.3642 - 24.0453i) q^{72} -65.2913 q^{73} +(17.2901 - 9.98243i) q^{74} +(48.1310 - 52.2540i) q^{75} +(41.2489 - 71.4453i) q^{76} +(-67.1498 + 38.7690i) q^{77} +(-1.45190 + 14.5931i) q^{78} +(-9.78025 + 16.9399i) q^{79} +(14.2465 - 8.22520i) q^{80} +(51.4215 + 62.5846i) q^{81} +(-5.42622 + 9.39850i) q^{82} +(71.7112 + 41.4025i) q^{83} +(17.7598 + 56.8386i) q^{84} -32.3997 q^{85} +(-13.6963 + 7.90758i) q^{86} +(35.4544 - 157.991i) q^{87} -44.5410 q^{88} +(134.830 - 77.8441i) q^{89} +(-0.318741 - 3.87377i) q^{90} +(-40.2150 - 53.4324i) q^{91} +(48.5905 + 28.0538i) q^{92} +(-37.0306 - 118.513i) q^{93} +(0.756247 - 1.30986i) q^{94} -24.5555i q^{95} +(-11.3025 + 50.3660i) q^{96} +(-9.71984 - 16.8353i) q^{97} +(-7.33915 - 4.23726i) q^{98} +(57.9651 - 122.647i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - q^{3} - 98 q^{4} - 6 q^{5} + 12 q^{6} - q^{7} - 3 q^{9} - 6 q^{10} - 39 q^{12} + 4 q^{13} - 6 q^{14} - 25 q^{15} + 166 q^{16} + 34 q^{18} + 5 q^{19} + 21 q^{20} - 91 q^{21} + 30 q^{22} - 75 q^{23}+ \cdots + 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.376029i 0.188014i −0.995572 0.0940072i \(-0.970032\pi\)
0.995572 0.0940072i \(-0.0299677\pi\)
\(3\) −2.92720 0.656887i −0.975733 0.218962i
\(4\) 3.85860 0.964651
\(5\) 0.994641 0.574256i 0.198928 0.114851i −0.397227 0.917720i \(-0.630028\pi\)
0.596155 + 0.802869i \(0.296694\pi\)
\(6\) −0.247009 + 1.10071i −0.0411681 + 0.183452i
\(7\) −2.57212 4.45503i −0.367445 0.636434i 0.621720 0.783239i \(-0.286434\pi\)
−0.989165 + 0.146806i \(0.953101\pi\)
\(8\) 2.95506i 0.369383i
\(9\) 8.13700 + 3.84568i 0.904111 + 0.427298i
\(10\) −0.215937 0.374014i −0.0215937 0.0374014i
\(11\) 15.0728i 1.37025i −0.728424 0.685127i \(-0.759747\pi\)
0.728424 0.685127i \(-0.240253\pi\)
\(12\) −11.2949 2.53467i −0.941242 0.211222i
\(13\) 12.9040 1.57671i 0.992618 0.121286i
\(14\) −1.67522 + 0.967190i −0.119659 + 0.0690850i
\(15\) −3.28873 + 1.02760i −0.219249 + 0.0685064i
\(16\) 14.3232 0.895201
\(17\) −24.4307 14.1051i −1.43710 0.829709i −0.439451 0.898266i \(-0.644827\pi\)
−0.997647 + 0.0685572i \(0.978160\pi\)
\(18\) 1.44609 3.05975i 0.0803382 0.169986i
\(19\) 10.6901 18.5158i 0.562638 0.974518i −0.434627 0.900611i \(-0.643120\pi\)
0.997265 0.0739073i \(-0.0235469\pi\)
\(20\) 3.83792 2.21583i 0.191896 0.110791i
\(21\) 4.60264 + 14.7304i 0.219173 + 0.701446i
\(22\) −5.66781 −0.257628
\(23\) 12.5928 + 7.27045i 0.547512 + 0.316106i 0.748118 0.663566i \(-0.230958\pi\)
−0.200606 + 0.979672i \(0.564291\pi\)
\(24\) −1.94114 + 8.65006i −0.0808809 + 0.360419i
\(25\) −11.8405 + 20.5083i −0.473618 + 0.820331i
\(26\) −0.592890 4.85229i −0.0228035 0.186627i
\(27\) −21.2924 16.6022i −0.788609 0.614895i
\(28\) −9.92477 17.1902i −0.354456 0.613936i
\(29\) 53.9734i 1.86115i 0.366100 + 0.930576i \(0.380693\pi\)
−0.366100 + 0.930576i \(0.619307\pi\)
\(30\) 0.386406 + 1.23666i 0.0128802 + 0.0412220i
\(31\) 20.6940 + 35.8431i 0.667549 + 1.15623i 0.978588 + 0.205831i \(0.0659897\pi\)
−0.311039 + 0.950397i \(0.600677\pi\)
\(32\) 17.2062i 0.537694i
\(33\) −9.90113 + 44.1211i −0.300034 + 1.33700i
\(34\) −5.30391 + 9.18664i −0.155997 + 0.270195i
\(35\) −5.11666 2.95411i −0.146190 0.0844030i
\(36\) 31.3974 + 14.8390i 0.872151 + 0.412193i
\(37\) 26.5470 + 45.9807i 0.717486 + 1.24272i 0.961993 + 0.273074i \(0.0880405\pi\)
−0.244507 + 0.969647i \(0.578626\pi\)
\(38\) −6.96249 4.01980i −0.183223 0.105784i
\(39\) −38.8084 3.86114i −0.995087 0.0990035i
\(40\) −1.69696 2.93923i −0.0424241 0.0734806i
\(41\) −24.9941 14.4303i −0.609612 0.351959i 0.163202 0.986593i \(-0.447818\pi\)
−0.772813 + 0.634633i \(0.781151\pi\)
\(42\) 5.53904 1.73073i 0.131882 0.0412078i
\(43\) −21.0292 36.4236i −0.489050 0.847060i 0.510870 0.859658i \(-0.329323\pi\)
−0.999921 + 0.0125977i \(0.995990\pi\)
\(44\) 58.1599i 1.32182i
\(45\) 10.3018 0.847651i 0.228929 0.0188367i
\(46\) 2.73390 4.73525i 0.0594326 0.102940i
\(47\) 3.48340 + 2.01114i 0.0741148 + 0.0427902i 0.536599 0.843837i \(-0.319709\pi\)
−0.462485 + 0.886627i \(0.653042\pi\)
\(48\) −41.9269 9.40874i −0.873478 0.196015i
\(49\) 11.2684 19.5175i 0.229968 0.398317i
\(50\) 7.71171 + 4.45236i 0.154234 + 0.0890471i
\(51\) 62.2480 + 57.3365i 1.22055 + 1.12425i
\(52\) 49.7915 6.08391i 0.957529 0.116998i
\(53\) 12.6540i 0.238755i −0.992849 0.119378i \(-0.961910\pi\)
0.992849 0.119378i \(-0.0380899\pi\)
\(54\) −6.24290 + 8.00658i −0.115609 + 0.148270i
\(55\) −8.65564 14.9920i −0.157375 0.272582i
\(56\) −13.1649 + 7.60076i −0.235088 + 0.135728i
\(57\) −43.4549 + 47.1774i −0.762368 + 0.827673i
\(58\) 20.2956 0.349923
\(59\) 22.0040i 0.372948i 0.982460 + 0.186474i \(0.0597061\pi\)
−0.982460 + 0.186474i \(0.940294\pi\)
\(60\) −12.6899 + 3.96508i −0.211499 + 0.0660847i
\(61\) −5.17426 8.96208i −0.0848239 0.146919i 0.820492 0.571658i \(-0.193699\pi\)
−0.905316 + 0.424738i \(0.860366\pi\)
\(62\) 13.4780 7.78155i 0.217388 0.125509i
\(63\) −3.79666 46.1421i −0.0602644 0.732415i
\(64\) 50.8229 0.794107
\(65\) 11.9294 8.97848i 0.183530 0.138130i
\(66\) 16.5908 + 3.72311i 0.251376 + 0.0564108i
\(67\) −37.0115 + 64.1058i −0.552410 + 0.956802i 0.445690 + 0.895187i \(0.352958\pi\)
−0.998100 + 0.0616149i \(0.980375\pi\)
\(68\) −94.2683 54.4258i −1.38630 0.800379i
\(69\) −32.0857 29.5541i −0.465011 0.428320i
\(70\) −1.11083 + 1.92401i −0.0158690 + 0.0274859i
\(71\) 34.1908 + 19.7401i 0.481561 + 0.278029i 0.721067 0.692865i \(-0.243652\pi\)
−0.239506 + 0.970895i \(0.576985\pi\)
\(72\) 11.3642 24.0453i 0.157836 0.333963i
\(73\) −65.2913 −0.894402 −0.447201 0.894434i \(-0.647579\pi\)
−0.447201 + 0.894434i \(0.647579\pi\)
\(74\) 17.2901 9.98243i 0.233650 0.134898i
\(75\) 48.1310 52.2540i 0.641747 0.696720i
\(76\) 41.2489 71.4453i 0.542749 0.940069i
\(77\) −67.1498 + 38.7690i −0.872076 + 0.503493i
\(78\) −1.45190 + 14.5931i −0.0186141 + 0.187091i
\(79\) −9.78025 + 16.9399i −0.123801 + 0.214429i −0.921263 0.388939i \(-0.872842\pi\)
0.797463 + 0.603368i \(0.206175\pi\)
\(80\) 14.2465 8.22520i 0.178081 0.102815i
\(81\) 51.4215 + 62.5846i 0.634833 + 0.772649i
\(82\) −5.42622 + 9.39850i −0.0661735 + 0.114616i
\(83\) 71.7112 + 41.4025i 0.863991 + 0.498825i 0.865347 0.501174i \(-0.167098\pi\)
−0.00135589 + 0.999999i \(0.500432\pi\)
\(84\) 17.7598 + 56.8386i 0.211426 + 0.676650i
\(85\) −32.3997 −0.381172
\(86\) −13.6963 + 7.90758i −0.159260 + 0.0919486i
\(87\) 35.4544 157.991i 0.407522 1.81599i
\(88\) −44.5410 −0.506148
\(89\) 134.830 77.8441i 1.51494 0.874653i 0.515097 0.857132i \(-0.327756\pi\)
0.999846 0.0175212i \(-0.00557746\pi\)
\(90\) −0.318741 3.87377i −0.00354157 0.0430419i
\(91\) −40.2150 53.4324i −0.441923 0.587169i
\(92\) 48.5905 + 28.0538i 0.528158 + 0.304932i
\(93\) −37.0306 118.513i −0.398179 1.27434i
\(94\) 0.756247 1.30986i 0.00804518 0.0139347i
\(95\) 24.5555i 0.258479i
\(96\) −11.3025 + 50.3660i −0.117735 + 0.524646i
\(97\) −9.71984 16.8353i −0.100205 0.173559i 0.811564 0.584263i \(-0.198616\pi\)
−0.911769 + 0.410704i \(0.865283\pi\)
\(98\) −7.33915 4.23726i −0.0748893 0.0432374i
\(99\) 57.9651 122.647i 0.585507 1.23886i
\(100\) −45.6876 + 79.1333i −0.456876 + 0.791333i
\(101\) 82.8944i 0.820737i 0.911920 + 0.410369i \(0.134600\pi\)
−0.911920 + 0.410369i \(0.865400\pi\)
\(102\) 21.5602 23.4071i 0.211374 0.229481i
\(103\) −38.2718 66.2886i −0.371571 0.643579i 0.618237 0.785992i \(-0.287847\pi\)
−0.989807 + 0.142413i \(0.954514\pi\)
\(104\) −4.65929 38.1322i −0.0448008 0.366656i
\(105\) 13.0370 + 12.0083i 0.124162 + 0.114365i
\(106\) −4.75828 −0.0448894
\(107\) 20.6786 11.9388i 0.193258 0.111578i −0.400249 0.916407i \(-0.631076\pi\)
0.593507 + 0.804829i \(0.297743\pi\)
\(108\) −82.1591 64.0612i −0.760732 0.593159i
\(109\) 5.84222 0.0535983 0.0267992 0.999641i \(-0.491469\pi\)
0.0267992 + 0.999641i \(0.491469\pi\)
\(110\) −5.63743 + 3.25477i −0.0512494 + 0.0295888i
\(111\) −47.5042 152.033i −0.427965 1.36967i
\(112\) −36.8410 63.8104i −0.328937 0.569736i
\(113\) 133.419i 1.18070i 0.807146 + 0.590351i \(0.201011\pi\)
−0.807146 + 0.590351i \(0.798989\pi\)
\(114\) 17.7401 + 16.3403i 0.155615 + 0.143336i
\(115\) 16.7004 0.145221
\(116\) 208.262i 1.79536i
\(117\) 111.064 + 36.7951i 0.949262 + 0.314488i
\(118\) 8.27412 0.0701197
\(119\) 145.119i 1.21949i
\(120\) 3.03661 + 9.71841i 0.0253051 + 0.0809868i
\(121\) −106.189 −0.877596
\(122\) −3.37000 + 1.94567i −0.0276230 + 0.0159481i
\(123\) 63.6835 + 58.6588i 0.517752 + 0.476900i
\(124\) 79.8499 + 138.304i 0.643951 + 1.11536i
\(125\) 55.9106i 0.447285i
\(126\) −17.3508 + 1.42765i −0.137705 + 0.0113306i
\(127\) 5.22700 + 9.05343i 0.0411575 + 0.0712869i 0.885870 0.463933i \(-0.153562\pi\)
−0.844713 + 0.535220i \(0.820229\pi\)
\(128\) 87.9356i 0.686997i
\(129\) 37.6304 + 120.433i 0.291708 + 0.933588i
\(130\) −3.37617 4.48581i −0.0259705 0.0345063i
\(131\) −74.2522 + 42.8695i −0.566811 + 0.327248i −0.755875 0.654716i \(-0.772788\pi\)
0.189064 + 0.981965i \(0.439455\pi\)
\(132\) −38.2045 + 170.246i −0.289428 + 1.28974i
\(133\) −109.985 −0.826954
\(134\) 24.1056 + 13.9174i 0.179893 + 0.103861i
\(135\) −30.7122 4.28587i −0.227498 0.0317472i
\(136\) −41.6813 + 72.1942i −0.306480 + 0.530839i
\(137\) 96.1691 55.5233i 0.701964 0.405279i −0.106114 0.994354i \(-0.533841\pi\)
0.808079 + 0.589075i \(0.200508\pi\)
\(138\) −11.1132 + 12.0652i −0.0805304 + 0.0874287i
\(139\) −202.843 −1.45930 −0.729652 0.683818i \(-0.760318\pi\)
−0.729652 + 0.683818i \(0.760318\pi\)
\(140\) −19.7432 11.3987i −0.141023 0.0814194i
\(141\) −8.87550 8.17520i −0.0629468 0.0579802i
\(142\) 7.42285 12.8567i 0.0522736 0.0905405i
\(143\) −23.7655 194.500i −0.166192 1.36014i
\(144\) 116.548 + 55.0825i 0.809361 + 0.382518i
\(145\) 30.9945 + 53.6841i 0.213755 + 0.370235i
\(146\) 24.5514i 0.168161i
\(147\) −45.8058 + 49.7296i −0.311604 + 0.338296i
\(148\) 102.434 + 177.421i 0.692123 + 1.19879i
\(149\) 235.223i 1.57868i 0.613957 + 0.789340i \(0.289577\pi\)
−0.613957 + 0.789340i \(0.710423\pi\)
\(150\) −19.6490 18.0987i −0.130993 0.120658i
\(151\) 133.267 230.825i 0.882561 1.52864i 0.0340779 0.999419i \(-0.489151\pi\)
0.848483 0.529222i \(-0.177516\pi\)
\(152\) −54.7155 31.5900i −0.359970 0.207829i
\(153\) −144.549 208.725i −0.944764 1.36422i
\(154\) 14.5783 + 25.2503i 0.0946640 + 0.163963i
\(155\) 41.1662 + 23.7673i 0.265588 + 0.153338i
\(156\) −149.746 14.8986i −0.959911 0.0955038i
\(157\) 29.0426 + 50.3033i 0.184985 + 0.320403i 0.943571 0.331169i \(-0.107443\pi\)
−0.758587 + 0.651572i \(0.774110\pi\)
\(158\) 6.36989 + 3.67766i 0.0403158 + 0.0232763i
\(159\) −8.31226 + 37.0408i −0.0522784 + 0.232961i
\(160\) −9.88076 17.1140i −0.0617548 0.106962i
\(161\) 74.8017i 0.464607i
\(162\) 23.5336 19.3360i 0.145269 0.119358i
\(163\) −8.10087 + 14.0311i −0.0496986 + 0.0860805i −0.889805 0.456342i \(-0.849159\pi\)
0.840106 + 0.542422i \(0.182493\pi\)
\(164\) −96.4422 55.6809i −0.588062 0.339518i
\(165\) 15.4887 + 49.5704i 0.0938711 + 0.300427i
\(166\) 15.5685 26.9655i 0.0937864 0.162443i
\(167\) −27.0940 15.6427i −0.162240 0.0936691i 0.416682 0.909052i \(-0.363193\pi\)
−0.578922 + 0.815383i \(0.696526\pi\)
\(168\) 43.5291 13.6011i 0.259102 0.0809589i
\(169\) 164.028 40.6919i 0.970580 0.240781i
\(170\) 12.1832i 0.0716659i
\(171\) 158.192 109.553i 0.925097 0.640658i
\(172\) −81.1432 140.544i −0.471763 0.817117i
\(173\) 3.74325 2.16116i 0.0216373 0.0124923i −0.489142 0.872204i \(-0.662690\pi\)
0.510780 + 0.859712i \(0.329357\pi\)
\(174\) −59.4092 13.3319i −0.341432 0.0766201i
\(175\) 121.820 0.696115
\(176\) 215.891i 1.22665i
\(177\) 14.4541 64.4100i 0.0816617 0.363898i
\(178\) −29.2716 50.7000i −0.164447 0.284831i
\(179\) −1.59962 + 0.923541i −0.00893642 + 0.00515945i −0.504462 0.863434i \(-0.668309\pi\)
0.495525 + 0.868594i \(0.334976\pi\)
\(180\) 39.7505 3.27075i 0.220836 0.0181708i
\(181\) −10.7339 −0.0593032 −0.0296516 0.999560i \(-0.509440\pi\)
−0.0296516 + 0.999560i \(0.509440\pi\)
\(182\) −20.0921 + 15.1220i −0.110396 + 0.0830879i
\(183\) 9.25901 + 29.6327i 0.0505957 + 0.161927i
\(184\) 21.4846 37.2125i 0.116764 0.202242i
\(185\) 52.8094 + 30.4895i 0.285456 + 0.164808i
\(186\) −44.5645 + 13.9246i −0.239594 + 0.0748634i
\(187\) −212.603 + 368.239i −1.13691 + 1.96919i
\(188\) 13.4410 + 7.76019i 0.0714949 + 0.0412776i
\(189\) −19.1966 + 137.561i −0.101569 + 0.727837i
\(190\) −9.23357 −0.0485977
\(191\) 57.0922 32.9622i 0.298912 0.172577i −0.343042 0.939320i \(-0.611457\pi\)
0.641954 + 0.766743i \(0.278124\pi\)
\(192\) −148.769 33.3849i −0.774837 0.173880i
\(193\) 55.9292 96.8723i 0.289789 0.501929i −0.683970 0.729510i \(-0.739748\pi\)
0.973759 + 0.227581i \(0.0730816\pi\)
\(194\) −6.33055 + 3.65494i −0.0326317 + 0.0188399i
\(195\) −40.8177 + 18.4455i −0.209322 + 0.0945924i
\(196\) 43.4804 75.3103i 0.221839 0.384236i
\(197\) 10.1710 5.87226i 0.0516297 0.0298084i −0.473963 0.880545i \(-0.657177\pi\)
0.525593 + 0.850736i \(0.323844\pi\)
\(198\) −46.1189 21.7966i −0.232924 0.110084i
\(199\) 9.23826 16.0011i 0.0464234 0.0804077i −0.841880 0.539665i \(-0.818551\pi\)
0.888303 + 0.459257i \(0.151884\pi\)
\(200\) 60.6032 + 34.9893i 0.303016 + 0.174946i
\(201\) 150.450 163.338i 0.748509 0.812627i
\(202\) 31.1707 0.154310
\(203\) 240.453 138.826i 1.18450 0.683871i
\(204\) 240.190 + 221.239i 1.17740 + 1.08450i
\(205\) −33.1468 −0.161692
\(206\) −24.9265 + 14.3913i −0.121002 + 0.0698607i
\(207\) 74.5076 + 107.587i 0.359940 + 0.519746i
\(208\) 184.827 22.5836i 0.888593 0.108575i
\(209\) −279.085 161.130i −1.33534 0.770957i
\(210\) 4.51548 4.90228i 0.0215023 0.0233442i
\(211\) −13.0910 + 22.6743i −0.0620426 + 0.107461i −0.895378 0.445306i \(-0.853095\pi\)
0.833336 + 0.552767i \(0.186428\pi\)
\(212\) 48.8268i 0.230315i
\(213\) −87.1164 80.2427i −0.408997 0.376726i
\(214\) −4.48934 7.77577i −0.0209782 0.0363354i
\(215\) −41.8329 24.1523i −0.194572 0.112336i
\(216\) −49.0604 + 62.9205i −0.227132 + 0.291299i
\(217\) 106.455 184.385i 0.490575 0.849701i
\(218\) 2.19684i 0.0100773i
\(219\) 191.121 + 42.8890i 0.872698 + 0.195840i
\(220\) −33.3987 57.8482i −0.151812 0.262946i
\(221\) −337.494 143.492i −1.52712 0.649285i
\(222\) −57.1688 + 17.8629i −0.257517 + 0.0804637i
\(223\) −322.919 −1.44807 −0.724033 0.689765i \(-0.757714\pi\)
−0.724033 + 0.689765i \(0.757714\pi\)
\(224\) −76.6542 + 44.2563i −0.342206 + 0.197573i
\(225\) −175.214 + 121.341i −0.778729 + 0.539294i
\(226\) 50.1696 0.221989
\(227\) 219.554 126.760i 0.967200 0.558413i 0.0688188 0.997629i \(-0.478077\pi\)
0.898382 + 0.439216i \(0.144744\pi\)
\(228\) −167.675 + 182.039i −0.735418 + 0.798415i
\(229\) 119.446 + 206.887i 0.521600 + 0.903437i 0.999684 + 0.0251232i \(0.00799781\pi\)
−0.478085 + 0.878314i \(0.658669\pi\)
\(230\) 6.27983i 0.0273036i
\(231\) 222.028 69.3747i 0.961159 0.300323i
\(232\) 159.495 0.687477
\(233\) 42.9145i 0.184182i 0.995751 + 0.0920912i \(0.0293551\pi\)
−0.995751 + 0.0920912i \(0.970645\pi\)
\(234\) 13.8360 41.7631i 0.0591282 0.178475i
\(235\) 4.61964 0.0196580
\(236\) 84.9045i 0.359765i
\(237\) 39.7563 43.1619i 0.167748 0.182118i
\(238\) 54.5691 0.229282
\(239\) 67.0524 38.7127i 0.280554 0.161978i −0.353120 0.935578i \(-0.614879\pi\)
0.633674 + 0.773600i \(0.281546\pi\)
\(240\) −47.1053 + 14.7185i −0.196272 + 0.0613270i
\(241\) 47.8848 + 82.9389i 0.198692 + 0.344145i 0.948105 0.317959i \(-0.102997\pi\)
−0.749412 + 0.662103i \(0.769664\pi\)
\(242\) 39.9302i 0.165001i
\(243\) −109.410 216.976i −0.450247 0.892904i
\(244\) −19.9654 34.5811i −0.0818254 0.141726i
\(245\) 25.8839i 0.105649i
\(246\) 22.0574 23.9469i 0.0896642 0.0973450i
\(247\) 108.752 255.784i 0.440290 1.03556i
\(248\) 105.919 61.1521i 0.427091 0.246581i
\(249\) −182.716 168.300i −0.733801 0.675902i
\(250\) 21.0240 0.0840961
\(251\) −365.360 210.940i −1.45562 0.840400i −0.456825 0.889557i \(-0.651013\pi\)
−0.998791 + 0.0491566i \(0.984347\pi\)
\(252\) −14.6498 178.044i −0.0581341 0.706524i
\(253\) 109.586 189.808i 0.433146 0.750231i
\(254\) 3.40435 1.96550i 0.0134030 0.00773820i
\(255\) 94.8403 + 21.2829i 0.371923 + 0.0834624i
\(256\) 170.225 0.664942
\(257\) 336.324 + 194.177i 1.30865 + 0.755552i 0.981872 0.189548i \(-0.0607022\pi\)
0.326783 + 0.945100i \(0.394035\pi\)
\(258\) 45.2863 14.1501i 0.175528 0.0548454i
\(259\) 136.564 236.535i 0.527273 0.913264i
\(260\) 46.0309 34.6444i 0.177042 0.133248i
\(261\) −207.564 + 439.181i −0.795266 + 1.68269i
\(262\) 16.1202 + 27.9210i 0.0615275 + 0.106569i
\(263\) 159.385i 0.606027i 0.952986 + 0.303014i \(0.0979928\pi\)
−0.952986 + 0.303014i \(0.902007\pi\)
\(264\) 130.381 + 29.2584i 0.493866 + 0.110827i
\(265\) −7.26665 12.5862i −0.0274213 0.0474951i
\(266\) 41.3575i 0.155479i
\(267\) −445.809 + 139.297i −1.66970 + 0.521712i
\(268\) −142.813 + 247.359i −0.532883 + 0.922980i
\(269\) −138.125 79.7468i −0.513478 0.296456i 0.220784 0.975323i \(-0.429138\pi\)
−0.734262 + 0.678866i \(0.762472\pi\)
\(270\) −1.61161 + 11.5487i −0.00596894 + 0.0427729i
\(271\) −96.7532 167.581i −0.357023 0.618382i 0.630439 0.776239i \(-0.282875\pi\)
−0.987462 + 0.157857i \(0.949542\pi\)
\(272\) −349.926 202.030i −1.28649 0.742757i
\(273\) 82.6182 + 182.824i 0.302631 + 0.669685i
\(274\) −20.8784 36.1624i −0.0761984 0.131979i
\(275\) 309.117 + 178.469i 1.12406 + 0.648977i
\(276\) −123.806 114.037i −0.448573 0.413179i
\(277\) 160.981 + 278.828i 0.581159 + 1.00660i 0.995342 + 0.0964039i \(0.0307340\pi\)
−0.414183 + 0.910194i \(0.635933\pi\)
\(278\) 76.2750i 0.274370i
\(279\) 30.5461 + 371.238i 0.109484 + 1.33060i
\(280\) −8.72957 + 15.1201i −0.0311770 + 0.0540002i
\(281\) −357.552 206.433i −1.27243 0.734637i −0.296984 0.954883i \(-0.595981\pi\)
−0.975444 + 0.220246i \(0.929314\pi\)
\(282\) −3.07411 + 3.33745i −0.0109011 + 0.0118349i
\(283\) −243.879 + 422.411i −0.861764 + 1.49262i 0.00846154 + 0.999964i \(0.497307\pi\)
−0.870225 + 0.492654i \(0.836027\pi\)
\(284\) 131.929 + 76.1692i 0.464538 + 0.268201i
\(285\) −16.1302 + 71.8788i −0.0565971 + 0.252206i
\(286\) −73.1376 + 8.93651i −0.255726 + 0.0312465i
\(287\) 148.466i 0.517303i
\(288\) 66.1695 140.007i 0.229755 0.486135i
\(289\) 253.405 + 438.911i 0.876835 + 1.51872i
\(290\) 20.1868 11.6548i 0.0696096 0.0401891i
\(291\) 17.3931 + 55.6650i 0.0597700 + 0.191289i
\(292\) −251.933 −0.862785
\(293\) 548.637i 1.87248i −0.351360 0.936240i \(-0.614281\pi\)
0.351360 0.936240i \(-0.385719\pi\)
\(294\) 18.6998 + 17.2243i 0.0636046 + 0.0585861i
\(295\) 12.6359 + 21.8860i 0.0428336 + 0.0741899i
\(296\) 135.876 78.4479i 0.459040 0.265027i
\(297\) −250.241 + 320.937i −0.842562 + 1.08059i
\(298\) 88.4508 0.296815
\(299\) 173.961 + 73.9629i 0.581810 + 0.247367i
\(300\) 185.718 201.627i 0.619062 0.672091i
\(301\) −108.179 + 187.371i −0.359398 + 0.622496i
\(302\) −86.7968 50.1122i −0.287407 0.165934i
\(303\) 54.4523 242.649i 0.179711 0.800821i
\(304\) 153.117 265.206i 0.503674 0.872390i
\(305\) −10.2931 5.94270i −0.0337477 0.0194843i
\(306\) −78.4868 + 54.3545i −0.256493 + 0.177629i
\(307\) 78.3446 0.255194 0.127597 0.991826i \(-0.459274\pi\)
0.127597 + 0.991826i \(0.459274\pi\)
\(308\) −259.104 + 149.594i −0.841248 + 0.485695i
\(309\) 68.4850 + 219.180i 0.221634 + 0.709322i
\(310\) 8.93720 15.4797i 0.0288297 0.0499345i
\(311\) −390.829 + 225.645i −1.25668 + 0.725547i −0.972428 0.233202i \(-0.925080\pi\)
−0.284255 + 0.958749i \(0.591746\pi\)
\(312\) −11.4099 + 114.681i −0.0365702 + 0.367568i
\(313\) 117.824 204.077i 0.376435 0.652004i −0.614106 0.789224i \(-0.710483\pi\)
0.990541 + 0.137220i \(0.0438166\pi\)
\(314\) 18.9155 10.9209i 0.0602404 0.0347798i
\(315\) −30.2737 43.7146i −0.0961070 0.138777i
\(316\) −37.7381 + 65.3643i −0.119424 + 0.206849i
\(317\) 107.908 + 62.3008i 0.340404 + 0.196532i 0.660451 0.750869i \(-0.270365\pi\)
−0.320047 + 0.947402i \(0.603699\pi\)
\(318\) 13.9284 + 3.12565i 0.0438001 + 0.00982909i
\(319\) 813.530 2.55025
\(320\) 50.5505 29.1853i 0.157970 0.0912042i
\(321\) −68.3730 + 21.3638i −0.213000 + 0.0665538i
\(322\) −28.1276 −0.0873528
\(323\) −522.334 + 301.570i −1.61713 + 0.933652i
\(324\) 198.415 + 241.489i 0.612392 + 0.745337i
\(325\) −120.454 + 283.308i −0.370628 + 0.871718i
\(326\) 5.27611 + 3.04616i 0.0161844 + 0.00934406i
\(327\) −17.1013 3.83768i −0.0522977 0.0117360i
\(328\) −42.6425 + 73.8590i −0.130008 + 0.225180i
\(329\) 20.6915i 0.0628922i
\(330\) 18.6399 5.82421i 0.0564846 0.0176491i
\(331\) −167.292 289.758i −0.505413 0.875401i −0.999980 0.00626172i \(-0.998007\pi\)
0.494567 0.869139i \(-0.335327\pi\)
\(332\) 276.705 + 159.756i 0.833449 + 0.481192i
\(333\) 39.1856 + 476.236i 0.117674 + 1.43014i
\(334\) −5.88212 + 10.1881i −0.0176111 + 0.0305034i
\(335\) 85.0163i 0.253780i
\(336\) 65.9246 + 210.986i 0.196204 + 0.627935i
\(337\) −185.957 322.088i −0.551802 0.955750i −0.998145 0.0608873i \(-0.980607\pi\)
0.446342 0.894862i \(-0.352726\pi\)
\(338\) −15.3013 61.6793i −0.0452702 0.182483i
\(339\) 87.6415 390.545i 0.258530 1.15205i
\(340\) −125.017 −0.367698
\(341\) 540.255 311.916i 1.58433 0.914711i
\(342\) −41.1949 59.4846i −0.120453 0.173932i
\(343\) −368.002 −1.07289
\(344\) −107.634 + 62.1425i −0.312889 + 0.180647i
\(345\) −48.8854 10.9703i −0.141697 0.0317979i
\(346\) −0.812660 1.40757i −0.00234873 0.00406812i
\(347\) 170.800i 0.492219i 0.969242 + 0.246110i \(0.0791523\pi\)
−0.969242 + 0.246110i \(0.920848\pi\)
\(348\) 136.805 609.624i 0.393116 1.75179i
\(349\) 134.718 0.386010 0.193005 0.981198i \(-0.438177\pi\)
0.193005 + 0.981198i \(0.438177\pi\)
\(350\) 45.8079i 0.130880i
\(351\) −300.935 180.663i −0.857365 0.514709i
\(352\) −259.345 −0.736777
\(353\) 126.976i 0.359705i −0.983694 0.179853i \(-0.942438\pi\)
0.983694 0.179853i \(-0.0575621\pi\)
\(354\) −24.2200 5.43517i −0.0684181 0.0153536i
\(355\) 45.3435 0.127728
\(356\) 520.255 300.370i 1.46139 0.843735i
\(357\) 95.3270 424.793i 0.267023 1.18990i
\(358\) 0.347278 + 0.601503i 0.000970051 + 0.00168018i
\(359\) 443.856i 1.23637i 0.786034 + 0.618184i \(0.212131\pi\)
−0.786034 + 0.618184i \(0.787869\pi\)
\(360\) −2.50486 30.4424i −0.00695795 0.0845624i
\(361\) −48.0575 83.2381i −0.133123 0.230576i
\(362\) 4.03625i 0.0111499i
\(363\) 310.837 + 69.7543i 0.856300 + 0.192161i
\(364\) −155.174 206.174i −0.426301 0.566413i
\(365\) −64.9414 + 37.4939i −0.177922 + 0.102723i
\(366\) 11.1428 3.48166i 0.0304447 0.00951272i
\(367\) −116.173 −0.316547 −0.158274 0.987395i \(-0.550593\pi\)
−0.158274 + 0.987395i \(0.550593\pi\)
\(368\) 180.369 + 104.136i 0.490134 + 0.282979i
\(369\) −147.882 213.539i −0.400765 0.578696i
\(370\) 11.4649 19.8579i 0.0309863 0.0536699i
\(371\) −56.3741 + 32.5476i −0.151952 + 0.0877294i
\(372\) −142.887 457.296i −0.384104 1.22929i
\(373\) 210.987 0.565649 0.282825 0.959172i \(-0.408729\pi\)
0.282825 + 0.959172i \(0.408729\pi\)
\(374\) 138.468 + 79.9447i 0.370236 + 0.213756i
\(375\) 36.7270 163.662i 0.0979386 0.436431i
\(376\) 5.94304 10.2936i 0.0158060 0.0273767i
\(377\) 85.1006 + 696.474i 0.225731 + 1.84741i
\(378\) 51.7270 + 7.21848i 0.136844 + 0.0190965i
\(379\) −190.883 330.619i −0.503650 0.872347i −0.999991 0.00421947i \(-0.998657\pi\)
0.496341 0.868127i \(-0.334676\pi\)
\(380\) 94.7498i 0.249342i
\(381\) −9.35339 29.9348i −0.0245496 0.0785689i
\(382\) −12.3947 21.4683i −0.0324470 0.0561998i
\(383\) 253.952i 0.663061i 0.943445 + 0.331530i \(0.107565\pi\)
−0.943445 + 0.331530i \(0.892435\pi\)
\(384\) −57.7638 + 257.405i −0.150427 + 0.670326i
\(385\) −44.5266 + 77.1224i −0.115654 + 0.200318i
\(386\) −36.4268 21.0310i −0.0943699 0.0544845i
\(387\) −31.0408 377.250i −0.0802089 0.974806i
\(388\) −37.5050 64.9606i −0.0966624 0.167424i
\(389\) −291.388 168.233i −0.749070 0.432476i 0.0762879 0.997086i \(-0.475693\pi\)
−0.825358 + 0.564610i \(0.809027\pi\)
\(390\) 6.93605 + 15.3486i 0.0177847 + 0.0393555i
\(391\) −205.100 355.244i −0.524553 0.908552i
\(392\) −57.6755 33.2990i −0.147131 0.0849463i
\(393\) 245.512 76.7124i 0.624711 0.195197i
\(394\) −2.20814 3.82461i −0.00560441 0.00970713i
\(395\) 22.4655i 0.0568746i
\(396\) 223.664 473.247i 0.564809 1.19507i
\(397\) −124.854 + 216.254i −0.314494 + 0.544720i −0.979330 0.202269i \(-0.935168\pi\)
0.664835 + 0.746990i \(0.268502\pi\)
\(398\) −6.01689 3.47385i −0.0151178 0.00872828i
\(399\) 321.948 + 72.2477i 0.806887 + 0.181072i
\(400\) −169.594 + 293.745i −0.423984 + 0.734361i
\(401\) −487.509 281.464i −1.21573 0.701904i −0.251731 0.967797i \(-0.581000\pi\)
−0.964003 + 0.265893i \(0.914333\pi\)
\(402\) −61.4198 56.5736i −0.152786 0.140730i
\(403\) 323.550 + 429.892i 0.802854 + 1.06673i
\(404\) 319.857i 0.791724i
\(405\) 87.0855 + 32.7201i 0.215026 + 0.0807903i
\(406\) −52.2025 90.4174i −0.128578 0.222703i
\(407\) 693.058 400.137i 1.70284 0.983138i
\(408\) 169.433 183.947i 0.415277 0.450850i
\(409\) −740.437 −1.81036 −0.905179 0.425030i \(-0.860264\pi\)
−0.905179 + 0.425030i \(0.860264\pi\)
\(410\) 12.4642i 0.0304004i
\(411\) −317.979 + 99.3554i −0.773671 + 0.241741i
\(412\) −147.676 255.782i −0.358436 0.620829i
\(413\) 98.0284 56.5967i 0.237357 0.137038i
\(414\) 40.4560 28.0170i 0.0977198 0.0676740i
\(415\) 95.1026 0.229163
\(416\) −27.1292 222.029i −0.0652145 0.533724i
\(417\) 593.763 + 133.245i 1.42389 + 0.319533i
\(418\) −60.5896 + 104.944i −0.144951 + 0.251063i
\(419\) 387.326 + 223.623i 0.924405 + 0.533705i 0.885038 0.465519i \(-0.154132\pi\)
0.0393673 + 0.999225i \(0.487466\pi\)
\(420\) 50.3045 + 46.3354i 0.119773 + 0.110322i
\(421\) −159.450 + 276.175i −0.378741 + 0.655999i −0.990879 0.134752i \(-0.956976\pi\)
0.612138 + 0.790751i \(0.290310\pi\)
\(422\) 8.52618 + 4.92259i 0.0202042 + 0.0116649i
\(423\) 20.6102 + 29.7607i 0.0487238 + 0.0703562i
\(424\) −37.3934 −0.0881920
\(425\) 578.541 334.021i 1.36127 0.785931i
\(426\) −30.1736 + 32.7583i −0.0708300 + 0.0768974i
\(427\) −26.6176 + 46.1030i −0.0623362 + 0.107970i
\(428\) 79.7906 46.0671i 0.186427 0.107634i
\(429\) −58.1981 + 584.951i −0.135660 + 1.36352i
\(430\) −9.08195 + 15.7304i −0.0211208 + 0.0365823i
\(431\) 101.578 58.6459i 0.235679 0.136069i −0.377510 0.926005i \(-0.623220\pi\)
0.613189 + 0.789936i \(0.289886\pi\)
\(432\) −304.976 237.796i −0.705964 0.550455i
\(433\) 211.520 366.363i 0.488498 0.846104i −0.511414 0.859334i \(-0.670878\pi\)
0.999912 + 0.0132303i \(0.00421145\pi\)
\(434\) −69.3341 40.0301i −0.159756 0.0922352i
\(435\) −55.4628 177.504i −0.127501 0.408055i
\(436\) 22.5428 0.0517037
\(437\) 269.237 155.444i 0.616103 0.355707i
\(438\) 16.1275 71.8670i 0.0368208 0.164080i
\(439\) −268.616 −0.611882 −0.305941 0.952050i \(-0.598971\pi\)
−0.305941 + 0.952050i \(0.598971\pi\)
\(440\) −44.3023 + 25.5780i −0.100687 + 0.0581317i
\(441\) 166.749 115.479i 0.378117 0.261858i
\(442\) −53.9571 + 126.907i −0.122075 + 0.287121i
\(443\) 33.2832 + 19.2161i 0.0751314 + 0.0433771i 0.537095 0.843522i \(-0.319522\pi\)
−0.461964 + 0.886899i \(0.652855\pi\)
\(444\) −183.300 586.635i −0.412837 1.32125i
\(445\) 89.4049 154.854i 0.200910 0.347986i
\(446\) 121.427i 0.272257i
\(447\) 154.515 688.546i 0.345672 1.54037i
\(448\) −130.722 226.418i −0.291791 0.505396i
\(449\) −521.983 301.367i −1.16254 0.671196i −0.210632 0.977565i \(-0.567552\pi\)
−0.951913 + 0.306370i \(0.900886\pi\)
\(450\) 45.6278 + 65.8856i 0.101395 + 0.146412i
\(451\) −217.505 + 376.730i −0.482274 + 0.835323i
\(452\) 514.812i 1.13897i
\(453\) −541.724 + 588.129i −1.19586 + 1.29830i
\(454\) −47.6654 82.5589i −0.104990 0.181848i
\(455\) −70.6833 30.0524i −0.155348 0.0660491i
\(456\) 139.412 + 128.412i 0.305728 + 0.281605i
\(457\) 259.602 0.568058 0.284029 0.958816i \(-0.408329\pi\)
0.284029 + 0.958816i \(0.408329\pi\)
\(458\) 77.7955 44.9153i 0.169859 0.0980683i
\(459\) 286.014 + 705.933i 0.623125 + 1.53798i
\(460\) 64.4402 0.140087
\(461\) −462.851 + 267.227i −1.00402 + 0.579669i −0.909434 0.415848i \(-0.863485\pi\)
−0.0945820 + 0.995517i \(0.530151\pi\)
\(462\) −26.0869 83.4889i −0.0564651 0.180712i
\(463\) −307.484 532.579i −0.664113 1.15028i −0.979525 0.201323i \(-0.935476\pi\)
0.315412 0.948955i \(-0.397857\pi\)
\(464\) 773.073i 1.66610i
\(465\) −104.889 96.6132i −0.225568 0.207770i
\(466\) 16.1371 0.0346290
\(467\) 247.090i 0.529100i 0.964372 + 0.264550i \(0.0852234\pi\)
−0.964372 + 0.264550i \(0.914777\pi\)
\(468\) 428.550 + 141.977i 0.915706 + 0.303371i
\(469\) 380.791 0.811921
\(470\) 1.73712i 0.00369599i
\(471\) −51.9700 166.325i −0.110340 0.353133i
\(472\) 65.0230 0.137761
\(473\) −549.005 + 316.968i −1.16069 + 0.670123i
\(474\) −16.2301 14.9495i −0.0342408 0.0315391i
\(475\) 253.152 + 438.472i 0.532952 + 0.923099i
\(476\) 559.958i 1.17638i
\(477\) 48.6633 102.966i 0.102020 0.215861i
\(478\) −14.5571 25.2136i −0.0304542 0.0527482i
\(479\) 820.294i 1.71251i −0.516550 0.856257i \(-0.672784\pi\)
0.516550 0.856257i \(-0.327216\pi\)
\(480\) 17.6810 + 56.5866i 0.0368354 + 0.117889i
\(481\) 415.061 + 551.479i 0.862913 + 1.14653i
\(482\) 31.1874 18.0061i 0.0647042 0.0373570i
\(483\) −49.1363 + 218.960i −0.101731 + 0.453332i
\(484\) −409.742 −0.846573
\(485\) −19.3355 11.1634i −0.0398670 0.0230172i
\(486\) −81.5892 + 41.1413i −0.167879 + 0.0846529i
\(487\) −367.489 + 636.510i −0.754598 + 1.30700i 0.190976 + 0.981595i \(0.438835\pi\)
−0.945574 + 0.325407i \(0.894499\pi\)
\(488\) −26.4835 + 15.2903i −0.0542695 + 0.0313325i
\(489\) 32.9297 35.7505i 0.0673410 0.0731095i
\(490\) −9.73309 −0.0198635
\(491\) 113.097 + 65.2966i 0.230340 + 0.132987i 0.610729 0.791840i \(-0.290876\pi\)
−0.380389 + 0.924827i \(0.624210\pi\)
\(492\) 245.729 + 226.341i 0.499450 + 0.460042i
\(493\) 761.298 1318.61i 1.54421 2.67466i
\(494\) −96.1823 40.8937i −0.194701 0.0827808i
\(495\) −12.7765 155.277i −0.0258110 0.313691i
\(496\) 296.405 + 513.388i 0.597590 + 1.03506i
\(497\) 203.095i 0.408642i
\(498\) −63.2855 + 68.7066i −0.127079 + 0.137965i
\(499\) −14.4740 25.0696i −0.0290059 0.0502397i 0.851158 0.524909i \(-0.175901\pi\)
−0.880164 + 0.474670i \(0.842568\pi\)
\(500\) 215.737i 0.431474i
\(501\) 69.0341 + 63.5871i 0.137793 + 0.126920i
\(502\) −79.3197 + 137.386i −0.158007 + 0.273677i
\(503\) −255.144 147.308i −0.507245 0.292858i 0.224455 0.974484i \(-0.427940\pi\)
−0.731701 + 0.681626i \(0.761273\pi\)
\(504\) −136.353 + 11.2194i −0.270541 + 0.0222606i
\(505\) 47.6026 + 82.4502i 0.0942627 + 0.163268i
\(506\) −71.3735 41.2075i −0.141054 0.0814377i
\(507\) −506.873 + 11.3655i −0.999749 + 0.0224172i
\(508\) 20.1689 + 34.9336i 0.0397026 + 0.0687669i
\(509\) 538.032 + 310.633i 1.05704 + 0.610280i 0.924611 0.380913i \(-0.124390\pi\)
0.132425 + 0.991193i \(0.457724\pi\)
\(510\) 8.00300 35.6627i 0.0156921 0.0699269i
\(511\) 167.937 + 290.875i 0.328644 + 0.569227i
\(512\) 415.752i 0.812016i
\(513\) −535.022 + 216.768i −1.04293 + 0.422550i
\(514\) 73.0161 126.468i 0.142055 0.246046i
\(515\) −76.1333 43.9556i −0.147832 0.0853507i
\(516\) 145.201 + 464.703i 0.281397 + 0.900587i
\(517\) 30.3135 52.5045i 0.0586334 0.101556i
\(518\) −88.9441 51.3519i −0.171707 0.0991350i
\(519\) −12.3769 + 3.86727i −0.0238475 + 0.00745138i
\(520\) −26.5320 35.2522i −0.0510230 0.0677927i
\(521\) 166.583i 0.319738i −0.987138 0.159869i \(-0.948893\pi\)
0.987138 0.159869i \(-0.0511071\pi\)
\(522\) 165.145 + 78.0502i 0.316370 + 0.149522i
\(523\) −51.1561 88.6049i −0.0978127 0.169417i 0.812966 0.582311i \(-0.197851\pi\)
−0.910779 + 0.412894i \(0.864518\pi\)
\(524\) −286.510 + 165.417i −0.546775 + 0.315680i
\(525\) −356.592 80.0221i −0.679223 0.152423i
\(526\) 59.9334 0.113942
\(527\) 1167.56i 2.21548i
\(528\) −141.816 + 631.956i −0.268591 + 1.19689i
\(529\) −158.781 275.017i −0.300153 0.519881i
\(530\) −4.73278 + 2.73247i −0.00892977 + 0.00515560i
\(531\) −84.6202 + 179.046i −0.159360 + 0.337187i
\(532\) −424.388 −0.797722
\(533\) −345.277 146.801i −0.647799 0.275424i
\(534\) 52.3798 + 167.637i 0.0980895 + 0.313927i
\(535\) 13.7119 23.7497i 0.0256297 0.0443919i
\(536\) 189.436 + 109.371i 0.353426 + 0.204051i
\(537\) 5.28907 1.65262i 0.00984929 0.00307750i
\(538\) −29.9871 + 51.9392i −0.0557381 + 0.0965412i
\(539\) −294.184 169.847i −0.545795 0.315115i
\(540\) −118.506 16.5375i −0.219456 0.0306250i
\(541\) 638.732 1.18065 0.590325 0.807166i \(-0.299000\pi\)
0.590325 + 0.807166i \(0.299000\pi\)
\(542\) −63.0155 + 36.3820i −0.116265 + 0.0671255i
\(543\) 31.4202 + 7.05095i 0.0578641 + 0.0129852i
\(544\) −242.694 + 420.359i −0.446129 + 0.772719i
\(545\) 5.81091 3.35493i 0.0106622 0.00615583i
\(546\) 68.7471 31.0668i 0.125911 0.0568990i
\(547\) −250.228 + 433.408i −0.457456 + 0.792337i −0.998826 0.0484477i \(-0.984573\pi\)
0.541370 + 0.840785i \(0.317906\pi\)
\(548\) 371.078 214.242i 0.677150 0.390953i
\(549\) −7.63764 92.8229i −0.0139119 0.169076i
\(550\) 67.1094 116.237i 0.122017 0.211340i
\(551\) 999.363 + 576.982i 1.81373 + 1.04715i
\(552\) −87.3342 + 94.8153i −0.158214 + 0.171767i
\(553\) 100.624 0.181960
\(554\) 104.847 60.5336i 0.189255 0.109266i
\(555\) −134.555 123.939i −0.242442 0.223313i
\(556\) −782.692 −1.40772
\(557\) −217.719 + 125.700i −0.390877 + 0.225673i −0.682540 0.730848i \(-0.739125\pi\)
0.291663 + 0.956521i \(0.405791\pi\)
\(558\) 139.596 11.4862i 0.250172 0.0205846i
\(559\) −328.791 436.854i −0.588176 0.781492i
\(560\) −73.2871 42.3123i −0.130870 0.0755577i
\(561\) 864.221 938.252i 1.54050 1.67246i
\(562\) −77.6247 + 134.450i −0.138122 + 0.239235i
\(563\) 751.814i 1.33537i 0.744443 + 0.667685i \(0.232715\pi\)
−0.744443 + 0.667685i \(0.767285\pi\)
\(564\) −34.2470 31.5449i −0.0607217 0.0559306i
\(565\) 76.6169 + 132.704i 0.135605 + 0.234875i
\(566\) 158.839 + 91.7056i 0.280634 + 0.162024i
\(567\) 146.555 390.059i 0.258474 0.687935i
\(568\) 58.3332 101.036i 0.102699 0.177880i
\(569\) 536.258i 0.942456i 0.882011 + 0.471228i \(0.156189\pi\)
−0.882011 + 0.471228i \(0.843811\pi\)
\(570\) 27.0285 + 6.06541i 0.0474184 + 0.0106411i
\(571\) −50.9656 88.2750i −0.0892567 0.154597i 0.817940 0.575303i \(-0.195116\pi\)
−0.907197 + 0.420706i \(0.861782\pi\)
\(572\) −91.7015 750.497i −0.160317 1.31206i
\(573\) −188.773 + 58.9838i −0.329447 + 0.102939i
\(574\) 55.8275 0.0972605
\(575\) −298.209 + 172.171i −0.518624 + 0.299428i
\(576\) 413.545 + 195.448i 0.717961 + 0.339320i
\(577\) −6.86778 −0.0119026 −0.00595128 0.999982i \(-0.501894\pi\)
−0.00595128 + 0.999982i \(0.501894\pi\)
\(578\) 165.043 95.2877i 0.285542 0.164858i
\(579\) −227.350 + 246.825i −0.392660 + 0.426296i
\(580\) 119.596 + 207.146i 0.206199 + 0.357148i
\(581\) 425.968i 0.733164i
\(582\) 20.9317 6.54029i 0.0359651 0.0112376i
\(583\) −190.731 −0.327155
\(584\) 192.940i 0.330377i
\(585\) 131.598 27.1811i 0.224954 0.0464634i
\(586\) −206.303 −0.352054
\(587\) 522.260i 0.889711i 0.895602 + 0.444855i \(0.146745\pi\)
−0.895602 + 0.444855i \(0.853255\pi\)
\(588\) −176.746 + 191.887i −0.300589 + 0.326338i
\(589\) 884.886 1.50235
\(590\) 8.22978 4.75147i 0.0139488 0.00805333i
\(591\) −33.6301 + 10.5080i −0.0569037 + 0.0177801i
\(592\) 380.238 + 658.592i 0.642294 + 1.11249i
\(593\) 624.635i 1.05335i −0.850068 0.526674i \(-0.823439\pi\)
0.850068 0.526674i \(-0.176561\pi\)
\(594\) 120.681 + 94.0979i 0.203167 + 0.158414i
\(595\) 83.3357 + 144.342i 0.140060 + 0.242591i
\(596\) 907.633i 1.52287i
\(597\) −37.5532 + 40.7700i −0.0629032 + 0.0682915i
\(598\) 27.8122 65.4144i 0.0465087 0.109389i
\(599\) −472.937 + 273.050i −0.789544 + 0.455843i −0.839802 0.542893i \(-0.817329\pi\)
0.0502581 + 0.998736i \(0.483996\pi\)
\(600\) −154.414 142.230i −0.257356 0.237050i
\(601\) 563.710 0.937953 0.468977 0.883211i \(-0.344623\pi\)
0.468977 + 0.883211i \(0.344623\pi\)
\(602\) 70.4571 + 40.6784i 0.117038 + 0.0675721i
\(603\) −547.693 + 379.294i −0.908279 + 0.629012i
\(604\) 514.223 890.661i 0.851363 1.47460i
\(605\) −105.620 + 60.9797i −0.174579 + 0.100793i
\(606\) −91.2429 20.4756i −0.150566 0.0337882i
\(607\) 201.365 0.331739 0.165869 0.986148i \(-0.446957\pi\)
0.165869 + 0.986148i \(0.446957\pi\)
\(608\) −318.587 183.936i −0.523992 0.302527i
\(609\) −795.048 + 248.420i −1.30550 + 0.407915i
\(610\) −2.23463 + 3.87049i −0.00366332 + 0.00634506i
\(611\) 48.1208 + 20.4595i 0.0787575 + 0.0334852i
\(612\) −557.756 805.388i −0.911367 1.31599i
\(613\) −317.568 550.044i −0.518055 0.897298i −0.999780 0.0209752i \(-0.993323\pi\)
0.481725 0.876322i \(-0.340010\pi\)
\(614\) 29.4598i 0.0479802i
\(615\) 97.0274 + 21.7737i 0.157768 + 0.0354044i
\(616\) 114.565 + 198.432i 0.185982 + 0.322130i
\(617\) 64.1839i 0.104026i −0.998646 0.0520129i \(-0.983436\pi\)
0.998646 0.0520129i \(-0.0165637\pi\)
\(618\) 82.4182 25.7523i 0.133363 0.0416704i
\(619\) 3.79581 6.57454i 0.00613217 0.0106212i −0.862943 0.505301i \(-0.831381\pi\)
0.869075 + 0.494680i \(0.164715\pi\)
\(620\) 158.844 + 91.7086i 0.256200 + 0.147917i
\(621\) −147.426 363.873i −0.237401 0.585947i
\(622\) 84.8491 + 146.963i 0.136413 + 0.236275i
\(623\) −693.597 400.448i −1.11332 0.642774i
\(624\) −555.861 55.3039i −0.890803 0.0886281i
\(625\) −263.904 457.096i −0.422247 0.731354i
\(626\) −76.7389 44.3052i −0.122586 0.0707752i
\(627\) 711.095 + 654.987i 1.13412 + 1.04464i
\(628\) 112.064 + 194.100i 0.178446 + 0.309077i
\(629\) 1497.79i 2.38122i
\(630\) −16.4380 + 11.3838i −0.0260920 + 0.0180695i
\(631\) 423.578 733.658i 0.671280 1.16269i −0.306262 0.951947i \(-0.599078\pi\)
0.977541 0.210743i \(-0.0675884\pi\)
\(632\) 50.0584 + 28.9012i 0.0792064 + 0.0457298i
\(633\) 53.2144 57.7728i 0.0840669 0.0912682i
\(634\) 23.4269 40.5766i 0.0369509 0.0640009i
\(635\) 10.3980 + 6.00327i 0.0163748 + 0.00945398i
\(636\) −32.0737 + 142.926i −0.0504304 + 0.224726i
\(637\) 114.635 269.622i 0.179960 0.423268i
\(638\) 305.911i 0.479484i
\(639\) 202.297 + 292.112i 0.316583 + 0.457139i
\(640\) −50.4976 87.4644i −0.0789025 0.136663i
\(641\) 928.289 535.948i 1.44819 0.836112i 0.449815 0.893122i \(-0.351490\pi\)
0.998374 + 0.0570099i \(0.0181567\pi\)
\(642\) 8.03340 + 25.7102i 0.0125131 + 0.0400471i
\(643\) 411.550 0.640047 0.320023 0.947410i \(-0.396309\pi\)
0.320023 + 0.947410i \(0.396309\pi\)
\(644\) 288.630i 0.448183i
\(645\) 106.588 + 98.1780i 0.165253 + 0.152214i
\(646\) 113.399 + 196.413i 0.175540 + 0.304044i
\(647\) 872.018 503.460i 1.34779 0.778145i 0.359851 0.933010i \(-0.382828\pi\)
0.987936 + 0.154865i \(0.0494943\pi\)
\(648\) 184.941 151.954i 0.285403 0.234496i
\(649\) 331.661 0.511034
\(650\) 106.532 + 45.2942i 0.163896 + 0.0696834i
\(651\) −432.734 + 469.803i −0.664723 + 0.721664i
\(652\) −31.2580 + 54.1405i −0.0479418 + 0.0830376i
\(653\) −999.048 576.801i −1.52994 0.883309i −0.999364 0.0356698i \(-0.988644\pi\)
−0.530573 0.847639i \(-0.678023\pi\)
\(654\) −1.44308 + 6.43060i −0.00220654 + 0.00983272i
\(655\) −49.2362 + 85.2796i −0.0751698 + 0.130198i
\(656\) −357.996 206.689i −0.545725 0.315074i
\(657\) −531.275 251.090i −0.808638 0.382176i
\(658\) −7.78061 −0.0118246
\(659\) −269.095 + 155.362i −0.408338 + 0.235754i −0.690076 0.723737i \(-0.742423\pi\)
0.281737 + 0.959492i \(0.409089\pi\)
\(660\) 59.7649 + 191.272i 0.0905528 + 0.289807i
\(661\) 257.855 446.618i 0.390099 0.675670i −0.602364 0.798222i \(-0.705774\pi\)
0.992462 + 0.122551i \(0.0391076\pi\)
\(662\) −108.957 + 62.9065i −0.164588 + 0.0950250i
\(663\) 893.654 + 641.725i 1.34789 + 0.967911i
\(664\) 122.347 211.911i 0.184257 0.319143i
\(665\) −109.395 + 63.1595i −0.164505 + 0.0949767i
\(666\) 179.079 14.7349i 0.268887 0.0221245i
\(667\) −392.411 + 679.675i −0.588322 + 1.01900i
\(668\) −104.545 60.3591i −0.156505 0.0903580i
\(669\) 945.248 + 212.121i 1.41293 + 0.317072i
\(670\) 31.9686 0.0477143
\(671\) −135.084 + 77.9905i −0.201317 + 0.116230i
\(672\) 253.454 79.1939i 0.377163 0.117848i
\(673\) −209.818 −0.311765 −0.155883 0.987776i \(-0.549822\pi\)
−0.155883 + 0.987776i \(0.549822\pi\)
\(674\) −121.114 + 69.9254i −0.179695 + 0.103747i
\(675\) 592.594 240.094i 0.877917 0.355695i
\(676\) 632.919 157.014i 0.936270 0.232269i
\(677\) 11.9220 + 6.88315i 0.0176100 + 0.0101671i 0.508779 0.860897i \(-0.330097\pi\)
−0.491169 + 0.871064i \(0.663430\pi\)
\(678\) −146.856 32.9557i −0.216602 0.0486073i
\(679\) −50.0011 + 86.6045i −0.0736394 + 0.127547i
\(680\) 95.7430i 0.140799i
\(681\) −725.947 + 226.829i −1.06600 + 0.333082i
\(682\) −117.290 203.152i −0.171979 0.297876i
\(683\) 402.924 + 232.628i 0.589933 + 0.340598i 0.765071 0.643946i \(-0.222704\pi\)
−0.175138 + 0.984544i \(0.556037\pi\)
\(684\) 610.398 422.720i 0.892395 0.618011i
\(685\) 63.7691 110.451i 0.0930936 0.161243i
\(686\) 138.380i 0.201719i
\(687\) −213.742 684.062i −0.311123 0.995724i
\(688\) −301.205 521.703i −0.437799 0.758289i
\(689\) −19.9518 163.288i −0.0289576 0.236992i
\(690\) −4.12514 + 18.3823i −0.00597847 + 0.0266411i
\(691\) −518.379 −0.750187 −0.375094 0.926987i \(-0.622389\pi\)
−0.375094 + 0.926987i \(0.622389\pi\)
\(692\) 14.4437 8.33907i 0.0208724 0.0120507i
\(693\) −695.491 + 57.2263i −1.00359 + 0.0825776i
\(694\) 64.2258 0.0925443
\(695\) −201.756 + 116.484i −0.290297 + 0.167603i
\(696\) −466.873 104.770i −0.670794 0.150532i
\(697\) 407.081 + 705.086i 0.584048 + 1.01160i
\(698\) 50.6577i 0.0725755i
\(699\) 28.1900 125.619i 0.0403290 0.179713i
\(700\) 470.055 0.671508
\(701\) 775.035i 1.10561i −0.833310 0.552806i \(-0.813557\pi\)
0.833310 0.552806i \(-0.186443\pi\)
\(702\) −67.9344 + 113.160i −0.0967727 + 0.161197i
\(703\) 1135.16 1.61474
\(704\) 766.042i 1.08813i
\(705\) −13.5226 3.03458i −0.0191810 0.00430437i
\(706\) −47.7466 −0.0676298
\(707\) 369.298 213.214i 0.522345 0.301576i
\(708\) 55.7727 248.532i 0.0787750 0.351034i
\(709\) −308.569 534.457i −0.435217 0.753819i 0.562096 0.827072i \(-0.309995\pi\)
−0.997313 + 0.0732533i \(0.976662\pi\)
\(710\) 17.0505i 0.0240147i
\(711\) −144.727 + 100.228i −0.203555 + 0.140968i
\(712\) −230.034 398.431i −0.323082 0.559594i
\(713\) 601.819i 0.844066i
\(714\) −159.735 35.8457i −0.223718 0.0502041i
\(715\) −135.331 179.810i −0.189274 0.251482i
\(716\) −6.17230 + 3.56358i −0.00862052 + 0.00497706i
\(717\) −221.706 + 69.2740i −0.309213 + 0.0966165i
\(718\) 166.903 0.232455
\(719\) −534.714 308.717i −0.743692 0.429371i 0.0797184 0.996817i \(-0.474598\pi\)
−0.823410 + 0.567447i \(0.807931\pi\)
\(720\) 147.555 12.1411i 0.204937 0.0168626i
\(721\) −196.879 + 341.004i −0.273064 + 0.472960i
\(722\) −31.2999 + 18.0710i −0.0433517 + 0.0250291i
\(723\) −85.6869 274.234i −0.118516 0.379300i
\(724\) −41.4178 −0.0572069
\(725\) −1106.90 639.070i −1.52676 0.881475i
\(726\) 26.2296 116.884i 0.0361290 0.160997i
\(727\) −527.853 + 914.268i −0.726070 + 1.25759i 0.232462 + 0.972605i \(0.425322\pi\)
−0.958532 + 0.284984i \(0.908012\pi\)
\(728\) −157.896 + 118.838i −0.216890 + 0.163239i
\(729\) 177.736 + 707.001i 0.243808 + 0.969823i
\(730\) 14.0988 + 24.4199i 0.0193134 + 0.0334519i
\(731\) 1186.47i 1.62308i
\(732\) 35.7268 + 114.341i 0.0488072 + 0.156203i
\(733\) 435.712 + 754.675i 0.594422 + 1.02957i 0.993628 + 0.112708i \(0.0359526\pi\)
−0.399206 + 0.916861i \(0.630714\pi\)
\(734\) 43.6844i 0.0595155i
\(735\) −17.0028 + 75.7673i −0.0231331 + 0.103085i
\(736\) 125.097 216.674i 0.169968 0.294394i
\(737\) 966.253 + 557.866i 1.31106 + 0.756942i
\(738\) −80.2968 + 55.6080i −0.108803 + 0.0753496i
\(739\) 38.1201 + 66.0259i 0.0515833 + 0.0893449i 0.890664 0.454662i \(-0.150240\pi\)
−0.839081 + 0.544007i \(0.816907\pi\)
\(740\) 203.770 + 117.647i 0.275365 + 0.158982i
\(741\) −486.359 + 677.294i −0.656355 + 0.914027i
\(742\) 12.2388 + 21.1983i 0.0164944 + 0.0285691i
\(743\) 426.534 + 246.260i 0.574071 + 0.331440i 0.758773 0.651355i \(-0.225799\pi\)
−0.184703 + 0.982794i \(0.559132\pi\)
\(744\) −350.215 + 109.428i −0.470719 + 0.147080i
\(745\) 135.078 + 233.963i 0.181313 + 0.314044i
\(746\) 79.3373i 0.106350i
\(747\) 424.293 + 612.671i 0.567997 + 0.820175i
\(748\) −820.349 + 1420.89i −1.09672 + 1.89958i
\(749\) −106.376 61.4160i −0.142024 0.0819974i
\(750\) −61.5415 13.8104i −0.0820553 0.0184139i
\(751\) −197.444 + 341.982i −0.262907 + 0.455369i −0.967013 0.254726i \(-0.918015\pi\)
0.704106 + 0.710095i \(0.251348\pi\)
\(752\) 49.8934 + 28.8060i 0.0663477 + 0.0383058i
\(753\) 930.916 + 857.465i 1.23628 + 1.13873i
\(754\) 261.894 32.0003i 0.347340 0.0424407i
\(755\) 306.117i 0.405453i
\(756\) −74.0720 + 530.794i −0.0979789 + 0.702109i
\(757\) 45.1326 + 78.1720i 0.0596204 + 0.103266i 0.894295 0.447478i \(-0.147678\pi\)
−0.834675 + 0.550743i \(0.814344\pi\)
\(758\) −124.323 + 71.7776i −0.164014 + 0.0946934i
\(759\) −445.463 + 483.622i −0.586907 + 0.637183i
\(760\) −72.5630 −0.0954776
\(761\) 749.692i 0.985140i 0.870273 + 0.492570i \(0.163942\pi\)
−0.870273 + 0.492570i \(0.836058\pi\)
\(762\) −11.2563 + 3.51715i −0.0147721 + 0.00461568i
\(763\) −15.0269 26.0273i −0.0196944 0.0341118i
\(764\) 220.296 127.188i 0.288346 0.166477i
\(765\) −263.636 124.599i −0.344622 0.162874i
\(766\) 95.4934 0.124665
\(767\) 34.6939 + 283.940i 0.0452333 + 0.370195i
\(768\) −498.283 111.819i −0.648806 0.145597i
\(769\) 6.79598 11.7710i 0.00883743 0.0153069i −0.861573 0.507634i \(-0.830520\pi\)
0.870410 +