Properties

Label 117.3.k.a.29.13
Level $117$
Weight $3$
Character 117.29
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(29,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.29");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 29.13
Character \(\chi\) \(=\) 117.29
Dual form 117.3.k.a.113.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.434891i q^{2} +(-0.475458 - 2.96208i) q^{3} +3.81087 q^{4} +(3.11857 - 1.80051i) q^{5} +(-1.28818 + 0.206772i) q^{6} +(3.94503 + 6.83299i) q^{7} -3.39687i q^{8} +(-8.54788 + 2.81669i) q^{9} +(-0.783024 - 1.35624i) q^{10} -11.0466i q^{11} +(-1.81191 - 11.2881i) q^{12} +(-10.9334 - 7.03289i) q^{13} +(2.97160 - 1.71566i) q^{14} +(-6.81600 - 8.38140i) q^{15} +13.7662 q^{16} +(15.8468 + 9.14913i) q^{17} +(1.22495 + 3.71739i) q^{18} +(-6.43665 + 11.1486i) q^{19} +(11.8845 - 6.86150i) q^{20} +(18.3642 - 14.9343i) q^{21} -4.80408 q^{22} +(-28.7611 - 16.6052i) q^{23} +(-10.0618 + 1.61507i) q^{24} +(-6.01635 + 10.4206i) q^{25} +(-3.05854 + 4.75482i) q^{26} +(12.4074 + 23.9803i) q^{27} +(15.0340 + 26.0396i) q^{28} +12.5996i q^{29} +(-3.64499 + 2.96422i) q^{30} +(10.2010 + 17.6687i) q^{31} -19.5743i q^{32} +(-32.7211 + 5.25221i) q^{33} +(3.97887 - 6.89161i) q^{34} +(24.6057 + 14.2061i) q^{35} +(-32.5749 + 10.7340i) q^{36} +(1.01336 + 1.75519i) q^{37} +(4.84842 + 2.79924i) q^{38} +(-15.6337 + 35.7294i) q^{39} +(-6.11610 - 10.5934i) q^{40} +(15.8294 + 9.13910i) q^{41} +(-6.49479 - 7.98642i) q^{42} +(26.4882 + 45.8790i) q^{43} -42.0973i q^{44} +(-21.5857 + 24.1746i) q^{45} +(-7.22145 + 12.5079i) q^{46} +(-16.9294 - 9.77417i) q^{47} +(-6.54525 - 40.7767i) q^{48} +(-6.62652 + 11.4775i) q^{49} +(4.53183 + 2.61645i) q^{50} +(19.5660 - 51.2894i) q^{51} +(-41.6656 - 26.8014i) q^{52} +89.9664i q^{53} +(10.4288 - 5.39588i) q^{54} +(-19.8895 - 34.4497i) q^{55} +(23.2108 - 13.4008i) q^{56} +(36.0834 + 13.7652i) q^{57} +5.47946 q^{58} -79.2173i q^{59} +(-25.9749 - 31.9404i) q^{60} +(35.6480 + 61.7441i) q^{61} +(7.68394 - 4.43633i) q^{62} +(-52.9681 - 47.2957i) q^{63} +46.5522 q^{64} +(-46.7592 - 2.24698i) q^{65} +(2.28414 + 14.2301i) q^{66} +(11.9507 - 20.6993i) q^{67} +(60.3899 + 34.8661i) q^{68} +(-35.5113 + 93.0877i) q^{69} +(6.17811 - 10.7008i) q^{70} +(17.1555 + 9.90476i) q^{71} +(9.56795 + 29.0361i) q^{72} -96.8588 q^{73} +(0.763315 - 0.440700i) q^{74} +(33.7273 + 12.8664i) q^{75} +(-24.5292 + 42.4859i) q^{76} +(75.4816 - 43.5793i) q^{77} +(15.5384 + 6.79894i) q^{78} +(50.7374 - 87.8797i) q^{79} +(42.9309 - 24.7862i) q^{80} +(65.1325 - 48.1535i) q^{81} +(3.97451 - 6.88405i) q^{82} +(-101.767 - 58.7549i) q^{83} +(69.9836 - 56.9127i) q^{84} +65.8923 q^{85} +(19.9523 - 11.5195i) q^{86} +(37.3211 - 5.99059i) q^{87} -37.5240 q^{88} +(-97.3912 + 56.2288i) q^{89} +(10.5133 + 9.38741i) q^{90} +(4.92328 - 102.453i) q^{91} +(-109.605 - 63.2803i) q^{92} +(47.4859 - 38.6170i) q^{93} +(-4.25070 + 7.36242i) q^{94} +46.3569i q^{95} +(-57.9807 + 9.30675i) q^{96} +(-80.5671 - 139.546i) q^{97} +(4.99144 + 2.88181i) q^{98} +(31.1150 + 94.4253i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - q^{3} - 98 q^{4} - 6 q^{5} + 12 q^{6} - q^{7} - 3 q^{9} - 6 q^{10} - 39 q^{12} + 4 q^{13} - 6 q^{14} - 25 q^{15} + 166 q^{16} + 34 q^{18} + 5 q^{19} + 21 q^{20} - 91 q^{21} + 30 q^{22} - 75 q^{23}+ \cdots + 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.434891i 0.217445i −0.994072 0.108723i \(-0.965324\pi\)
0.994072 0.108723i \(-0.0346760\pi\)
\(3\) −0.475458 2.96208i −0.158486 0.987361i
\(4\) 3.81087 0.952718
\(5\) 3.11857 1.80051i 0.623714 0.360101i −0.154600 0.987977i \(-0.549409\pi\)
0.778314 + 0.627876i \(0.216075\pi\)
\(6\) −1.28818 + 0.206772i −0.214697 + 0.0344620i
\(7\) 3.94503 + 6.83299i 0.563576 + 0.976142i 0.997181 + 0.0750386i \(0.0239080\pi\)
−0.433605 + 0.901103i \(0.642759\pi\)
\(8\) 3.39687i 0.424609i
\(9\) −8.54788 + 2.81669i −0.949764 + 0.312966i
\(10\) −0.783024 1.35624i −0.0783024 0.135624i
\(11\) 11.0466i 1.00424i −0.864798 0.502120i \(-0.832554\pi\)
0.864798 0.502120i \(-0.167446\pi\)
\(12\) −1.81191 11.2881i −0.150992 0.940676i
\(13\) −10.9334 7.03289i −0.841028 0.540992i
\(14\) 2.97160 1.71566i 0.212257 0.122547i
\(15\) −6.81600 8.38140i −0.454400 0.558760i
\(16\) 13.7662 0.860388
\(17\) 15.8468 + 9.14913i 0.932162 + 0.538184i 0.887495 0.460818i \(-0.152444\pi\)
0.0446674 + 0.999002i \(0.485777\pi\)
\(18\) 1.22495 + 3.71739i 0.0680530 + 0.206522i
\(19\) −6.43665 + 11.1486i −0.338771 + 0.586768i −0.984202 0.177050i \(-0.943344\pi\)
0.645431 + 0.763819i \(0.276678\pi\)
\(20\) 11.8845 6.86150i 0.594223 0.343075i
\(21\) 18.3642 14.9343i 0.874486 0.711158i
\(22\) −4.80408 −0.218367
\(23\) −28.7611 16.6052i −1.25048 0.721965i −0.279276 0.960211i \(-0.590094\pi\)
−0.971205 + 0.238246i \(0.923428\pi\)
\(24\) −10.0618 + 1.61507i −0.419243 + 0.0672946i
\(25\) −6.01635 + 10.4206i −0.240654 + 0.416825i
\(26\) −3.05854 + 4.75482i −0.117636 + 0.182878i
\(27\) 12.4074 + 23.9803i 0.459535 + 0.888160i
\(28\) 15.0340 + 26.0396i 0.536928 + 0.929987i
\(29\) 12.5996i 0.434470i 0.976119 + 0.217235i \(0.0697037\pi\)
−0.976119 + 0.217235i \(0.930296\pi\)
\(30\) −3.64499 + 2.96422i −0.121500 + 0.0988072i
\(31\) 10.2010 + 17.6687i 0.329065 + 0.569957i 0.982327 0.187175i \(-0.0599332\pi\)
−0.653262 + 0.757132i \(0.726600\pi\)
\(32\) 19.5743i 0.611697i
\(33\) −32.7211 + 5.25221i −0.991547 + 0.159158i
\(34\) 3.97887 6.89161i 0.117026 0.202694i
\(35\) 24.6057 + 14.2061i 0.703020 + 0.405889i
\(36\) −32.5749 + 10.7340i −0.904857 + 0.298168i
\(37\) 1.01336 + 1.75519i 0.0273881 + 0.0474375i 0.879395 0.476094i \(-0.157948\pi\)
−0.852007 + 0.523531i \(0.824614\pi\)
\(38\) 4.84842 + 2.79924i 0.127590 + 0.0736641i
\(39\) −15.6337 + 35.7294i −0.400863 + 0.916138i
\(40\) −6.11610 10.5934i −0.152902 0.264835i
\(41\) 15.8294 + 9.13910i 0.386083 + 0.222905i 0.680461 0.732784i \(-0.261779\pi\)
−0.294379 + 0.955689i \(0.595113\pi\)
\(42\) −6.49479 7.98642i −0.154638 0.190153i
\(43\) 26.4882 + 45.8790i 0.616006 + 1.06695i 0.990207 + 0.139606i \(0.0445835\pi\)
−0.374202 + 0.927347i \(0.622083\pi\)
\(44\) 42.0973i 0.956756i
\(45\) −21.5857 + 24.1746i −0.479682 + 0.537213i
\(46\) −7.22145 + 12.5079i −0.156988 + 0.271911i
\(47\) −16.9294 9.77417i −0.360199 0.207961i 0.308969 0.951072i \(-0.400016\pi\)
−0.669168 + 0.743111i \(0.733349\pi\)
\(48\) −6.54525 40.7767i −0.136359 0.849514i
\(49\) −6.62652 + 11.4775i −0.135235 + 0.234234i
\(50\) 4.53183 + 2.61645i 0.0906366 + 0.0523291i
\(51\) 19.5660 51.2894i 0.383647 1.00568i
\(52\) −41.6656 26.8014i −0.801262 0.515412i
\(53\) 89.9664i 1.69748i 0.528811 + 0.848739i \(0.322638\pi\)
−0.528811 + 0.848739i \(0.677362\pi\)
\(54\) 10.4288 5.39588i 0.193126 0.0999237i
\(55\) −19.8895 34.4497i −0.361628 0.626358i
\(56\) 23.2108 13.4008i 0.414479 0.239299i
\(57\) 36.0834 + 13.7652i 0.633043 + 0.241495i
\(58\) 5.47946 0.0944734
\(59\) 79.2173i 1.34267i −0.741156 0.671333i \(-0.765722\pi\)
0.741156 0.671333i \(-0.234278\pi\)
\(60\) −25.9749 31.9404i −0.432915 0.532340i
\(61\) 35.6480 + 61.7441i 0.584393 + 1.01220i 0.994951 + 0.100363i \(0.0320006\pi\)
−0.410558 + 0.911834i \(0.634666\pi\)
\(62\) 7.68394 4.43633i 0.123935 0.0715536i
\(63\) −52.9681 47.2957i −0.840763 0.750725i
\(64\) 46.5522 0.727378
\(65\) −46.7592 2.24698i −0.719373 0.0345689i
\(66\) 2.28414 + 14.2301i 0.0346081 + 0.215607i
\(67\) 11.9507 20.6993i 0.178369 0.308945i −0.762953 0.646454i \(-0.776251\pi\)
0.941322 + 0.337509i \(0.109584\pi\)
\(68\) 60.3899 + 34.8661i 0.888087 + 0.512737i
\(69\) −35.5113 + 93.0877i −0.514657 + 1.34910i
\(70\) 6.17811 10.7008i 0.0882586 0.152868i
\(71\) 17.1555 + 9.90476i 0.241627 + 0.139504i 0.615924 0.787805i \(-0.288783\pi\)
−0.374297 + 0.927309i \(0.622116\pi\)
\(72\) 9.56795 + 29.0361i 0.132888 + 0.403279i
\(73\) −96.8588 −1.32683 −0.663416 0.748250i \(-0.730894\pi\)
−0.663416 + 0.748250i \(0.730894\pi\)
\(74\) 0.763315 0.440700i 0.0103151 0.00595541i
\(75\) 33.7273 + 12.8664i 0.449697 + 0.171551i
\(76\) −24.5292 + 42.4859i −0.322753 + 0.559024i
\(77\) 75.4816 43.5793i 0.980280 0.565965i
\(78\) 15.5384 + 6.79894i 0.199210 + 0.0871659i
\(79\) 50.7374 87.8797i 0.642245 1.11240i −0.342686 0.939450i \(-0.611337\pi\)
0.984930 0.172951i \(-0.0553301\pi\)
\(80\) 42.9309 24.7862i 0.536636 0.309827i
\(81\) 65.1325 48.1535i 0.804105 0.594488i
\(82\) 3.97451 6.88405i 0.0484696 0.0839518i
\(83\) −101.767 58.7549i −1.22610 0.707891i −0.259890 0.965638i \(-0.583686\pi\)
−0.966212 + 0.257747i \(0.917020\pi\)
\(84\) 69.9836 56.9127i 0.833138 0.677532i
\(85\) 65.8923 0.775203
\(86\) 19.9523 11.5195i 0.232004 0.133948i
\(87\) 37.3211 5.99059i 0.428978 0.0688573i
\(88\) −37.5240 −0.426409
\(89\) −97.3912 + 56.2288i −1.09428 + 0.631785i −0.934713 0.355402i \(-0.884344\pi\)
−0.159569 + 0.987187i \(0.551011\pi\)
\(90\) 10.5133 + 9.38741i 0.116814 + 0.104305i
\(91\) 4.92328 102.453i 0.0541019 1.12585i
\(92\) −109.605 63.2803i −1.19135 0.687829i
\(93\) 47.4859 38.6170i 0.510601 0.415236i
\(94\) −4.25070 + 7.36242i −0.0452202 + 0.0783237i
\(95\) 46.3569i 0.487967i
\(96\) −57.9807 + 9.30675i −0.603966 + 0.0969453i
\(97\) −80.5671 139.546i −0.830589 1.43862i −0.897572 0.440868i \(-0.854671\pi\)
0.0669831 0.997754i \(-0.478663\pi\)
\(98\) 4.99144 + 2.88181i 0.0509331 + 0.0294062i
\(99\) 31.1150 + 94.4253i 0.314293 + 0.953791i
\(100\) −22.9275 + 39.7116i −0.229275 + 0.397116i
\(101\) 49.3422i 0.488537i 0.969708 + 0.244269i \(0.0785478\pi\)
−0.969708 + 0.244269i \(0.921452\pi\)
\(102\) −22.3053 8.50908i −0.218679 0.0834224i
\(103\) −90.4062 156.588i −0.877730 1.52027i −0.853825 0.520560i \(-0.825723\pi\)
−0.0239051 0.999714i \(-0.507610\pi\)
\(104\) −23.8899 + 37.1393i −0.229710 + 0.357108i
\(105\) 30.3807 79.6386i 0.289340 0.758463i
\(106\) 39.1255 0.369109
\(107\) −70.0533 + 40.4453i −0.654704 + 0.377993i −0.790256 0.612777i \(-0.790052\pi\)
0.135552 + 0.990770i \(0.456719\pi\)
\(108\) 47.2831 + 91.3859i 0.437807 + 0.846165i
\(109\) 164.989 1.51366 0.756830 0.653612i \(-0.226747\pi\)
0.756830 + 0.653612i \(0.226747\pi\)
\(110\) −14.9819 + 8.64978i −0.136199 + 0.0786343i
\(111\) 4.71720 3.83617i 0.0424973 0.0345601i
\(112\) 54.3081 + 94.0644i 0.484894 + 0.839861i
\(113\) 56.7986i 0.502642i 0.967904 + 0.251321i \(0.0808650\pi\)
−0.967904 + 0.251321i \(0.919135\pi\)
\(114\) 5.98635 15.6923i 0.0525119 0.137652i
\(115\) −119.591 −1.03992
\(116\) 48.0155i 0.413927i
\(117\) 113.267 + 29.3204i 0.968090 + 0.250602i
\(118\) −34.4508 −0.291956
\(119\) 144.374i 1.21323i
\(120\) −28.4706 + 23.1531i −0.237255 + 0.192943i
\(121\) −1.02810 −0.00849666
\(122\) 26.8519 15.5030i 0.220098 0.127073i
\(123\) 19.5446 51.2332i 0.158899 0.416530i
\(124\) 38.8747 + 67.3330i 0.313506 + 0.543008i
\(125\) 133.355i 1.06684i
\(126\) −20.5684 + 23.0353i −0.163242 + 0.182820i
\(127\) −19.0725 33.0345i −0.150177 0.260114i 0.781115 0.624387i \(-0.214651\pi\)
−0.931292 + 0.364272i \(0.881318\pi\)
\(128\) 98.5423i 0.769862i
\(129\) 123.303 100.274i 0.955840 0.777317i
\(130\) −0.977190 + 20.3352i −0.00751685 + 0.156424i
\(131\) 76.4250 44.1240i 0.583397 0.336825i −0.179085 0.983834i \(-0.557314\pi\)
0.762482 + 0.647009i \(0.223980\pi\)
\(132\) −124.696 + 20.0155i −0.944664 + 0.151632i
\(133\) −101.571 −0.763692
\(134\) −9.00193 5.19727i −0.0671786 0.0387856i
\(135\) 81.8702 + 52.4446i 0.606446 + 0.388479i
\(136\) 31.0784 53.8294i 0.228518 0.395805i
\(137\) −227.617 + 131.415i −1.66144 + 0.959232i −0.689409 + 0.724372i \(0.742130\pi\)
−0.972029 + 0.234860i \(0.924537\pi\)
\(138\) 40.4830 + 15.4435i 0.293355 + 0.111910i
\(139\) −8.06479 −0.0580201 −0.0290100 0.999579i \(-0.509235\pi\)
−0.0290100 + 0.999579i \(0.509235\pi\)
\(140\) 93.7691 + 54.1376i 0.669780 + 0.386697i
\(141\) −20.9027 + 54.7934i −0.148246 + 0.388606i
\(142\) 4.30749 7.46079i 0.0303344 0.0525408i
\(143\) −77.6898 + 120.777i −0.543285 + 0.844593i
\(144\) −117.672 + 38.7752i −0.817166 + 0.269272i
\(145\) 22.6857 + 39.2928i 0.156453 + 0.270985i
\(146\) 42.1230i 0.288514i
\(147\) 37.1479 + 14.1713i 0.252706 + 0.0964031i
\(148\) 3.86178 + 6.68879i 0.0260931 + 0.0451945i
\(149\) 75.2287i 0.504890i −0.967611 0.252445i \(-0.918765\pi\)
0.967611 0.252445i \(-0.0812347\pi\)
\(150\) 5.59546 14.6677i 0.0373031 0.0977845i
\(151\) −40.9836 + 70.9857i −0.271415 + 0.470104i −0.969224 0.246179i \(-0.920825\pi\)
0.697810 + 0.716283i \(0.254158\pi\)
\(152\) 37.8704 + 21.8645i 0.249147 + 0.143845i
\(153\) −161.226 33.5702i −1.05377 0.219413i
\(154\) −18.9522 32.8262i −0.123066 0.213157i
\(155\) 63.6252 + 36.7340i 0.410485 + 0.236994i
\(156\) −59.5779 + 136.160i −0.381910 + 0.872821i
\(157\) 28.5135 + 49.3869i 0.181615 + 0.314566i 0.942431 0.334402i \(-0.108534\pi\)
−0.760816 + 0.648968i \(0.775201\pi\)
\(158\) −38.2180 22.0652i −0.241886 0.139653i
\(159\) 266.488 42.7752i 1.67602 0.269027i
\(160\) −35.2437 61.0438i −0.220273 0.381524i
\(161\) 262.032i 1.62753i
\(162\) −20.9415 28.3255i −0.129269 0.174849i
\(163\) 78.4808 135.933i 0.481478 0.833944i −0.518296 0.855201i \(-0.673434\pi\)
0.999774 + 0.0212574i \(0.00676694\pi\)
\(164\) 60.3237 + 34.8279i 0.367828 + 0.212365i
\(165\) −92.5863 + 75.2939i −0.561129 + 0.456327i
\(166\) −25.5520 + 44.2573i −0.153928 + 0.266610i
\(167\) −195.434 112.834i −1.17026 0.675653i −0.216522 0.976278i \(-0.569471\pi\)
−0.953742 + 0.300625i \(0.902805\pi\)
\(168\) −50.7300 62.3809i −0.301964 0.371315i
\(169\) 70.0768 + 153.786i 0.414656 + 0.909978i
\(170\) 28.6559i 0.168564i
\(171\) 23.6175 113.427i 0.138114 0.663315i
\(172\) 100.943 + 174.839i 0.586879 + 1.01650i
\(173\) 61.9470 35.7651i 0.358075 0.206735i −0.310161 0.950684i \(-0.600383\pi\)
0.668236 + 0.743949i \(0.267050\pi\)
\(174\) −2.60525 16.2306i −0.0149727 0.0932794i
\(175\) −94.9387 −0.542507
\(176\) 152.070i 0.864036i
\(177\) −234.648 + 37.6645i −1.32570 + 0.212794i
\(178\) 24.4534 + 42.3545i 0.137379 + 0.237947i
\(179\) 211.264 121.974i 1.18025 0.681416i 0.224176 0.974549i \(-0.428031\pi\)
0.956072 + 0.293132i \(0.0946976\pi\)
\(180\) −82.2603 + 92.1262i −0.457001 + 0.511812i
\(181\) −139.111 −0.768572 −0.384286 0.923214i \(-0.625552\pi\)
−0.384286 + 0.923214i \(0.625552\pi\)
\(182\) −44.5557 2.14109i −0.244811 0.0117642i
\(183\) 165.942 134.949i 0.906787 0.737426i
\(184\) −56.4058 + 97.6977i −0.306553 + 0.530966i
\(185\) 6.32046 + 3.64912i 0.0341646 + 0.0197250i
\(186\) −16.7942 20.6512i −0.0902912 0.111028i
\(187\) 101.067 175.053i 0.540466 0.936114i
\(188\) −64.5156 37.2481i −0.343168 0.198128i
\(189\) −114.910 + 179.383i −0.607987 + 0.949116i
\(190\) 20.1602 0.106106
\(191\) 114.551 66.1359i 0.599742 0.346261i −0.169198 0.985582i \(-0.554118\pi\)
0.768940 + 0.639321i \(0.220784\pi\)
\(192\) −22.1336 137.891i −0.115279 0.718184i
\(193\) 131.583 227.909i 0.681780 1.18088i −0.292658 0.956217i \(-0.594540\pi\)
0.974437 0.224660i \(-0.0721271\pi\)
\(194\) −60.6874 + 35.0379i −0.312822 + 0.180608i
\(195\) 15.5763 + 139.573i 0.0798785 + 0.715760i
\(196\) −25.2528 + 43.7391i −0.128841 + 0.223159i
\(197\) 221.466 127.864i 1.12420 0.649054i 0.181727 0.983349i \(-0.441831\pi\)
0.942469 + 0.334295i \(0.108498\pi\)
\(198\) 41.0647 13.5316i 0.207397 0.0683415i
\(199\) −50.2310 + 87.0026i −0.252417 + 0.437199i −0.964191 0.265210i \(-0.914559\pi\)
0.711774 + 0.702409i \(0.247892\pi\)
\(200\) 35.3975 + 20.4368i 0.176988 + 0.102184i
\(201\) −66.9951 25.5575i −0.333309 0.127152i
\(202\) 21.4585 0.106230
\(203\) −86.0931 + 49.7059i −0.424104 + 0.244856i
\(204\) 74.5636 195.457i 0.365508 0.958125i
\(205\) 65.8201 0.321073
\(206\) −68.0987 + 39.3168i −0.330576 + 0.190858i
\(207\) 292.618 + 60.9282i 1.41361 + 0.294339i
\(208\) −150.511 96.8163i −0.723610 0.465463i
\(209\) 123.154 + 71.1033i 0.589256 + 0.340207i
\(210\) −34.6341 13.2123i −0.164924 0.0629157i
\(211\) 41.7337 72.2848i 0.197790 0.342582i −0.750022 0.661413i \(-0.769957\pi\)
0.947812 + 0.318831i \(0.103290\pi\)
\(212\) 342.850i 1.61722i
\(213\) 21.1820 55.5255i 0.0994460 0.260683i
\(214\) 17.5893 + 30.4655i 0.0821929 + 0.142362i
\(215\) 165.211 + 95.3845i 0.768423 + 0.443649i
\(216\) 81.4581 42.1465i 0.377121 0.195123i
\(217\) −80.4866 + 139.407i −0.370906 + 0.642428i
\(218\) 71.7521i 0.329138i
\(219\) 46.0523 + 286.904i 0.210284 + 1.31006i
\(220\) −75.7965 131.283i −0.344529 0.596742i
\(221\) −108.913 211.479i −0.492821 0.956920i
\(222\) −1.66831 2.05147i −0.00751493 0.00924085i
\(223\) 112.700 0.505381 0.252691 0.967547i \(-0.418685\pi\)
0.252691 + 0.967547i \(0.418685\pi\)
\(224\) 133.751 77.2212i 0.597103 0.344737i
\(225\) 22.0753 106.020i 0.0981126 0.471202i
\(226\) 24.7012 0.109297
\(227\) 133.355 76.9927i 0.587468 0.339175i −0.176628 0.984278i \(-0.556519\pi\)
0.764096 + 0.645103i \(0.223186\pi\)
\(228\) 137.509 + 52.4574i 0.603111 + 0.230076i
\(229\) −28.5160 49.3911i −0.124524 0.215682i 0.797023 0.603949i \(-0.206407\pi\)
−0.921547 + 0.388267i \(0.873074\pi\)
\(230\) 52.0091i 0.226126i
\(231\) −164.974 202.863i −0.714172 0.878193i
\(232\) 42.7993 0.184480
\(233\) 189.973i 0.815337i 0.913130 + 0.407668i \(0.133658\pi\)
−0.913130 + 0.407668i \(0.866342\pi\)
\(234\) 12.7512 49.2586i 0.0544922 0.210507i
\(235\) −70.3939 −0.299548
\(236\) 301.887i 1.27918i
\(237\) −284.430 108.505i −1.20013 0.457828i
\(238\) 62.7871 0.263811
\(239\) 17.0447 9.84074i 0.0713165 0.0411746i −0.463918 0.885878i \(-0.653557\pi\)
0.535234 + 0.844704i \(0.320223\pi\)
\(240\) −93.8305 115.380i −0.390961 0.480751i
\(241\) −71.6552 124.110i −0.297324 0.514981i 0.678199 0.734879i \(-0.262761\pi\)
−0.975523 + 0.219898i \(0.929428\pi\)
\(242\) 0.447110i 0.00184756i
\(243\) −173.602 170.033i −0.714413 0.699724i
\(244\) 135.850 + 235.299i 0.556761 + 0.964339i
\(245\) 47.7244i 0.194793i
\(246\) −22.2808 8.49975i −0.0905726 0.0345518i
\(247\) 148.781 76.6234i 0.602353 0.310216i
\(248\) 60.0183 34.6516i 0.242009 0.139724i
\(249\) −125.651 + 329.376i −0.504624 + 1.32280i
\(250\) 57.9950 0.231980
\(251\) −203.239 117.340i −0.809716 0.467490i 0.0371413 0.999310i \(-0.488175\pi\)
−0.846857 + 0.531820i \(0.821508\pi\)
\(252\) −201.854 180.238i −0.801010 0.715229i
\(253\) −183.432 + 317.713i −0.725026 + 1.25578i
\(254\) −14.3664 + 8.29445i −0.0565607 + 0.0326553i
\(255\) −31.3290 195.178i −0.122859 0.765406i
\(256\) 143.354 0.559975
\(257\) 62.0316 + 35.8140i 0.241368 + 0.139354i 0.615805 0.787898i \(-0.288831\pi\)
−0.374437 + 0.927252i \(0.622164\pi\)
\(258\) −43.6082 53.6235i −0.169024 0.207843i
\(259\) −7.99546 + 13.8485i −0.0308705 + 0.0534693i
\(260\) −178.193 8.56294i −0.685359 0.0329344i
\(261\) −35.4892 107.700i −0.135974 0.412644i
\(262\) −19.1891 33.2365i −0.0732409 0.126857i
\(263\) 326.720i 1.24228i −0.783700 0.621140i \(-0.786670\pi\)
0.783700 0.621140i \(-0.213330\pi\)
\(264\) 17.8411 + 111.149i 0.0675799 + 0.421020i
\(265\) 161.985 + 280.566i 0.611265 + 1.05874i
\(266\) 44.1723i 0.166061i
\(267\) 212.860 + 261.746i 0.797228 + 0.980324i
\(268\) 45.5427 78.8823i 0.169936 0.294337i
\(269\) −205.679 118.749i −0.764608 0.441446i 0.0663401 0.997797i \(-0.478868\pi\)
−0.830948 + 0.556351i \(0.812201\pi\)
\(270\) 22.8077 35.6046i 0.0844729 0.131869i
\(271\) −14.0335 24.3067i −0.0517841 0.0896928i 0.838971 0.544176i \(-0.183157\pi\)
−0.890756 + 0.454483i \(0.849824\pi\)
\(272\) 218.150 + 125.949i 0.802021 + 0.463047i
\(273\) −305.814 + 34.1287i −1.12020 + 0.125014i
\(274\) 57.1511 + 98.9885i 0.208580 + 0.361272i
\(275\) 115.113 + 66.4604i 0.418592 + 0.241674i
\(276\) −135.329 + 354.745i −0.490323 + 1.28531i
\(277\) 220.842 + 382.510i 0.797264 + 1.38090i 0.921391 + 0.388636i \(0.127054\pi\)
−0.124127 + 0.992266i \(0.539613\pi\)
\(278\) 3.50730i 0.0126162i
\(279\) −136.964 122.297i −0.490911 0.438339i
\(280\) 48.2564 83.5825i 0.172344 0.298509i
\(281\) −227.027 131.074i −0.807926 0.466456i 0.0383092 0.999266i \(-0.487803\pi\)
−0.846235 + 0.532810i \(0.821136\pi\)
\(282\) 23.8291 + 9.09040i 0.0845005 + 0.0322355i
\(283\) −128.358 + 222.323i −0.453562 + 0.785592i −0.998604 0.0528164i \(-0.983180\pi\)
0.545042 + 0.838408i \(0.316514\pi\)
\(284\) 65.3776 + 37.7458i 0.230203 + 0.132908i
\(285\) 137.313 22.0408i 0.481800 0.0773360i
\(286\) 52.5247 + 33.7866i 0.183653 + 0.118135i
\(287\) 144.216i 0.502495i
\(288\) 55.1348 + 167.319i 0.191440 + 0.580968i
\(289\) 22.9131 + 39.6867i 0.0792841 + 0.137324i
\(290\) 17.0881 9.86580i 0.0589244 0.0340200i
\(291\) −375.042 + 304.995i −1.28880 + 1.04809i
\(292\) −369.116 −1.26410
\(293\) 419.339i 1.43119i −0.698516 0.715595i \(-0.746156\pi\)
0.698516 0.715595i \(-0.253844\pi\)
\(294\) 6.16295 16.1553i 0.0209624 0.0549498i
\(295\) −142.631 247.045i −0.483496 0.837439i
\(296\) 5.96215 3.44225i 0.0201424 0.0116292i
\(297\) 264.902 137.060i 0.891925 0.461483i
\(298\) −32.7162 −0.109786
\(299\) 197.672 + 383.824i 0.661112 + 1.28369i
\(300\) 128.530 + 49.0320i 0.428434 + 0.163440i
\(301\) −208.994 + 361.988i −0.694332 + 1.20262i
\(302\) 30.8710 + 17.8234i 0.102222 + 0.0590179i
\(303\) 146.156 23.4602i 0.482363 0.0774263i
\(304\) −88.6082 + 153.474i −0.291474 + 0.504848i
\(305\) 222.341 + 128.369i 0.728988 + 0.420881i
\(306\) −14.5994 + 70.1159i −0.0477104 + 0.229137i
\(307\) 12.4727 0.0406277 0.0203139 0.999794i \(-0.493533\pi\)
0.0203139 + 0.999794i \(0.493533\pi\)
\(308\) 287.650 166.075i 0.933930 0.539205i
\(309\) −420.843 + 342.242i −1.36195 + 1.10758i
\(310\) 15.9753 27.6700i 0.0515331 0.0892580i
\(311\) −370.614 + 213.974i −1.19168 + 0.688019i −0.958688 0.284458i \(-0.908186\pi\)
−0.232996 + 0.972478i \(0.574853\pi\)
\(312\) 121.368 + 53.1056i 0.389001 + 0.170210i
\(313\) −147.784 + 255.969i −0.472154 + 0.817794i −0.999492 0.0318612i \(-0.989857\pi\)
0.527339 + 0.849655i \(0.323190\pi\)
\(314\) 21.4779 12.4003i 0.0684009 0.0394913i
\(315\) −250.341 52.1254i −0.794733 0.165478i
\(316\) 193.353 334.898i 0.611878 1.05980i
\(317\) 311.087 + 179.606i 0.981347 + 0.566581i 0.902677 0.430319i \(-0.141599\pi\)
0.0786708 + 0.996901i \(0.474932\pi\)
\(318\) −18.6025 115.893i −0.0584986 0.364444i
\(319\) 139.183 0.436311
\(320\) 145.176 83.8175i 0.453676 0.261930i
\(321\) 153.110 + 188.274i 0.476977 + 0.586523i
\(322\) −113.955 −0.353899
\(323\) −204.000 + 117.779i −0.631579 + 0.364642i
\(324\) 248.211 183.507i 0.766085 0.566379i
\(325\) 139.066 71.6200i 0.427895 0.220369i
\(326\) −59.1159 34.1306i −0.181337 0.104695i
\(327\) −78.4452 488.711i −0.239894 1.49453i
\(328\) 31.0444 53.7704i 0.0946475 0.163934i
\(329\) 154.238i 0.468807i
\(330\) 32.7446 + 40.2649i 0.0992261 + 0.122015i
\(331\) 5.36870 + 9.29886i 0.0162196 + 0.0280932i 0.874021 0.485888i \(-0.161504\pi\)
−0.857802 + 0.513981i \(0.828170\pi\)
\(332\) −387.819 223.907i −1.16813 0.674420i
\(333\) −13.6059 12.1488i −0.0408585 0.0364829i
\(334\) −49.0705 + 84.9925i −0.146918 + 0.254469i
\(335\) 86.0696i 0.256924i
\(336\) 252.805 205.589i 0.752397 0.611872i
\(337\) −168.540 291.920i −0.500119 0.866232i −1.00000 0.000137943i \(-0.999956\pi\)
0.499881 0.866094i \(-0.333377\pi\)
\(338\) 66.8803 30.4757i 0.197871 0.0901649i
\(339\) 168.242 27.0053i 0.496290 0.0796618i
\(340\) 251.107 0.738550
\(341\) 195.179 112.687i 0.572373 0.330460i
\(342\) −49.3283 10.2710i −0.144235 0.0300323i
\(343\) 282.046 0.822291
\(344\) 155.845 89.9772i 0.453038 0.261562i
\(345\) 56.8606 + 354.239i 0.164813 + 1.02678i
\(346\) −15.5539 26.9402i −0.0449535 0.0778617i
\(347\) 665.816i 1.91878i 0.282087 + 0.959389i \(0.408973\pi\)
−0.282087 + 0.959389i \(0.591027\pi\)
\(348\) 142.226 22.8294i 0.408695 0.0656016i
\(349\) 5.14846 0.0147520 0.00737602 0.999973i \(-0.497652\pi\)
0.00737602 + 0.999973i \(0.497652\pi\)
\(350\) 41.2879i 0.117966i
\(351\) 32.9961 349.446i 0.0940059 0.995572i
\(352\) −216.230 −0.614290
\(353\) 28.1359i 0.0797052i 0.999206 + 0.0398526i \(0.0126888\pi\)
−0.999206 + 0.0398526i \(0.987311\pi\)
\(354\) 16.3799 + 102.046i 0.0462710 + 0.288266i
\(355\) 71.3344 0.200942
\(356\) −371.145 + 214.281i −1.04254 + 0.601912i
\(357\) 427.649 68.6439i 1.19790 0.192280i
\(358\) −53.0452 91.8769i −0.148171 0.256639i
\(359\) 196.366i 0.546980i −0.961875 0.273490i \(-0.911822\pi\)
0.961875 0.273490i \(-0.0881780\pi\)
\(360\) 82.1180 + 73.3239i 0.228106 + 0.203677i
\(361\) 97.6392 + 169.116i 0.270469 + 0.468466i
\(362\) 60.4983i 0.167122i
\(363\) 0.488816 + 3.04531i 0.00134660 + 0.00838928i
\(364\) 18.7620 390.433i 0.0515439 1.07262i
\(365\) −302.061 + 174.395i −0.827564 + 0.477794i
\(366\) −58.6880 72.1666i −0.160350 0.197177i
\(367\) −173.165 −0.471839 −0.235919 0.971773i \(-0.575810\pi\)
−0.235919 + 0.971773i \(0.575810\pi\)
\(368\) −395.931 228.591i −1.07590 0.621171i
\(369\) −161.050 33.5334i −0.436449 0.0908765i
\(370\) 1.58697 2.74871i 0.00428910 0.00742894i
\(371\) −614.740 + 354.920i −1.65698 + 0.956658i
\(372\) 180.963 147.164i 0.486459 0.395603i
\(373\) −95.5823 −0.256253 −0.128126 0.991758i \(-0.540896\pi\)
−0.128126 + 0.991758i \(0.540896\pi\)
\(374\) −76.1290 43.9531i −0.203554 0.117522i
\(375\) 395.009 63.4048i 1.05336 0.169080i
\(376\) −33.2016 + 57.5069i −0.0883022 + 0.152944i
\(377\) 88.6118 137.756i 0.235045 0.365401i
\(378\) 78.0120 + 49.9731i 0.206381 + 0.132204i
\(379\) 35.1129 + 60.8173i 0.0926462 + 0.160468i 0.908624 0.417616i \(-0.137134\pi\)
−0.815978 + 0.578084i \(0.803801\pi\)
\(380\) 176.660i 0.464895i
\(381\) −88.7829 + 72.2009i −0.233026 + 0.189504i
\(382\) −28.7619 49.8170i −0.0752929 0.130411i
\(383\) 435.200i 1.13629i 0.822928 + 0.568146i \(0.192339\pi\)
−0.822928 + 0.568146i \(0.807661\pi\)
\(384\) −291.890 + 46.8527i −0.760132 + 0.122012i
\(385\) 156.930 271.810i 0.407610 0.706000i
\(386\) −99.1156 57.2244i −0.256776 0.148250i
\(387\) −355.645 317.559i −0.918980 0.820565i
\(388\) −307.031 531.793i −0.791317 1.37060i
\(389\) 21.8657 + 12.6242i 0.0562100 + 0.0324528i 0.527842 0.849343i \(-0.323001\pi\)
−0.471632 + 0.881796i \(0.656335\pi\)
\(390\) 60.6990 6.77399i 0.155639 0.0173692i
\(391\) −303.846 526.277i −0.777101 1.34598i
\(392\) 38.9875 + 22.5095i 0.0994580 + 0.0574221i
\(393\) −167.036 205.398i −0.425028 0.522642i
\(394\) −55.6067 96.3137i −0.141134 0.244451i
\(395\) 365.412i 0.925093i
\(396\) 118.575 + 359.843i 0.299432 + 0.908693i
\(397\) 352.580 610.687i 0.888112 1.53825i 0.0460070 0.998941i \(-0.485350\pi\)
0.842105 0.539314i \(-0.181316\pi\)
\(398\) 37.8366 + 21.8450i 0.0950669 + 0.0548869i
\(399\) 48.2927 + 300.862i 0.121034 + 0.754040i
\(400\) −82.8223 + 143.452i −0.207056 + 0.358631i
\(401\) 477.752 + 275.830i 1.19140 + 0.687856i 0.958625 0.284674i \(-0.0918852\pi\)
0.232778 + 0.972530i \(0.425219\pi\)
\(402\) −11.1147 + 29.1356i −0.0276485 + 0.0724765i
\(403\) 12.7306 264.921i 0.0315895 0.657371i
\(404\) 188.037i 0.465438i
\(405\) 116.420 267.442i 0.287456 0.660350i
\(406\) 21.6166 + 37.4411i 0.0532429 + 0.0922194i
\(407\) 19.3889 11.1942i 0.0476386 0.0275042i
\(408\) −174.224 66.4633i −0.427019 0.162900i
\(409\) 607.179 1.48455 0.742273 0.670098i \(-0.233748\pi\)
0.742273 + 0.670098i \(0.233748\pi\)
\(410\) 28.6245i 0.0698159i
\(411\) 497.484 + 611.739i 1.21042 + 1.48841i
\(412\) −344.526 596.737i −0.836229 1.44839i
\(413\) 541.291 312.514i 1.31063 0.756694i
\(414\) 26.4971 127.257i 0.0640027 0.307383i
\(415\) −423.155 −1.01965
\(416\) −137.664 + 214.013i −0.330923 + 0.514454i
\(417\) 3.83447 + 23.8886i 0.00919537 + 0.0572868i
\(418\) 30.9221 53.5587i 0.0739764 0.128131i
\(419\) −511.942 295.570i −1.22182 0.705418i −0.256514 0.966541i \(-0.582574\pi\)
−0.965306 + 0.261123i \(0.915907\pi\)
\(420\) 115.777 303.492i 0.275659 0.722601i
\(421\) −224.617 + 389.048i −0.533532 + 0.924105i 0.465701 + 0.884942i \(0.345802\pi\)
−0.999233 + 0.0391625i \(0.987531\pi\)
\(422\) −31.4360 18.1496i −0.0744929 0.0430085i
\(423\) 172.241 + 35.8637i 0.407189 + 0.0847841i
\(424\) 305.605 0.720765
\(425\) −190.679 + 110.089i −0.448657 + 0.259032i
\(426\) −24.1475 9.21185i −0.0566843 0.0216241i
\(427\) −281.264 + 487.164i −0.658699 + 1.14090i
\(428\) −266.964 + 154.132i −0.623748 + 0.360121i
\(429\) 394.689 + 172.699i 0.920022 + 0.402563i
\(430\) 41.4819 71.8487i 0.0964694 0.167090i
\(431\) 654.630 377.951i 1.51886 0.876916i 0.519109 0.854708i \(-0.326264\pi\)
0.999753 0.0222075i \(-0.00706945\pi\)
\(432\) 170.803 + 330.118i 0.395378 + 0.764162i
\(433\) 147.022 254.650i 0.339543 0.588106i −0.644804 0.764348i \(-0.723061\pi\)
0.984347 + 0.176242i \(0.0563942\pi\)
\(434\) 60.6268 + 35.0029i 0.139693 + 0.0806518i
\(435\) 105.602 85.8790i 0.242764 0.197423i
\(436\) 628.751 1.44209
\(437\) 370.249 213.764i 0.847253 0.489162i
\(438\) 124.772 20.0277i 0.284867 0.0457254i
\(439\) 633.805 1.44375 0.721873 0.692025i \(-0.243281\pi\)
0.721873 + 0.692025i \(0.243281\pi\)
\(440\) −117.021 + 67.5623i −0.265958 + 0.153551i
\(441\) 24.3142 116.773i 0.0551342 0.264791i
\(442\) −91.9704 + 47.3654i −0.208078 + 0.107162i
\(443\) −46.2937 26.7277i −0.104501 0.0603334i 0.446839 0.894614i \(-0.352550\pi\)
−0.551339 + 0.834281i \(0.685883\pi\)
\(444\) 17.9767 14.6191i 0.0404880 0.0329260i
\(445\) −202.481 + 350.707i −0.455013 + 0.788106i
\(446\) 49.0122i 0.109893i
\(447\) −222.834 + 35.7681i −0.498509 + 0.0800180i
\(448\) 183.650 + 318.091i 0.409932 + 0.710024i
\(449\) −610.311 352.363i −1.35927 0.784773i −0.369742 0.929135i \(-0.620554\pi\)
−0.989525 + 0.144362i \(0.953887\pi\)
\(450\) −46.1073 9.60036i −0.102461 0.0213341i
\(451\) 100.956 174.861i 0.223850 0.387719i
\(452\) 216.452i 0.478876i
\(453\) 229.752 + 87.6462i 0.507178 + 0.193479i
\(454\) −33.4834 57.9949i −0.0737520 0.127742i
\(455\) −169.113 328.370i −0.371677 0.721692i
\(456\) 46.7586 122.571i 0.102541 0.268796i
\(457\) −858.234 −1.87797 −0.938987 0.343953i \(-0.888234\pi\)
−0.938987 + 0.343953i \(0.888234\pi\)
\(458\) −21.4797 + 12.4013i −0.0468990 + 0.0270771i
\(459\) −22.7814 + 493.527i −0.0496327 + 1.07522i
\(460\) −455.746 −0.990753
\(461\) 401.655 231.896i 0.871269 0.503028i 0.00349951 0.999994i \(-0.498886\pi\)
0.867770 + 0.496966i \(0.165553\pi\)
\(462\) −88.2230 + 71.7456i −0.190959 + 0.155293i
\(463\) −163.427 283.065i −0.352975 0.611371i 0.633794 0.773502i \(-0.281497\pi\)
−0.986769 + 0.162131i \(0.948163\pi\)
\(464\) 173.449i 0.373813i
\(465\) 78.5581 205.928i 0.168942 0.442857i
\(466\) 82.6177 0.177291
\(467\) 889.917i 1.90560i 0.303594 + 0.952802i \(0.401814\pi\)
−0.303594 + 0.952802i \(0.598186\pi\)
\(468\) 431.644 + 111.736i 0.922317 + 0.238753i
\(469\) 188.584 0.402098
\(470\) 30.6136i 0.0651354i
\(471\) 132.731 107.941i 0.281807 0.229174i
\(472\) −269.091 −0.570108
\(473\) 506.808 292.606i 1.07148 0.618617i
\(474\) −47.1879 + 123.696i −0.0995525 + 0.260962i
\(475\) −77.4502 134.148i −0.163053 0.282416i
\(476\) 550.192i 1.15587i
\(477\) −253.408 769.022i −0.531253 1.61220i
\(478\) −4.27964 7.41256i −0.00895323 0.0155075i
\(479\) 653.524i 1.36435i 0.731189 + 0.682175i \(0.238966\pi\)
−0.731189 + 0.682175i \(0.761034\pi\)
\(480\) −164.060 + 133.418i −0.341792 + 0.277955i
\(481\) 1.26464 26.3169i 0.00262919 0.0547130i
\(482\) −53.9745 + 31.1622i −0.111980 + 0.0646518i
\(483\) −776.161 + 124.585i −1.60696 + 0.257940i
\(484\) −3.91794 −0.00809492
\(485\) −502.508 290.123i −1.03610 0.598193i
\(486\) −73.9457 + 75.4981i −0.152152 + 0.155346i
\(487\) −257.806 + 446.533i −0.529376 + 0.916906i 0.470037 + 0.882647i \(0.344240\pi\)
−0.999413 + 0.0342590i \(0.989093\pi\)
\(488\) 209.737 121.092i 0.429789 0.248139i
\(489\) −439.959 167.837i −0.899711 0.343224i
\(490\) 20.7549 0.0423569
\(491\) −217.965 125.842i −0.443921 0.256298i 0.261339 0.965247i \(-0.415836\pi\)
−0.705259 + 0.708949i \(0.749169\pi\)
\(492\) 74.4818 195.243i 0.151386 0.396836i
\(493\) −115.276 + 199.663i −0.233825 + 0.404996i
\(494\) −33.3228 64.7035i −0.0674551 0.130979i
\(495\) 267.048 + 238.449i 0.539490 + 0.481716i
\(496\) 140.429 + 243.231i 0.283124 + 0.490384i
\(497\) 156.298i 0.314484i
\(498\) 143.243 + 54.6446i 0.287636 + 0.109728i
\(499\) 330.409 + 572.286i 0.662143 + 1.14686i 0.980052 + 0.198743i \(0.0636861\pi\)
−0.317909 + 0.948121i \(0.602981\pi\)
\(500\) 508.200i 1.01640i
\(501\) −241.303 + 632.540i −0.481643 + 1.26256i
\(502\) −51.0300 + 88.3866i −0.101653 + 0.176069i
\(503\) 124.243 + 71.7317i 0.247004 + 0.142608i 0.618392 0.785870i \(-0.287785\pi\)
−0.371388 + 0.928478i \(0.621118\pi\)
\(504\) −160.657 + 179.926i −0.318765 + 0.356996i
\(505\) 88.8411 + 153.877i 0.175923 + 0.304707i
\(506\) 138.170 + 79.7727i 0.273064 + 0.157654i
\(507\) 422.210 280.692i 0.832760 0.553634i
\(508\) −72.6828 125.890i −0.143076 0.247816i
\(509\) −74.1781 42.8268i −0.145733 0.0841390i 0.425360 0.905024i \(-0.360147\pi\)
−0.571094 + 0.820885i \(0.693481\pi\)
\(510\) −84.8813 + 13.6247i −0.166434 + 0.0267151i
\(511\) −382.111 661.835i −0.747771 1.29518i
\(512\) 456.512i 0.891626i
\(513\) −347.209 16.0273i −0.676821 0.0312423i
\(514\) 15.5752 26.9770i 0.0303019 0.0524844i
\(515\) −563.876 325.554i −1.09491 0.632144i
\(516\) 469.893 382.131i 0.910645 0.740564i
\(517\) −107.972 + 187.012i −0.208843 + 0.361726i
\(518\) 6.02260 + 3.47715i 0.0116266 + 0.00671264i
\(519\) −135.392 166.487i −0.260872 0.320785i
\(520\) −7.63270 + 158.835i −0.0146783 + 0.305452i
\(521\) 39.8935i 0.0765710i 0.999267 + 0.0382855i \(0.0121896\pi\)
−0.999267 + 0.0382855i \(0.987810\pi\)
\(522\) −46.8377 + 15.4339i −0.0897275 + 0.0295669i
\(523\) 211.748 + 366.758i 0.404872 + 0.701258i 0.994307 0.106558i \(-0.0339829\pi\)
−0.589435 + 0.807816i \(0.700650\pi\)
\(524\) 291.246 168.151i 0.555813 0.320899i
\(525\) 45.1393 + 281.216i 0.0859797 + 0.535650i
\(526\) −142.087 −0.270128
\(527\) 373.322i 0.708390i
\(528\) −450.445 + 72.3030i −0.853115 + 0.136938i
\(529\) 286.966 + 497.039i 0.542468 + 0.939582i
\(530\) 122.016 70.4458i 0.230218 0.132917i
\(531\) 223.131 + 677.140i 0.420208 + 1.27522i
\(532\) −387.074 −0.727583
\(533\) −108.794 211.247i −0.204116 0.396337i
\(534\) 113.831 92.5708i 0.213167 0.173354i
\(535\) −145.644 + 252.263i −0.272232 + 0.471520i
\(536\) −70.3129 40.5952i −0.131181 0.0757373i
\(537\) −461.743 567.790i −0.859857 1.05734i
\(538\) −51.6429 + 89.4481i −0.0959905 + 0.166260i
\(539\) 126.787 + 73.2007i 0.235227 + 0.135808i
\(540\) 311.997 + 199.860i 0.577772 + 0.370110i
\(541\) −189.199 −0.349722 −0.174861 0.984593i \(-0.555948\pi\)
−0.174861 + 0.984593i \(0.555948\pi\)
\(542\) −10.5708 + 6.10304i −0.0195033 + 0.0112602i
\(543\) 66.1416 + 412.060i 0.121808 + 0.758858i
\(544\) 179.088 310.189i 0.329205 0.570201i
\(545\) 514.529 297.064i 0.944090 0.545071i
\(546\) 14.8423 + 132.996i 0.0271836 + 0.243582i
\(547\) 175.857 304.594i 0.321494 0.556845i −0.659302 0.751878i \(-0.729148\pi\)
0.980797 + 0.195033i \(0.0624815\pi\)
\(548\) −867.419 + 500.805i −1.58288 + 0.913877i
\(549\) −478.628 427.372i −0.871819 0.778455i
\(550\) 28.9030 50.0615i 0.0525509 0.0910208i
\(551\) −140.468 81.0993i −0.254933 0.147186i
\(552\) 316.207 + 120.628i 0.572839 + 0.218528i
\(553\) 800.641 1.44781
\(554\) 166.350 96.0422i 0.300271 0.173361i
\(555\) 7.80388 20.4567i 0.0140610 0.0368590i
\(556\) −30.7339 −0.0552767
\(557\) 524.604 302.880i 0.941838 0.543770i 0.0513020 0.998683i \(-0.483663\pi\)
0.890536 + 0.454913i \(0.150330\pi\)
\(558\) −53.1856 + 59.5645i −0.0953148 + 0.106746i
\(559\) 33.0565 687.900i 0.0591351 1.23059i
\(560\) 338.727 + 195.564i 0.604870 + 0.349222i
\(561\) −566.576 216.139i −1.00994 0.385274i
\(562\) −57.0029 + 98.7320i −0.101429 + 0.175680i
\(563\) 461.212i 0.819204i −0.912264 0.409602i \(-0.865668\pi\)
0.912264 0.409602i \(-0.134332\pi\)
\(564\) −79.6576 + 208.811i −0.141237 + 0.370232i
\(565\) 102.266 + 177.130i 0.181002 + 0.313505i
\(566\) 96.6860 + 55.8217i 0.170823 + 0.0986249i
\(567\) 585.982 + 255.083i 1.03348 + 0.449882i
\(568\) 33.6452 58.2752i 0.0592346 0.102597i
\(569\) 308.963i 0.542992i −0.962439 0.271496i \(-0.912482\pi\)
0.962439 0.271496i \(-0.0875185\pi\)
\(570\) −9.58532 59.7162i −0.0168164 0.104765i
\(571\) −46.7472 80.9685i −0.0818690 0.141801i 0.822184 0.569222i \(-0.192756\pi\)
−0.904053 + 0.427421i \(0.859422\pi\)
\(572\) −296.066 + 460.265i −0.517597 + 0.804659i
\(573\) −250.364 307.864i −0.436936 0.537284i
\(574\) 62.7182 0.109265
\(575\) 346.073 199.805i 0.601866 0.347488i
\(576\) −397.922 + 131.123i −0.690837 + 0.227644i
\(577\) 478.102 0.828600 0.414300 0.910140i \(-0.364027\pi\)
0.414300 + 0.910140i \(0.364027\pi\)
\(578\) 17.2594 9.96470i 0.0298605 0.0172400i
\(579\) −737.649 281.400i −1.27400 0.486010i
\(580\) 86.4523 + 149.740i 0.149056 + 0.258172i
\(581\) 927.160i 1.59580i
\(582\) 132.639 + 163.102i 0.227903 + 0.280244i
\(583\) 993.826 1.70468
\(584\) 329.017i 0.563386i
\(585\) 406.021 112.499i 0.694054 0.192307i
\(586\) −182.366 −0.311205
\(587\) 209.513i 0.356922i −0.983947 0.178461i \(-0.942888\pi\)
0.983947 0.178461i \(-0.0571119\pi\)
\(588\) 141.566 + 54.0048i 0.240758 + 0.0918449i
\(589\) −262.641 −0.445910
\(590\) −107.437 + 62.0290i −0.182097 + 0.105134i
\(591\) −484.041 595.208i −0.819020 1.00712i
\(592\) 13.9501 + 24.1623i 0.0235644 + 0.0408147i
\(593\) 806.812i 1.36056i 0.732953 + 0.680280i \(0.238142\pi\)
−0.732953 + 0.680280i \(0.761858\pi\)
\(594\) −59.6063 115.203i −0.100347 0.193945i
\(595\) 259.947 + 450.242i 0.436886 + 0.756708i
\(596\) 286.687i 0.481018i
\(597\) 281.592 + 107.422i 0.471678 + 0.179937i
\(598\) 166.922 85.9659i 0.279133 0.143756i
\(599\) −463.319 + 267.498i −0.773488 + 0.446574i −0.834118 0.551587i \(-0.814023\pi\)
0.0606294 + 0.998160i \(0.480689\pi\)
\(600\) 43.7054 114.567i 0.0728423 0.190945i
\(601\) 318.353 0.529705 0.264852 0.964289i \(-0.414677\pi\)
0.264852 + 0.964289i \(0.414677\pi\)
\(602\) 157.425 + 90.8895i 0.261504 + 0.150979i
\(603\) −43.8500 + 210.597i −0.0727197 + 0.349248i
\(604\) −156.183 + 270.517i −0.258582 + 0.447876i
\(605\) −3.20619 + 1.85110i −0.00529949 + 0.00305966i
\(606\) −10.2026 63.5618i −0.0168360 0.104888i
\(607\) −519.920 −0.856541 −0.428271 0.903651i \(-0.640877\pi\)
−0.428271 + 0.903651i \(0.640877\pi\)
\(608\) 218.226 + 125.993i 0.358924 + 0.207225i
\(609\) 188.167 + 231.382i 0.308976 + 0.379937i
\(610\) 55.8264 96.6942i 0.0915187 0.158515i
\(611\) 116.354 + 225.927i 0.190432 + 0.369766i
\(612\) −614.413 127.932i −1.00394 0.209039i
\(613\) 239.689 + 415.154i 0.391010 + 0.677249i 0.992583 0.121569i \(-0.0387925\pi\)
−0.601573 + 0.798818i \(0.705459\pi\)
\(614\) 5.42426i 0.00883431i
\(615\) −31.2947 194.965i −0.0508856 0.317016i
\(616\) −148.033 256.401i −0.240314 0.416236i
\(617\) 240.049i 0.389058i 0.980897 + 0.194529i \(0.0623179\pi\)
−0.980897 + 0.194529i \(0.937682\pi\)
\(618\) 148.838 + 183.021i 0.240838 + 0.296150i
\(619\) −86.1248 + 149.172i −0.139135 + 0.240989i −0.927170 0.374642i \(-0.877766\pi\)
0.788034 + 0.615631i \(0.211099\pi\)
\(620\) 242.467 + 139.988i 0.391076 + 0.225788i
\(621\) 41.3471 895.727i 0.0665815 1.44239i
\(622\) 93.0553 + 161.177i 0.149607 + 0.259126i
\(623\) −768.422 443.649i −1.23342 0.712117i
\(624\) −215.216 + 491.858i −0.344898 + 0.788234i
\(625\) 89.6985 + 155.362i 0.143518 + 0.248580i
\(626\) 111.319 + 64.2699i 0.177825 + 0.102668i
\(627\) 152.059 398.600i 0.242518 0.635726i
\(628\) 108.661 + 188.207i 0.173028 + 0.299693i
\(629\) 37.0854i 0.0589593i
\(630\) −22.6689 + 108.871i −0.0359823 + 0.172811i
\(631\) −484.961 + 839.977i −0.768559 + 1.33118i 0.169785 + 0.985481i \(0.445693\pi\)
−0.938344 + 0.345702i \(0.887641\pi\)
\(632\) −298.516 172.348i −0.472336 0.272703i
\(633\) −233.956 89.2502i −0.369599 0.140996i
\(634\) 78.1091 135.289i 0.123200 0.213389i
\(635\) −118.958 68.6803i −0.187335 0.108158i
\(636\) 1015.55 163.011i 1.59678 0.256306i
\(637\) 153.170 78.8837i 0.240455 0.123836i
\(638\) 60.5295i 0.0948739i
\(639\) −174.542 36.3428i −0.273149 0.0568745i
\(640\) −177.426 307.311i −0.277228 0.480174i
\(641\) 272.656 157.418i 0.425360 0.245582i −0.272008 0.962295i \(-0.587688\pi\)
0.697368 + 0.716713i \(0.254354\pi\)
\(642\) 81.8785 66.5860i 0.127537 0.103717i
\(643\) −883.910 −1.37466 −0.687332 0.726343i \(-0.741218\pi\)
−0.687332 + 0.726343i \(0.741218\pi\)
\(644\) 998.570i 1.55058i
\(645\) 203.986 534.720i 0.316258 0.829023i
\(646\) 51.2212 + 88.7177i 0.0792897 + 0.137334i
\(647\) 1006.62 581.171i 1.55582 0.898255i 0.558174 0.829724i \(-0.311502\pi\)
0.997649 0.0685315i \(-0.0218314\pi\)
\(648\) −163.571 221.247i −0.252425 0.341430i
\(649\) −875.084 −1.34836
\(650\) −31.1469 60.4785i −0.0479183 0.0930439i
\(651\) 451.203 + 172.126i 0.693092 + 0.264402i
\(652\) 299.080 518.022i 0.458712 0.794513i
\(653\) 131.909 + 76.1578i 0.202005 + 0.116627i 0.597590 0.801802i \(-0.296125\pi\)
−0.395585 + 0.918429i \(0.629458\pi\)
\(654\) −212.536 + 34.1151i −0.324978 + 0.0521638i
\(655\) 158.891 275.208i 0.242582 0.420164i
\(656\) 217.911 + 125.811i 0.332181 + 0.191785i
\(657\) 827.937 272.821i 1.26018 0.415253i
\(658\) −67.0765 −0.101940
\(659\) 586.936 338.868i 0.890647 0.514215i 0.0164930 0.999864i \(-0.494750\pi\)
0.874154 + 0.485649i \(0.161417\pi\)
\(660\) −352.834 + 286.935i −0.534597 + 0.434750i
\(661\) 414.883 718.598i 0.627659 1.08714i −0.360361 0.932813i \(-0.617346\pi\)
0.988020 0.154325i \(-0.0493203\pi\)
\(662\) 4.04399 2.33480i 0.00610874 0.00352689i
\(663\) −574.636 + 423.160i −0.866720 + 0.638251i
\(664\) −199.583 + 345.688i −0.300577 + 0.520615i
\(665\) −316.756 + 182.879i −0.476325 + 0.275007i
\(666\) −5.28341 + 5.91707i −0.00793304 + 0.00888449i
\(667\) 209.219 362.378i 0.313672 0.543296i
\(668\) −744.774 429.996i −1.11493 0.643706i
\(669\) −53.5841 333.827i −0.0800958 0.498994i
\(670\) −37.4309 −0.0558670
\(671\) 682.064 393.790i 1.01649 0.586870i
\(672\) −292.329 359.466i −0.435013 0.534920i
\(673\) −614.686 −0.913353 −0.456676 0.889633i \(-0.650960\pi\)
−0.456676 + 0.889633i \(0.650960\pi\)
\(674\) −126.953 + 73.2966i −0.188358 + 0.108749i
\(675\) −324.537 14.9808i −0.480796 0.0221937i
\(676\) 267.054 + 586.060i 0.395050 + 0.866952i
\(677\) 534.883 + 308.815i 0.790078 + 0.456152i 0.839990 0.542602i \(-0.182561\pi\)
−0.0499121 + 0.998754i \(0.515894\pi\)
\(678\) −11.7444 73.1670i −0.0173221 0.107916i
\(679\) 635.679 1101.03i 0.936199 1.62154i
\(680\) 223.828i 0.329159i
\(681\) −291.463 358.402i −0.427993 0.526288i
\(682\) −49.0065 84.8817i −0.0718570 0.124460i
\(683\) −101.555 58.6329i −0.148690 0.0858461i 0.423809 0.905751i \(-0.360693\pi\)
−0.572499 + 0.819905i \(0.694026\pi\)
\(684\) 90.0032 432.255i 0.131584 0.631952i
\(685\) −473.227 + 819.652i −0.690842 + 1.19657i
\(686\) 122.659i 0.178803i
\(687\) −132.742 + 107.950i −0.193220 + 0.157133i
\(688\) 364.643 + 631.580i 0.530004 + 0.917994i
\(689\) 632.724 983.635i 0.918322 1.42763i
\(690\) 154.055 24.7281i 0.223269 0.0358379i
\(691\) 110.872 0.160451 0.0802254 0.996777i \(-0.474436\pi\)
0.0802254 + 0.996777i \(0.474436\pi\)
\(692\) 236.072 136.296i 0.341144 0.196960i
\(693\) −522.458 + 585.119i −0.753907 + 0.844327i
\(694\) 289.557 0.417229
\(695\) −25.1506 + 14.5207i −0.0361879 + 0.0208931i
\(696\) −20.3493 126.775i −0.0292375 0.182148i
\(697\) 167.230 + 289.650i 0.239928 + 0.415567i
\(698\) 2.23902i 0.00320776i
\(699\) 562.717 90.3244i 0.805032 0.129219i
\(700\) −361.799 −0.516856
\(701\) 1172.51i 1.67263i 0.548250 + 0.836315i \(0.315294\pi\)
−0.548250 + 0.836315i \(0.684706\pi\)
\(702\) −151.971 14.3497i −0.216482 0.0204411i
\(703\) −26.0905 −0.0371131
\(704\) 514.245i 0.730461i
\(705\) 33.4693 + 208.513i 0.0474742 + 0.295763i
\(706\) 12.2360 0.0173315
\(707\) −337.155 + 194.657i −0.476881 + 0.275328i
\(708\) −894.214 + 143.534i −1.26301 + 0.202732i
\(709\) 292.951 + 507.405i 0.413188 + 0.715663i 0.995236 0.0974912i \(-0.0310818\pi\)
−0.582048 + 0.813154i \(0.697748\pi\)
\(710\) 31.0227i 0.0436939i
\(711\) −186.167 + 894.096i −0.261838 + 1.25752i
\(712\) 191.002 + 330.826i 0.268262 + 0.464643i
\(713\) 677.560i 0.950294i
\(714\) −29.8526 185.981i −0.0418104 0.260477i
\(715\) −24.8215 + 516.532i −0.0347154 + 0.722423i
\(716\) 805.101 464.825i 1.12444 0.649197i
\(717\) −37.2531 45.8088i −0.0519569 0.0638896i
\(718\) −85.3977 −0.118938
\(719\) 115.750 + 66.8285i 0.160988 + 0.0929464i 0.578330 0.815803i \(-0.303705\pi\)
−0.417342 + 0.908750i \(0.637038\pi\)
\(720\) −297.153 + 332.792i −0.412713 + 0.462211i
\(721\) 713.311 1235.49i 0.989335 1.71358i
\(722\) 73.5470 42.4624i 0.101866 0.0588122i
\(723\) −333.556 + 271.258i −0.461350 + 0.375184i
\(724\) −530.136 −0.732232
\(725\) −131.296 75.8037i −0.181098 0.104557i
\(726\) 1.32438 0.212582i 0.00182421 0.000292812i
\(727\) −50.8543 + 88.0822i −0.0699509 + 0.121159i −0.898879 0.438196i \(-0.855618\pi\)
0.828929 + 0.559354i \(0.188951\pi\)
\(728\) −348.018 16.7238i −0.478047 0.0229722i
\(729\) −421.111 + 595.068i −0.577656 + 0.816280i
\(730\) 75.8427 + 131.363i 0.103894 + 0.179950i
\(731\) 969.377i 1.32610i
\(732\) 632.383 514.273i 0.863912 0.702559i
\(733\) 326.946 + 566.287i 0.446038 + 0.772561i 0.998124 0.0612267i \(-0.0195013\pi\)
−0.552086 + 0.833787i \(0.686168\pi\)
\(734\) 75.3077i 0.102599i
\(735\) 141.364 22.6909i 0.192331 0.0308720i
\(736\) −325.035 + 562.977i −0.441624 + 0.764915i
\(737\) −228.657 132.015i −0.310254 0.179125i
\(738\) −14.5834 + 70.0390i −0.0197607 + 0.0949038i
\(739\) 163.941 + 283.953i 0.221841 + 0.384240i 0.955367 0.295421i \(-0.0954600\pi\)
−0.733526 + 0.679661i \(0.762127\pi\)
\(740\) 24.0864 + 13.9063i 0.0325492 + 0.0187923i
\(741\) −297.704 404.271i −0.401760 0.545575i
\(742\) 154.351 + 267.345i 0.208021 + 0.360303i
\(743\) 497.490 + 287.226i 0.669570 + 0.386576i 0.795914 0.605410i \(-0.206991\pi\)
−0.126344 + 0.991987i \(0.540324\pi\)
\(744\) −131.177 161.304i −0.176313 0.216806i
\(745\) −135.450 234.606i −0.181812 0.314907i
\(746\) 41.5679i 0.0557210i
\(747\) 1035.38 + 215.585i 1.38605 + 0.288601i
\(748\) 385.153 667.105i 0.514911 0.891852i
\(749\) −552.725 319.116i −0.737950 0.426056i
\(750\) −27.5742 171.786i −0.0367656 0.229048i
\(751\) −251.966 + 436.417i −0.335507 + 0.581115i −0.983582 0.180462i \(-0.942241\pi\)
0.648075 + 0.761576i \(0.275574\pi\)
\(752\) −233.053 134.553i −0.309911 0.178927i
\(753\) −250.939 + 657.800i −0.333253 + 0.873573i
\(754\) −59.9089 38.5364i −0.0794547 0.0511093i
\(755\) 295.165i 0.390947i
\(756\) −437.906 + 683.605i −0.579240 + 0.904240i
\(757\) −171.376 296.832i −0.226389 0.392117i 0.730346 0.683077i \(-0.239359\pi\)
−0.956735 + 0.290960i \(0.906025\pi\)
\(758\) 26.4489 15.2703i 0.0348930 0.0201455i
\(759\) 1028.31 + 392.281i 1.35482 + 0.516839i
\(760\) 157.469 0.207196
\(761\) 679.506i 0.892912i 0.894806 + 0.446456i \(0.147314\pi\)
−0.894806 + 0.446456i \(0.852686\pi\)
\(762\) 31.3995 + 38.6108i 0.0412067 + 0.0506704i
\(763\) 650.886 + 1127.37i 0.853061 + 1.47755i
\(764\) 436.538 252.035i 0.571385 0.329889i
\(765\) −563.239 + 185.598i −0.736261 + 0.242612i
\(766\) 189.264 0.247081
\(767\) −557.127 + 866.111i −0.726371 + 1.12922i
\(768\) −68.1586 424.625i −0.0887481 0.552897i
\(769\) −186.936 + 323.782i −0.243089 + 0.421043i −0.961593 0.274481i \(-0.911494\pi\)
0.718503 + 0.695523i \(0.244827\pi\)