Properties

Label 117.3.k.a.29.12
Level $117$
Weight $3$
Character 117.29
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(29,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.29");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 29.12
Character \(\chi\) \(=\) 117.29
Dual form 117.3.k.a.113.15

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.487810i q^{2} +(1.50104 + 2.59748i) q^{3} +3.76204 q^{4} +(-6.04718 + 3.49134i) q^{5} +(1.26708 - 0.732220i) q^{6} +(3.63606 + 6.29784i) q^{7} -3.78640i q^{8} +(-4.49379 + 7.79781i) q^{9} +(1.70311 + 2.94987i) q^{10} -13.2988i q^{11} +(5.64696 + 9.77182i) q^{12} +(-6.86798 + 11.0377i) q^{13} +(3.07215 - 1.77371i) q^{14} +(-18.1457 - 10.4668i) q^{15} +13.2011 q^{16} +(10.7424 + 6.20212i) q^{17} +(3.80385 + 2.19211i) q^{18} +(15.6319 - 27.0752i) q^{19} +(-22.7497 + 13.1346i) q^{20} +(-10.9006 + 18.8979i) q^{21} -6.48729 q^{22} +(25.0371 + 14.4552i) q^{23} +(9.83509 - 5.68352i) q^{24} +(11.8789 - 20.5748i) q^{25} +(5.38430 + 3.35027i) q^{26} +(-27.0000 + 0.0322797i) q^{27} +(13.6790 + 23.6927i) q^{28} -27.2026i q^{29} +(-5.10580 + 8.85165i) q^{30} +(-3.11269 - 5.39134i) q^{31} -21.5852i q^{32} +(34.5433 - 19.9620i) q^{33} +(3.02546 - 5.24024i) q^{34} +(-43.9758 - 25.3894i) q^{35} +(-16.9058 + 29.3357i) q^{36} +(-2.38864 - 4.13724i) q^{37} +(-13.2076 - 7.62539i) q^{38} +(-38.9793 - 1.27144i) q^{39} +(13.2196 + 22.8970i) q^{40} +(-15.2056 - 8.77897i) q^{41} +(9.21857 + 5.31745i) q^{42} +(-34.2827 - 59.3793i) q^{43} -50.0306i q^{44} +(-0.0500886 - 62.8441i) q^{45} +(7.05138 - 12.2134i) q^{46} +(-33.6396 - 19.4218i) q^{47} +(19.8153 + 34.2896i) q^{48} +(-1.94186 + 3.36341i) q^{49} +(-10.0366 - 5.79464i) q^{50} +(0.0148298 + 37.2127i) q^{51} +(-25.8376 + 41.5243i) q^{52} +39.0799i q^{53} +(0.0157463 + 13.1709i) q^{54} +(46.4306 + 80.4202i) q^{55} +(23.8462 - 13.7676i) q^{56} +(93.7913 - 0.0373772i) q^{57} -13.2697 q^{58} +48.4526i q^{59} +(-68.2649 - 39.3765i) q^{60} +(34.3961 + 59.5759i) q^{61} +(-2.62995 + 1.51840i) q^{62} +(-65.4491 + 0.0521648i) q^{63} +42.2750 q^{64} +(2.99552 - 90.7254i) q^{65} +(-9.73765 - 16.8506i) q^{66} +(35.4579 - 61.4149i) q^{67} +(40.4133 + 23.3326i) q^{68} +(0.0345636 + 86.7311i) q^{69} +(-12.3852 + 21.4518i) q^{70} +(31.5031 + 18.1883i) q^{71} +(29.5256 + 17.0153i) q^{72} -65.7582 q^{73} +(-2.01819 + 1.16520i) q^{74} +(71.2733 - 0.0284034i) q^{75} +(58.8078 - 101.858i) q^{76} +(83.7537 - 48.3552i) q^{77} +(-0.620223 + 19.0145i) q^{78} +(14.2831 - 24.7390i) q^{79} +(-79.8295 + 46.0896i) q^{80} +(-40.6118 - 70.0834i) q^{81} +(-4.28247 + 7.41745i) q^{82} +(117.848 + 68.0393i) q^{83} +(-41.0087 + 71.0946i) q^{84} -86.6148 q^{85} +(-28.9658 + 16.7234i) q^{86} +(70.6581 - 40.8320i) q^{87} -50.3546 q^{88} +(-107.549 + 62.0934i) q^{89} +(-30.6560 + 0.0244337i) q^{90} +(-94.4861 - 3.11968i) q^{91} +(94.1906 + 54.3810i) q^{92} +(9.33163 - 16.1777i) q^{93} +(-9.47417 + 16.4097i) q^{94} +218.305i q^{95} +(56.0672 - 32.4002i) q^{96} +(16.5765 + 28.7113i) q^{97} +(1.64070 + 0.947261i) q^{98} +(103.702 + 59.7620i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - q^{3} - 98 q^{4} - 6 q^{5} + 12 q^{6} - q^{7} - 3 q^{9} - 6 q^{10} - 39 q^{12} + 4 q^{13} - 6 q^{14} - 25 q^{15} + 166 q^{16} + 34 q^{18} + 5 q^{19} + 21 q^{20} - 91 q^{21} + 30 q^{22} - 75 q^{23}+ \cdots + 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.487810i 0.243905i −0.992536 0.121952i \(-0.961084\pi\)
0.992536 0.121952i \(-0.0389156\pi\)
\(3\) 1.50104 + 2.59748i 0.500345 + 0.865826i
\(4\) 3.76204 0.940510
\(5\) −6.04718 + 3.49134i −1.20944 + 0.698268i −0.962636 0.270799i \(-0.912712\pi\)
−0.246799 + 0.969067i \(0.579379\pi\)
\(6\) 1.26708 0.732220i 0.211179 0.122037i
\(7\) 3.63606 + 6.29784i 0.519437 + 0.899692i 0.999745 + 0.0225914i \(0.00719168\pi\)
−0.480308 + 0.877100i \(0.659475\pi\)
\(8\) 3.78640i 0.473300i
\(9\) −4.49379 + 7.79781i −0.499310 + 0.866424i
\(10\) 1.70311 + 2.94987i 0.170311 + 0.294987i
\(11\) 13.2988i 1.20898i −0.796612 0.604491i \(-0.793377\pi\)
0.796612 0.604491i \(-0.206623\pi\)
\(12\) 5.64696 + 9.77182i 0.470580 + 0.814318i
\(13\) −6.86798 + 11.0377i −0.528306 + 0.849054i
\(14\) 3.07215 1.77371i 0.219439 0.126693i
\(15\) −18.1457 10.4668i −1.20971 0.697786i
\(16\) 13.2011 0.825070
\(17\) 10.7424 + 6.20212i 0.631905 + 0.364831i 0.781490 0.623918i \(-0.214460\pi\)
−0.149584 + 0.988749i \(0.547794\pi\)
\(18\) 3.80385 + 2.19211i 0.211325 + 0.121784i
\(19\) 15.6319 27.0752i 0.822731 1.42501i −0.0809106 0.996721i \(-0.525783\pi\)
0.903641 0.428290i \(-0.140884\pi\)
\(20\) −22.7497 + 13.1346i −1.13749 + 0.656728i
\(21\) −10.9006 + 18.8979i −0.519079 + 0.899898i
\(22\) −6.48729 −0.294877
\(23\) 25.0371 + 14.4552i 1.08857 + 0.628486i 0.933195 0.359370i \(-0.117008\pi\)
0.155374 + 0.987856i \(0.450342\pi\)
\(24\) 9.83509 5.68352i 0.409796 0.236813i
\(25\) 11.8789 20.5748i 0.475155 0.822993i
\(26\) 5.38430 + 3.35027i 0.207089 + 0.128856i
\(27\) −27.0000 + 0.0322797i −0.999999 + 0.00119554i
\(28\) 13.6790 + 23.6927i 0.488536 + 0.846169i
\(29\) 27.2026i 0.938020i −0.883193 0.469010i \(-0.844611\pi\)
0.883193 0.469010i \(-0.155389\pi\)
\(30\) −5.10580 + 8.85165i −0.170193 + 0.295055i
\(31\) −3.11269 5.39134i −0.100409 0.173914i 0.811444 0.584430i \(-0.198682\pi\)
−0.911853 + 0.410516i \(0.865349\pi\)
\(32\) 21.5852i 0.674539i
\(33\) 34.5433 19.9620i 1.04677 0.604908i
\(34\) 3.02546 5.24024i 0.0889840 0.154125i
\(35\) −43.9758 25.3894i −1.25645 0.725412i
\(36\) −16.9058 + 29.3357i −0.469606 + 0.814880i
\(37\) −2.38864 4.13724i −0.0645577 0.111817i 0.831940 0.554866i \(-0.187230\pi\)
−0.896498 + 0.443048i \(0.853897\pi\)
\(38\) −13.2076 7.62539i −0.347567 0.200668i
\(39\) −38.9793 1.27144i −0.999468 0.0326011i
\(40\) 13.2196 + 22.8970i 0.330490 + 0.572426i
\(41\) −15.2056 8.77897i −0.370869 0.214121i 0.302969 0.953000i \(-0.402022\pi\)
−0.673838 + 0.738879i \(0.735355\pi\)
\(42\) 9.21857 + 5.31745i 0.219490 + 0.126606i
\(43\) −34.2827 59.3793i −0.797272 1.38091i −0.921387 0.388647i \(-0.872943\pi\)
0.124115 0.992268i \(-0.460391\pi\)
\(44\) 50.0306i 1.13706i
\(45\) −0.0500886 62.8441i −0.00111308 1.39653i
\(46\) 7.05138 12.2134i 0.153291 0.265508i
\(47\) −33.6396 19.4218i −0.715737 0.413231i 0.0974449 0.995241i \(-0.468933\pi\)
−0.813181 + 0.582010i \(0.802266\pi\)
\(48\) 19.8153 + 34.2896i 0.412820 + 0.714367i
\(49\) −1.94186 + 3.36341i −0.0396299 + 0.0686410i
\(50\) −10.0366 5.79464i −0.200732 0.115893i
\(51\) 0.0148298 + 37.2127i 0.000290781 + 0.729661i
\(52\) −25.8376 + 41.5243i −0.496877 + 0.798544i
\(53\) 39.0799i 0.737357i 0.929557 + 0.368678i \(0.120190\pi\)
−0.929557 + 0.368678i \(0.879810\pi\)
\(54\) 0.0157463 + 13.1709i 0.000291599 + 0.243905i
\(55\) 46.4306 + 80.4202i 0.844193 + 1.46218i
\(56\) 23.8462 13.7676i 0.425824 0.245850i
\(57\) 93.7913 0.0373772i 1.64546 0.000655740i
\(58\) −13.2697 −0.228788
\(59\) 48.4526i 0.821230i 0.911809 + 0.410615i \(0.134686\pi\)
−0.911809 + 0.410615i \(0.865314\pi\)
\(60\) −68.2649 39.3765i −1.13775 0.656275i
\(61\) 34.3961 + 59.5759i 0.563871 + 0.976653i 0.997154 + 0.0753953i \(0.0240219\pi\)
−0.433283 + 0.901258i \(0.642645\pi\)
\(62\) −2.62995 + 1.51840i −0.0424186 + 0.0244904i
\(63\) −65.4491 + 0.0521648i −1.03887 + 0.000828013i
\(64\) 42.2750 0.660547
\(65\) 2.99552 90.7254i 0.0460848 1.39577i
\(66\) −9.73765 16.8506i −0.147540 0.255312i
\(67\) 35.4579 61.4149i 0.529222 0.916640i −0.470197 0.882562i \(-0.655817\pi\)
0.999419 0.0340783i \(-0.0108496\pi\)
\(68\) 40.4133 + 23.3326i 0.594313 + 0.343127i
\(69\) 0.0345636 + 86.7311i 0.000500922 + 1.25697i
\(70\) −12.3852 + 21.4518i −0.176932 + 0.306455i
\(71\) 31.5031 + 18.1883i 0.443705 + 0.256173i 0.705168 0.709040i \(-0.250872\pi\)
−0.261463 + 0.965214i \(0.584205\pi\)
\(72\) 29.5256 + 17.0153i 0.410078 + 0.236323i
\(73\) −65.7582 −0.900797 −0.450398 0.892828i \(-0.648718\pi\)
−0.450398 + 0.892828i \(0.648718\pi\)
\(74\) −2.01819 + 1.16520i −0.0272728 + 0.0157459i
\(75\) 71.2733 0.0284034i 0.950311 0.000378713i
\(76\) 58.8078 101.858i 0.773787 1.34024i
\(77\) 83.7537 48.3552i 1.08771 0.627990i
\(78\) −0.620223 + 19.0145i −0.00795157 + 0.243775i
\(79\) 14.2831 24.7390i 0.180798 0.313152i −0.761354 0.648336i \(-0.775465\pi\)
0.942153 + 0.335184i \(0.108799\pi\)
\(80\) −79.8295 + 46.0896i −0.997869 + 0.576120i
\(81\) −40.6118 70.0834i −0.501380 0.865227i
\(82\) −4.28247 + 7.41745i −0.0522252 + 0.0904567i
\(83\) 117.848 + 68.0393i 1.41985 + 0.819751i 0.996285 0.0861146i \(-0.0274451\pi\)
0.423565 + 0.905866i \(0.360778\pi\)
\(84\) −41.0087 + 71.0946i −0.488199 + 0.846364i
\(85\) −86.6148 −1.01900
\(86\) −28.9658 + 16.7234i −0.336812 + 0.194459i
\(87\) 70.6581 40.8320i 0.812162 0.469334i
\(88\) −50.3546 −0.572211
\(89\) −107.549 + 62.0934i −1.20842 + 0.697679i −0.962413 0.271591i \(-0.912450\pi\)
−0.246002 + 0.969269i \(0.579117\pi\)
\(90\) −30.6560 + 0.0244337i −0.340622 + 0.000271486i
\(91\) −94.4861 3.11968i −1.03831 0.0342822i
\(92\) 94.1906 + 54.3810i 1.02381 + 0.591098i
\(93\) 9.33163 16.1777i 0.100340 0.173954i
\(94\) −9.47417 + 16.4097i −0.100789 + 0.174572i
\(95\) 218.305i 2.29794i
\(96\) 56.0672 32.4002i 0.584033 0.337502i
\(97\) 16.5765 + 28.7113i 0.170891 + 0.295992i 0.938732 0.344649i \(-0.112002\pi\)
−0.767840 + 0.640641i \(0.778669\pi\)
\(98\) 1.64070 + 0.947261i 0.0167419 + 0.00966592i
\(99\) 103.702 + 59.7620i 1.04749 + 0.603656i
\(100\) 44.6889 77.4034i 0.446889 0.774034i
\(101\) 103.928i 1.02899i −0.857493 0.514496i \(-0.827979\pi\)
0.857493 0.514496i \(-0.172021\pi\)
\(102\) 18.1527 0.00723413i 0.177968 7.09228e-5i
\(103\) 55.7564 + 96.5729i 0.541324 + 0.937601i 0.998828 + 0.0483936i \(0.0154102\pi\)
−0.457504 + 0.889208i \(0.651256\pi\)
\(104\) 41.7932 + 26.0049i 0.401857 + 0.250047i
\(105\) −0.0607083 152.337i −0.000578175 1.45082i
\(106\) 19.0636 0.179845
\(107\) −95.0812 + 54.8952i −0.888609 + 0.513039i −0.873487 0.486847i \(-0.838147\pi\)
−0.0151221 + 0.999886i \(0.504814\pi\)
\(108\) −101.575 + 0.121437i −0.940510 + 0.00112442i
\(109\) −173.169 −1.58871 −0.794355 0.607454i \(-0.792191\pi\)
−0.794355 + 0.607454i \(0.792191\pi\)
\(110\) 39.2298 22.6493i 0.356634 0.205903i
\(111\) 7.16096 12.4146i 0.0645131 0.111843i
\(112\) 48.0001 + 83.1386i 0.428572 + 0.742309i
\(113\) 67.6124i 0.598340i 0.954200 + 0.299170i \(0.0967097\pi\)
−0.954200 + 0.299170i \(0.903290\pi\)
\(114\) −0.0182330 45.7523i −0.000159938 0.401336i
\(115\) −201.872 −1.75541
\(116\) 102.337i 0.882218i
\(117\) −55.2067 103.156i −0.471852 0.881678i
\(118\) 23.6356 0.200302
\(119\) 90.2051i 0.758026i
\(120\) −39.6314 + 68.7069i −0.330262 + 0.572557i
\(121\) −55.8580 −0.461637
\(122\) 29.0617 16.7788i 0.238211 0.137531i
\(123\) −0.0209913 52.6738i −0.000170661 0.428242i
\(124\) −11.7101 20.2825i −0.0944361 0.163568i
\(125\) 8.67411i 0.0693929i
\(126\) 0.0254465 + 31.9267i 0.000201956 + 0.253387i
\(127\) −80.7093 139.793i −0.635506 1.10073i −0.986408 0.164317i \(-0.947458\pi\)
0.350902 0.936412i \(-0.385875\pi\)
\(128\) 106.963i 0.835650i
\(129\) 102.777 178.179i 0.796721 1.38123i
\(130\) −44.2567 1.46124i −0.340436 0.0112403i
\(131\) 115.941 66.9384i 0.885044 0.510980i 0.0127257 0.999919i \(-0.495949\pi\)
0.872318 + 0.488939i \(0.162616\pi\)
\(132\) 129.953 75.0977i 0.984496 0.568922i
\(133\) 227.354 1.70943
\(134\) −29.9588 17.2967i −0.223573 0.129080i
\(135\) 163.161 94.4613i 1.20860 0.699713i
\(136\) 23.4837 40.6750i 0.172674 0.299081i
\(137\) −56.9217 + 32.8638i −0.415487 + 0.239882i −0.693145 0.720798i \(-0.743775\pi\)
0.277657 + 0.960680i \(0.410442\pi\)
\(138\) 42.3083 0.0168605i 0.306582 0.000122177i
\(139\) −106.816 −0.768459 −0.384229 0.923238i \(-0.625533\pi\)
−0.384229 + 0.923238i \(0.625533\pi\)
\(140\) −165.439 95.5161i −1.18171 0.682258i
\(141\) −0.0464393 116.531i −0.000329357 0.826461i
\(142\) 8.87244 15.3675i 0.0624820 0.108222i
\(143\) 146.788 + 91.3359i 1.02649 + 0.638712i
\(144\) −59.3230 + 102.940i −0.411965 + 0.714860i
\(145\) 94.9734 + 164.499i 0.654989 + 1.13447i
\(146\) 32.0775i 0.219709i
\(147\) −11.6512 + 0.00464316i −0.0792597 + 3.15862e-5i
\(148\) −8.98614 15.5645i −0.0607172 0.105165i
\(149\) 72.8766i 0.489105i −0.969636 0.244552i \(-0.921359\pi\)
0.969636 0.244552i \(-0.0786410\pi\)
\(150\) −0.0138555 34.7678i −9.23699e−5 0.231786i
\(151\) −27.9610 + 48.4298i −0.185172 + 0.320727i −0.943634 0.330989i \(-0.892618\pi\)
0.758462 + 0.651717i \(0.225951\pi\)
\(152\) −102.518 59.1886i −0.674458 0.389399i
\(153\) −96.6370 + 55.8961i −0.631614 + 0.365334i
\(154\) −23.5882 40.8559i −0.153170 0.265298i
\(155\) 37.6460 + 21.7349i 0.242877 + 0.140225i
\(156\) −146.642 4.78322i −0.940010 0.0306617i
\(157\) −53.6483 92.9215i −0.341709 0.591857i 0.643041 0.765831i \(-0.277672\pi\)
−0.984750 + 0.173975i \(0.944339\pi\)
\(158\) −12.0679 6.96742i −0.0763793 0.0440976i
\(159\) −101.509 + 58.6603i −0.638423 + 0.368933i
\(160\) 75.3614 + 130.530i 0.471009 + 0.815811i
\(161\) 210.240i 1.30584i
\(162\) −34.1874 + 19.8108i −0.211033 + 0.122289i
\(163\) −10.9857 + 19.0279i −0.0673972 + 0.116735i −0.897755 0.440495i \(-0.854803\pi\)
0.830358 + 0.557231i \(0.188136\pi\)
\(164\) −57.2042 33.0268i −0.348806 0.201383i
\(165\) −139.196 + 241.316i −0.843610 + 1.46252i
\(166\) 33.1903 57.4872i 0.199941 0.346309i
\(167\) 89.1759 + 51.4858i 0.533988 + 0.308298i 0.742639 0.669692i \(-0.233574\pi\)
−0.208651 + 0.977990i \(0.566907\pi\)
\(168\) 71.5549 + 41.2742i 0.425922 + 0.245680i
\(169\) −74.6617 151.613i −0.441786 0.897121i
\(170\) 42.2516i 0.248539i
\(171\) 140.881 + 243.565i 0.823866 + 1.42436i
\(172\) −128.973 223.388i −0.749842 1.29876i
\(173\) 37.8574 21.8570i 0.218829 0.126341i −0.386579 0.922256i \(-0.626343\pi\)
0.605408 + 0.795915i \(0.293010\pi\)
\(174\) −19.9183 34.4677i −0.114473 0.198090i
\(175\) 172.769 0.987253
\(176\) 175.559i 0.997495i
\(177\) −125.854 + 72.7290i −0.711042 + 0.410898i
\(178\) 30.2898 + 52.4634i 0.170167 + 0.294738i
\(179\) −72.0040 + 41.5715i −0.402257 + 0.232243i −0.687457 0.726225i \(-0.741273\pi\)
0.285200 + 0.958468i \(0.407940\pi\)
\(180\) −0.188435 236.422i −0.00104686 1.31346i
\(181\) 187.685 1.03693 0.518467 0.855098i \(-0.326503\pi\)
0.518467 + 0.855098i \(0.326503\pi\)
\(182\) −1.52181 + 46.0912i −0.00836161 + 0.253249i
\(183\) −103.117 + 178.769i −0.563482 + 0.976878i
\(184\) 54.7331 94.8005i 0.297463 0.515220i
\(185\) 28.8890 + 16.6791i 0.156157 + 0.0901571i
\(186\) −7.89167 4.55206i −0.0424283 0.0244735i
\(187\) 82.4807 142.861i 0.441073 0.763962i
\(188\) −126.554 73.0658i −0.673158 0.388648i
\(189\) −98.3768 169.924i −0.520512 0.899070i
\(190\) 106.491 0.560480
\(191\) −20.2778 + 11.7074i −0.106167 + 0.0612954i −0.552143 0.833749i \(-0.686190\pi\)
0.445976 + 0.895045i \(0.352856\pi\)
\(192\) 63.4562 + 109.808i 0.330501 + 0.571919i
\(193\) −66.0165 + 114.344i −0.342054 + 0.592456i −0.984814 0.173612i \(-0.944456\pi\)
0.642760 + 0.766068i \(0.277789\pi\)
\(194\) 14.0056 8.08616i 0.0721940 0.0416812i
\(195\) 240.154 128.401i 1.23156 0.658468i
\(196\) −7.30537 + 12.6533i −0.0372723 + 0.0645575i
\(197\) 174.634 100.825i 0.886468 0.511802i 0.0136824 0.999906i \(-0.495645\pi\)
0.872786 + 0.488104i \(0.162311\pi\)
\(198\) 29.1525 50.5866i 0.147235 0.255488i
\(199\) −166.537 + 288.450i −0.836868 + 1.44950i 0.0556333 + 0.998451i \(0.482282\pi\)
−0.892501 + 0.451046i \(0.851051\pi\)
\(200\) −77.9046 44.9782i −0.389523 0.224891i
\(201\) 212.747 0.0847829i 1.05844 0.000421805i
\(202\) −50.6972 −0.250976
\(203\) 171.318 98.9102i 0.843929 0.487242i
\(204\) 0.0557903 + 139.996i 0.000273482 + 0.686254i
\(205\) 122.601 0.598055
\(206\) 47.1092 27.1985i 0.228686 0.132032i
\(207\) −225.230 + 130.276i −1.08807 + 0.629354i
\(208\) −90.6650 + 145.710i −0.435889 + 0.700529i
\(209\) −360.068 207.885i −1.72281 0.994666i
\(210\) −74.3113 + 0.0296141i −0.353863 + 0.000141020i
\(211\) −78.6862 + 136.289i −0.372921 + 0.645917i −0.990013 0.140973i \(-0.954977\pi\)
0.617093 + 0.786890i \(0.288310\pi\)
\(212\) 147.020i 0.693492i
\(213\) 0.0434898 + 109.130i 0.000204178 + 0.512347i
\(214\) 26.7784 + 46.3816i 0.125133 + 0.216736i
\(215\) 414.627 + 239.385i 1.92850 + 1.11342i
\(216\) 0.122224 + 102.233i 0.000565851 + 0.473300i
\(217\) 22.6359 39.2065i 0.104313 0.180675i
\(218\) 84.4737i 0.387494i
\(219\) −98.7053 170.805i −0.450709 0.779933i
\(220\) 174.674 + 302.544i 0.793972 + 1.37520i
\(221\) −142.236 + 75.9752i −0.643600 + 0.343779i
\(222\) −6.05595 3.49319i −0.0272791 0.0157351i
\(223\) −205.234 −0.920334 −0.460167 0.887832i \(-0.652210\pi\)
−0.460167 + 0.887832i \(0.652210\pi\)
\(224\) 135.940 78.4852i 0.606877 0.350381i
\(225\) 107.058 + 185.088i 0.475811 + 0.822614i
\(226\) 32.9820 0.145938
\(227\) 22.3106 12.8810i 0.0982846 0.0567447i −0.450052 0.893002i \(-0.648595\pi\)
0.548337 + 0.836258i \(0.315261\pi\)
\(228\) 352.847 0.140615i 1.54757 0.000616730i
\(229\) −130.146 225.419i −0.568323 0.984364i −0.996732 0.0807792i \(-0.974259\pi\)
0.428409 0.903585i \(-0.359074\pi\)
\(230\) 98.4750i 0.428152i
\(231\) 251.319 + 144.966i 1.08796 + 0.627556i
\(232\) −103.000 −0.443965
\(233\) 294.729i 1.26493i −0.774588 0.632466i \(-0.782043\pi\)
0.774588 0.632466i \(-0.217957\pi\)
\(234\) −50.3207 + 26.9304i −0.215046 + 0.115087i
\(235\) 271.233 1.15418
\(236\) 182.281i 0.772375i
\(237\) 85.6984 0.0341520i 0.361596 0.000144101i
\(238\) 44.0030 0.184886
\(239\) −108.604 + 62.7024i −0.454409 + 0.262353i −0.709690 0.704514i \(-0.751165\pi\)
0.255282 + 0.966867i \(0.417832\pi\)
\(240\) −239.544 138.173i −0.998098 0.575722i
\(241\) 6.56320 + 11.3678i 0.0272332 + 0.0471693i 0.879321 0.476230i \(-0.157997\pi\)
−0.852088 + 0.523399i \(0.824664\pi\)
\(242\) 27.2481i 0.112595i
\(243\) 121.080 210.686i 0.498273 0.867020i
\(244\) 129.400 + 224.127i 0.530327 + 0.918553i
\(245\) 27.1188i 0.110689i
\(246\) −25.6948 + 0.0102398i −0.104450 + 4.16250e-5i
\(247\) 191.489 + 358.492i 0.775258 + 1.45138i
\(248\) −20.4138 + 11.7859i −0.0823137 + 0.0475238i
\(249\) 0.162688 + 408.236i 0.000653365 + 1.63950i
\(250\) −4.23132 −0.0169253
\(251\) −273.785 158.070i −1.09078 0.629760i −0.156993 0.987600i \(-0.550180\pi\)
−0.933783 + 0.357840i \(0.883513\pi\)
\(252\) −246.222 + 0.196246i −0.977072 + 0.000778755i
\(253\) 192.237 332.963i 0.759828 1.31606i
\(254\) −68.1922 + 39.3708i −0.268473 + 0.155003i
\(255\) −130.012 224.980i −0.509850 0.882275i
\(256\) 116.922 0.456728
\(257\) −344.952 199.158i −1.34223 0.774934i −0.355092 0.934831i \(-0.615550\pi\)
−0.987134 + 0.159897i \(0.948884\pi\)
\(258\) −86.9175 50.1357i −0.336889 0.194324i
\(259\) 17.3704 30.0865i 0.0670673 0.116164i
\(260\) 11.2693 341.313i 0.0433433 1.31274i
\(261\) 212.121 + 122.243i 0.812723 + 0.468362i
\(262\) −32.6532 56.5571i −0.124631 0.215867i
\(263\) 275.471i 1.04742i −0.851897 0.523709i \(-0.824548\pi\)
0.851897 0.523709i \(-0.175452\pi\)
\(264\) −75.5840 130.795i −0.286303 0.495435i
\(265\) −136.441 236.323i −0.514872 0.891785i
\(266\) 110.905i 0.416938i
\(267\) −322.721 186.152i −1.20869 0.697197i
\(268\) 133.394 231.045i 0.497739 0.862109i
\(269\) 22.6267 + 13.0635i 0.0841140 + 0.0485632i 0.541467 0.840722i \(-0.317869\pi\)
−0.457353 + 0.889285i \(0.651202\pi\)
\(270\) −46.0791 79.5915i −0.170664 0.294783i
\(271\) 112.570 + 194.976i 0.415386 + 0.719470i 0.995469 0.0950874i \(-0.0303131\pi\)
−0.580083 + 0.814558i \(0.696980\pi\)
\(272\) 141.812 + 81.8749i 0.521366 + 0.301011i
\(273\) −133.724 250.108i −0.489830 0.916147i
\(274\) 16.0313 + 27.7670i 0.0585083 + 0.101339i
\(275\) −273.621 157.975i −0.994984 0.574454i
\(276\) 0.130030 + 326.286i 0.000471122 + 1.18220i
\(277\) 39.9487 + 69.1931i 0.144219 + 0.249795i 0.929081 0.369876i \(-0.120600\pi\)
−0.784862 + 0.619670i \(0.787266\pi\)
\(278\) 52.1058i 0.187431i
\(279\) 56.0285 0.0446563i 0.200819 0.000160058i
\(280\) −96.1346 + 166.510i −0.343338 + 0.594678i
\(281\) −20.7840 11.9996i −0.0739643 0.0427033i 0.462562 0.886587i \(-0.346930\pi\)
−0.536526 + 0.843884i \(0.680264\pi\)
\(282\) −56.8450 + 0.0226536i −0.201578 + 8.03318e-5i
\(283\) 143.648 248.806i 0.507591 0.879174i −0.492370 0.870386i \(-0.663869\pi\)
0.999961 0.00878782i \(-0.00279729\pi\)
\(284\) 118.516 + 68.4252i 0.417310 + 0.240934i
\(285\) −567.042 + 327.683i −1.98962 + 1.14977i
\(286\) 44.5545 71.6047i 0.155785 0.250366i
\(287\) 127.683i 0.444890i
\(288\) 168.318 + 96.9995i 0.584436 + 0.336804i
\(289\) −67.5674 117.030i −0.233797 0.404949i
\(290\) 80.2441 46.3290i 0.276704 0.159755i
\(291\) −49.6950 + 86.1536i −0.170773 + 0.296061i
\(292\) −247.385 −0.847209
\(293\) 273.356i 0.932954i 0.884533 + 0.466477i \(0.154477\pi\)
−0.884533 + 0.466477i \(0.845523\pi\)
\(294\) 0.00226498 + 5.68356i 7.70402e−6 + 0.0193318i
\(295\) −169.164 293.001i −0.573438 0.993224i
\(296\) −15.6652 + 9.04433i −0.0529231 + 0.0305552i
\(297\) 0.429281 + 359.067i 0.00144539 + 1.20898i
\(298\) −35.5499 −0.119295
\(299\) −331.506 + 177.074i −1.10872 + 0.592222i
\(300\) 268.133 0.106855i 0.893777 0.000356183i
\(301\) 249.308 431.814i 0.828265 1.43460i
\(302\) 23.6246 + 13.6396i 0.0782270 + 0.0451644i
\(303\) 269.951 156.000i 0.890928 0.514851i
\(304\) 206.358 357.423i 0.678810 1.17573i
\(305\) −415.999 240.177i −1.36393 0.787466i
\(306\) 27.2667 + 47.1405i 0.0891068 + 0.154054i
\(307\) 20.3839 0.0663972 0.0331986 0.999449i \(-0.489431\pi\)
0.0331986 + 0.999449i \(0.489431\pi\)
\(308\) 315.085 181.914i 1.02300 0.590631i
\(309\) −167.154 + 289.785i −0.540951 + 0.937817i
\(310\) 10.6025 18.3641i 0.0342017 0.0592390i
\(311\) 335.207 193.532i 1.07783 0.622288i 0.147523 0.989059i \(-0.452870\pi\)
0.930312 + 0.366770i \(0.119537\pi\)
\(312\) −4.81420 + 147.591i −0.0154301 + 0.473049i
\(313\) −220.375 + 381.701i −0.704074 + 1.21949i 0.262951 + 0.964809i \(0.415304\pi\)
−0.967025 + 0.254682i \(0.918029\pi\)
\(314\) −45.3280 + 26.1702i −0.144357 + 0.0833444i
\(315\) 395.600 228.820i 1.25587 0.726413i
\(316\) 53.7335 93.0691i 0.170043 0.294522i
\(317\) 419.972 + 242.471i 1.32483 + 0.764892i 0.984495 0.175412i \(-0.0561257\pi\)
0.340337 + 0.940304i \(0.389459\pi\)
\(318\) 28.6151 + 49.5172i 0.0899846 + 0.155714i
\(319\) −361.762 −1.13405
\(320\) −255.644 + 147.596i −0.798888 + 0.461238i
\(321\) −285.309 164.572i −0.888814 0.512685i
\(322\) 102.557 0.318500
\(323\) 335.847 193.902i 1.03978 0.600315i
\(324\) −152.783 263.657i −0.471553 0.813755i
\(325\) 145.515 + 272.423i 0.447738 + 0.838225i
\(326\) 9.28198 + 5.35895i 0.0284723 + 0.0164385i
\(327\) −259.933 449.803i −0.794903 1.37555i
\(328\) −33.2407 + 57.5746i −0.101344 + 0.175532i
\(329\) 282.476i 0.858590i
\(330\) 117.716 + 67.9010i 0.356716 + 0.205761i
\(331\) 196.505 + 340.357i 0.593671 + 1.02827i 0.993733 + 0.111780i \(0.0356551\pi\)
−0.400062 + 0.916488i \(0.631012\pi\)
\(332\) 443.347 + 255.967i 1.33538 + 0.770984i
\(333\) 42.9954 0.0342686i 0.129115 0.000102909i
\(334\) 25.1153 43.5009i 0.0751954 0.130242i
\(335\) 495.182i 1.47816i
\(336\) −143.901 + 249.473i −0.428276 + 0.742479i
\(337\) 214.778 + 372.007i 0.637324 + 1.10388i 0.986018 + 0.166641i \(0.0532922\pi\)
−0.348693 + 0.937237i \(0.613374\pi\)
\(338\) −73.9585 + 36.4207i −0.218812 + 0.107754i
\(339\) −175.622 + 101.489i −0.518058 + 0.299376i
\(340\) −325.848 −0.958378
\(341\) −71.6984 + 41.3951i −0.210259 + 0.121393i
\(342\) 118.813 68.7232i 0.347407 0.200945i
\(343\) 328.091 0.956533
\(344\) −224.834 + 129.808i −0.653587 + 0.377349i
\(345\) −303.017 524.357i −0.878309 1.51988i
\(346\) −10.6621 18.4672i −0.0308152 0.0533735i
\(347\) 249.804i 0.719895i −0.932972 0.359948i \(-0.882795\pi\)
0.932972 0.359948i \(-0.117205\pi\)
\(348\) 265.819 153.612i 0.763847 0.441413i
\(349\) 387.832 1.11127 0.555634 0.831427i \(-0.312476\pi\)
0.555634 + 0.831427i \(0.312476\pi\)
\(350\) 84.2786i 0.240796i
\(351\) 185.079 298.239i 0.527291 0.849685i
\(352\) −287.058 −0.815505
\(353\) 286.323i 0.811114i −0.914070 0.405557i \(-0.867078\pi\)
0.914070 0.405557i \(-0.132922\pi\)
\(354\) 35.4779 + 61.3931i 0.100220 + 0.173427i
\(355\) −254.006 −0.715511
\(356\) −404.604 + 233.598i −1.13653 + 0.656174i
\(357\) −234.306 + 135.401i −0.656319 + 0.379275i
\(358\) 20.2790 + 35.1243i 0.0566452 + 0.0981124i
\(359\) 481.579i 1.34145i 0.741708 + 0.670723i \(0.234016\pi\)
−0.741708 + 0.670723i \(0.765984\pi\)
\(360\) −237.953 + 0.189655i −0.660980 + 0.000526820i
\(361\) −308.212 533.838i −0.853772 1.47878i
\(362\) 91.5546i 0.252913i
\(363\) −83.8449 145.090i −0.230978 0.399697i
\(364\) −355.461 11.7364i −0.976540 0.0322428i
\(365\) 397.651 229.584i 1.08946 0.628997i
\(366\) 87.2051 + 50.3016i 0.238265 + 0.137436i
\(367\) −442.946 −1.20694 −0.603469 0.797387i \(-0.706215\pi\)
−0.603469 + 0.797387i \(0.706215\pi\)
\(368\) 330.518 + 190.825i 0.898146 + 0.518545i
\(369\) 136.788 79.1197i 0.370698 0.214417i
\(370\) 8.13622 14.0923i 0.0219898 0.0380874i
\(371\) −246.119 + 142.097i −0.663394 + 0.383010i
\(372\) 35.1060 60.8614i 0.0943709 0.163606i
\(373\) 158.675 0.425401 0.212701 0.977117i \(-0.431774\pi\)
0.212701 + 0.977117i \(0.431774\pi\)
\(374\) −69.6889 40.2349i −0.186334 0.107580i
\(375\) 22.5308 13.0201i 0.0600821 0.0347204i
\(376\) −73.5389 + 127.373i −0.195582 + 0.338758i
\(377\) 300.254 + 186.827i 0.796430 + 0.495562i
\(378\) −82.8907 + 47.9892i −0.219288 + 0.126956i
\(379\) −234.605 406.347i −0.619009 1.07216i −0.989667 0.143386i \(-0.954201\pi\)
0.370657 0.928770i \(-0.379132\pi\)
\(380\) 821.272i 2.16124i
\(381\) 241.961 419.474i 0.635067 1.10098i
\(382\) 5.71099 + 9.89173i 0.0149502 + 0.0258946i
\(383\) 274.219i 0.715977i 0.933726 + 0.357989i \(0.116537\pi\)
−0.933726 + 0.357989i \(0.883463\pi\)
\(384\) 277.834 160.555i 0.723527 0.418113i
\(385\) −337.649 + 584.825i −0.877010 + 1.51903i
\(386\) 55.7781 + 32.2035i 0.144503 + 0.0834288i
\(387\) 617.088 0.491837i 1.59454 0.00127090i
\(388\) 62.3613 + 108.013i 0.160725 + 0.278384i
\(389\) −422.859 244.138i −1.08704 0.627603i −0.154254 0.988031i \(-0.549297\pi\)
−0.932787 + 0.360428i \(0.882631\pi\)
\(390\) −62.6354 117.149i −0.160604 0.300383i
\(391\) 179.306 + 310.566i 0.458582 + 0.794287i
\(392\) 12.7352 + 7.35268i 0.0324878 + 0.0187568i
\(393\) 347.902 + 200.677i 0.885247 + 0.510628i
\(394\) −49.1835 85.1883i −0.124831 0.216214i
\(395\) 199.468i 0.504982i
\(396\) 390.129 + 224.827i 0.985175 + 0.567745i
\(397\) −188.010 + 325.643i −0.473577 + 0.820260i −0.999542 0.0302462i \(-0.990371\pi\)
0.525965 + 0.850506i \(0.323704\pi\)
\(398\) 140.709 + 81.2382i 0.353540 + 0.204116i
\(399\) 341.266 + 590.547i 0.855304 + 1.48007i
\(400\) 156.815 271.611i 0.392036 0.679027i
\(401\) 0.743410 + 0.429208i 0.00185389 + 0.00107034i 0.500927 0.865490i \(-0.332993\pi\)
−0.499073 + 0.866560i \(0.666326\pi\)
\(402\) −0.0413579 103.780i −0.000102880 0.258160i
\(403\) 80.8859 + 2.67064i 0.200710 + 0.00662691i
\(404\) 390.982i 0.967777i
\(405\) 490.271 + 282.017i 1.21055 + 0.696339i
\(406\) −48.2494 83.5704i −0.118841 0.205838i
\(407\) −55.0203 + 31.7660i −0.135185 + 0.0780491i
\(408\) 140.902 0.0561516i 0.345349 0.000137626i
\(409\) 331.210 0.809805 0.404903 0.914360i \(-0.367305\pi\)
0.404903 + 0.914360i \(0.367305\pi\)
\(410\) 59.8062i 0.145869i
\(411\) −170.805 98.5233i −0.415583 0.239716i
\(412\) 209.758 + 363.311i 0.509121 + 0.881824i
\(413\) −305.147 + 176.176i −0.738854 + 0.426577i
\(414\) 63.5500 + 109.870i 0.153502 + 0.265385i
\(415\) −950.193 −2.28962
\(416\) 238.251 + 148.247i 0.572720 + 0.356363i
\(417\) −160.334 277.452i −0.384494 0.665352i
\(418\) −101.409 + 175.645i −0.242604 + 0.420203i
\(419\) −475.959 274.795i −1.13594 0.655836i −0.190519 0.981684i \(-0.561017\pi\)
−0.945422 + 0.325848i \(0.894350\pi\)
\(420\) −0.228387 573.096i −0.000543779 1.36452i
\(421\) 12.9173 22.3734i 0.0306824 0.0531435i −0.850276 0.526336i \(-0.823565\pi\)
0.880959 + 0.473193i \(0.156899\pi\)
\(422\) 66.4829 + 38.3839i 0.157542 + 0.0909572i
\(423\) 302.617 175.038i 0.715407 0.413801i
\(424\) 147.972 0.348991
\(425\) 255.215 147.349i 0.600506 0.346702i
\(426\) 53.2346 0.0212148i 0.124964 4.97999e-5i
\(427\) −250.133 + 433.243i −0.585791 + 1.01462i
\(428\) −357.699 + 206.518i −0.835746 + 0.482518i
\(429\) −16.9087 + 518.377i −0.0394142 + 1.20834i
\(430\) 116.774 202.259i 0.271568 0.470370i
\(431\) −319.892 + 184.690i −0.742209 + 0.428514i −0.822872 0.568227i \(-0.807630\pi\)
0.0806632 + 0.996741i \(0.474296\pi\)
\(432\) −356.430 + 0.426128i −0.825069 + 0.000986407i
\(433\) 201.061 348.248i 0.464344 0.804268i −0.534827 0.844961i \(-0.679623\pi\)
0.999172 + 0.0406935i \(0.0129567\pi\)
\(434\) −19.1253 11.0420i −0.0440676 0.0254424i
\(435\) −284.724 + 493.610i −0.654537 + 1.13474i
\(436\) −651.470 −1.49420
\(437\) 782.754 451.923i 1.79120 1.03415i
\(438\) −83.3206 + 48.1494i −0.190230 + 0.109930i
\(439\) 157.502 0.358774 0.179387 0.983779i \(-0.442589\pi\)
0.179387 + 0.983779i \(0.442589\pi\)
\(440\) 304.503 175.805i 0.692052 0.399557i
\(441\) −17.5009 30.2567i −0.0396846 0.0686093i
\(442\) 37.0615 + 69.3840i 0.0838495 + 0.156977i
\(443\) 479.178 + 276.653i 1.08167 + 0.624500i 0.931345 0.364138i \(-0.118636\pi\)
0.150320 + 0.988637i \(0.451970\pi\)
\(444\) 26.9398 46.7041i 0.0606753 0.105189i
\(445\) 433.578 750.979i 0.974333 1.68759i
\(446\) 100.115i 0.224474i
\(447\) 189.295 109.390i 0.423480 0.244721i
\(448\) 153.714 + 266.241i 0.343112 + 0.594288i
\(449\) 581.789 + 335.896i 1.29574 + 0.748098i 0.979666 0.200635i \(-0.0643007\pi\)
0.316078 + 0.948733i \(0.397634\pi\)
\(450\) 90.2879 52.2237i 0.200640 0.116053i
\(451\) −116.750 + 202.216i −0.258869 + 0.448373i
\(452\) 254.361i 0.562745i
\(453\) −167.766 + 0.0668571i −0.370344 + 0.000147587i
\(454\) −6.28350 10.8833i −0.0138403 0.0239721i
\(455\) 582.266 311.018i 1.27970 0.683555i
\(456\) −0.141525 355.131i −0.000310362 0.778797i
\(457\) 448.574 0.981562 0.490781 0.871283i \(-0.336711\pi\)
0.490781 + 0.871283i \(0.336711\pi\)
\(458\) −109.962 + 63.4865i −0.240091 + 0.138617i
\(459\) −290.244 167.110i −0.632341 0.364075i
\(460\) −759.450 −1.65098
\(461\) 57.5536 33.2286i 0.124845 0.0720793i −0.436277 0.899812i \(-0.643703\pi\)
0.561122 + 0.827733i \(0.310370\pi\)
\(462\) 70.7156 122.596i 0.153064 0.265359i
\(463\) −31.2533 54.1323i −0.0675018 0.116916i 0.830299 0.557318i \(-0.188169\pi\)
−0.897801 + 0.440401i \(0.854836\pi\)
\(464\) 359.105i 0.773932i
\(465\) 0.0519701 + 130.410i 0.000111764 + 0.280451i
\(466\) −143.772 −0.308523
\(467\) 138.519i 0.296615i −0.988941 0.148308i \(-0.952617\pi\)
0.988941 0.148308i \(-0.0473826\pi\)
\(468\) −207.690 388.078i −0.443782 0.829227i
\(469\) 515.708 1.09959
\(470\) 132.310i 0.281511i
\(471\) 160.834 278.829i 0.341473 0.591993i
\(472\) 183.461 0.388688
\(473\) −789.674 + 455.918i −1.66950 + 0.963887i
\(474\) −0.0166597 41.8045i −3.51471e−5 0.0881952i
\(475\) −371.379 643.247i −0.781850 1.35420i
\(476\) 339.355i 0.712932i
\(477\) −304.738 175.617i −0.638863 0.368169i
\(478\) 30.5868 + 52.9780i 0.0639892 + 0.110833i
\(479\) 498.237i 1.04016i 0.854117 + 0.520081i \(0.174098\pi\)
−0.854117 + 0.520081i \(0.825902\pi\)
\(480\) −225.928 + 391.679i −0.470684 + 0.815999i
\(481\) 62.0707 + 2.04941i 0.129045 + 0.00426073i
\(482\) 5.54533 3.20160i 0.0115048 0.00664232i
\(483\) −546.093 + 315.577i −1.13063 + 0.653369i
\(484\) −210.140 −0.434174
\(485\) −200.481 115.748i −0.413364 0.238656i
\(486\) −102.775 59.0642i −0.211470 0.121531i
\(487\) 54.8187 94.9488i 0.112564 0.194967i −0.804239 0.594306i \(-0.797427\pi\)
0.916803 + 0.399339i \(0.130760\pi\)
\(488\) 225.578 130.238i 0.462250 0.266880i
\(489\) −65.9144 + 0.0262679i −0.134794 + 5.37175e-5i
\(490\) −13.2288 −0.0269976
\(491\) 258.961 + 149.511i 0.527416 + 0.304504i 0.739964 0.672647i \(-0.234843\pi\)
−0.212548 + 0.977151i \(0.568176\pi\)
\(492\) −0.0789700 198.161i −0.000160508 0.402766i
\(493\) 168.714 292.221i 0.342218 0.592740i
\(494\) 174.876 93.4101i 0.354000 0.189089i
\(495\) −835.751 + 0.666118i −1.68838 + 0.00134569i
\(496\) −41.0910 71.1718i −0.0828448 0.143491i
\(497\) 264.535i 0.532264i
\(498\) 199.142 0.0793608i 0.399883 0.000159359i
\(499\) −146.467 253.688i −0.293521 0.508394i 0.681119 0.732173i \(-0.261494\pi\)
−0.974640 + 0.223779i \(0.928160\pi\)
\(500\) 32.6324i 0.0652647i
\(501\) 0.123107 + 308.914i 0.000245722 + 0.616596i
\(502\) −77.1080 + 133.555i −0.153602 + 0.266046i
\(503\) −695.889 401.772i −1.38348 0.798751i −0.390908 0.920430i \(-0.627839\pi\)
−0.992570 + 0.121679i \(0.961172\pi\)
\(504\) 0.197517 + 247.816i 0.000391899 + 0.491699i
\(505\) 362.848 + 628.472i 0.718512 + 1.24450i
\(506\) −162.423 93.7749i −0.320994 0.185326i
\(507\) 281.743 421.509i 0.555705 0.831379i
\(508\) −303.632 525.905i −0.597700 1.03525i
\(509\) −518.067 299.106i −1.01781 0.587634i −0.104343 0.994541i \(-0.533274\pi\)
−0.913470 + 0.406907i \(0.866607\pi\)
\(510\) −109.748 + 63.4211i −0.215191 + 0.124355i
\(511\) −239.101 414.134i −0.467907 0.810439i
\(512\) 484.888i 0.947048i
\(513\) −421.187 + 731.535i −0.821026 + 1.42599i
\(514\) −97.1513 + 168.271i −0.189010 + 0.327376i
\(515\) −674.337 389.329i −1.30939 0.755978i
\(516\) 386.651 670.317i 0.749324 1.29906i
\(517\) −258.287 + 447.367i −0.499588 + 0.865312i
\(518\) −14.6765 8.47347i −0.0283330 0.0163581i
\(519\) 113.598 + 65.5257i 0.218879 + 0.126254i
\(520\) −343.523 11.3422i −0.660620 0.0218120i
\(521\) 133.778i 0.256772i 0.991724 + 0.128386i \(0.0409797\pi\)
−0.991724 + 0.128386i \(0.959020\pi\)
\(522\) 59.6312 103.475i 0.114236 0.198227i
\(523\) −42.9618 74.4120i −0.0821449 0.142279i 0.822026 0.569450i \(-0.192844\pi\)
−0.904171 + 0.427171i \(0.859510\pi\)
\(524\) 436.174 251.825i 0.832393 0.480582i
\(525\) 259.333 + 448.765i 0.493967 + 0.854790i
\(526\) −134.377 −0.255471
\(527\) 77.2212i 0.146530i
\(528\) 456.011 263.520i 0.863657 0.499092i
\(529\) 153.404 + 265.704i 0.289990 + 0.502277i
\(530\) −115.281 + 66.5574i −0.217511 + 0.125580i
\(531\) −377.824 217.735i −0.711533 0.410048i
\(532\) 855.315 1.60773
\(533\) 201.331 107.541i 0.377733 0.201766i
\(534\) −90.8066 + 157.427i −0.170050 + 0.294806i
\(535\) 383.315 663.921i 0.716477 1.24097i
\(536\) −232.541 134.258i −0.433846 0.250481i
\(537\) −216.062 124.628i −0.402349 0.232083i
\(538\) 6.37251 11.0375i 0.0118448 0.0205158i
\(539\) 44.7293 + 25.8245i 0.0829857 + 0.0479118i
\(540\) 613.818 355.367i 1.13670 0.658087i
\(541\) 92.8838 0.171689 0.0858445 0.996309i \(-0.472641\pi\)
0.0858445 + 0.996309i \(0.472641\pi\)
\(542\) 95.1115 54.9126i 0.175482 0.101315i
\(543\) 281.722 + 487.508i 0.518825 + 0.897804i
\(544\) 133.874 231.877i 0.246092 0.426245i
\(545\) 1047.18 604.593i 1.92144 1.10934i
\(546\) −122.005 + 65.2317i −0.223453 + 0.119472i
\(547\) −296.920 + 514.281i −0.542815 + 0.940184i 0.455926 + 0.890018i \(0.349308\pi\)
−0.998741 + 0.0501659i \(0.984025\pi\)
\(548\) −214.142 + 123.635i −0.390770 + 0.225611i
\(549\) −619.130 + 0.493465i −1.12774 + 0.000898843i
\(550\) −77.0617 + 133.475i −0.140112 + 0.242681i
\(551\) −736.516 425.228i −1.33669 0.771738i
\(552\) 328.399 0.130872i 0.594925 0.000237086i
\(553\) 207.736 0.375653
\(554\) 33.7531 19.4874i 0.0609262 0.0351757i
\(555\) 0.0398811 + 100.074i 7.18578e−5 + 0.180314i
\(556\) −401.845 −0.722743
\(557\) −341.237 + 197.014i −0.612635 + 0.353705i −0.773996 0.633191i \(-0.781745\pi\)
0.161361 + 0.986895i \(0.448412\pi\)
\(558\) −0.0217838 27.3312i −3.90391e−5 0.0489807i
\(559\) 890.864 + 29.4140i 1.59367 + 0.0526190i
\(560\) −580.530 335.169i −1.03666 0.598516i
\(561\) 494.884 0.197219i 0.882147 0.000351548i
\(562\) −5.85354 + 10.1386i −0.0104156 + 0.0180403i
\(563\) 428.281i 0.760712i 0.924840 + 0.380356i \(0.124199\pi\)
−0.924840 + 0.380356i \(0.875801\pi\)
\(564\) −0.174707 438.395i −0.000309764 0.777295i
\(565\) −236.058 408.864i −0.417801 0.723653i
\(566\) −121.370 70.0731i −0.214435 0.123804i
\(567\) 293.707 510.594i 0.518002 0.900518i
\(568\) 68.8683 119.283i 0.121247 0.210006i
\(569\) 305.673i 0.537211i −0.963250 0.268605i \(-0.913437\pi\)
0.963250 0.268605i \(-0.0865628\pi\)
\(570\) 159.847 + 276.609i 0.280434 + 0.485278i
\(571\) 557.263 + 965.207i 0.975941 + 1.69038i 0.676793 + 0.736173i \(0.263369\pi\)
0.299148 + 0.954207i \(0.403297\pi\)
\(572\) 552.223 + 343.609i 0.965425 + 0.600716i
\(573\) −60.8475 35.0980i −0.106191 0.0612530i
\(574\) −62.2852 −0.108511
\(575\) 594.826 343.423i 1.03448 0.597257i
\(576\) −189.975 + 329.652i −0.329817 + 0.572313i
\(577\) −701.400 −1.21560 −0.607799 0.794091i \(-0.707947\pi\)
−0.607799 + 0.794091i \(0.707947\pi\)
\(578\) −57.0885 + 32.9601i −0.0987690 + 0.0570243i
\(579\) −396.099 + 0.157851i −0.684109 + 0.000272627i
\(580\) 357.294 + 618.851i 0.616024 + 1.06698i
\(581\) 989.580i 1.70324i
\(582\) 42.0266 + 24.2417i 0.0722106 + 0.0416525i
\(583\) 519.716 0.891451
\(584\) 248.987i 0.426347i
\(585\) 693.998 + 431.059i 1.18632 + 0.736853i
\(586\) 133.346 0.227552
\(587\) 361.472i 0.615795i 0.951419 + 0.307898i \(0.0996254\pi\)
−0.951419 + 0.307898i \(0.900375\pi\)
\(588\) −43.8322 + 0.0174678i −0.0745446 + 2.97071e-5i
\(589\) −194.629 −0.330440
\(590\) −142.929 + 82.5200i −0.242252 + 0.139864i
\(591\) 524.023 + 302.266i 0.886672 + 0.511449i
\(592\) −31.5327 54.6162i −0.0532646 0.0922571i
\(593\) 389.500i 0.656829i −0.944534 0.328415i \(-0.893486\pi\)
0.944534 0.328415i \(-0.106514\pi\)
\(594\) 175.157 0.209407i 0.294876 0.000352538i
\(595\) −314.937 545.486i −0.529305 0.916783i
\(596\) 274.165i 0.460008i
\(597\) −999.220 + 0.398204i −1.67373 + 0.000667008i
\(598\) 86.3786 + 161.712i 0.144446 + 0.270422i
\(599\) −608.526 + 351.333i −1.01590 + 0.586532i −0.912915 0.408151i \(-0.866174\pi\)
−0.102989 + 0.994683i \(0.532840\pi\)
\(600\) −0.107547 269.869i −0.000179245 0.449782i
\(601\) 648.967 1.07981 0.539906 0.841725i \(-0.318460\pi\)
0.539906 + 0.841725i \(0.318460\pi\)
\(602\) −210.643 121.615i −0.349905 0.202018i
\(603\) 319.561 + 552.479i 0.529953 + 0.916218i
\(604\) −105.190 + 182.195i −0.174156 + 0.301647i
\(605\) 337.783 195.019i 0.558319 0.322346i
\(606\) −76.0983 131.685i −0.125575 0.217302i
\(607\) 179.712 0.296066 0.148033 0.988982i \(-0.452706\pi\)
0.148033 + 0.988982i \(0.452706\pi\)
\(608\) −584.425 337.418i −0.961226 0.554964i
\(609\) 514.071 + 296.526i 0.844123 + 0.486906i
\(610\) −117.161 + 202.928i −0.192067 + 0.332670i
\(611\) 445.409 237.915i 0.728983 0.389387i
\(612\) −363.552 + 210.284i −0.594040 + 0.343601i
\(613\) 232.871 + 403.344i 0.379887 + 0.657983i 0.991045 0.133525i \(-0.0426296\pi\)
−0.611159 + 0.791508i \(0.709296\pi\)
\(614\) 9.94349i 0.0161946i
\(615\) 184.029 + 318.454i 0.299234 + 0.517812i
\(616\) −183.092 317.125i −0.297228 0.514814i
\(617\) 408.565i 0.662180i 0.943599 + 0.331090i \(0.107416\pi\)
−0.943599 + 0.331090i \(0.892584\pi\)
\(618\) 141.360 + 81.5393i 0.228738 + 0.131941i
\(619\) 490.018 848.736i 0.791628 1.37114i −0.133330 0.991072i \(-0.542567\pi\)
0.924958 0.380068i \(-0.124100\pi\)
\(620\) 141.626 + 81.7677i 0.228429 + 0.131883i
\(621\) −676.468 389.481i −1.08932 0.627184i
\(622\) −94.4067 163.517i −0.151779 0.262889i
\(623\) −782.109 451.551i −1.25539 0.724801i
\(624\) −514.570 16.7845i −0.824632 0.0268982i
\(625\) 327.256 + 566.825i 0.523610 + 0.906919i
\(626\) 186.197 + 107.501i 0.297440 + 0.171727i
\(627\) −0.497072 1247.31i −0.000792778 1.98933i
\(628\) −201.827 349.575i −0.321381 0.556647i
\(629\) 59.2584i 0.0942105i
\(630\) −111.621 192.978i −0.177176 0.306314i
\(631\) −215.458 + 373.184i −0.341455 + 0.591417i −0.984703 0.174241i \(-0.944253\pi\)
0.643249 + 0.765657i \(0.277586\pi\)
\(632\) −93.6717 54.0814i −0.148215 0.0855718i
\(633\) −472.117 + 0.188146i −0.745841 + 0.000297229i
\(634\) 118.280 204.866i 0.186561 0.323133i
\(635\) 976.126 + 563.567i 1.53721 + 0.887507i
\(636\) −381.882 + 220.683i −0.600443 + 0.346985i
\(637\) −23.7876 44.5335i −0.0373432 0.0699113i
\(638\) 176.471i 0.276600i
\(639\) −283.397 + 163.921i −0.443501 + 0.256527i
\(640\) 373.444 + 646.825i 0.583507 + 1.01066i
\(641\) 844.464 487.551i 1.31742 0.760610i 0.334104 0.942536i \(-0.391566\pi\)
0.983312 + 0.181926i \(0.0582331\pi\)
\(642\) −80.2798 + 139.177i −0.125046 + 0.216786i
\(643\) −236.578 −0.367928 −0.183964 0.982933i \(-0.558893\pi\)
−0.183964 + 0.982933i \(0.558893\pi\)
\(644\) 790.930i 1.22815i
\(645\) 0.572390 + 1436.31i 0.000887426 + 2.22684i
\(646\) −94.5872 163.830i −0.146420 0.253606i
\(647\) 456.680 263.665i 0.705843 0.407519i −0.103677 0.994611i \(-0.533061\pi\)
0.809520 + 0.587092i \(0.199727\pi\)
\(648\) −265.364 + 153.772i −0.409512 + 0.237303i
\(649\) 644.361 0.992852
\(650\) 132.891 70.9836i 0.204447 0.109206i
\(651\) 135.815 0.0541243i 0.208626 8.31403e-5i
\(652\) −41.3288 + 71.5836i −0.0633877 + 0.109791i
\(653\) −656.842 379.228i −1.00588 0.580747i −0.0958996 0.995391i \(-0.530573\pi\)
−0.909984 + 0.414644i \(0.863906\pi\)
\(654\) −219.419 + 126.798i −0.335502 + 0.193881i
\(655\) −467.409 + 809.577i −0.713602 + 1.23599i
\(656\) −200.731 115.892i −0.305993 0.176665i
\(657\) 295.503 512.770i 0.449776 0.780472i
\(658\) −137.795 −0.209414
\(659\) −604.853 + 349.212i −0.917835 + 0.529912i −0.882944 0.469479i \(-0.844442\pi\)
−0.0348912 + 0.999391i \(0.511108\pi\)
\(660\) −523.660 + 907.841i −0.793424 + 1.37552i
\(661\) −449.994 + 779.413i −0.680778 + 1.17914i 0.293966 + 0.955816i \(0.405025\pi\)
−0.974744 + 0.223326i \(0.928309\pi\)
\(662\) 166.029 95.8571i 0.250800 0.144799i
\(663\) −410.845 255.412i −0.619675 0.385237i
\(664\) 257.624 446.218i 0.387988 0.672015i
\(665\) −1374.85 + 793.769i −2.06744 + 1.19364i
\(666\) −0.0167166 20.9736i −2.50999e−5 0.0314919i
\(667\) 393.218 681.074i 0.589533 1.02110i
\(668\) 335.484 + 193.692i 0.502221 + 0.289957i
\(669\) −308.064 533.092i −0.460485 0.796849i
\(670\) 241.555 0.360529
\(671\) 792.287 457.427i 1.18076 0.681710i
\(672\) 407.915 + 235.293i 0.607016 + 0.350139i
\(673\) 902.419 1.34089 0.670445 0.741959i \(-0.266103\pi\)
0.670445 + 0.741959i \(0.266103\pi\)
\(674\) 181.469 104.771i 0.269241 0.155447i
\(675\) −320.065 + 555.903i −0.474171 + 0.823561i
\(676\) −280.881 570.376i −0.415504 0.843751i
\(677\) 420.355 + 242.692i 0.620908 + 0.358482i 0.777223 0.629226i \(-0.216628\pi\)
−0.156314 + 0.987707i \(0.549961\pi\)
\(678\) 49.5071 + 85.6700i 0.0730194 + 0.126357i
\(679\) −120.546 + 208.792i −0.177535 + 0.307499i
\(680\) 327.958i 0.482292i
\(681\) 66.9472 + 38.6164i 0.0983072 + 0.0567055i
\(682\) 20.1929 + 34.9752i 0.0296084 + 0.0512833i
\(683\) −788.943 455.497i −1.15511 0.666906i −0.204986 0.978765i \(-0.565715\pi\)
−0.950128 + 0.311859i \(0.899048\pi\)
\(684\) 530.001 + 916.301i 0.774855 + 1.33962i
\(685\) 229.477 397.466i 0.335003 0.580243i
\(686\) 160.046i 0.233303i
\(687\) 390.168 676.414i 0.567930 0.984590i
\(688\) −452.570 783.874i −0.657805 1.13935i
\(689\) −431.352 268.400i −0.626056 0.389550i
\(690\) −255.787 + 147.814i −0.370705 + 0.214224i
\(691\) 847.527 1.22652 0.613261 0.789880i \(-0.289857\pi\)
0.613261 + 0.789880i \(0.289857\pi\)
\(692\) 142.421 82.2269i 0.205811 0.118825i
\(693\) 0.693729 + 870.394i 0.00100105 + 1.25598i
\(694\) −121.857 −0.175586
\(695\) 645.934 372.930i 0.929401 0.536590i
\(696\) −154.606 267.540i −0.222136 0.384396i
\(697\) −108.896 188.614i −0.156236 0.270608i
\(698\) 189.189i 0.271044i
\(699\) 765.552 442.399i 1.09521 0.632902i
\(700\) 649.965 0.928522
\(701\) 127.812i 0.182328i −0.995836 0.0911638i \(-0.970941\pi\)
0.995836 0.0911638i \(-0.0290587\pi\)
\(702\) −145.484 90.2834i −0.207242 0.128609i
\(703\) −149.355 −0.212454
\(704\) 562.207i 0.798589i
\(705\) 407.130 + 704.522i 0.577490 + 0.999321i
\(706\) −139.671 −0.197835
\(707\) 654.523 377.889i 0.925775 0.534496i
\(708\) −473.470 + 273.610i −0.668743 + 0.386454i
\(709\) 267.367 + 463.093i 0.377104 + 0.653164i 0.990640 0.136504i \(-0.0435865\pi\)
−0.613535 + 0.789667i \(0.710253\pi\)
\(710\) 123.907i 0.174517i
\(711\) 128.725 + 222.548i 0.181048 + 0.313008i
\(712\) 235.111 + 407.223i 0.330211 + 0.571943i
\(713\) 179.978i 0.252424i
\(714\) 66.0500 + 114.297i 0.0925070 + 0.160079i
\(715\) −1206.54 39.8368i −1.68747 0.0557157i
\(716\) −270.882 + 156.394i −0.378327 + 0.218427i
\(717\) −325.886 187.977i −0.454513 0.262172i
\(718\) 234.919 0.327185
\(719\) 999.991 + 577.345i 1.39081 + 0.802984i 0.993405 0.114660i \(-0.0365779\pi\)
0.397404 + 0.917644i \(0.369911\pi\)
\(720\) −0.661225 829.612i −0.000918368 1.15224i
\(721\) −405.467 + 702.290i −0.562368 + 0.974050i
\(722\) −260.412 + 150.349i −0.360681 + 0.208239i
\(723\) −19.6760 + 34.1112i −0.0272144 + 0.0471801i
\(724\) 706.079 0.975247
\(725\) −559.688 323.136i −0.771984 0.445705i
\(726\) −70.7764 + 40.9004i −0.0974881 + 0.0563366i
\(727\) −586.005 + 1014.99i −0.806059 + 1.39614i 0.109515 + 0.993985i \(0.465070\pi\)
−0.915574 + 0.402150i \(0.868263\pi\)
\(728\) −11.8124 + 357.762i −0.0162258 + 0.491432i
\(729\) 728.998 1.74310i 0.999997 0.00239108i
\(730\) −111.993 193.978i −0.153416 0.265724i
\(731\) 850.501i 1.16348i
\(732\) −387.931 + 672.535i −0.529961 + 0.918764i
\(733\) 320.692 + 555.455i 0.437506 + 0.757783i 0.997496 0.0707164i \(-0.0225285\pi\)
−0.559990 + 0.828499i \(0.689195\pi\)
\(734\) 216.074i 0.294378i
\(735\) 70.4405 40.7063i 0.0958374 0.0553827i
\(736\) 312.019 540.432i 0.423938 0.734283i
\(737\) −816.744 471.547i −1.10820 0.639820i
\(738\) −38.5954 66.7263i −0.0522973 0.0904151i
\(739\) −553.660 958.967i −0.749201 1.29766i −0.948206 0.317656i \(-0.897104\pi\)
0.199004 0.979999i \(-0.436229\pi\)
\(740\) 108.682 + 62.7473i 0.146867 + 0.0847937i
\(741\) −643.744 + 1035.50i −0.868750 + 1.39743i
\(742\) 69.3163 + 120.059i 0.0934182 + 0.161805i
\(743\) 724.903 + 418.523i 0.975643 + 0.563288i 0.900952 0.433919i \(-0.142870\pi\)
0.0746910 + 0.997207i \(0.476203\pi\)
\(744\) −61.2554 35.3333i −0.0823326 0.0474910i
\(745\) 254.437 + 440.698i 0.341526 + 0.591540i
\(746\) 77.4031i 0.103758i
\(747\) −1060.14 + 613.199i −1.41920 + 0.820882i
\(748\) 310.296 537.448i 0.414834 0.718514i
\(749\) −691.442 399.204i −0.923154 0.532983i
\(750\) −6.35135 10.9908i −0.00846847 0.0146543i
\(751\) 660.189 1143.48i 0.879080 1.52261i 0.0267285 0.999643i \(-0.491491\pi\)
0.852352 0.522969i \(-0.175176\pi\)
\(752\) −444.081 256.390i −0.590533 0.340944i
\(753\) −0.377958 948.418i −0.000501937 1.25952i
\(754\) 91.1359 146.467i 0.120870 0.194253i
\(755\) 390.485i 0.517199i
\(756\) −370.098 639.262i −0.489547 0.845585i
\(757\) 216.276 + 374.601i 0.285702 + 0.494850i 0.972779 0.231734i \(-0.0744400\pi\)
−0.687077 + 0.726584i \(0.741107\pi\)
\(758\) −198.220 + 114.442i −0.261504 + 0.150979i
\(759\) 1153.42 0.459654i 1.51966 0.000605605i
\(760\) 826.589 1.08762
\(761\) 564.390i 0.741642i 0.928704 + 0.370821i \(0.120924\pi\)
−0.928704 + 0.370821i \(0.879076\pi\)
\(762\) −204.624 118.031i −0.268535 0.154896i
\(763\) −629.654 1090.59i −0.825234 1.42935i
\(764\) −76.2861 + 44.0438i −0.0998509 + 0.0576489i
\(765\) 389.228 675.406i 0.508795 0.882884i
\(766\) 133.767 0.174630
\(767\) −534.805 332.771i −0.697269 0.433861i
\(768\) 175.504 + 303.703i 0.228521 + 0.395447i
\(769\) −387.663 + 671.452i −0.504113 + 0.873149i 0.495876 + 0.868393i \(0.334847\pi\)
−0.999989 + 0.00475571