Properties

Label 117.3.k.a.29.11
Level $117$
Weight $3$
Character 117.29
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(29,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.29");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 29.11
Character \(\chi\) \(=\) 117.29
Dual form 117.3.k.a.113.16

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.630376i q^{2} +(2.39963 + 1.80049i) q^{3} +3.60263 q^{4} +(1.96357 - 1.13367i) q^{5} +(1.13499 - 1.51267i) q^{6} +(-4.09731 - 7.09675i) q^{7} -4.79251i q^{8} +(2.51645 + 8.64103i) q^{9} +(-0.714636 - 1.23779i) q^{10} +19.9709i q^{11} +(8.64497 + 6.48650i) q^{12} +(-6.85862 - 11.0435i) q^{13} +(-4.47362 + 2.58285i) q^{14} +(6.75299 + 0.815008i) q^{15} +11.3894 q^{16} +(-5.86667 - 3.38712i) q^{17} +(5.44710 - 1.58631i) q^{18} +(6.12594 - 10.6104i) q^{19} +(7.07400 - 4.08417i) q^{20} +(2.94561 - 24.4067i) q^{21} +12.5892 q^{22} +(-11.7730 - 6.79717i) q^{23} +(8.62889 - 11.5003i) q^{24} +(-9.92960 + 17.1986i) q^{25} +(-6.96157 + 4.32351i) q^{26} +(-9.51956 + 25.2661i) q^{27} +(-14.7611 - 25.5669i) q^{28} +35.8609i q^{29} +(0.513762 - 4.25693i) q^{30} +(1.22045 + 2.11388i) q^{31} -26.3497i q^{32} +(-35.9575 + 47.9228i) q^{33} +(-2.13516 + 3.69821i) q^{34} +(-16.0907 - 9.28996i) q^{35} +(9.06584 + 31.1304i) q^{36} +(-30.7914 - 53.3322i) q^{37} +(-6.68857 - 3.86165i) q^{38} +(3.42562 - 38.8493i) q^{39} +(-5.43311 - 9.41042i) q^{40} +(-8.34931 - 4.82048i) q^{41} +(-15.3854 - 1.85684i) q^{42} +(26.2518 + 45.4694i) q^{43} +71.9477i q^{44} +(14.7373 + 14.1144i) q^{45} +(-4.28478 + 7.42145i) q^{46} +(-70.0665 - 40.4529i) q^{47} +(27.3304 + 20.5066i) q^{48} +(-9.07586 + 15.7199i) q^{49} +(10.8416 + 6.25939i) q^{50} +(-7.97935 - 18.6907i) q^{51} +(-24.7090 - 39.7857i) q^{52} +16.7330i q^{53} +(15.9272 + 6.00091i) q^{54} +(22.6403 + 39.2142i) q^{55} +(-34.0113 + 19.6364i) q^{56} +(33.8040 - 14.4314i) q^{57} +22.6059 q^{58} -6.77988i q^{59} +(24.3285 + 2.93617i) q^{60} +(-43.7577 - 75.7905i) q^{61} +(1.33254 - 0.769341i) q^{62} +(51.0125 - 53.2636i) q^{63} +28.9475 q^{64} +(-25.9870 - 13.9093i) q^{65} +(30.2094 + 22.6667i) q^{66} +(-4.07107 + 7.05130i) q^{67} +(-21.1354 - 12.2025i) q^{68} +(-16.0127 - 37.5080i) q^{69} +(-5.85617 + 10.1432i) q^{70} +(61.6181 + 35.5752i) q^{71} +(41.4123 - 12.0601i) q^{72} +49.6082 q^{73} +(-33.6194 + 19.4101i) q^{74} +(-54.7933 + 23.3921i) q^{75} +(22.0695 - 38.2254i) q^{76} +(141.728 - 81.8269i) q^{77} +(-24.4897 - 2.15943i) q^{78} +(10.9038 - 18.8860i) q^{79} +(22.3639 - 12.9118i) q^{80} +(-68.3349 + 43.4895i) q^{81} +(-3.03871 + 5.26321i) q^{82} +(83.1927 + 48.0313i) q^{83} +(10.6119 - 87.9283i) q^{84} -15.3595 q^{85} +(28.6629 - 16.5485i) q^{86} +(-64.5673 + 86.0529i) q^{87} +95.7108 q^{88} +(13.0504 - 7.53467i) q^{89} +(8.89740 - 9.29002i) q^{90} +(-50.2712 + 93.9226i) q^{91} +(-42.4139 - 24.4877i) q^{92} +(-0.877397 + 7.26993i) q^{93} +(-25.5006 + 44.1683i) q^{94} -27.7791i q^{95} +(47.4424 - 63.2295i) q^{96} +(59.9243 + 103.792i) q^{97} +(9.90942 + 5.72121i) q^{98} +(-172.569 + 50.2558i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - q^{3} - 98 q^{4} - 6 q^{5} + 12 q^{6} - q^{7} - 3 q^{9} - 6 q^{10} - 39 q^{12} + 4 q^{13} - 6 q^{14} - 25 q^{15} + 166 q^{16} + 34 q^{18} + 5 q^{19} + 21 q^{20} - 91 q^{21} + 30 q^{22} - 75 q^{23}+ \cdots + 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.630376i 0.315188i −0.987504 0.157594i \(-0.949626\pi\)
0.987504 0.157594i \(-0.0503737\pi\)
\(3\) 2.39963 + 1.80049i 0.799877 + 0.600164i
\(4\) 3.60263 0.900656
\(5\) 1.96357 1.13367i 0.392713 0.226733i −0.290622 0.956838i \(-0.593862\pi\)
0.683335 + 0.730105i \(0.260529\pi\)
\(6\) 1.13499 1.51267i 0.189165 0.252112i
\(7\) −4.09731 7.09675i −0.585330 1.01382i −0.994834 0.101513i \(-0.967632\pi\)
0.409505 0.912308i \(-0.365702\pi\)
\(8\) 4.79251i 0.599064i
\(9\) 2.51645 + 8.64103i 0.279606 + 0.960115i
\(10\) −0.714636 1.23779i −0.0714636 0.123779i
\(11\) 19.9709i 1.81554i 0.419472 + 0.907768i \(0.362215\pi\)
−0.419472 + 0.907768i \(0.637785\pi\)
\(12\) 8.64497 + 6.48650i 0.720414 + 0.540542i
\(13\) −6.85862 11.0435i −0.527586 0.849501i
\(14\) −4.47362 + 2.58285i −0.319544 + 0.184489i
\(15\) 6.75299 + 0.815008i 0.450199 + 0.0543339i
\(16\) 11.3894 0.711838
\(17\) −5.86667 3.38712i −0.345098 0.199243i 0.317426 0.948283i \(-0.397182\pi\)
−0.662524 + 0.749040i \(0.730515\pi\)
\(18\) 5.44710 1.58631i 0.302617 0.0881284i
\(19\) 6.12594 10.6104i 0.322418 0.558444i −0.658569 0.752521i \(-0.728838\pi\)
0.980986 + 0.194077i \(0.0621711\pi\)
\(20\) 7.07400 4.08417i 0.353700 0.204209i
\(21\) 2.94561 24.4067i 0.140267 1.16223i
\(22\) 12.5892 0.572236
\(23\) −11.7730 6.79717i −0.511872 0.295529i 0.221731 0.975108i \(-0.428829\pi\)
−0.733603 + 0.679579i \(0.762163\pi\)
\(24\) 8.62889 11.5003i 0.359537 0.479178i
\(25\) −9.92960 + 17.1986i −0.397184 + 0.687943i
\(26\) −6.96157 + 4.32351i −0.267753 + 0.166289i
\(27\) −9.51956 + 25.2661i −0.352576 + 0.935783i
\(28\) −14.7611 25.5669i −0.527181 0.913104i
\(29\) 35.8609i 1.23658i 0.785949 + 0.618292i \(0.212175\pi\)
−0.785949 + 0.618292i \(0.787825\pi\)
\(30\) 0.513762 4.25693i 0.0171254 0.141898i
\(31\) 1.22045 + 2.11388i 0.0393693 + 0.0681896i 0.885039 0.465518i \(-0.154132\pi\)
−0.845669 + 0.533707i \(0.820798\pi\)
\(32\) 26.3497i 0.823427i
\(33\) −35.9575 + 47.9228i −1.08962 + 1.45221i
\(34\) −2.13516 + 3.69821i −0.0627989 + 0.108771i
\(35\) −16.0907 9.28996i −0.459734 0.265427i
\(36\) 9.06584 + 31.1304i 0.251829 + 0.864734i
\(37\) −30.7914 53.3322i −0.832199 1.44141i −0.896291 0.443467i \(-0.853748\pi\)
0.0640919 0.997944i \(-0.479585\pi\)
\(38\) −6.68857 3.86165i −0.176015 0.101622i
\(39\) 3.42562 38.8493i 0.0878364 0.996135i
\(40\) −5.43311 9.41042i −0.135828 0.235261i
\(41\) −8.34931 4.82048i −0.203642 0.117573i 0.394711 0.918805i \(-0.370845\pi\)
−0.598353 + 0.801233i \(0.704178\pi\)
\(42\) −15.3854 1.85684i −0.366320 0.0442106i
\(43\) 26.2518 + 45.4694i 0.610507 + 1.05743i 0.991155 + 0.132709i \(0.0423676\pi\)
−0.380648 + 0.924720i \(0.624299\pi\)
\(44\) 71.9477i 1.63517i
\(45\) 14.7373 + 14.1144i 0.327495 + 0.313654i
\(46\) −4.28478 + 7.42145i −0.0931473 + 0.161336i
\(47\) −70.0665 40.4529i −1.49078 0.860701i −0.490833 0.871254i \(-0.663307\pi\)
−0.999944 + 0.0105532i \(0.996641\pi\)
\(48\) 27.3304 + 20.5066i 0.569383 + 0.427220i
\(49\) −9.07586 + 15.7199i −0.185222 + 0.320813i
\(50\) 10.8416 + 6.25939i 0.216832 + 0.125188i
\(51\) −7.97935 18.6907i −0.156458 0.366485i
\(52\) −24.7090 39.7857i −0.475174 0.765109i
\(53\) 16.7330i 0.315716i 0.987462 + 0.157858i \(0.0504589\pi\)
−0.987462 + 0.157858i \(0.949541\pi\)
\(54\) 15.9272 + 6.00091i 0.294948 + 0.111128i
\(55\) 22.6403 + 39.2142i 0.411642 + 0.712985i
\(56\) −34.0113 + 19.6364i −0.607344 + 0.350650i
\(57\) 33.8040 14.4314i 0.593053 0.253183i
\(58\) 22.6059 0.389756
\(59\) 6.77988i 0.114913i −0.998348 0.0574566i \(-0.981701\pi\)
0.998348 0.0574566i \(-0.0182991\pi\)
\(60\) 24.3285 + 2.93617i 0.405475 + 0.0489362i
\(61\) −43.7577 75.7905i −0.717339 1.24247i −0.962050 0.272872i \(-0.912027\pi\)
0.244711 0.969596i \(-0.421307\pi\)
\(62\) 1.33254 0.769341i 0.0214926 0.0124087i
\(63\) 51.0125 53.2636i 0.809723 0.845454i
\(64\) 28.9475 0.452304
\(65\) −25.9870 13.9093i −0.399800 0.213989i
\(66\) 30.2094 + 22.6667i 0.457718 + 0.343435i
\(67\) −4.07107 + 7.05130i −0.0607622 + 0.105243i −0.894806 0.446455i \(-0.852686\pi\)
0.834044 + 0.551698i \(0.186020\pi\)
\(68\) −21.1354 12.2025i −0.310815 0.179449i
\(69\) −16.0127 37.5080i −0.232068 0.543594i
\(70\) −5.85617 + 10.1432i −0.0836595 + 0.144903i
\(71\) 61.6181 + 35.5752i 0.867860 + 0.501059i 0.866636 0.498940i \(-0.166277\pi\)
0.00122342 + 0.999999i \(0.499611\pi\)
\(72\) 41.4123 12.0601i 0.575171 0.167502i
\(73\) 49.6082 0.679565 0.339782 0.940504i \(-0.389647\pi\)
0.339782 + 0.940504i \(0.389647\pi\)
\(74\) −33.6194 + 19.4101i −0.454316 + 0.262299i
\(75\) −54.7933 + 23.3921i −0.730577 + 0.311894i
\(76\) 22.0695 38.2254i 0.290388 0.502966i
\(77\) 141.728 81.8269i 1.84063 1.06269i
\(78\) −24.4897 2.15943i −0.313970 0.0276850i
\(79\) 10.9038 18.8860i 0.138023 0.239063i −0.788725 0.614746i \(-0.789259\pi\)
0.926748 + 0.375683i \(0.122592\pi\)
\(80\) 22.3639 12.9118i 0.279548 0.161397i
\(81\) −68.3349 + 43.4895i −0.843641 + 0.536907i
\(82\) −3.03871 + 5.26321i −0.0370575 + 0.0641855i
\(83\) 83.1927 + 48.0313i 1.00232 + 0.578691i 0.908934 0.416939i \(-0.136897\pi\)
0.0933871 + 0.995630i \(0.470231\pi\)
\(84\) 10.6119 87.9283i 0.126333 1.04677i
\(85\) −15.3595 −0.180700
\(86\) 28.6629 16.5485i 0.333289 0.192425i
\(87\) −64.5673 + 86.0529i −0.742153 + 0.989114i
\(88\) 95.7108 1.08762
\(89\) 13.0504 7.53467i 0.146634 0.0846592i −0.424888 0.905246i \(-0.639687\pi\)
0.571522 + 0.820587i \(0.306353\pi\)
\(90\) 8.89740 9.29002i 0.0988600 0.103222i
\(91\) −50.2712 + 93.9226i −0.552430 + 1.03212i
\(92\) −42.4139 24.4877i −0.461020 0.266170i
\(93\) −0.877397 + 7.26993i −0.00943438 + 0.0781713i
\(94\) −25.5006 + 44.1683i −0.271283 + 0.469875i
\(95\) 27.7791i 0.292411i
\(96\) 47.4424 63.2295i 0.494192 0.658640i
\(97\) 59.9243 + 103.792i 0.617776 + 1.07002i 0.989891 + 0.141833i \(0.0452996\pi\)
−0.372114 + 0.928187i \(0.621367\pi\)
\(98\) 9.90942 + 5.72121i 0.101117 + 0.0583797i
\(99\) −172.569 + 50.2558i −1.74312 + 0.507635i
\(100\) −35.7726 + 61.9600i −0.357726 + 0.619600i
\(101\) 112.914i 1.11796i −0.829182 0.558978i \(-0.811193\pi\)
0.829182 0.558978i \(-0.188807\pi\)
\(102\) −11.7822 + 5.02999i −0.115512 + 0.0493137i
\(103\) 93.9620 + 162.747i 0.912253 + 1.58007i 0.810875 + 0.585220i \(0.198992\pi\)
0.101378 + 0.994848i \(0.467675\pi\)
\(104\) −52.9262 + 32.8700i −0.508906 + 0.316058i
\(105\) −21.8852 51.2636i −0.208430 0.488225i
\(106\) 10.5481 0.0995100
\(107\) 163.384 94.3298i 1.52695 0.881587i 0.527466 0.849576i \(-0.323142\pi\)
0.999488 0.0320112i \(-0.0101912\pi\)
\(108\) −34.2954 + 91.0245i −0.317550 + 0.842819i
\(109\) 34.1963 0.313728 0.156864 0.987620i \(-0.449862\pi\)
0.156864 + 0.987620i \(0.449862\pi\)
\(110\) 24.7197 14.2719i 0.224725 0.129745i
\(111\) 22.1363 183.417i 0.199427 1.65241i
\(112\) −46.6659 80.8278i −0.416660 0.721677i
\(113\) 6.07283i 0.0537418i −0.999639 0.0268709i \(-0.991446\pi\)
0.999639 0.0268709i \(-0.00855431\pi\)
\(114\) −9.09723 21.3092i −0.0798002 0.186923i
\(115\) −30.8229 −0.268025
\(116\) 129.193i 1.11374i
\(117\) 78.1680 87.0561i 0.668103 0.744069i
\(118\) −4.27387 −0.0362193
\(119\) 55.5124i 0.466490i
\(120\) 3.90594 32.3638i 0.0325495 0.269698i
\(121\) −277.837 −2.29617
\(122\) −47.7766 + 27.5838i −0.391611 + 0.226097i
\(123\) −11.3560 26.6002i −0.0923254 0.216262i
\(124\) 4.39682 + 7.61551i 0.0354582 + 0.0614154i
\(125\) 101.711i 0.813686i
\(126\) −33.5761 32.1571i −0.266477 0.255215i
\(127\) −27.5578 47.7314i −0.216990 0.375838i 0.736896 0.676006i \(-0.236291\pi\)
−0.953886 + 0.300168i \(0.902957\pi\)
\(128\) 123.646i 0.965988i
\(129\) −18.8728 + 156.376i −0.146301 + 1.21222i
\(130\) −8.76809 + 16.3816i −0.0674469 + 0.126012i
\(131\) 119.916 69.2335i 0.915388 0.528500i 0.0332275 0.999448i \(-0.489421\pi\)
0.882161 + 0.470948i \(0.156088\pi\)
\(132\) −129.541 + 172.648i −0.981373 + 1.30794i
\(133\) −100.399 −0.754883
\(134\) 4.44497 + 2.56630i 0.0331714 + 0.0191515i
\(135\) 9.95107 + 60.4038i 0.0737116 + 0.447435i
\(136\) −16.2328 + 28.1161i −0.119359 + 0.206736i
\(137\) −123.437 + 71.2664i −0.901000 + 0.520193i −0.877525 0.479532i \(-0.840807\pi\)
−0.0234756 + 0.999724i \(0.507473\pi\)
\(138\) −23.6441 + 10.0940i −0.171334 + 0.0731451i
\(139\) 148.174 1.06600 0.533001 0.846115i \(-0.321064\pi\)
0.533001 + 0.846115i \(0.321064\pi\)
\(140\) −57.9687 33.4682i −0.414062 0.239059i
\(141\) −95.2986 223.226i −0.675876 1.58317i
\(142\) 22.4258 38.8426i 0.157928 0.273539i
\(143\) 220.549 136.973i 1.54230 0.957852i
\(144\) 28.6609 + 98.4163i 0.199034 + 0.683447i
\(145\) 40.6543 + 70.4153i 0.280374 + 0.485623i
\(146\) 31.2718i 0.214191i
\(147\) −50.0822 + 21.3808i −0.340695 + 0.145448i
\(148\) −110.930 192.136i −0.749525 1.29822i
\(149\) 14.6756i 0.0984941i −0.998787 0.0492471i \(-0.984318\pi\)
0.998787 0.0492471i \(-0.0156822\pi\)
\(150\) 14.7458 + 34.5404i 0.0983053 + 0.230269i
\(151\) −8.71204 + 15.0897i −0.0576956 + 0.0999318i −0.893431 0.449201i \(-0.851709\pi\)
0.835735 + 0.549133i \(0.185042\pi\)
\(152\) −50.8507 29.3587i −0.334544 0.193149i
\(153\) 14.5051 59.2176i 0.0948043 0.387043i
\(154\) −51.5818 89.3422i −0.334946 0.580144i
\(155\) 4.79286 + 2.76716i 0.0309217 + 0.0178526i
\(156\) 12.3412 139.959i 0.0791104 0.897175i
\(157\) 54.8498 + 95.0026i 0.349362 + 0.605112i 0.986136 0.165938i \(-0.0530651\pi\)
−0.636775 + 0.771050i \(0.719732\pi\)
\(158\) −11.9053 6.87350i −0.0753497 0.0435032i
\(159\) −30.1276 + 40.1529i −0.189482 + 0.252534i
\(160\) −29.8717 51.7393i −0.186698 0.323371i
\(161\) 111.400i 0.691928i
\(162\) 27.4148 + 43.0767i 0.169227 + 0.265906i
\(163\) 18.7035 32.3955i 0.114746 0.198745i −0.802932 0.596070i \(-0.796728\pi\)
0.917678 + 0.397325i \(0.130061\pi\)
\(164\) −30.0794 17.3664i −0.183411 0.105893i
\(165\) −16.2765 + 134.863i −0.0986452 + 0.817353i
\(166\) 30.2778 52.4427i 0.182396 0.315920i
\(167\) −83.2591 48.0697i −0.498557 0.287842i 0.229560 0.973294i \(-0.426271\pi\)
−0.728118 + 0.685452i \(0.759605\pi\)
\(168\) −116.970 14.1169i −0.696248 0.0840291i
\(169\) −74.9186 + 151.487i −0.443306 + 0.896371i
\(170\) 9.68224i 0.0569544i
\(171\) 107.101 + 26.2338i 0.626320 + 0.153414i
\(172\) 94.5754 + 163.809i 0.549857 + 0.952380i
\(173\) −201.919 + 116.578i −1.16716 + 0.673860i −0.953009 0.302940i \(-0.902032\pi\)
−0.214151 + 0.976801i \(0.568698\pi\)
\(174\) 54.2457 + 40.7017i 0.311757 + 0.233918i
\(175\) 162.739 0.929935
\(176\) 227.457i 1.29237i
\(177\) 12.2071 16.2692i 0.0689668 0.0919164i
\(178\) −4.74967 8.22668i −0.0266836 0.0462173i
\(179\) −3.13811 + 1.81179i −0.0175313 + 0.0101217i −0.508740 0.860920i \(-0.669889\pi\)
0.491209 + 0.871042i \(0.336555\pi\)
\(180\) 53.0929 + 50.8490i 0.294960 + 0.282495i
\(181\) 163.374 0.902617 0.451308 0.892368i \(-0.350957\pi\)
0.451308 + 0.892368i \(0.350957\pi\)
\(182\) 59.2066 + 31.6897i 0.325311 + 0.174119i
\(183\) 31.4580 260.655i 0.171902 1.42434i
\(184\) −32.5755 + 56.4225i −0.177041 + 0.306644i
\(185\) −120.922 69.8142i −0.653631 0.377374i
\(186\) 4.58279 + 0.553090i 0.0246387 + 0.00297360i
\(187\) 67.6439 117.163i 0.361732 0.626539i
\(188\) −252.423 145.737i −1.34268 0.775196i
\(189\) 218.312 35.9653i 1.15509 0.190292i
\(190\) −17.5113 −0.0921646
\(191\) 43.0690 24.8659i 0.225492 0.130188i −0.382998 0.923749i \(-0.625109\pi\)
0.608491 + 0.793561i \(0.291775\pi\)
\(192\) 69.4632 + 52.1197i 0.361787 + 0.271457i
\(193\) −4.12467 + 7.14413i −0.0213713 + 0.0370162i −0.876513 0.481378i \(-0.840137\pi\)
0.855142 + 0.518394i \(0.173470\pi\)
\(194\) 65.4280 37.7749i 0.337258 0.194716i
\(195\) −37.3156 80.1666i −0.191362 0.411111i
\(196\) −32.6969 + 56.6327i −0.166821 + 0.288943i
\(197\) −204.178 + 117.882i −1.03644 + 0.598387i −0.918822 0.394672i \(-0.870858\pi\)
−0.117615 + 0.993059i \(0.537525\pi\)
\(198\) 31.6801 + 108.784i 0.160000 + 0.549412i
\(199\) −8.25862 + 14.3044i −0.0415006 + 0.0718812i −0.886030 0.463629i \(-0.846547\pi\)
0.844529 + 0.535510i \(0.179881\pi\)
\(200\) 82.4244 + 47.5878i 0.412122 + 0.237939i
\(201\) −22.4649 + 9.59058i −0.111766 + 0.0477143i
\(202\) −71.1781 −0.352367
\(203\) 254.496 146.933i 1.25367 0.723809i
\(204\) −28.7466 67.3358i −0.140915 0.330077i
\(205\) −21.8592 −0.106630
\(206\) 102.592 59.2314i 0.498019 0.287531i
\(207\) 29.1083 118.836i 0.140620 0.574087i
\(208\) −78.1157 125.779i −0.375556 0.604708i
\(209\) 211.900 + 122.341i 1.01388 + 0.585361i
\(210\) −32.3154 + 13.7959i −0.153883 + 0.0656947i
\(211\) 155.654 269.601i 0.737698 1.27773i −0.215831 0.976431i \(-0.569246\pi\)
0.953529 0.301300i \(-0.0974207\pi\)
\(212\) 60.2826i 0.284352i
\(213\) 83.8077 + 196.310i 0.393463 + 0.921644i
\(214\) −59.4633 102.993i −0.277866 0.481278i
\(215\) 103.094 + 59.5215i 0.479508 + 0.276844i
\(216\) 121.088 + 45.6226i 0.560594 + 0.211216i
\(217\) 10.0011 17.3224i 0.0460880 0.0798268i
\(218\) 21.5566i 0.0988833i
\(219\) 119.041 + 89.3192i 0.543568 + 0.407850i
\(220\) 81.5646 + 141.274i 0.370748 + 0.642155i
\(221\) 2.83150 + 88.0197i 0.0128122 + 0.398279i
\(222\) −115.622 13.9542i −0.520819 0.0628569i
\(223\) 168.523 0.755710 0.377855 0.925865i \(-0.376662\pi\)
0.377855 + 0.925865i \(0.376662\pi\)
\(224\) −186.997 + 107.963i −0.834808 + 0.481976i
\(225\) −173.601 42.5226i −0.771559 0.188989i
\(226\) −3.82817 −0.0169388
\(227\) 149.522 86.3268i 0.658689 0.380294i −0.133088 0.991104i \(-0.542489\pi\)
0.791777 + 0.610810i \(0.209156\pi\)
\(228\) 121.783 51.9910i 0.534137 0.228031i
\(229\) 56.2790 + 97.4781i 0.245760 + 0.425668i 0.962345 0.271831i \(-0.0876292\pi\)
−0.716585 + 0.697500i \(0.754296\pi\)
\(230\) 19.4300i 0.0844783i
\(231\) 487.425 + 58.8265i 2.11006 + 0.254660i
\(232\) 171.864 0.740793
\(233\) 372.616i 1.59921i −0.600527 0.799604i \(-0.705043\pi\)
0.600527 0.799604i \(-0.294957\pi\)
\(234\) −54.8781 49.2753i −0.234522 0.210578i
\(235\) −183.440 −0.780597
\(236\) 24.4254i 0.103497i
\(237\) 60.1691 25.6871i 0.253878 0.108384i
\(238\) 34.9937 0.147032
\(239\) −227.429 + 131.306i −0.951584 + 0.549398i −0.893573 0.448918i \(-0.851809\pi\)
−0.0580116 + 0.998316i \(0.518476\pi\)
\(240\) 76.9126 + 9.28247i 0.320469 + 0.0386770i
\(241\) −183.277 317.446i −0.760487 1.31720i −0.942600 0.333924i \(-0.891627\pi\)
0.182114 0.983278i \(-0.441706\pi\)
\(242\) 175.142i 0.723726i
\(243\) −242.281 18.6778i −0.997042 0.0768633i
\(244\) −157.643 273.045i −0.646076 1.11904i
\(245\) 41.1560i 0.167984i
\(246\) −16.7682 + 7.15857i −0.0681632 + 0.0290999i
\(247\) −159.192 + 5.12104i −0.644502 + 0.0207330i
\(248\) 10.1308 5.84901i 0.0408500 0.0235847i
\(249\) 113.152 + 265.045i 0.454424 + 1.06444i
\(250\) 64.1160 0.256464
\(251\) −12.4484 7.18709i −0.0495953 0.0286338i 0.474997 0.879987i \(-0.342449\pi\)
−0.524593 + 0.851353i \(0.675782\pi\)
\(252\) 183.779 191.889i 0.729282 0.761464i
\(253\) 135.746 235.118i 0.536544 0.929321i
\(254\) −30.0888 + 17.3718i −0.118460 + 0.0683928i
\(255\) −36.8570 27.6546i −0.144537 0.108449i
\(256\) 37.8460 0.147836
\(257\) −172.226 99.4347i −0.670140 0.386906i 0.125990 0.992032i \(-0.459789\pi\)
−0.796130 + 0.605126i \(0.793123\pi\)
\(258\) 98.5757 + 11.8970i 0.382076 + 0.0461122i
\(259\) −252.323 + 437.037i −0.974221 + 1.68740i
\(260\) −93.6215 50.1100i −0.360083 0.192731i
\(261\) −309.875 + 90.2423i −1.18726 + 0.345756i
\(262\) −43.6431 75.5921i −0.166577 0.288520i
\(263\) 478.356i 1.81884i 0.415874 + 0.909422i \(0.363476\pi\)
−0.415874 + 0.909422i \(0.636524\pi\)
\(264\) 229.671 + 172.327i 0.869965 + 0.652752i
\(265\) 18.9696 + 32.8563i 0.0715834 + 0.123986i
\(266\) 63.2894i 0.237930i
\(267\) 44.8823 + 5.41678i 0.168099 + 0.0202876i
\(268\) −14.6665 + 25.4032i −0.0547259 + 0.0947880i
\(269\) −236.137 136.334i −0.877835 0.506818i −0.00789072 0.999969i \(-0.502512\pi\)
−0.869944 + 0.493151i \(0.835845\pi\)
\(270\) 38.0771 6.27292i 0.141026 0.0232330i
\(271\) 142.178 + 246.260i 0.524643 + 0.908708i 0.999588 + 0.0286930i \(0.00913453\pi\)
−0.474945 + 0.880015i \(0.657532\pi\)
\(272\) −66.8180 38.5774i −0.245654 0.141829i
\(273\) −289.739 + 134.867i −1.06132 + 0.494017i
\(274\) 44.9246 + 77.8118i 0.163959 + 0.283985i
\(275\) −343.471 198.303i −1.24899 0.721102i
\(276\) −57.6878 135.127i −0.209014 0.489591i
\(277\) −16.2272 28.1064i −0.0585821 0.101467i 0.835247 0.549875i \(-0.185325\pi\)
−0.893829 + 0.448408i \(0.851991\pi\)
\(278\) 93.4056i 0.335991i
\(279\) −15.1949 + 15.8654i −0.0544620 + 0.0568652i
\(280\) −44.5222 + 77.1148i −0.159008 + 0.275410i
\(281\) −270.886 156.396i −0.964008 0.556570i −0.0666036 0.997780i \(-0.521216\pi\)
−0.897404 + 0.441209i \(0.854550\pi\)
\(282\) −140.717 + 60.0740i −0.498995 + 0.213028i
\(283\) 101.016 174.964i 0.356946 0.618249i −0.630503 0.776187i \(-0.717151\pi\)
0.987449 + 0.157938i \(0.0504846\pi\)
\(284\) 221.987 + 128.164i 0.781644 + 0.451282i
\(285\) 50.0160 66.6595i 0.175495 0.233893i
\(286\) −86.3444 139.029i −0.301904 0.486115i
\(287\) 79.0039i 0.275275i
\(288\) 227.688 66.3077i 0.790585 0.230235i
\(289\) −121.555 210.539i −0.420605 0.728509i
\(290\) 44.3881 25.6275i 0.153063 0.0883707i
\(291\) −43.0804 + 356.956i −0.148043 + 1.22665i
\(292\) 178.720 0.612054
\(293\) 186.485i 0.636466i 0.948012 + 0.318233i \(0.103090\pi\)
−0.948012 + 0.318233i \(0.896910\pi\)
\(294\) 13.4780 + 31.5706i 0.0458434 + 0.107383i
\(295\) −7.68612 13.3127i −0.0260546 0.0451279i
\(296\) −255.595 + 147.568i −0.863498 + 0.498541i
\(297\) −504.588 190.114i −1.69895 0.640115i
\(298\) −9.25117 −0.0310442
\(299\) 5.68217 + 176.635i 0.0190039 + 0.590753i
\(300\) −197.400 + 84.2728i −0.657999 + 0.280909i
\(301\) 215.123 372.605i 0.714696 1.23789i
\(302\) 9.51219 + 5.49186i 0.0314973 + 0.0181850i
\(303\) 203.300 270.951i 0.670958 0.894228i
\(304\) 69.7709 120.847i 0.229509 0.397522i
\(305\) −171.842 99.2132i −0.563417 0.325289i
\(306\) −37.3294 9.14364i −0.121991 0.0298812i
\(307\) −338.325 −1.10204 −0.551018 0.834493i \(-0.685761\pi\)
−0.551018 + 0.834493i \(0.685761\pi\)
\(308\) 510.594 294.792i 1.65777 0.957116i
\(309\) −67.5506 + 559.711i −0.218610 + 1.81136i
\(310\) 1.74435 3.02131i 0.00562694 0.00974615i
\(311\) 86.5958 49.9961i 0.278443 0.160759i −0.354275 0.935141i \(-0.615272\pi\)
0.632718 + 0.774382i \(0.281939\pi\)
\(312\) −186.186 16.4173i −0.596749 0.0526196i
\(313\) 32.9877 57.1364i 0.105392 0.182544i −0.808506 0.588488i \(-0.799724\pi\)
0.913898 + 0.405943i \(0.133057\pi\)
\(314\) 59.8874 34.5760i 0.190724 0.110115i
\(315\) 39.7834 162.418i 0.126296 0.515612i
\(316\) 39.2823 68.0390i 0.124311 0.215313i
\(317\) −225.292 130.073i −0.710702 0.410324i 0.100619 0.994925i \(-0.467918\pi\)
−0.811321 + 0.584601i \(0.801251\pi\)
\(318\) 25.3115 + 18.9917i 0.0795958 + 0.0597224i
\(319\) −716.175 −2.24506
\(320\) 56.8403 32.8167i 0.177626 0.102552i
\(321\) 561.902 + 67.8151i 1.75047 + 0.211262i
\(322\) 70.2242 0.218087
\(323\) −71.8777 + 41.4986i −0.222532 + 0.128479i
\(324\) −246.185 + 156.676i −0.759831 + 0.483569i
\(325\) 258.036 8.30076i 0.793958 0.0255408i
\(326\) −20.4214 11.7903i −0.0626422 0.0361665i
\(327\) 82.0586 + 61.5703i 0.250944 + 0.188288i
\(328\) −23.1022 + 40.0142i −0.0704336 + 0.121995i
\(329\) 662.992i 2.01517i
\(330\) 85.0146 + 10.2603i 0.257620 + 0.0310918i
\(331\) 176.573 + 305.833i 0.533453 + 0.923967i 0.999237 + 0.0390685i \(0.0124391\pi\)
−0.465784 + 0.884898i \(0.654228\pi\)
\(332\) 299.712 + 173.039i 0.902747 + 0.521201i
\(333\) 383.360 400.277i 1.15123 1.20203i
\(334\) −30.3020 + 52.4846i −0.0907245 + 0.157139i
\(335\) 18.4609i 0.0551072i
\(336\) 33.5488 277.978i 0.0998476 0.827317i
\(337\) −37.6251 65.1685i −0.111647 0.193378i 0.804787 0.593563i \(-0.202279\pi\)
−0.916434 + 0.400185i \(0.868946\pi\)
\(338\) 95.4936 + 47.2269i 0.282525 + 0.139725i
\(339\) 10.9341 14.5725i 0.0322539 0.0429868i
\(340\) −55.3344 −0.162748
\(341\) −42.2160 + 24.3734i −0.123801 + 0.0714764i
\(342\) 16.5372 67.5138i 0.0483542 0.197409i
\(343\) −252.790 −0.736996
\(344\) 217.913 125.812i 0.633468 0.365733i
\(345\) −73.9635 55.4964i −0.214387 0.160859i
\(346\) 73.4879 + 127.285i 0.212393 + 0.367875i
\(347\) 77.9409i 0.224614i 0.993674 + 0.112307i \(0.0358239\pi\)
−0.993674 + 0.112307i \(0.964176\pi\)
\(348\) −232.612 + 310.017i −0.668425 + 0.890852i
\(349\) −395.200 −1.13238 −0.566188 0.824276i \(-0.691583\pi\)
−0.566188 + 0.824276i \(0.691583\pi\)
\(350\) 102.587i 0.293104i
\(351\) 344.318 68.1614i 0.980964 0.194192i
\(352\) 526.227 1.49496
\(353\) 194.953i 0.552274i −0.961118 0.276137i \(-0.910946\pi\)
0.961118 0.276137i \(-0.0890544\pi\)
\(354\) −10.2557 7.69508i −0.0289710 0.0217375i
\(355\) 161.322 0.454427
\(356\) 47.0158 27.1446i 0.132067 0.0762488i
\(357\) −99.9496 + 133.209i −0.279971 + 0.373135i
\(358\) 1.14211 + 1.97819i 0.00319025 + 0.00552567i
\(359\) 31.0244i 0.0864189i −0.999066 0.0432094i \(-0.986242\pi\)
0.999066 0.0432094i \(-0.0137583\pi\)
\(360\) 67.6436 70.6286i 0.187899 0.196190i
\(361\) 105.446 + 182.637i 0.292093 + 0.505921i
\(362\) 102.987i 0.284494i
\(363\) −666.706 500.243i −1.83666 1.37808i
\(364\) −181.108 + 338.368i −0.497550 + 0.929582i
\(365\) 97.4090 56.2391i 0.266874 0.154080i
\(366\) −164.311 19.8304i −0.448936 0.0541814i
\(367\) 448.084 1.22094 0.610468 0.792041i \(-0.290981\pi\)
0.610468 + 0.792041i \(0.290981\pi\)
\(368\) −134.088 77.4158i −0.364370 0.210369i
\(369\) 20.6433 84.2772i 0.0559438 0.228393i
\(370\) −44.0092 + 76.2262i −0.118944 + 0.206017i
\(371\) 118.750 68.5601i 0.320080 0.184798i
\(372\) −3.16093 + 26.1908i −0.00849713 + 0.0704055i
\(373\) −349.753 −0.937674 −0.468837 0.883285i \(-0.655327\pi\)
−0.468837 + 0.883285i \(0.655327\pi\)
\(374\) −73.8566 42.6411i −0.197478 0.114014i
\(375\) −183.129 + 244.068i −0.488345 + 0.650848i
\(376\) −193.871 + 335.795i −0.515615 + 0.893071i
\(377\) 396.031 245.956i 1.05048 0.652404i
\(378\) −22.6716 137.619i −0.0599779 0.364071i
\(379\) −19.0545 33.0034i −0.0502758 0.0870802i 0.839792 0.542908i \(-0.182677\pi\)
−0.890068 + 0.455828i \(0.849343\pi\)
\(380\) 100.078i 0.263362i
\(381\) 19.8117 164.155i 0.0519991 0.430854i
\(382\) −15.6749 27.1497i −0.0410337 0.0710725i
\(383\) 97.7578i 0.255242i −0.991823 0.127621i \(-0.959266\pi\)
0.991823 0.127621i \(-0.0407342\pi\)
\(384\) 222.625 296.706i 0.579752 0.772672i
\(385\) 185.529 321.345i 0.481893 0.834663i
\(386\) 4.50349 + 2.60009i 0.0116671 + 0.00673599i
\(387\) −326.842 + 341.264i −0.844552 + 0.881820i
\(388\) 215.885 + 373.924i 0.556404 + 0.963720i
\(389\) 236.515 + 136.552i 0.608008 + 0.351033i 0.772185 0.635397i \(-0.219164\pi\)
−0.164178 + 0.986431i \(0.552497\pi\)
\(390\) −50.5351 + 23.5229i −0.129577 + 0.0603151i
\(391\) 46.0457 + 79.7535i 0.117764 + 0.203973i
\(392\) 75.3376 + 43.4962i 0.192188 + 0.110960i
\(393\) 412.408 + 49.7729i 1.04938 + 0.126649i
\(394\) 74.3102 + 128.709i 0.188605 + 0.326673i
\(395\) 49.4451i 0.125177i
\(396\) −621.702 + 181.053i −1.56996 + 0.457204i
\(397\) −243.539 + 421.823i −0.613449 + 1.06253i 0.377205 + 0.926130i \(0.376885\pi\)
−0.990654 + 0.136396i \(0.956448\pi\)
\(398\) 9.01712 + 5.20604i 0.0226561 + 0.0130805i
\(399\) −240.922 180.768i −0.603813 0.453054i
\(400\) −113.092 + 195.882i −0.282731 + 0.489704i
\(401\) 419.770 + 242.354i 1.04681 + 0.604375i 0.921754 0.387775i \(-0.126756\pi\)
0.125054 + 0.992150i \(0.460090\pi\)
\(402\) 6.04567 + 14.1613i 0.0150390 + 0.0352272i
\(403\) 14.9741 27.9763i 0.0371565 0.0694202i
\(404\) 406.786i 1.00690i
\(405\) −84.8776 + 162.864i −0.209574 + 0.402132i
\(406\) −92.6232 160.428i −0.228136 0.395143i
\(407\) 1065.09 614.931i 2.61693 1.51089i
\(408\) −89.5757 + 38.2412i −0.219548 + 0.0937283i
\(409\) 167.330 0.409120 0.204560 0.978854i \(-0.434424\pi\)
0.204560 + 0.978854i \(0.434424\pi\)
\(410\) 13.7795i 0.0336087i
\(411\) −424.518 51.2344i −1.03289 0.124658i
\(412\) 338.510 + 586.316i 0.821626 + 1.42310i
\(413\) −48.1151 + 27.7792i −0.116501 + 0.0672621i
\(414\) −74.9114 18.3492i −0.180945 0.0443217i
\(415\) 217.806 0.524833
\(416\) −290.993 + 180.722i −0.699503 + 0.434429i
\(417\) 355.564 + 266.787i 0.852670 + 0.639776i
\(418\) 77.1206 133.577i 0.184499 0.319562i
\(419\) −449.540 259.542i −1.07289 0.619431i −0.143918 0.989590i \(-0.545970\pi\)
−0.928969 + 0.370158i \(0.879303\pi\)
\(420\) −78.8441 184.684i −0.187724 0.439723i
\(421\) 298.881 517.677i 0.709931 1.22964i −0.254951 0.966954i \(-0.582060\pi\)
0.964882 0.262682i \(-0.0846072\pi\)
\(422\) −169.950 98.1208i −0.402726 0.232514i
\(423\) 173.236 707.245i 0.409541 1.67197i
\(424\) 80.1930 0.189134
\(425\) 116.507 67.2656i 0.274135 0.158272i
\(426\) 123.749 52.8304i 0.290491 0.124015i
\(427\) −358.577 + 621.074i −0.839760 + 1.45451i
\(428\) 588.612 339.835i 1.37526 0.794007i
\(429\) 775.855 + 68.4127i 1.80852 + 0.159470i
\(430\) 37.5210 64.9882i 0.0872580 0.151135i
\(431\) 15.9982 9.23657i 0.0371188 0.0214306i −0.481326 0.876542i \(-0.659845\pi\)
0.518445 + 0.855111i \(0.326511\pi\)
\(432\) −108.422 + 287.767i −0.250977 + 0.666126i
\(433\) 89.1122 154.347i 0.205802 0.356459i −0.744586 0.667526i \(-0.767353\pi\)
0.950388 + 0.311067i \(0.100686\pi\)
\(434\) −10.9196 6.30446i −0.0251605 0.0145264i
\(435\) −29.2269 + 242.168i −0.0671884 + 0.556709i
\(436\) 123.197 0.282561
\(437\) −144.242 + 83.2781i −0.330073 + 0.190568i
\(438\) 56.3047 75.0409i 0.128550 0.171326i
\(439\) 192.714 0.438984 0.219492 0.975614i \(-0.429560\pi\)
0.219492 + 0.975614i \(0.429560\pi\)
\(440\) 187.935 108.504i 0.427124 0.246600i
\(441\) −158.675 38.8666i −0.359807 0.0881328i
\(442\) 55.4855 1.78491i 0.125533 0.00403826i
\(443\) −275.781 159.222i −0.622531 0.359419i 0.155323 0.987864i \(-0.450358\pi\)
−0.777854 + 0.628445i \(0.783692\pi\)
\(444\) 79.7490 660.783i 0.179615 1.48825i
\(445\) 17.0836 29.5896i 0.0383901 0.0664936i
\(446\) 106.233i 0.238191i
\(447\) 26.4234 35.2161i 0.0591127 0.0787832i
\(448\) −118.607 205.433i −0.264747 0.458555i
\(449\) 592.947 + 342.338i 1.32059 + 0.762446i 0.983823 0.179141i \(-0.0573317\pi\)
0.336771 + 0.941586i \(0.390665\pi\)
\(450\) −26.8053 + 109.434i −0.0595672 + 0.243186i
\(451\) 96.2693 166.743i 0.213457 0.369719i
\(452\) 21.8781i 0.0484029i
\(453\) −48.0746 + 20.5237i −0.106125 + 0.0453062i
\(454\) −54.4184 94.2554i −0.119864 0.207611i
\(455\) 7.76604 + 241.414i 0.0170682 + 0.530580i
\(456\) −69.1628 162.006i −0.151673 0.355277i
\(457\) 248.829 0.544485 0.272242 0.962229i \(-0.412235\pi\)
0.272242 + 0.962229i \(0.412235\pi\)
\(458\) 61.4479 35.4769i 0.134166 0.0774606i
\(459\) 141.428 115.984i 0.308121 0.252689i
\(460\) −111.043 −0.241399
\(461\) −506.226 + 292.269i −1.09810 + 0.633990i −0.935722 0.352738i \(-0.885251\pi\)
−0.162381 + 0.986728i \(0.551917\pi\)
\(462\) 37.0829 307.261i 0.0802659 0.665067i
\(463\) 30.9599 + 53.6242i 0.0668681 + 0.115819i 0.897521 0.440971i \(-0.145366\pi\)
−0.830653 + 0.556790i \(0.812033\pi\)
\(464\) 408.435i 0.880247i
\(465\) 6.51885 + 15.2697i 0.0140190 + 0.0328380i
\(466\) −234.888 −0.504052
\(467\) 214.626i 0.459585i −0.973240 0.229793i \(-0.926195\pi\)
0.973240 0.229793i \(-0.0738048\pi\)
\(468\) 281.610 313.630i 0.601731 0.670151i
\(469\) 66.7217 0.142264
\(470\) 115.636i 0.246035i
\(471\) −39.4323 + 326.728i −0.0837204 + 0.693690i
\(472\) −32.4927 −0.0688404
\(473\) −908.066 + 524.272i −1.91980 + 1.10840i
\(474\) −16.1925 37.9292i −0.0341614 0.0800194i
\(475\) 121.656 + 210.715i 0.256119 + 0.443610i
\(476\) 199.990i 0.420148i
\(477\) −144.590 + 42.1077i −0.303124 + 0.0882761i
\(478\) 82.7722 + 143.366i 0.173164 + 0.299928i
\(479\) 571.983i 1.19412i 0.802197 + 0.597059i \(0.203664\pi\)
−0.802197 + 0.597059i \(0.796336\pi\)
\(480\) 21.4752 177.939i 0.0447400 0.370707i
\(481\) −377.789 + 705.830i −0.785424 + 1.46742i
\(482\) −200.110 + 115.534i −0.415166 + 0.239696i
\(483\) −200.576 + 267.320i −0.415270 + 0.553457i
\(484\) −1000.94 −2.06806
\(485\) 235.331 + 135.868i 0.485218 + 0.280141i
\(486\) −11.7740 + 152.728i −0.0242264 + 0.314256i
\(487\) −365.627 + 633.284i −0.750773 + 1.30038i 0.196675 + 0.980469i \(0.436986\pi\)
−0.947448 + 0.319909i \(0.896348\pi\)
\(488\) −363.227 + 209.709i −0.744318 + 0.429732i
\(489\) 103.209 44.0616i 0.211062 0.0901056i
\(490\) 25.9437 0.0529464
\(491\) −745.280 430.288i −1.51788 0.876350i −0.999779 0.0210324i \(-0.993305\pi\)
−0.518104 0.855318i \(-0.673362\pi\)
\(492\) −40.9115 95.8307i −0.0831535 0.194778i
\(493\) 121.465 210.384i 0.246380 0.426743i
\(494\) 3.22818 + 100.351i 0.00653479 + 0.203139i
\(495\) −281.878 + 294.317i −0.569450 + 0.594579i
\(496\) 13.9002 + 24.0758i 0.0280246 + 0.0485400i
\(497\) 583.050i 1.17314i
\(498\) 167.078 71.3281i 0.335498 0.143229i
\(499\) −79.5360 137.760i −0.159391 0.276073i 0.775258 0.631644i \(-0.217620\pi\)
−0.934649 + 0.355571i \(0.884286\pi\)
\(500\) 366.426i 0.732851i
\(501\) −113.242 265.257i −0.226032 0.529455i
\(502\) −4.53057 + 7.84718i −0.00902505 + 0.0156318i
\(503\) −166.991 96.4125i −0.331991 0.191675i 0.324734 0.945805i \(-0.394725\pi\)
−0.656725 + 0.754131i \(0.728059\pi\)
\(504\) −255.267 244.478i −0.506481 0.485076i
\(505\) −128.006 221.714i −0.253478 0.439037i
\(506\) −148.213 85.5708i −0.292911 0.169112i
\(507\) −452.528 + 228.621i −0.892559 + 0.450930i
\(508\) −99.2803 171.959i −0.195434 0.338501i
\(509\) −203.445 117.459i −0.399696 0.230764i 0.286657 0.958033i \(-0.407456\pi\)
−0.686353 + 0.727269i \(0.740789\pi\)
\(510\) −17.4328 + 23.2338i −0.0341820 + 0.0455565i
\(511\) −203.260 352.057i −0.397769 0.688957i
\(512\) 518.443i 1.01258i
\(513\) 209.769 + 255.786i 0.408906 + 0.498607i
\(514\) −62.6813 + 108.567i −0.121948 + 0.211220i
\(515\) 369.001 + 213.043i 0.716508 + 0.413676i
\(516\) −67.9916 + 563.364i −0.131767 + 1.09179i
\(517\) 807.881 1399.29i 1.56263 2.70656i
\(518\) 275.498 + 159.059i 0.531849 + 0.307063i
\(519\) −694.428 83.8094i −1.33801 0.161483i
\(520\) −66.6605 + 124.543i −0.128193 + 0.239506i
\(521\) 314.451i 0.603552i −0.953379 0.301776i \(-0.902420\pi\)
0.953379 0.301776i \(-0.0975795\pi\)
\(522\) 56.8866 + 195.338i 0.108978 + 0.374211i
\(523\) −28.9142 50.0808i −0.0552852 0.0957568i 0.837058 0.547114i \(-0.184273\pi\)
−0.892344 + 0.451357i \(0.850940\pi\)
\(524\) 432.012 249.422i 0.824451 0.475997i
\(525\) 390.512 + 293.010i 0.743833 + 0.558113i
\(526\) 301.544 0.573278
\(527\) 16.5352i 0.0313762i
\(528\) −409.534 + 545.812i −0.775633 + 1.03374i
\(529\) −172.097 298.081i −0.325325 0.563479i
\(530\) 20.7118 11.9580i 0.0390789 0.0225622i
\(531\) 58.5852 17.0612i 0.110330 0.0321304i
\(532\) −361.702 −0.679890
\(533\) 4.02973 + 125.268i 0.00756047 + 0.235024i
\(534\) 3.41461 28.2927i 0.00639440 0.0529827i
\(535\) 213.877 370.446i 0.399770 0.692422i
\(536\) 33.7934 + 19.5107i 0.0630475 + 0.0364005i
\(537\) −10.7924 1.30252i −0.0200976 0.00242555i
\(538\) −85.9417 + 148.855i −0.159743 + 0.276683i
\(539\) −313.940 181.253i −0.582448 0.336277i
\(540\) 35.8500 + 217.612i 0.0663888 + 0.402985i
\(541\) 23.5926 0.0436092 0.0218046 0.999762i \(-0.493059\pi\)
0.0218046 + 0.999762i \(0.493059\pi\)
\(542\) 155.236 89.6258i 0.286414 0.165361i
\(543\) 392.036 + 294.153i 0.721982 + 0.541718i
\(544\) −89.2496 + 154.585i −0.164062 + 0.284163i
\(545\) 67.1468 38.7672i 0.123205 0.0711325i
\(546\) 85.0167 + 182.645i 0.155708 + 0.334514i
\(547\) −442.013 + 765.588i −0.808067 + 1.39961i 0.106134 + 0.994352i \(0.466153\pi\)
−0.914201 + 0.405261i \(0.867181\pi\)
\(548\) −444.697 + 256.746i −0.811492 + 0.468515i
\(549\) 544.794 568.835i 0.992340 1.03613i
\(550\) −125.006 + 216.516i −0.227283 + 0.393665i
\(551\) 380.500 + 219.682i 0.690563 + 0.398696i
\(552\) −179.758 + 76.7411i −0.325648 + 0.139024i
\(553\) −178.705 −0.323156
\(554\) −17.7176 + 10.2293i −0.0319812 + 0.0184644i
\(555\) −164.468 385.247i −0.296338 0.694139i
\(556\) 533.817 0.960102
\(557\) −300.210 + 173.327i −0.538977 + 0.311179i −0.744664 0.667439i \(-0.767390\pi\)
0.205687 + 0.978618i \(0.434057\pi\)
\(558\) 10.0012 + 9.57850i 0.0179233 + 0.0171658i
\(559\) 322.092 601.770i 0.576192 1.07651i
\(560\) −183.263 105.807i −0.327256 0.188941i
\(561\) 373.271 159.355i 0.665367 0.284055i
\(562\) −98.5885 + 170.760i −0.175424 + 0.303844i
\(563\) 18.1202i 0.0321850i −0.999871 0.0160925i \(-0.994877\pi\)
0.999871 0.0160925i \(-0.00512262\pi\)
\(564\) −343.325 804.201i −0.608732 1.42589i
\(565\) −6.88456 11.9244i −0.0121851 0.0211051i
\(566\) −110.293 63.6780i −0.194865 0.112505i
\(567\) 588.623 + 306.766i 1.03814 + 0.541033i
\(568\) 170.495 295.305i 0.300167 0.519904i
\(569\) 851.409i 1.49633i 0.663516 + 0.748163i \(0.269064\pi\)
−0.663516 + 0.748163i \(0.730936\pi\)
\(570\) −42.0206 31.5289i −0.0737203 0.0553139i
\(571\) 242.204 + 419.510i 0.424176 + 0.734694i 0.996343 0.0854429i \(-0.0272305\pi\)
−0.572167 + 0.820137i \(0.693897\pi\)
\(572\) 794.556 493.462i 1.38908 0.862696i
\(573\) 148.121 + 17.8765i 0.258500 + 0.0311980i
\(574\) 49.8022 0.0867634
\(575\) 233.803 134.986i 0.406615 0.234759i
\(576\) 72.8449 + 250.136i 0.126467 + 0.434264i
\(577\) −245.489 −0.425458 −0.212729 0.977111i \(-0.568235\pi\)
−0.212729 + 0.977111i \(0.568235\pi\)
\(578\) −132.719 + 76.6252i −0.229617 + 0.132570i
\(579\) −22.7606 + 9.71684i −0.0393102 + 0.0167821i
\(580\) 146.462 + 253.680i 0.252521 + 0.437379i
\(581\) 787.196i 1.35490i
\(582\) 225.016 + 27.1569i 0.386626 + 0.0466613i
\(583\) −334.172 −0.573195
\(584\) 237.748i 0.407103i
\(585\) 54.7957 259.557i 0.0936678 0.443687i
\(586\) 117.556 0.200607
\(587\) 727.399i 1.23918i −0.784925 0.619590i \(-0.787299\pi\)
0.784925 0.619590i \(-0.212701\pi\)
\(588\) −180.427 + 77.0271i −0.306849 + 0.130998i
\(589\) 29.9056 0.0507734
\(590\) −8.39204 + 4.84515i −0.0142238 + 0.00821211i
\(591\) −702.198 84.7472i −1.18815 0.143396i
\(592\) −350.696 607.423i −0.592391 1.02605i
\(593\) 839.449i 1.41560i 0.706414 + 0.707799i \(0.250312\pi\)
−0.706414 + 0.707799i \(0.749688\pi\)
\(594\) −119.843 + 318.080i −0.201757 + 0.535488i
\(595\) 62.9325 + 109.002i 0.105769 + 0.183197i
\(596\) 52.8708i 0.0887094i
\(597\) −45.5725 + 19.4556i −0.0763359 + 0.0325889i
\(598\) 111.347 3.58190i 0.186198 0.00598981i
\(599\) 439.085 253.506i 0.733029 0.423215i −0.0865001 0.996252i \(-0.527568\pi\)
0.819529 + 0.573037i \(0.194235\pi\)
\(600\) 112.107 + 262.598i 0.186845 + 0.437663i
\(601\) 733.260 1.22007 0.610033 0.792376i \(-0.291156\pi\)
0.610033 + 0.792376i \(0.291156\pi\)
\(602\) −234.881 135.609i −0.390168 0.225264i
\(603\) −71.1751 17.4340i −0.118035 0.0289121i
\(604\) −31.3862 + 54.3625i −0.0519639 + 0.0900042i
\(605\) −545.551 + 314.974i −0.901738 + 0.520618i
\(606\) −170.801 128.156i −0.281850 0.211478i
\(607\) 873.697 1.43937 0.719685 0.694301i \(-0.244286\pi\)
0.719685 + 0.694301i \(0.244286\pi\)
\(608\) −279.582 161.417i −0.459838 0.265488i
\(609\) 875.248 + 105.632i 1.43719 + 0.173452i
\(610\) −62.5416 + 108.325i −0.102527 + 0.177582i
\(611\) 33.8171 + 1051.23i 0.0553471 + 1.72051i
\(612\) 52.2563 213.339i 0.0853861 0.348593i
\(613\) −355.448 615.654i −0.579850 1.00433i −0.995496 0.0948030i \(-0.969778\pi\)
0.415646 0.909526i \(-0.363555\pi\)
\(614\) 213.272i 0.347349i
\(615\) −52.4541 39.3574i −0.0852912 0.0639958i
\(616\) −392.157 679.235i −0.636618 1.10265i
\(617\) 788.131i 1.27736i −0.769473 0.638680i \(-0.779481\pi\)
0.769473 0.638680i \(-0.220519\pi\)
\(618\) 352.828 + 42.5823i 0.570919 + 0.0689034i
\(619\) −82.0508 + 142.116i −0.132554 + 0.229590i −0.924660 0.380793i \(-0.875651\pi\)
0.792107 + 0.610383i \(0.208984\pi\)
\(620\) 17.2669 + 9.96904i 0.0278498 + 0.0160791i
\(621\) 283.813 232.753i 0.457025 0.374804i
\(622\) −31.5163 54.5879i −0.0506694 0.0877619i
\(623\) −106.943 61.7437i −0.171658 0.0991071i
\(624\) 39.0158 442.470i 0.0625253 0.709087i
\(625\) −132.934 230.249i −0.212695 0.368398i
\(626\) −36.0174 20.7947i −0.0575358 0.0332183i
\(627\) 288.208 + 675.096i 0.459663 + 1.07671i
\(628\) 197.603 + 342.259i 0.314655 + 0.544998i
\(629\) 417.177i 0.663238i
\(630\) −102.384 25.0785i −0.162515 0.0398072i
\(631\) 185.255 320.871i 0.293590 0.508512i −0.681066 0.732222i \(-0.738483\pi\)
0.974656 + 0.223710i \(0.0718168\pi\)
\(632\) −90.5112 52.2567i −0.143214 0.0826846i
\(633\) 858.928 366.689i 1.35692 0.579287i
\(634\) −81.9947 + 142.019i −0.129329 + 0.224005i
\(635\) −108.223 62.4826i −0.170430 0.0983978i
\(636\) −108.538 + 144.656i −0.170658 + 0.227447i
\(637\) 235.850 7.58706i 0.370252 0.0119106i
\(638\) 451.460i 0.707617i
\(639\) −152.348 + 621.967i −0.238416 + 0.973344i
\(640\) −140.174 242.788i −0.219022 0.379356i
\(641\) −875.418 + 505.423i −1.36571 + 0.788491i −0.990376 0.138400i \(-0.955804\pi\)
−0.375330 + 0.926891i \(0.622471\pi\)
\(642\) 42.7490 354.209i 0.0665872 0.551728i
\(643\) −1118.93 −1.74017 −0.870084 0.492903i \(-0.835936\pi\)
−0.870084 + 0.492903i \(0.835936\pi\)
\(644\) 401.334i 0.623189i
\(645\) 140.220 + 328.450i 0.217396 + 0.509225i
\(646\) 26.1598 + 45.3100i 0.0404950 + 0.0701394i
\(647\) 433.692 250.392i 0.670312 0.387005i −0.125883 0.992045i \(-0.540176\pi\)
0.796195 + 0.605041i \(0.206843\pi\)
\(648\) 208.424 + 327.496i 0.321642 + 0.505395i
\(649\) 135.400 0.208629
\(650\) −5.23260 162.660i −0.00805015 0.250246i
\(651\) 55.1878 23.5605i 0.0847739 0.0361912i
\(652\) 67.3819 116.709i 0.103346 0.179001i
\(653\) 955.134 + 551.447i 1.46269 + 0.844482i 0.999135 0.0415882i \(-0.0132417\pi\)
0.463551 + 0.886070i \(0.346575\pi\)
\(654\) 38.8124 51.7278i 0.0593462 0.0790945i
\(655\) 156.975 271.889i 0.239657 0.415098i
\(656\) −95.0938 54.9024i −0.144960 0.0836927i
\(657\) 124.837 + 428.666i 0.190010 + 0.652460i
\(658\) 417.935 0.635159
\(659\) −1038.38 + 599.511i −1.57570 + 0.909728i −0.580246 + 0.814442i \(0.697043\pi\)
−0.995450 + 0.0952866i \(0.969623\pi\)
\(660\) −58.6380 + 485.862i −0.0888454 + 0.736155i
\(661\) 27.1508 47.0266i 0.0410754 0.0711446i −0.844757 0.535150i \(-0.820255\pi\)
0.885832 + 0.464006i \(0.153588\pi\)
\(662\) 192.790 111.307i 0.291223 0.168138i
\(663\) −151.684 + 216.313i −0.228785 + 0.326264i
\(664\) 230.191 398.702i 0.346673 0.600455i
\(665\) −197.141 + 113.819i −0.296453 + 0.171157i
\(666\) −252.325 241.661i −0.378867 0.362855i
\(667\) 243.753 422.192i 0.365446 0.632972i
\(668\) −299.951 173.177i −0.449029 0.259247i
\(669\) 404.394 + 303.425i 0.604475 + 0.453550i
\(670\) 11.6373 0.0173691
\(671\) 1513.61 873.880i 2.25575 1.30236i
\(672\) −643.110 77.6159i −0.957008 0.115500i
\(673\) −475.751 −0.706910 −0.353455 0.935452i \(-0.614993\pi\)
−0.353455 + 0.935452i \(0.614993\pi\)
\(674\) −41.0807 + 23.7179i −0.0609506 + 0.0351898i
\(675\) −340.016 414.606i −0.503728 0.614231i
\(676\) −269.904 + 545.750i −0.399266 + 0.807322i
\(677\) 32.5663 + 18.8021i 0.0481038 + 0.0277727i 0.523859 0.851805i \(-0.324492\pi\)
−0.475755 + 0.879578i \(0.657825\pi\)
\(678\) −9.18618 6.89258i −0.0135489 0.0101661i
\(679\) 491.057 850.535i 0.723206 1.25263i
\(680\) 73.6105i 0.108251i
\(681\) 514.229 + 62.0615i 0.755109 + 0.0911330i
\(682\) 15.3644 + 26.6120i 0.0225285 + 0.0390205i
\(683\) 904.148 + 522.010i 1.32379 + 0.764290i 0.984331 0.176331i \(-0.0564229\pi\)
0.339458 + 0.940621i \(0.389756\pi\)
\(684\) 385.844 + 94.5105i 0.564099 + 0.138173i
\(685\) −161.585 + 279.873i −0.235890 + 0.408573i
\(686\) 159.353i 0.232293i
\(687\) −40.4598 + 335.241i −0.0588934 + 0.487978i
\(688\) 298.993 + 517.870i 0.434582 + 0.752719i
\(689\) 184.791 114.765i 0.268202 0.166568i
\(690\) −34.9836 + 46.6249i −0.0507009 + 0.0675723i
\(691\) −244.608 −0.353991 −0.176996 0.984212i \(-0.556638\pi\)
−0.176996 + 0.984212i \(0.556638\pi\)
\(692\) −727.438 + 419.986i −1.05121 + 0.606917i
\(693\) 1063.72 + 1018.77i 1.53495 + 1.47008i
\(694\) 49.1321 0.0707956
\(695\) 290.950 167.980i 0.418633 0.241698i
\(696\) 412.410 + 309.440i 0.592543 + 0.444597i
\(697\) 32.6551 + 56.5603i 0.0468510 + 0.0811482i
\(698\) 249.124i 0.356912i
\(699\) 670.892 894.140i 0.959788 1.27917i
\(700\) 586.286 0.837552
\(701\) 198.920i 0.283766i 0.989883 + 0.141883i \(0.0453157\pi\)
−0.989883 + 0.141883i \(0.954684\pi\)
\(702\) −42.9674 217.050i −0.0612071 0.309188i
\(703\) −754.504 −1.07326
\(704\) 578.107i 0.821174i
\(705\) −440.189 330.283i −0.624382 0.468487i
\(706\) −122.894 −0.174070
\(707\) −801.319 + 462.642i −1.13341 + 0.654373i
\(708\) 43.9777 58.6118i 0.0621154 0.0827851i
\(709\) −399.883 692.617i −0.564009 0.976893i −0.997141 0.0755624i \(-0.975925\pi\)
0.433132 0.901331i \(-0.357409\pi\)
\(710\) 101.693i 0.143230i
\(711\) 190.633 + 46.6946i 0.268120 + 0.0656745i
\(712\) −36.1100 62.5444i −0.0507163 0.0878432i
\(713\) 33.1824i 0.0465391i
\(714\) 83.9719 + 63.0059i 0.117608 + 0.0882435i
\(715\) 277.781 518.984i 0.388505 0.725852i
\(716\) −11.3054 + 6.52719i −0.0157897 + 0.00911619i
\(717\) −782.160 94.3978i −1.09088 0.131657i
\(718\) −19.5570 −0.0272382
\(719\) −1195.44 690.190i −1.66265 0.959930i −0.971444 0.237271i \(-0.923747\pi\)
−0.691204 0.722659i \(-0.742920\pi\)
\(720\) 167.849 + 160.755i 0.233123 + 0.223271i
\(721\) 769.983 1333.65i 1.06794 1.84972i
\(722\) 115.130 66.4705i 0.159460 0.0920644i
\(723\) 131.761 1091.74i 0.182242 1.51002i
\(724\) 588.574 0.812948
\(725\) −616.757 356.085i −0.850699 0.491151i
\(726\) −315.341 + 420.276i −0.434355 + 0.578892i
\(727\) −109.714 + 190.030i −0.150913 + 0.261389i −0.931563 0.363579i \(-0.881555\pi\)
0.780650 + 0.624968i \(0.214888\pi\)
\(728\) 450.125 + 240.925i 0.618304 + 0.330941i
\(729\) −547.756 481.045i −0.751380 0.659870i
\(730\) −35.4518 61.4043i −0.0485641 0.0841155i
\(731\) 355.672i 0.486556i
\(732\) 113.331 939.041i 0.154824 1.28284i
\(733\) 281.145 + 486.957i 0.383554 + 0.664335i 0.991567 0.129592i \(-0.0413668\pi\)
−0.608014 + 0.793927i \(0.708033\pi\)
\(734\) 282.461i 0.384825i
\(735\) −74.1010 + 98.7591i −0.100818 + 0.134366i
\(736\) −179.103 + 310.216i −0.243347 + 0.421489i
\(737\) −140.821 81.3029i −0.191073 0.110316i
\(738\) −53.1263 13.0130i −0.0719869 0.0176328i
\(739\) 314.180 + 544.176i 0.425142 + 0.736368i 0.996434 0.0843791i \(-0.0268907\pi\)
−0.571291 + 0.820747i \(0.693557\pi\)
\(740\) −435.636 251.515i −0.588697 0.339884i
\(741\) −391.223 274.336i −0.527966 0.370223i
\(742\) −43.2187 74.8569i −0.0582462 0.100885i
\(743\) 83.6874 + 48.3169i 0.112634 + 0.0650295i 0.555259 0.831678i \(-0.312619\pi\)
−0.442624 + 0.896707i \(0.645953\pi\)
\(744\) 34.8413 + 4.20494i 0.0468296 + 0.00565180i
\(745\) −16.6373 28.8166i −0.0223319 0.0386800i
\(746\) 220.476i 0.295544i
\(747\) −205.690 + 839.739i −0.275354 + 1.12415i
\(748\) 243.696 422.093i 0.325796 0.564296i
\(749\) −1338.87 772.997i −1.78754 1.03204i
\(750\) 153.855 + 115.440i 0.205140 + 0.153921i
\(751\) −646.220 + 1119.29i −0.860479 + 1.49039i 0.0109877 + 0.999940i \(0.496502\pi\)
−0.871467 + 0.490454i \(0.836831\pi\)
\(752\) −798.017 460.735i −1.06119 0.612680i
\(753\) −16.9313 39.6596i −0.0224851 0.0526689i
\(754\) −155.045 249.648i −0.205630 0.331099i
\(755\) 39.5062i 0.0523260i
\(756\) 786.496 129.569i 1.04034 0.171388i
\(757\) 639.573 + 1107.77i 0.844879 + 1.46337i 0.885726 + 0.464208i \(0.153661\pi\)
−0.0408470 + 0.999165i \(0.513006\pi\)
\(758\) −20.8046 + 12.0115i −0.0274466 + 0.0158463i
\(759\) 749.068 319.788i 0.986915 0.421328i
\(760\) −133.132 −0.175173
\(761\) 1103.93i 1.45064i −0.688414 0.725318i \(-0.741693\pi\)
0.688414 0.725318i \(-0.258307\pi\)
\(762\) −103.480 12.4888i −0.135800 0.0163895i
\(763\) −140.113 242.683i −0.183634 0.318064i
\(764\) 155.162 89.5826i 0.203091 0.117255i
\(765\) −38.6514 132.722i −0.0505247 0.173492i
\(766\) −61.6242 −0.0804493
\(767\) −74.8737 + 46.5006i −0.0976189 + 0.0606266i
\(768\) 90.8164 + 68.1414i 0.118251 + 0.0887258i
\(769\) −0.423754 + 0.733964i −0.000551046 + 0.000954439i −0.866301 0.499523i \(-0.833509\pi\)
0.865750 + 0.500477i