Properties

Label 117.3.k.a.29.10
Level $117$
Weight $3$
Character 117.29
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(29,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.29");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 29.10
Character \(\chi\) \(=\) 117.29
Dual form 117.3.k.a.113.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.67065i q^{2} +(0.0978207 - 2.99840i) q^{3} +1.20892 q^{4} +(-8.08978 + 4.67064i) q^{5} +(-5.00930 - 0.163425i) q^{6} +(-4.17857 - 7.23749i) q^{7} -8.70230i q^{8} +(-8.98086 - 0.586612i) q^{9} +(7.80302 + 13.5152i) q^{10} +2.35846i q^{11} +(0.118257 - 3.62482i) q^{12} +(6.74084 - 11.1158i) q^{13} +(-12.0913 + 6.98094i) q^{14} +(13.2131 + 24.7133i) q^{15} -9.70286 q^{16} +(5.30206 + 3.06114i) q^{17} +(-0.980026 + 15.0039i) q^{18} +(3.19129 - 5.52747i) q^{19} +(-9.77986 + 5.64641i) q^{20} +(-22.1097 + 11.8211i) q^{21} +3.94017 q^{22} +(18.1610 + 10.4852i) q^{23} +(-26.0930 - 0.851265i) q^{24} +(31.1297 - 53.9182i) q^{25} +(-18.5707 - 11.2616i) q^{26} +(-2.63742 + 26.8709i) q^{27} +(-5.05153 - 8.74951i) q^{28} -32.8392i q^{29} +(41.2874 - 22.0745i) q^{30} +(-10.3041 - 17.8473i) q^{31} -18.5991i q^{32} +(7.07162 + 0.230707i) q^{33} +(5.11411 - 8.85790i) q^{34} +(67.6074 + 39.0331i) q^{35} +(-10.8571 - 0.709165i) q^{36} +(14.1201 + 24.4568i) q^{37} +(-9.23450 - 5.33154i) q^{38} +(-32.6703 - 21.2991i) q^{39} +(40.6453 + 70.3997i) q^{40} +(-23.6843 - 13.6741i) q^{41} +(19.7489 + 36.9376i) q^{42} +(37.1380 + 64.3249i) q^{43} +2.85118i q^{44} +(75.3931 - 37.2008i) q^{45} +(17.5172 - 30.3407i) q^{46} +(-20.4110 - 11.7843i) q^{47} +(-0.949141 + 29.0931i) q^{48} +(-10.4208 + 18.0494i) q^{49} +(-90.0787 - 52.0069i) q^{50} +(9.69720 - 15.5983i) q^{51} +(8.14910 - 13.4381i) q^{52} -97.2822i q^{53} +(44.8919 + 4.40621i) q^{54} +(-11.0155 - 19.0794i) q^{55} +(-62.9828 + 36.3631i) q^{56} +(-16.2614 - 10.1095i) q^{57} -54.8629 q^{58} -8.91451i q^{59} +(15.9735 + 29.8763i) q^{60} +(8.35559 + 14.4723i) q^{61} +(-29.8167 + 17.2147i) q^{62} +(33.2815 + 67.4501i) q^{63} -69.8840 q^{64} +(-2.61400 + 121.408i) q^{65} +(0.385431 - 11.8142i) q^{66} +(2.20817 - 3.82466i) q^{67} +(6.40974 + 3.70067i) q^{68} +(33.2155 - 53.4283i) q^{69} +(65.2108 - 112.948i) q^{70} +(12.9685 + 7.48739i) q^{71} +(-5.10487 + 78.1541i) q^{72} -42.4558 q^{73} +(40.8589 - 23.5899i) q^{74} +(-158.623 - 98.6137i) q^{75} +(3.85800 - 6.68225i) q^{76} +(17.0693 - 9.85499i) q^{77} +(-35.5834 + 54.5807i) q^{78} +(-44.1406 + 76.4538i) q^{79} +(78.4940 - 45.3185i) q^{80} +(80.3118 + 10.5366i) q^{81} +(-22.8447 + 39.5682i) q^{82} +(55.1815 + 31.8591i) q^{83} +(-26.7287 + 14.2907i) q^{84} -57.1900 q^{85} +(107.465 - 62.0447i) q^{86} +(-98.4651 - 3.21235i) q^{87} +20.5240 q^{88} +(-72.0627 + 41.6054i) q^{89} +(-62.1496 - 125.956i) q^{90} +(-108.618 - 2.33861i) q^{91} +(21.9551 + 12.6758i) q^{92} +(-54.5214 + 29.1502i) q^{93} +(-19.6875 + 34.0997i) q^{94} +59.6214i q^{95} +(-55.7675 - 1.81937i) q^{96} +(55.6874 + 96.4534i) q^{97} +(30.1543 + 17.4096i) q^{98} +(1.38350 - 21.1810i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - q^{3} - 98 q^{4} - 6 q^{5} + 12 q^{6} - q^{7} - 3 q^{9} - 6 q^{10} - 39 q^{12} + 4 q^{13} - 6 q^{14} - 25 q^{15} + 166 q^{16} + 34 q^{18} + 5 q^{19} + 21 q^{20} - 91 q^{21} + 30 q^{22} - 75 q^{23}+ \cdots + 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.67065i 0.835327i −0.908602 0.417663i \(-0.862849\pi\)
0.908602 0.417663i \(-0.137151\pi\)
\(3\) 0.0978207 2.99840i 0.0326069 0.999468i
\(4\) 1.20892 0.302229
\(5\) −8.08978 + 4.67064i −1.61796 + 0.934127i −0.630508 + 0.776183i \(0.717153\pi\)
−0.987448 + 0.157945i \(0.949513\pi\)
\(6\) −5.00930 0.163425i −0.834883 0.0272374i
\(7\) −4.17857 7.23749i −0.596938 1.03393i −0.993270 0.115820i \(-0.963051\pi\)
0.396332 0.918107i \(-0.370283\pi\)
\(8\) 8.70230i 1.08779i
\(9\) −8.98086 0.586612i −0.997874 0.0651791i
\(10\) 7.80302 + 13.5152i 0.780302 + 1.35152i
\(11\) 2.35846i 0.214406i 0.994237 + 0.107203i \(0.0341894\pi\)
−0.994237 + 0.107203i \(0.965811\pi\)
\(12\) 0.118257 3.62482i 0.00985475 0.302068i
\(13\) 6.74084 11.1158i 0.518526 0.855062i
\(14\) −12.0913 + 6.98094i −0.863667 + 0.498638i
\(15\) 13.2131 + 24.7133i 0.880874 + 1.64755i
\(16\) −9.70286 −0.606429
\(17\) 5.30206 + 3.06114i 0.311886 + 0.180067i 0.647770 0.761836i \(-0.275702\pi\)
−0.335884 + 0.941903i \(0.609035\pi\)
\(18\) −0.980026 + 15.0039i −0.0544459 + 0.833551i
\(19\) 3.19129 5.52747i 0.167963 0.290920i −0.769741 0.638357i \(-0.779615\pi\)
0.937703 + 0.347437i \(0.112948\pi\)
\(20\) −9.77986 + 5.64641i −0.488993 + 0.282320i
\(21\) −22.1097 + 11.8211i −1.05284 + 0.562907i
\(22\) 3.94017 0.179099
\(23\) 18.1610 + 10.4852i 0.789607 + 0.455880i 0.839824 0.542858i \(-0.182658\pi\)
−0.0502170 + 0.998738i \(0.515991\pi\)
\(24\) −26.0930 0.851265i −1.08721 0.0354694i
\(25\) 31.1297 53.9182i 1.24519 2.15673i
\(26\) −18.5707 11.2616i −0.714256 0.433139i
\(27\) −2.63742 + 26.8709i −0.0976821 + 0.995218i
\(28\) −5.05153 8.74951i −0.180412 0.312483i
\(29\) 32.8392i 1.13239i −0.824273 0.566193i \(-0.808416\pi\)
0.824273 0.566193i \(-0.191584\pi\)
\(30\) 41.2874 22.0745i 1.37625 0.735818i
\(31\) −10.3041 17.8473i −0.332392 0.575720i 0.650588 0.759431i \(-0.274522\pi\)
−0.982980 + 0.183711i \(0.941189\pi\)
\(32\) 18.5991i 0.581221i
\(33\) 7.07162 + 0.230707i 0.214292 + 0.00699111i
\(34\) 5.11411 8.85790i 0.150415 0.260527i
\(35\) 67.6074 + 39.0331i 1.93164 + 1.11523i
\(36\) −10.8571 0.709165i −0.301586 0.0196990i
\(37\) 14.1201 + 24.4568i 0.381626 + 0.660995i 0.991295 0.131661i \(-0.0420311\pi\)
−0.609669 + 0.792656i \(0.708698\pi\)
\(38\) −9.23450 5.33154i −0.243013 0.140304i
\(39\) −32.6703 21.2991i −0.837700 0.546131i
\(40\) 40.6453 + 70.3997i 1.01613 + 1.75999i
\(41\) −23.6843 13.6741i −0.577665 0.333515i 0.182540 0.983198i \(-0.441568\pi\)
−0.760205 + 0.649683i \(0.774901\pi\)
\(42\) 19.7489 + 36.9376i 0.470212 + 0.879467i
\(43\) 37.1380 + 64.3249i 0.863674 + 1.49593i 0.868357 + 0.495939i \(0.165176\pi\)
−0.00468301 + 0.999989i \(0.501491\pi\)
\(44\) 2.85118i 0.0647996i
\(45\) 75.3931 37.2008i 1.67540 0.826684i
\(46\) 17.5172 30.3407i 0.380809 0.659580i
\(47\) −20.4110 11.7843i −0.434277 0.250730i 0.266890 0.963727i \(-0.414004\pi\)
−0.701167 + 0.712997i \(0.747337\pi\)
\(48\) −0.949141 + 29.0931i −0.0197738 + 0.606106i
\(49\) −10.4208 + 18.0494i −0.212670 + 0.368355i
\(50\) −90.0787 52.0069i −1.80157 1.04014i
\(51\) 9.69720 15.5983i 0.190141 0.305848i
\(52\) 8.14910 13.4381i 0.156714 0.258424i
\(53\) 97.2822i 1.83551i −0.397143 0.917757i \(-0.629998\pi\)
0.397143 0.917757i \(-0.370002\pi\)
\(54\) 44.8919 + 4.40621i 0.831332 + 0.0815964i
\(55\) −11.0155 19.0794i −0.200282 0.346899i
\(56\) −62.9828 + 36.3631i −1.12469 + 0.649341i
\(57\) −16.2614 10.1095i −0.285288 0.177359i
\(58\) −54.8629 −0.945912
\(59\) 8.91451i 0.151093i −0.997142 0.0755467i \(-0.975930\pi\)
0.997142 0.0755467i \(-0.0240702\pi\)
\(60\) 15.9735 + 29.8763i 0.266226 + 0.497939i
\(61\) 8.35559 + 14.4723i 0.136977 + 0.237251i 0.926351 0.376662i \(-0.122928\pi\)
−0.789374 + 0.613913i \(0.789595\pi\)
\(62\) −29.8167 + 17.2147i −0.480914 + 0.277656i
\(63\) 33.2815 + 67.4501i 0.528278 + 1.07064i
\(64\) −69.8840 −1.09194
\(65\) −2.61400 + 121.408i −0.0402154 + 1.86782i
\(66\) 0.385431 11.8142i 0.00583986 0.179004i
\(67\) 2.20817 3.82466i 0.0329578 0.0570845i −0.849076 0.528271i \(-0.822841\pi\)
0.882034 + 0.471186i \(0.156174\pi\)
\(68\) 6.40974 + 3.70067i 0.0942609 + 0.0544215i
\(69\) 33.2155 53.4283i 0.481384 0.774323i
\(70\) 65.2108 112.948i 0.931583 1.61355i
\(71\) 12.9685 + 7.48739i 0.182656 + 0.105456i 0.588540 0.808468i \(-0.299703\pi\)
−0.405884 + 0.913925i \(0.633036\pi\)
\(72\) −5.10487 + 78.1541i −0.0709010 + 1.08547i
\(73\) −42.4558 −0.581586 −0.290793 0.956786i \(-0.593919\pi\)
−0.290793 + 0.956786i \(0.593919\pi\)
\(74\) 40.8589 23.5899i 0.552147 0.318782i
\(75\) −158.623 98.6137i −2.11498 1.31485i
\(76\) 3.85800 6.68225i 0.0507632 0.0879244i
\(77\) 17.0693 9.85499i 0.221680 0.127987i
\(78\) −35.5834 + 54.5807i −0.456198 + 0.699753i
\(79\) −44.1406 + 76.4538i −0.558742 + 0.967769i 0.438860 + 0.898555i \(0.355382\pi\)
−0.997602 + 0.0692138i \(0.977951\pi\)
\(80\) 78.4940 45.3185i 0.981175 0.566482i
\(81\) 80.3118 + 10.5366i 0.991503 + 0.130081i
\(82\) −22.8447 + 39.5682i −0.278594 + 0.482539i
\(83\) 55.1815 + 31.8591i 0.664838 + 0.383844i 0.794118 0.607764i \(-0.207933\pi\)
−0.129280 + 0.991608i \(0.541267\pi\)
\(84\) −26.7287 + 14.2907i −0.318199 + 0.170127i
\(85\) −57.1900 −0.672823
\(86\) 107.465 62.0447i 1.24959 0.721450i
\(87\) −98.4651 3.21235i −1.13178 0.0369236i
\(88\) 20.5240 0.233228
\(89\) −72.0627 + 41.6054i −0.809693 + 0.467477i −0.846849 0.531833i \(-0.821503\pi\)
0.0371560 + 0.999309i \(0.488170\pi\)
\(90\) −62.1496 125.956i −0.690551 1.39951i
\(91\) −108.618 2.33861i −1.19360 0.0256990i
\(92\) 21.9551 + 12.6758i 0.238642 + 0.137780i
\(93\) −54.5214 + 29.1502i −0.586252 + 0.313443i
\(94\) −19.6875 + 34.0997i −0.209441 + 0.362763i
\(95\) 59.6214i 0.627594i
\(96\) −55.7675 1.81937i −0.580912 0.0189518i
\(97\) 55.6874 + 96.4534i 0.574097 + 0.994365i 0.996139 + 0.0877889i \(0.0279801\pi\)
−0.422042 + 0.906576i \(0.638687\pi\)
\(98\) 30.1543 + 17.4096i 0.307697 + 0.177649i
\(99\) 1.38350 21.1810i 0.0139748 0.213950i
\(100\) 37.6332 65.1826i 0.376332 0.651826i
\(101\) 120.981i 1.19783i 0.800813 + 0.598915i \(0.204401\pi\)
−0.800813 + 0.598915i \(0.795599\pi\)
\(102\) −26.0593 16.2007i −0.255483 0.158830i
\(103\) −48.3172 83.6878i −0.469099 0.812503i 0.530277 0.847824i \(-0.322088\pi\)
−0.999376 + 0.0353213i \(0.988755\pi\)
\(104\) −96.7330 58.6608i −0.930125 0.564046i
\(105\) 123.651 198.896i 1.17762 1.89425i
\(106\) −162.525 −1.53325
\(107\) 160.718 92.7908i 1.50204 0.867204i 0.502044 0.864842i \(-0.332582\pi\)
0.999997 0.00236190i \(-0.000751816\pi\)
\(108\) −3.18841 + 32.4846i −0.0295223 + 0.300784i
\(109\) 164.763 1.51158 0.755792 0.654812i \(-0.227252\pi\)
0.755792 + 0.654812i \(0.227252\pi\)
\(110\) −31.8751 + 18.4031i −0.289774 + 0.167301i
\(111\) 74.7127 39.9455i 0.673087 0.359870i
\(112\) 40.5440 + 70.2243i 0.362000 + 0.627003i
\(113\) 20.9389i 0.185300i 0.995699 + 0.0926501i \(0.0295338\pi\)
−0.995699 + 0.0926501i \(0.970466\pi\)
\(114\) −16.8894 + 27.1672i −0.148153 + 0.238309i
\(115\) −195.891 −1.70340
\(116\) 39.6998i 0.342240i
\(117\) −67.0592 + 95.8753i −0.573156 + 0.819447i
\(118\) −14.8931 −0.126212
\(119\) 51.1648i 0.429956i
\(120\) 215.063 114.984i 1.79219 0.958203i
\(121\) 115.438 0.954030
\(122\) 24.1782 13.9593i 0.198182 0.114420i
\(123\) −43.3174 + 69.6774i −0.352174 + 0.566483i
\(124\) −12.4568 21.5759i −0.100458 0.173999i
\(125\) 348.050i 2.78440i
\(126\) 112.686 55.6019i 0.894331 0.441285i
\(127\) −52.3042 90.5936i −0.411844 0.713335i 0.583247 0.812295i \(-0.301782\pi\)
−0.995091 + 0.0989596i \(0.968449\pi\)
\(128\) 42.3558i 0.330905i
\(129\) 196.505 105.062i 1.52329 0.814438i
\(130\) 202.831 + 4.36709i 1.56024 + 0.0335930i
\(131\) −147.300 + 85.0439i −1.12443 + 0.649190i −0.942528 0.334127i \(-0.891559\pi\)
−0.181902 + 0.983317i \(0.558225\pi\)
\(132\) 8.54900 + 0.278905i 0.0647651 + 0.00211291i
\(133\) −53.3400 −0.401053
\(134\) −6.38969 3.68909i −0.0476842 0.0275305i
\(135\) −104.168 229.698i −0.771615 1.70147i
\(136\) 26.6390 46.1401i 0.195875 0.339265i
\(137\) 125.698 72.5715i 0.917500 0.529719i 0.0346634 0.999399i \(-0.488964\pi\)
0.882837 + 0.469680i \(0.155631\pi\)
\(138\) −89.2601 55.4916i −0.646812 0.402113i
\(139\) 78.9427 0.567933 0.283966 0.958834i \(-0.408350\pi\)
0.283966 + 0.958834i \(0.408350\pi\)
\(140\) 81.7316 + 47.1878i 0.583797 + 0.337055i
\(141\) −37.3307 + 60.0477i −0.264757 + 0.425870i
\(142\) 12.5088 21.6659i 0.0880904 0.152577i
\(143\) 26.2162 + 15.8980i 0.183330 + 0.111175i
\(144\) 87.1400 + 5.69182i 0.605139 + 0.0395265i
\(145\) 153.380 + 265.662i 1.05779 + 1.83215i
\(146\) 70.9289i 0.485815i
\(147\) 53.1000 + 33.0114i 0.361225 + 0.224568i
\(148\) 17.0701 + 29.5662i 0.115338 + 0.199772i
\(149\) 255.625i 1.71561i −0.513978 0.857804i \(-0.671829\pi\)
0.513978 0.857804i \(-0.328171\pi\)
\(150\) −164.749 + 265.005i −1.09833 + 1.76670i
\(151\) −44.7204 + 77.4580i −0.296161 + 0.512967i −0.975254 0.221086i \(-0.929040\pi\)
0.679093 + 0.734052i \(0.262373\pi\)
\(152\) −48.1017 27.7715i −0.316459 0.182707i
\(153\) −45.8213 30.6020i −0.299486 0.200013i
\(154\) −16.4643 28.5170i −0.106911 0.185175i
\(155\) 166.717 + 96.2539i 1.07559 + 0.620993i
\(156\) −39.4956 25.7488i −0.253177 0.165057i
\(157\) −99.5128 172.361i −0.633839 1.09784i −0.986760 0.162189i \(-0.948145\pi\)
0.352920 0.935653i \(-0.385189\pi\)
\(158\) 127.728 + 73.7437i 0.808404 + 0.466732i
\(159\) −291.691 9.51622i −1.83454 0.0598504i
\(160\) 86.8695 + 150.462i 0.542934 + 0.940389i
\(161\) 175.253i 1.08853i
\(162\) 17.6030 134.173i 0.108660 0.828229i
\(163\) −5.14052 + 8.90365i −0.0315369 + 0.0546236i −0.881363 0.472439i \(-0.843374\pi\)
0.849826 + 0.527063i \(0.176707\pi\)
\(164\) −28.6323 16.5309i −0.174587 0.100798i
\(165\) −58.2854 + 31.1626i −0.353245 + 0.188864i
\(166\) 53.2255 92.1892i 0.320635 0.555357i
\(167\) 58.7250 + 33.9049i 0.351647 + 0.203023i 0.665410 0.746478i \(-0.268257\pi\)
−0.313764 + 0.949501i \(0.601590\pi\)
\(168\) 102.870 + 192.405i 0.612323 + 1.14527i
\(169\) −78.1222 149.860i −0.462262 0.886744i
\(170\) 95.5446i 0.562027i
\(171\) −31.9030 + 47.7694i −0.186567 + 0.279353i
\(172\) 44.8967 + 77.7634i 0.261027 + 0.452113i
\(173\) −22.5261 + 13.0054i −0.130209 + 0.0751760i −0.563689 0.825987i \(-0.690619\pi\)
0.433481 + 0.901163i \(0.357285\pi\)
\(174\) −5.36673 + 164.501i −0.0308433 + 0.945409i
\(175\) −520.310 −2.97320
\(176\) 22.8838i 0.130022i
\(177\) −26.7293 0.872024i −0.151013 0.00492669i
\(178\) 69.5083 + 120.392i 0.390496 + 0.676359i
\(179\) 218.650 126.238i 1.22151 0.705238i 0.256269 0.966605i \(-0.417507\pi\)
0.965239 + 0.261367i \(0.0841733\pi\)
\(180\) 91.1438 44.9726i 0.506355 0.249848i
\(181\) −237.385 −1.31152 −0.655759 0.754970i \(-0.727651\pi\)
−0.655759 + 0.754970i \(0.727651\pi\)
\(182\) −3.90700 + 181.462i −0.0214670 + 0.997046i
\(183\) 44.2112 23.6377i 0.241591 0.129168i
\(184\) 91.2456 158.042i 0.495900 0.858924i
\(185\) −228.458 131.900i −1.23491 0.712974i
\(186\) 48.6998 + 91.0864i 0.261827 + 0.489712i
\(187\) −7.21959 + 12.5047i −0.0386075 + 0.0668701i
\(188\) −24.6752 14.2462i −0.131251 0.0757778i
\(189\) 205.498 93.1935i 1.08729 0.493087i
\(190\) 99.6067 0.524246
\(191\) −127.503 + 73.6137i −0.667554 + 0.385412i −0.795149 0.606414i \(-0.792607\pi\)
0.127595 + 0.991826i \(0.459274\pi\)
\(192\) −6.83611 + 209.541i −0.0356047 + 1.09136i
\(193\) 7.30490 12.6525i 0.0378492 0.0655568i −0.846480 0.532420i \(-0.821283\pi\)
0.884329 + 0.466863i \(0.154616\pi\)
\(194\) 161.140 93.0344i 0.830620 0.479559i
\(195\) 363.776 + 19.7141i 1.86552 + 0.101098i
\(196\) −12.5979 + 21.8202i −0.0642750 + 0.111328i
\(197\) 218.207 125.982i 1.10765 0.639503i 0.169431 0.985542i \(-0.445807\pi\)
0.938220 + 0.346039i \(0.112474\pi\)
\(198\) −35.3862 2.31135i −0.178718 0.0116735i
\(199\) 134.225 232.484i 0.674497 1.16826i −0.302119 0.953270i \(-0.597694\pi\)
0.976616 0.214993i \(-0.0689727\pi\)
\(200\) −469.212 270.900i −2.34606 1.35450i
\(201\) −11.2519 6.99512i −0.0559795 0.0348016i
\(202\) 202.117 1.00058
\(203\) −237.673 + 137.221i −1.17080 + 0.675964i
\(204\) 11.7231 18.8570i 0.0574662 0.0924362i
\(205\) 255.467 1.24618
\(206\) −139.813 + 80.7213i −0.678706 + 0.391851i
\(207\) −156.950 104.820i −0.758214 0.506376i
\(208\) −65.4054 + 107.855i −0.314449 + 0.518534i
\(209\) 13.0363 + 7.52654i 0.0623748 + 0.0360121i
\(210\) −332.286 206.577i −1.58232 0.983701i
\(211\) −113.858 + 197.208i −0.539611 + 0.934634i 0.459314 + 0.888274i \(0.348095\pi\)
−0.998925 + 0.0463599i \(0.985238\pi\)
\(212\) 117.606i 0.554745i
\(213\) 23.7188 38.1525i 0.111356 0.179120i
\(214\) −155.021 268.505i −0.724399 1.25470i
\(215\) −600.876 346.916i −2.79477 1.61356i
\(216\) 233.838 + 22.9516i 1.08258 + 0.106257i
\(217\) −86.1131 + 149.152i −0.396835 + 0.687338i
\(218\) 275.261i 1.26267i
\(219\) −4.15306 + 127.300i −0.0189637 + 0.581277i
\(220\) −13.3168 23.0654i −0.0605311 0.104843i
\(221\) 69.7674 38.3020i 0.315690 0.173312i
\(222\) −66.7351 124.819i −0.300609 0.562248i
\(223\) 49.8543 0.223562 0.111781 0.993733i \(-0.464344\pi\)
0.111781 + 0.993733i \(0.464344\pi\)
\(224\) −134.610 + 77.7174i −0.600940 + 0.346953i
\(225\) −311.201 + 465.971i −1.38311 + 2.07098i
\(226\) 34.9817 0.154786
\(227\) 191.094 110.328i 0.841823 0.486027i −0.0160605 0.999871i \(-0.505112\pi\)
0.857883 + 0.513844i \(0.171779\pi\)
\(228\) −19.6587 12.2215i −0.0862224 0.0536031i
\(229\) −76.4745 132.458i −0.333950 0.578418i 0.649333 0.760504i \(-0.275048\pi\)
−0.983283 + 0.182087i \(0.941715\pi\)
\(230\) 327.266i 1.42290i
\(231\) −27.8795 52.1448i −0.120691 0.225735i
\(232\) −285.776 −1.23179
\(233\) 236.849i 1.01652i 0.861204 + 0.508260i \(0.169711\pi\)
−0.861204 + 0.508260i \(0.830289\pi\)
\(234\) 160.174 + 112.033i 0.684506 + 0.478772i
\(235\) 220.161 0.936854
\(236\) 10.7769i 0.0456648i
\(237\) 224.921 + 139.830i 0.949036 + 0.590001i
\(238\) −85.4786 −0.359154
\(239\) −102.735 + 59.3143i −0.429855 + 0.248177i −0.699285 0.714843i \(-0.746498\pi\)
0.269430 + 0.963020i \(0.413165\pi\)
\(240\) −128.205 239.790i −0.534187 0.999125i
\(241\) 141.762 + 245.539i 0.588225 + 1.01884i 0.994465 + 0.105069i \(0.0335063\pi\)
−0.406240 + 0.913766i \(0.633160\pi\)
\(242\) 192.856i 0.796927i
\(243\) 39.4491 239.777i 0.162342 0.986735i
\(244\) 10.1012 + 17.4958i 0.0413984 + 0.0717041i
\(245\) 194.687i 0.794643i
\(246\) 116.407 + 72.3683i 0.473199 + 0.294180i
\(247\) −39.9304 72.7336i −0.161661 0.294468i
\(248\) −155.313 + 89.6697i −0.626260 + 0.361572i
\(249\) 100.924 162.340i 0.405318 0.651968i
\(250\) 581.471 2.32589
\(251\) 151.189 + 87.2892i 0.602348 + 0.347766i 0.769965 0.638087i \(-0.220274\pi\)
−0.167617 + 0.985852i \(0.553607\pi\)
\(252\) 40.2346 + 81.5415i 0.159661 + 0.323577i
\(253\) −24.7290 + 42.8320i −0.0977433 + 0.169296i
\(254\) −151.350 + 87.3822i −0.595868 + 0.344025i
\(255\) −5.59436 + 171.479i −0.0219387 + 0.672465i
\(256\) −208.774 −0.815524
\(257\) 99.7520 + 57.5918i 0.388140 + 0.224093i 0.681354 0.731954i \(-0.261391\pi\)
−0.293214 + 0.956047i \(0.594725\pi\)
\(258\) −175.523 328.292i −0.680322 1.27245i
\(259\) 118.004 204.389i 0.455614 0.789146i
\(260\) −3.16011 + 146.773i −0.0121543 + 0.564510i
\(261\) −19.2639 + 294.924i −0.0738079 + 1.12998i
\(262\) 142.079 + 246.088i 0.542286 + 0.939266i
\(263\) 36.9549i 0.140513i 0.997529 + 0.0702565i \(0.0223818\pi\)
−0.997529 + 0.0702565i \(0.977618\pi\)
\(264\) 2.00768 61.5394i 0.00760483 0.233104i
\(265\) 454.370 + 786.992i 1.71460 + 2.96978i
\(266\) 89.1128i 0.335010i
\(267\) 117.701 + 220.143i 0.440827 + 0.824506i
\(268\) 2.66949 4.62369i 0.00996079 0.0172526i
\(269\) 51.7619 + 29.8847i 0.192423 + 0.111096i 0.593117 0.805117i \(-0.297897\pi\)
−0.400693 + 0.916212i \(0.631231\pi\)
\(270\) −383.746 + 174.029i −1.42128 + 0.644551i
\(271\) 86.1985 + 149.300i 0.318076 + 0.550923i 0.980086 0.198571i \(-0.0636301\pi\)
−0.662011 + 0.749494i \(0.730297\pi\)
\(272\) −51.4451 29.7019i −0.189136 0.109198i
\(273\) −17.6371 + 325.451i −0.0646049 + 1.19213i
\(274\) −121.242 209.997i −0.442488 0.766413i
\(275\) 127.164 + 73.4182i 0.462415 + 0.266975i
\(276\) 40.1548 64.5903i 0.145488 0.234023i
\(277\) −157.899 273.489i −0.570032 0.987325i −0.996562 0.0828513i \(-0.973597\pi\)
0.426530 0.904474i \(-0.359736\pi\)
\(278\) 131.886i 0.474410i
\(279\) 82.0707 + 166.329i 0.294160 + 0.596160i
\(280\) 339.678 588.339i 1.21313 2.10121i
\(281\) −329.999 190.525i −1.17437 0.678025i −0.219668 0.975575i \(-0.570497\pi\)
−0.954706 + 0.297549i \(0.903831\pi\)
\(282\) 100.319 + 62.3667i 0.355741 + 0.221159i
\(283\) −118.081 + 204.523i −0.417249 + 0.722696i −0.995662 0.0930482i \(-0.970339\pi\)
0.578413 + 0.815744i \(0.303672\pi\)
\(284\) 15.6779 + 9.05163i 0.0552038 + 0.0318719i
\(285\) 178.769 + 5.83221i 0.627260 + 0.0204639i
\(286\) 26.5601 43.7982i 0.0928674 0.153141i
\(287\) 228.553i 0.796351i
\(288\) −10.9104 + 167.036i −0.0378835 + 0.579985i
\(289\) −125.759 217.821i −0.435152 0.753705i
\(290\) 443.829 256.245i 1.53044 0.883602i
\(291\) 294.654 157.538i 1.01256 0.541369i
\(292\) −51.3255 −0.175772
\(293\) 44.4854i 0.151827i −0.997114 0.0759137i \(-0.975813\pi\)
0.997114 0.0759137i \(-0.0241873\pi\)
\(294\) 55.1507 88.7117i 0.187587 0.301741i
\(295\) 41.6364 + 72.1164i 0.141140 + 0.244462i
\(296\) 212.830 122.878i 0.719021 0.415127i
\(297\) −63.3740 6.22025i −0.213380 0.0209436i
\(298\) −427.062 −1.43309
\(299\) 238.972 131.194i 0.799237 0.438778i
\(300\) −191.762 119.216i −0.639208 0.397386i
\(301\) 310.367 537.572i 1.03112 1.78595i
\(302\) 129.405 + 74.7123i 0.428495 + 0.247392i
\(303\) 362.749 + 11.8344i 1.19719 + 0.0390575i
\(304\) −30.9646 + 53.6323i −0.101857 + 0.176422i
\(305\) −135.190 78.0518i −0.443245 0.255908i
\(306\) −51.1253 + 76.5516i −0.167076 + 0.250169i
\(307\) 259.871 0.846485 0.423243 0.906016i \(-0.360892\pi\)
0.423243 + 0.906016i \(0.360892\pi\)
\(308\) 20.6354 11.9139i 0.0669980 0.0386813i
\(309\) −255.656 + 136.688i −0.827367 + 0.442356i
\(310\) 160.807 278.526i 0.518732 0.898470i
\(311\) −113.035 + 65.2607i −0.363456 + 0.209841i −0.670596 0.741823i \(-0.733961\pi\)
0.307140 + 0.951664i \(0.400628\pi\)
\(312\) −185.351 + 284.306i −0.594074 + 0.911239i
\(313\) 211.785 366.822i 0.676628 1.17195i −0.299362 0.954140i \(-0.596774\pi\)
0.975990 0.217815i \(-0.0698928\pi\)
\(314\) −287.956 + 166.251i −0.917057 + 0.529463i
\(315\) −584.275 390.210i −1.85484 1.23876i
\(316\) −53.3623 + 92.4262i −0.168868 + 0.292488i
\(317\) 108.455 + 62.6168i 0.342131 + 0.197529i 0.661214 0.750197i \(-0.270042\pi\)
−0.319083 + 0.947727i \(0.603375\pi\)
\(318\) −15.8983 + 487.316i −0.0499947 + 1.53244i
\(319\) 77.4500 0.242790
\(320\) 565.346 326.403i 1.76671 1.02001i
\(321\) −262.503 490.976i −0.817766 1.52952i
\(322\) −292.787 −0.909277
\(323\) 33.8408 19.5380i 0.104770 0.0604891i
\(324\) 97.0902 + 12.7378i 0.299661 + 0.0393143i
\(325\) −389.504 709.485i −1.19847 2.18303i
\(326\) 14.8749 + 8.58803i 0.0456286 + 0.0263437i
\(327\) 16.1172 494.025i 0.0492881 1.51078i
\(328\) −118.996 + 206.107i −0.362793 + 0.628377i
\(329\) 196.966i 0.598680i
\(330\) 52.0620 + 97.3748i 0.157764 + 0.295075i
\(331\) 262.960 + 455.459i 0.794440 + 1.37601i 0.923194 + 0.384333i \(0.125569\pi\)
−0.128755 + 0.991676i \(0.541098\pi\)
\(332\) 66.7098 + 38.5149i 0.200933 + 0.116009i
\(333\) −112.464 227.926i −0.337731 0.684463i
\(334\) 56.6433 98.1091i 0.169591 0.293740i
\(335\) 41.2542i 0.123147i
\(336\) 214.527 114.698i 0.638473 0.341363i
\(337\) 118.122 + 204.594i 0.350511 + 0.607103i 0.986339 0.164728i \(-0.0526746\pi\)
−0.635828 + 0.771831i \(0.719341\pi\)
\(338\) −250.364 + 130.515i −0.740721 + 0.386140i
\(339\) 62.7834 + 2.04826i 0.185202 + 0.00604207i
\(340\) −69.1379 −0.203347
\(341\) 42.0922 24.3019i 0.123438 0.0712667i
\(342\) 79.8062 + 53.2989i 0.233351 + 0.155845i
\(343\) −235.323 −0.686073
\(344\) 559.774 323.186i 1.62725 0.939494i
\(345\) −19.1622 + 587.360i −0.0555426 + 1.70249i
\(346\) 21.7276 + 37.6333i 0.0627965 + 0.108767i
\(347\) 4.21494i 0.0121468i −0.999982 0.00607340i \(-0.998067\pi\)
0.999982 0.00607340i \(-0.00193323\pi\)
\(348\) −119.036 3.88346i −0.342058 0.0111594i
\(349\) 325.320 0.932150 0.466075 0.884745i \(-0.345668\pi\)
0.466075 + 0.884745i \(0.345668\pi\)
\(350\) 869.258i 2.48359i
\(351\) 280.913 + 210.449i 0.800322 + 0.599570i
\(352\) 43.8652 0.124617
\(353\) 59.4194i 0.168327i −0.996452 0.0841635i \(-0.973178\pi\)
0.996452 0.0841635i \(-0.0268218\pi\)
\(354\) −1.45685 + 44.6554i −0.00411539 + 0.126145i
\(355\) −139.884 −0.394038
\(356\) −87.1177 + 50.2975i −0.244713 + 0.141285i
\(357\) −153.413 5.00497i −0.429727 0.0140195i
\(358\) −210.899 365.289i −0.589105 1.02036i
\(359\) 33.7016i 0.0938763i 0.998898 + 0.0469381i \(0.0149464\pi\)
−0.998898 + 0.0469381i \(0.985054\pi\)
\(360\) −323.732 656.093i −0.899256 1.82248i
\(361\) 160.131 + 277.356i 0.443577 + 0.768298i
\(362\) 396.588i 1.09555i
\(363\) 11.2922 346.129i 0.0311080 0.953523i
\(364\) −131.309 2.82718i −0.360740 0.00776697i
\(365\) 343.458 198.296i 0.940981 0.543276i
\(366\) −39.4905 73.8615i −0.107897 0.201808i
\(367\) −475.188 −1.29479 −0.647395 0.762154i \(-0.724142\pi\)
−0.647395 + 0.762154i \(0.724142\pi\)
\(368\) −176.213 101.737i −0.478841 0.276459i
\(369\) 204.684 + 136.699i 0.554698 + 0.370458i
\(370\) −220.359 + 381.674i −0.595566 + 1.03155i
\(371\) −704.079 + 406.500i −1.89779 + 1.09569i
\(372\) −65.9118 + 35.2401i −0.177182 + 0.0947315i
\(373\) 257.358 0.689969 0.344984 0.938608i \(-0.387884\pi\)
0.344984 + 0.938608i \(0.387884\pi\)
\(374\) 20.8910 + 12.0614i 0.0558584 + 0.0322498i
\(375\) 1043.60 + 34.0465i 2.78292 + 0.0907907i
\(376\) −102.550 + 177.623i −0.272741 + 0.472400i
\(377\) −365.034 221.364i −0.968260 0.587171i
\(378\) −155.694 343.316i −0.411889 0.908245i
\(379\) 209.859 + 363.487i 0.553718 + 0.959068i 0.998002 + 0.0631817i \(0.0201248\pi\)
−0.444284 + 0.895886i \(0.646542\pi\)
\(380\) 72.0773i 0.189677i
\(381\) −276.753 + 147.967i −0.726385 + 0.388366i
\(382\) 122.983 + 213.013i 0.321945 + 0.557626i
\(383\) 665.575i 1.73779i 0.494993 + 0.868897i \(0.335171\pi\)
−0.494993 + 0.868897i \(0.664829\pi\)
\(384\) 127.000 + 4.14327i 0.330729 + 0.0107898i
\(385\) −92.0582 + 159.449i −0.239112 + 0.414154i
\(386\) −21.1379 12.2040i −0.0547613 0.0316165i
\(387\) −295.797 599.479i −0.764335 1.54904i
\(388\) 67.3214 + 116.604i 0.173509 + 0.300526i
\(389\) 92.2928 + 53.2853i 0.237256 + 0.136980i 0.613915 0.789372i \(-0.289594\pi\)
−0.376659 + 0.926352i \(0.622927\pi\)
\(390\) 32.9354 607.744i 0.0844498 1.55832i
\(391\) 64.1937 + 111.187i 0.164178 + 0.284365i
\(392\) 157.071 + 90.6851i 0.400692 + 0.231339i
\(393\) 240.587 + 449.985i 0.612180 + 1.14500i
\(394\) −210.472 364.549i −0.534194 0.925251i
\(395\) 824.659i 2.08774i
\(396\) 1.67254 25.6061i 0.00422358 0.0646618i
\(397\) −116.806 + 202.314i −0.294222 + 0.509607i −0.974804 0.223065i \(-0.928394\pi\)
0.680582 + 0.732672i \(0.261727\pi\)
\(398\) −388.401 224.243i −0.975881 0.563425i
\(399\) −5.21776 + 159.935i −0.0130771 + 0.400840i
\(400\) −302.047 + 523.161i −0.755118 + 1.30790i
\(401\) −101.782 58.7638i −0.253820 0.146543i 0.367692 0.929948i \(-0.380148\pi\)
−0.621512 + 0.783405i \(0.713481\pi\)
\(402\) −11.6864 + 18.7980i −0.0290707 + 0.0467612i
\(403\) −267.846 5.76689i −0.664630 0.0143099i
\(404\) 146.256i 0.362019i
\(405\) −698.917 + 289.869i −1.72572 + 0.715725i
\(406\) 229.248 + 397.070i 0.564651 + 0.978004i
\(407\) −57.6805 + 33.3018i −0.141721 + 0.0818227i
\(408\) −135.741 84.3879i −0.332698 0.206833i
\(409\) −224.762 −0.549541 −0.274770 0.961510i \(-0.588602\pi\)
−0.274770 + 0.961510i \(0.588602\pi\)
\(410\) 426.798i 1.04097i
\(411\) −205.303 383.991i −0.499520 0.934285i
\(412\) −58.4114 101.172i −0.141775 0.245562i
\(413\) −64.5186 + 37.2499i −0.156219 + 0.0901934i
\(414\) −175.118 + 262.210i −0.422990 + 0.633357i
\(415\) −595.209 −1.43424
\(416\) −206.744 125.373i −0.496980 0.301378i
\(417\) 7.72223 236.702i 0.0185185 0.567631i
\(418\) 12.5742 21.7792i 0.0300819 0.0521034i
\(419\) −33.5256 19.3560i −0.0800134 0.0461957i 0.459460 0.888199i \(-0.348043\pi\)
−0.539473 + 0.842003i \(0.681376\pi\)
\(420\) 149.483 240.448i 0.355912 0.572496i
\(421\) 87.7948 152.065i 0.208539 0.361200i −0.742716 0.669607i \(-0.766463\pi\)
0.951254 + 0.308407i \(0.0997959\pi\)
\(422\) 329.466 + 190.217i 0.780725 + 0.450752i
\(423\) 176.396 + 117.806i 0.417011 + 0.278502i
\(424\) −846.579 −1.99665
\(425\) 330.103 190.585i 0.776713 0.448435i
\(426\) −63.7397 39.6259i −0.149624 0.0930186i
\(427\) 69.8287 120.947i 0.163533 0.283248i
\(428\) 194.295 112.176i 0.453960 0.262094i
\(429\) 50.2332 77.0516i 0.117094 0.179608i
\(430\) −579.577 + 1003.86i −1.34785 + 2.33455i
\(431\) −208.258 + 120.238i −0.483197 + 0.278974i −0.721748 0.692156i \(-0.756661\pi\)
0.238551 + 0.971130i \(0.423328\pi\)
\(432\) 25.5905 260.724i 0.0592372 0.603529i
\(433\) 79.6023 137.875i 0.183839 0.318419i −0.759346 0.650687i \(-0.774481\pi\)
0.943185 + 0.332269i \(0.107814\pi\)
\(434\) 249.182 + 143.865i 0.574152 + 0.331487i
\(435\) 811.565 433.908i 1.86567 0.997489i
\(436\) 199.184 0.456845
\(437\) 115.914 66.9229i 0.265249 0.153142i
\(438\) 212.674 + 6.93832i 0.485556 + 0.0158409i
\(439\) 410.962 0.936133 0.468067 0.883693i \(-0.344951\pi\)
0.468067 + 0.883693i \(0.344951\pi\)
\(440\) −166.035 + 95.8603i −0.377352 + 0.217864i
\(441\) 104.176 155.986i 0.236227 0.353710i
\(442\) −63.9893 116.557i −0.144772 0.263704i
\(443\) 410.331 + 236.905i 0.926254 + 0.534773i 0.885625 0.464401i \(-0.153730\pi\)
0.0406294 + 0.999174i \(0.487064\pi\)
\(444\) 90.3213 48.2908i 0.203426 0.108763i
\(445\) 388.648 673.157i 0.873366 1.51271i
\(446\) 83.2893i 0.186747i
\(447\) −766.469 25.0055i −1.71469 0.0559406i
\(448\) 292.015 + 505.785i 0.651819 + 1.12898i
\(449\) 52.5806 + 30.3574i 0.117106 + 0.0676112i 0.557409 0.830238i \(-0.311796\pi\)
−0.440303 + 0.897849i \(0.645129\pi\)
\(450\) 778.476 + 519.908i 1.72995 + 1.15535i
\(451\) 32.2499 55.8585i 0.0715075 0.123855i
\(452\) 25.3134i 0.0560031i
\(453\) 227.876 + 141.667i 0.503037 + 0.312730i
\(454\) −184.320 319.252i −0.405991 0.703197i
\(455\) 889.615 488.394i 1.95520 1.07339i
\(456\) −87.9757 + 141.512i −0.192929 + 0.310333i
\(457\) −624.595 −1.36673 −0.683364 0.730078i \(-0.739484\pi\)
−0.683364 + 0.730078i \(0.739484\pi\)
\(458\) −221.291 + 127.762i −0.483168 + 0.278957i
\(459\) −96.2394 + 134.397i −0.209672 + 0.292805i
\(460\) −236.816 −0.514817
\(461\) 373.689 215.749i 0.810605 0.468003i −0.0365608 0.999331i \(-0.511640\pi\)
0.847166 + 0.531328i \(0.178307\pi\)
\(462\) −87.1159 + 46.5770i −0.188563 + 0.100816i
\(463\) −68.5486 118.730i −0.148053 0.256435i 0.782455 0.622707i \(-0.213967\pi\)
−0.930508 + 0.366272i \(0.880634\pi\)
\(464\) 318.634i 0.686711i
\(465\) 304.916 490.468i 0.655734 1.05477i
\(466\) 395.693 0.849126
\(467\) 158.770i 0.339978i 0.985446 + 0.169989i \(0.0543733\pi\)
−0.985446 + 0.169989i \(0.945627\pi\)
\(468\) −81.0689 + 115.905i −0.173224 + 0.247660i
\(469\) −36.9079 −0.0786949
\(470\) 367.812i 0.782579i
\(471\) −526.543 + 281.519i −1.11793 + 0.597705i
\(472\) −77.5767 −0.164357
\(473\) −151.708 + 87.5886i −0.320735 + 0.185177i
\(474\) 233.608 375.766i 0.492843 0.792755i
\(475\) −198.688 344.137i −0.418290 0.724499i
\(476\) 61.8539i 0.129945i
\(477\) −57.0669 + 873.678i −0.119637 + 1.83161i
\(478\) 99.0936 + 171.635i 0.207309 + 0.359069i
\(479\) 279.391i 0.583280i 0.956528 + 0.291640i \(0.0942008\pi\)
−0.956528 + 0.291640i \(0.905799\pi\)
\(480\) 459.645 245.751i 0.957593 0.511982i
\(481\) 367.039 + 7.90258i 0.763074 + 0.0164295i
\(482\) 410.211 236.836i 0.851061 0.491360i
\(483\) −525.480 17.1434i −1.08795 0.0354935i
\(484\) 139.554 0.288336
\(485\) −900.998 520.191i −1.85773 1.07256i
\(486\) −400.584 65.9057i −0.824246 0.135608i
\(487\) 294.379 509.879i 0.604474 1.04698i −0.387661 0.921802i \(-0.626717\pi\)
0.992134 0.125177i \(-0.0399499\pi\)
\(488\) 125.942 72.7128i 0.258078 0.149002i
\(489\) 26.1939 + 16.2843i 0.0535662 + 0.0333013i
\(490\) −325.255 −0.663787
\(491\) −104.766 60.4867i −0.213373 0.123191i 0.389505 0.921024i \(-0.372646\pi\)
−0.602878 + 0.797833i \(0.705979\pi\)
\(492\) −52.3670 + 84.2341i −0.106437 + 0.171208i
\(493\) 100.525 174.115i 0.203906 0.353175i
\(494\) −121.513 + 66.7098i −0.245977 + 0.135040i
\(495\) 87.7366 + 177.812i 0.177246 + 0.359216i
\(496\) 99.9797 + 173.170i 0.201572 + 0.349133i
\(497\) 125.146i 0.251803i
\(498\) −271.214 168.610i −0.544607 0.338573i
\(499\) 24.9704 + 43.2501i 0.0500409 + 0.0866734i 0.889961 0.456037i \(-0.150731\pi\)
−0.839920 + 0.542710i \(0.817398\pi\)
\(500\) 420.763i 0.841527i
\(501\) 107.405 172.765i 0.214381 0.344840i
\(502\) 145.830 252.585i 0.290498 0.503157i
\(503\) −215.845 124.618i −0.429115 0.247750i 0.269855 0.962901i \(-0.413024\pi\)
−0.698970 + 0.715151i \(0.746358\pi\)
\(504\) 586.971 289.626i 1.16462 0.574654i
\(505\) −565.057 978.708i −1.11893 1.93804i
\(506\) 71.5574 + 41.3137i 0.141418 + 0.0816476i
\(507\) −456.982 + 219.583i −0.901345 + 0.433102i
\(508\) −63.2314 109.520i −0.124471 0.215590i
\(509\) 178.670 + 103.155i 0.351021 + 0.202662i 0.665135 0.746723i \(-0.268374\pi\)
−0.314114 + 0.949385i \(0.601707\pi\)
\(510\) 286.482 + 9.34625i 0.561728 + 0.0183260i
\(511\) 177.404 + 307.273i 0.347171 + 0.601318i
\(512\) 518.213i 1.01213i
\(513\) 140.111 + 100.331i 0.273122 + 0.195577i
\(514\) 96.2160 166.651i 0.187191 0.324224i
\(515\) 781.751 + 451.344i 1.51796 + 0.876396i
\(516\) 237.558 127.012i 0.460384 0.246147i
\(517\) 27.7928 48.1386i 0.0537579 0.0931114i
\(518\) −341.463 197.144i −0.659195 0.380586i
\(519\) 36.7921 + 68.8145i 0.0708903 + 0.132591i
\(520\) 1056.53 + 22.7478i 2.03179 + 0.0437458i
\(521\) 437.553i 0.839832i 0.907563 + 0.419916i \(0.137941\pi\)
−0.907563 + 0.419916i \(0.862059\pi\)
\(522\) 492.716 + 32.1832i 0.943901 + 0.0616537i
\(523\) 61.7422 + 106.941i 0.118054 + 0.204475i 0.918996 0.394266i \(-0.129001\pi\)
−0.800942 + 0.598741i \(0.795668\pi\)
\(524\) −178.074 + 102.811i −0.339835 + 0.196204i
\(525\) −50.8971 + 1560.10i −0.0969468 + 2.97162i
\(526\) 61.7389 0.117374
\(527\) 126.170i 0.239412i
\(528\) −68.6150 2.23851i −0.129953 0.00423961i
\(529\) −44.6195 77.2833i −0.0843469 0.146093i
\(530\) 1314.79 759.095i 2.48074 1.43225i
\(531\) −5.22936 + 80.0600i −0.00984814 + 0.150772i
\(532\) −64.4836 −0.121210
\(533\) −311.651 + 171.095i −0.584710 + 0.321003i
\(534\) 367.783 196.637i 0.688732 0.368234i
\(535\) −866.784 + 1501.31i −1.62016 + 2.80620i
\(536\) −33.2833 19.2161i −0.0620958 0.0358510i
\(537\) −357.123 667.950i −0.665034 1.24385i
\(538\) 49.9271 86.4762i 0.0928012 0.160736i
\(539\) −42.5688 24.5771i −0.0789774 0.0455976i
\(540\) −125.930 277.685i −0.233204 0.514232i
\(541\) 599.652 1.10841 0.554207 0.832379i \(-0.313021\pi\)
0.554207 + 0.832379i \(0.313021\pi\)
\(542\) 249.429 144.008i 0.460201 0.265697i
\(543\) −23.2212 + 711.776i −0.0427646 + 1.31082i
\(544\) 56.9344 98.6133i 0.104659 0.181274i
\(545\) −1332.89 + 769.547i −2.44568 + 1.41201i
\(546\) 543.715 + 29.4655i 0.995815 + 0.0539662i
\(547\) −349.541 + 605.422i −0.639014 + 1.10680i 0.346635 + 0.938000i \(0.387324\pi\)
−0.985649 + 0.168805i \(0.946009\pi\)
\(548\) 151.958 87.7328i 0.277295 0.160096i
\(549\) −66.5507 134.875i −0.121222 0.245674i
\(550\) 122.656 212.447i 0.223012 0.386268i
\(551\) −181.518 104.799i −0.329433 0.190198i
\(552\) −464.948 289.051i −0.842298 0.523643i
\(553\) 737.778 1.33414
\(554\) −456.905 + 263.794i −0.824739 + 0.476163i
\(555\) −417.838 + 672.106i −0.752861 + 1.21100i
\(556\) 95.4350 0.171646
\(557\) 161.349 93.1547i 0.289674 0.167244i −0.348121 0.937450i \(-0.613180\pi\)
0.637795 + 0.770206i \(0.279847\pi\)
\(558\) 277.878 137.112i 0.497989 0.245720i
\(559\) 965.364 + 20.7849i 1.72695 + 0.0371823i
\(560\) −655.985 378.733i −1.17140 0.676309i
\(561\) 36.7879 + 22.8705i 0.0655756 + 0.0407673i
\(562\) −318.302 + 551.314i −0.566373 + 0.980987i
\(563\) 100.412i 0.178352i 0.996016 + 0.0891762i \(0.0284234\pi\)
−0.996016 + 0.0891762i \(0.971577\pi\)
\(564\) −45.1297 + 72.5926i −0.0800172 + 0.128710i
\(565\) −97.7981 169.391i −0.173094 0.299808i
\(566\) 341.687 + 197.273i 0.603687 + 0.348539i
\(567\) −259.330 625.283i −0.457372 1.10279i
\(568\) 65.1575 112.856i 0.114714 0.198690i
\(569\) 33.2119i 0.0583690i 0.999574 + 0.0291845i \(0.00929103\pi\)
−0.999574 + 0.0291845i \(0.990709\pi\)
\(570\) 9.74360 298.661i 0.0170940 0.523967i
\(571\) −133.349 230.967i −0.233536 0.404496i 0.725310 0.688422i \(-0.241696\pi\)
−0.958846 + 0.283926i \(0.908363\pi\)
\(572\) 31.6932 + 19.2194i 0.0554077 + 0.0336003i
\(573\) 208.251 + 389.506i 0.363440 + 0.679766i
\(574\) 381.833 0.665214
\(575\) 1130.69 652.805i 1.96642 1.13531i
\(576\) 627.619 + 40.9948i 1.08962 + 0.0711716i
\(577\) 594.972 1.03115 0.515573 0.856845i \(-0.327579\pi\)
0.515573 + 0.856845i \(0.327579\pi\)
\(578\) −363.903 + 210.099i −0.629590 + 0.363494i
\(579\) −37.2226 23.1407i −0.0642878 0.0399667i
\(580\) 185.423 + 321.163i 0.319695 + 0.553729i
\(581\) 532.501i 0.916525i
\(582\) −263.192 492.264i −0.452220 0.845815i
\(583\) 229.436 0.393545
\(584\) 369.463i 0.632642i
\(585\) 94.6957 1088.82i 0.161873 1.86123i
\(586\) −74.3197 −0.126825
\(587\) 1036.55i 1.76584i −0.469525 0.882919i \(-0.655575\pi\)
0.469525 0.882919i \(-0.344425\pi\)
\(588\) 64.1934 + 39.9081i 0.109173 + 0.0678708i
\(589\) −131.534 −0.223318
\(590\) 120.482 69.5601i 0.204206 0.117898i
\(591\) −356.400 666.598i −0.603046 1.12791i
\(592\) −137.006 237.301i −0.231429 0.400846i
\(593\) 332.831i 0.561266i 0.959815 + 0.280633i \(0.0905444\pi\)
−0.959815 + 0.280633i \(0.909456\pi\)
\(594\) −10.3919 + 105.876i −0.0174947 + 0.178242i
\(595\) 238.972 + 413.912i 0.401634 + 0.695650i
\(596\) 309.030i 0.518506i
\(597\) −683.952 425.202i −1.14565 0.712232i
\(598\) −219.181 399.239i −0.366523 0.667625i
\(599\) −778.713 + 449.590i −1.30002 + 0.750568i −0.980408 0.196980i \(-0.936887\pi\)
−0.319614 + 0.947548i \(0.603553\pi\)
\(600\) −858.166 + 1380.39i −1.43028 + 2.30065i
\(601\) −926.787 −1.54207 −0.771037 0.636790i \(-0.780262\pi\)
−0.771037 + 0.636790i \(0.780262\pi\)
\(602\) −898.096 518.516i −1.49185 0.861322i
\(603\) −22.0749 + 33.0534i −0.0366084 + 0.0548150i
\(604\) −54.0632 + 93.6401i −0.0895085 + 0.155033i
\(605\) −933.865 + 539.167i −1.54358 + 0.891186i
\(606\) 19.7712 606.029i 0.0326258 1.00005i
\(607\) −236.251 −0.389210 −0.194605 0.980882i \(-0.562343\pi\)
−0.194605 + 0.980882i \(0.562343\pi\)
\(608\) −102.806 59.3550i −0.169089 0.0976233i
\(609\) 388.194 + 726.063i 0.637428 + 1.19222i
\(610\) −130.398 + 225.855i −0.213766 + 0.370254i
\(611\) −268.579 + 147.449i −0.439573 + 0.241324i
\(612\) −55.3941 36.9952i −0.0905133 0.0604497i
\(613\) 144.036 + 249.478i 0.234970 + 0.406979i 0.959264 0.282512i \(-0.0911676\pi\)
−0.724294 + 0.689491i \(0.757834\pi\)
\(614\) 434.155i 0.707092i
\(615\) 24.9900 765.995i 0.0406342 1.24552i
\(616\) −85.7610 148.542i −0.139222 0.241140i
\(617\) 172.269i 0.279205i −0.990208 0.139602i \(-0.955418\pi\)
0.990208 0.139602i \(-0.0445824\pi\)
\(618\) 228.358 + 427.113i 0.369512 + 0.691122i
\(619\) 247.022 427.854i 0.399066 0.691202i −0.594545 0.804062i \(-0.702668\pi\)
0.993611 + 0.112860i \(0.0360012\pi\)
\(620\) 201.546 + 116.363i 0.325075 + 0.187682i
\(621\) −329.646 + 460.347i −0.530830 + 0.741300i
\(622\) 109.028 + 188.842i 0.175286 + 0.303605i
\(623\) 602.238 + 347.702i 0.966673 + 0.558109i
\(624\) 316.995 + 206.662i 0.508005 + 0.331190i
\(625\) −847.373 1467.69i −1.35580 2.34831i
\(626\) −612.832 353.819i −0.978965 0.565206i
\(627\) 23.8428 38.3520i 0.0380268 0.0611674i
\(628\) −120.303 208.370i −0.191565 0.331800i
\(629\) 172.895i 0.274873i
\(630\) −651.907 + 976.121i −1.03477 + 1.54940i
\(631\) −17.1478 + 29.7009i −0.0271756 + 0.0470696i −0.879293 0.476281i \(-0.841985\pi\)
0.852118 + 0.523350i \(0.175318\pi\)
\(632\) 665.323 + 384.125i 1.05273 + 0.607792i
\(633\) 580.171 + 360.683i 0.916542 + 0.569800i
\(634\) 104.611 181.192i 0.165002 0.285791i
\(635\) 846.259 + 488.588i 1.33269 + 0.769430i
\(636\) −352.630 11.5043i −0.554450 0.0180885i
\(637\) 130.388 + 237.504i 0.204691 + 0.372847i
\(638\) 129.392i 0.202809i
\(639\) −112.076 74.8507i −0.175394 0.117137i
\(640\) −197.828 342.649i −0.309107 0.535389i
\(641\) −949.249 + 548.049i −1.48089 + 0.854991i −0.999765 0.0216626i \(-0.993104\pi\)
−0.481122 + 0.876653i \(0.659771\pi\)
\(642\) −820.251 + 438.551i −1.27765 + 0.683102i
\(643\) 1056.58 1.64321 0.821603 0.570060i \(-0.193080\pi\)
0.821603 + 0.570060i \(0.193080\pi\)
\(644\) 211.866i 0.328985i
\(645\) −1098.97 + 1767.74i −1.70383 + 2.74067i
\(646\) −32.6412 56.5363i −0.0505282 0.0875174i
\(647\) 119.357 68.9110i 0.184478 0.106509i −0.404917 0.914354i \(-0.632700\pi\)
0.589395 + 0.807845i \(0.299366\pi\)
\(648\) 91.6923 698.897i 0.141500 1.07854i
\(649\) 21.0245 0.0323953
\(650\) −1185.30 + 650.727i −1.82355 + 1.00112i
\(651\) 438.795 + 272.792i 0.674033 + 0.419036i
\(652\) −6.21446 + 10.7638i −0.00953138 + 0.0165088i
\(653\) −439.702 253.862i −0.673357 0.388763i 0.123990 0.992283i \(-0.460431\pi\)
−0.797347 + 0.603521i \(0.793764\pi\)
\(654\) −825.345 26.9263i −1.26200 0.0411717i
\(655\) 794.418 1375.97i 1.21285 2.10072i
\(656\) 229.805 + 132.678i 0.350313 + 0.202253i
\(657\) 381.290 + 24.9051i 0.580350 + 0.0379073i
\(658\) 329.062 0.500094
\(659\) 7.47529 4.31586i 0.0113434 0.00654911i −0.494318 0.869281i \(-0.664582\pi\)
0.505661 + 0.862732i \(0.331249\pi\)
\(660\) −70.4622 + 37.6730i −0.106761 + 0.0570803i
\(661\) 114.006 197.464i 0.172475 0.298735i −0.766810 0.641874i \(-0.778157\pi\)
0.939284 + 0.343140i \(0.111490\pi\)
\(662\) 760.915 439.314i 1.14942 0.663617i
\(663\) −108.020 212.938i −0.162926 0.321173i
\(664\) 277.247 480.206i 0.417541 0.723202i
\(665\) 431.509 249.132i 0.648886 0.374635i
\(666\) −380.786 + 187.889i −0.571751 + 0.282116i
\(667\) 344.327 596.391i 0.516232 0.894140i
\(668\) 70.9936 + 40.9882i 0.106278 + 0.0613595i
\(669\) 4.87679 149.483i 0.00728966 0.223443i
\(670\) 68.9215 0.102868
\(671\) −34.1324 + 19.7063i −0.0508679 + 0.0293686i
\(672\) 219.861 + 411.219i 0.327173 + 0.611933i
\(673\) 328.551 0.488188 0.244094 0.969752i \(-0.421509\pi\)
0.244094 + 0.969752i \(0.421509\pi\)
\(674\) 341.805 197.341i 0.507129 0.292791i
\(675\) 1366.73 + 978.687i 2.02478 + 1.44991i
\(676\) −94.4432 181.168i −0.139709 0.268000i
\(677\) 28.7642 + 16.6070i 0.0424878 + 0.0245303i 0.521093 0.853500i \(-0.325524\pi\)
−0.478606 + 0.878030i \(0.658858\pi\)
\(678\) 3.42193 104.889i 0.00504710 0.154704i
\(679\) 465.387 806.074i 0.685401 1.18715i
\(680\) 497.684i 0.731888i
\(681\) −312.115 583.769i −0.458319 0.857223i
\(682\) −40.6001 70.3215i −0.0595310 0.103111i
\(683\) 342.607 + 197.804i 0.501621 + 0.289611i 0.729383 0.684106i \(-0.239807\pi\)
−0.227762 + 0.973717i \(0.573141\pi\)
\(684\) −38.5681 + 57.7492i −0.0563860 + 0.0844287i
\(685\) −677.910 + 1174.17i −0.989650 + 1.71412i
\(686\) 393.143i 0.573095i
\(687\) −404.643 + 216.344i −0.588999 + 0.314912i
\(688\) −360.345 624.136i −0.523757 0.907174i
\(689\) −1081.37 655.764i −1.56948 0.951761i
\(690\) 981.276 + 32.0134i 1.42214 + 0.0463962i
\(691\) −1335.64 −1.93291 −0.966455 0.256837i \(-0.917320\pi\)
−0.966455 + 0.256837i \(0.917320\pi\)
\(692\) −27.2321 + 15.7225i −0.0393528 + 0.0227204i
\(693\) −159.078 + 78.4932i −0.229550 + 0.113266i
\(694\) −7.04170 −0.0101465
\(695\) −638.629 + 368.713i −0.918890 + 0.530522i
\(696\) −27.9548 + 856.873i −0.0401650 + 1.23114i
\(697\) −83.7169 145.002i −0.120110 0.208037i
\(698\) 543.498i 0.778650i
\(699\) 710.169 + 23.1687i 1.01598 + 0.0331455i
\(700\) −629.011 −0.898587
\(701\) 796.387i 1.13607i −0.823004 0.568036i \(-0.807703\pi\)
0.823004 0.568036i \(-0.192297\pi\)
\(702\) 351.588 469.308i 0.500837 0.668531i
\(703\) 180.246 0.256395
\(704\) 164.819i 0.234118i
\(705\) 21.5363 660.131i 0.0305479 0.936356i
\(706\) −99.2693 −0.140608
\(707\) 875.597 505.526i 1.23847 0.715030i
\(708\) −32.3135 1.05420i −0.0456405 0.00148899i
\(709\) 76.0541 + 131.730i 0.107270 + 0.185796i 0.914663 0.404217i \(-0.132456\pi\)
−0.807394 + 0.590013i \(0.799123\pi\)
\(710\) 233.697i 0.329151i
\(711\) 441.269 660.727i 0.620632 0.929293i
\(712\) 362.063 + 627.111i 0.508515 + 0.880774i
\(713\) 432.166i 0.606123i
\(714\) −8.36158 + 256.299i −0.0117109 + 0.358963i
\(715\) −286.337 6.16503i −0.400472 0.00862241i
\(716\) 264.329 152.611i 0.369175 0.213143i
\(717\) 167.799 + 313.844i 0.234029 + 0.437719i
\(718\) 56.3037 0.0784174
\(719\) 216.473 + 124.981i 0.301075 + 0.173825i 0.642926 0.765929i \(-0.277720\pi\)
−0.341851 + 0.939754i \(0.611054\pi\)
\(720\) −731.528 + 360.954i −1.01601 + 0.501325i
\(721\) −403.793 + 699.390i −0.560046 + 0.970028i
\(722\) 463.365 267.524i 0.641780 0.370532i
\(723\) 750.093 401.042i 1.03747 0.554691i
\(724\) −286.978 −0.396379
\(725\) −1770.63 1022.27i −2.44225 1.41003i
\(726\) −578.261 18.8653i −0.796503 0.0259853i
\(727\) −617.631 + 1069.77i −0.849561 + 1.47148i 0.0320404 + 0.999487i \(0.489799\pi\)
−0.881601 + 0.471996i \(0.843534\pi\)
\(728\) −20.3512 + 945.222i −0.0279550 + 1.29838i
\(729\) −715.088 141.739i −0.980916 0.194430i
\(730\) −331.283 573.800i −0.453813 0.786027i
\(731\) 454.739i 0.622078i
\(732\) 53.4476 28.5760i 0.0730158 0.0390383i
\(733\) −106.738 184.876i −0.145619 0.252219i 0.783985 0.620780i \(-0.213184\pi\)
−0.929604 + 0.368561i \(0.879851\pi\)
\(734\) 793.875i 1.08157i
\(735\) −583.752 19.0445i −0.794220 0.0259108i
\(736\) 195.016 337.777i 0.264967 0.458936i
\(737\) 9.02032 + 5.20788i 0.0122392 + 0.00706633i
\(738\) 228.376 341.956i 0.309453 0.463355i
\(739\) 410.342 + 710.734i 0.555267 + 0.961751i 0.997883 + 0.0650392i \(0.0207172\pi\)
−0.442616 + 0.896711i \(0.645949\pi\)
\(740\) −276.186 159.456i −0.373225 0.215481i
\(741\) −221.991 + 112.613i −0.299583 + 0.151974i
\(742\) 679.121 + 1176.27i 0.915258 + 1.58527i
\(743\) 689.188 + 397.903i 0.927575 + 0.535536i 0.886044 0.463601i \(-0.153443\pi\)
0.0415314 + 0.999137i \(0.486776\pi\)
\(744\) 253.673 + 474.461i 0.340959 + 0.637717i
\(745\) 1193.93 + 2067.95i 1.60260 + 2.77578i
\(746\) 429.957i 0.576349i
\(747\) −476.889 318.492i −0.638405 0.426362i
\(748\) −8.72788 + 15.1171i −0.0116683 + 0.0202101i
\(749\) −1343.14 775.465i −1.79325 1.03533i
\(750\) 56.8799 1743.49i 0.0758399 2.32465i
\(751\) −2.18705 + 3.78808i −0.00291219 + 0.00504405i −0.867478 0.497476i \(-0.834260\pi\)
0.864566 + 0.502520i \(0.167594\pi\)
\(752\) 198.045 + 114.341i 0.263358 + 0.152050i
\(753\) 276.518 444.788i 0.367221 0.590688i
\(754\) −369.822 + 609.845i −0.490480 + 0.808813i
\(755\) 835.490i 1.10661i
\(756\) 248.430 112.663i 0.328611 0.149025i
\(757\) 501.201 + 868.106i 0.662089 + 1.14677i 0.980066 + 0.198673i \(0.0636631\pi\)
−0.317977 + 0.948098i \(0.603004\pi\)
\(758\) 607.260 350.602i 0.801135 0.462536i
\(759\) 126.009 + 78.3375i 0.166019 + 0.103212i
\(760\) 518.843 0.682688
\(761\) 937.723i 1.23222i −0.787658 0.616112i \(-0.788707\pi\)
0.787658 0.616112i \(-0.211293\pi\)
\(762\) 247.202 + 462.358i 0.324412 + 0.606769i
\(763\) −688.472 1192.47i −0.902322 1.56287i
\(764\) −154.140 + 88.9928i −0.201754 + 0.116483i
\(765\) 513.615 + 33.5483i 0.671392 + 0.0438540i
\(766\) 1111.95 1.45163
\(767\) −99.0919 60.0912i −0.129194 0.0783458i
\(768\) −20.4225 + 625.990i −0.0265917 + 0.815091i
\(769\) −54.3840 + 94.1959i −0.0707205 + 0.122491i −0.899217 0.437502i \(-0.855863\pi\)
0.828497 + 0.559994i \(0.189196\pi\)
\(770\)