Properties

Label 117.3.k.a.29.1
Level $117$
Weight $3$
Character 117.29
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(29,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.29");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 29.1
Character \(\chi\) \(=\) 117.29
Dual form 117.3.k.a.113.26

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.86461i q^{2} +(1.97875 - 2.25490i) q^{3} -10.9352 q^{4} +(0.468040 - 0.270223i) q^{5} +(-8.71431 - 7.64708i) q^{6} +(-0.276958 - 0.479705i) q^{7} +26.8020i q^{8} +(-1.16913 - 8.92374i) q^{9} +(-1.04431 - 1.80879i) q^{10} +1.70674i q^{11} +(-21.6380 + 24.6578i) q^{12} +(-3.85396 - 12.4156i) q^{13} +(-1.85387 + 1.07033i) q^{14} +(0.316807 - 1.59009i) q^{15} +59.8383 q^{16} +(20.3230 + 11.7335i) q^{17} +(-34.4868 + 4.51825i) q^{18} +(15.3969 - 26.6681i) q^{19} +(-5.11813 + 2.95495i) q^{20} +(-1.62971 - 0.324702i) q^{21} +6.59589 q^{22} +(-8.17133 - 4.71772i) q^{23} +(60.4357 + 53.0343i) q^{24} +(-12.3540 + 21.3977i) q^{25} +(-47.9815 + 14.8941i) q^{26} +(-22.4355 - 15.0215i) q^{27} +(3.02860 + 5.24568i) q^{28} -11.5393i q^{29} +(-6.14507 - 1.22433i) q^{30} +(22.4177 + 38.8286i) q^{31} -124.044i q^{32} +(3.84853 + 3.37721i) q^{33} +(45.3453 - 78.5403i) q^{34} +(-0.259255 - 0.149681i) q^{35} +(12.7848 + 97.5831i) q^{36} +(-20.2057 - 34.9973i) q^{37} +(-103.062 - 59.5029i) q^{38} +(-35.6219 - 15.8770i) q^{39} +(7.24252 + 12.5444i) q^{40} +(14.3692 + 8.29606i) q^{41} +(-1.25485 + 6.29821i) q^{42} +(-15.5125 - 26.8685i) q^{43} -18.6636i q^{44} +(-2.95860 - 3.86074i) q^{45} +(-18.2322 + 31.5790i) q^{46} +(47.9945 + 27.7096i) q^{47} +(118.405 - 134.929i) q^{48} +(24.3466 - 42.1695i) q^{49} +(82.6938 + 47.7433i) q^{50} +(66.6717 - 22.6087i) q^{51} +(42.1439 + 135.767i) q^{52} +20.2665i q^{53} +(-58.0524 + 86.7047i) q^{54} +(0.461201 + 0.798824i) q^{55} +(12.8570 - 7.42301i) q^{56} +(-29.6675 - 87.4878i) q^{57} -44.5947 q^{58} +101.998i q^{59} +(-3.46435 + 17.3880i) q^{60} +(-6.58519 - 11.4059i) q^{61} +(150.058 - 86.6358i) q^{62} +(-3.95696 + 3.03234i) q^{63} -240.029 q^{64} +(-5.15879 - 4.76957i) q^{65} +(13.0516 - 14.8731i) q^{66} +(-5.01287 + 8.68254i) q^{67} +(-222.236 - 128.308i) q^{68} +(-26.8070 + 9.09036i) q^{69} +(-0.578458 + 1.00192i) q^{70} +(30.2162 + 17.4453i) q^{71} +(239.174 - 31.3351i) q^{72} +93.7942 q^{73} +(-135.251 + 78.0871i) q^{74} +(23.8043 + 70.1975i) q^{75} +(-168.368 + 291.622i) q^{76} +(0.818732 - 0.472695i) q^{77} +(-61.3585 + 137.665i) q^{78} +(-37.3274 + 64.6530i) q^{79} +(28.0067 - 16.1697i) q^{80} +(-78.2662 + 20.8661i) q^{81} +(32.0610 - 55.5313i) q^{82} +(74.9652 + 43.2812i) q^{83} +(17.8213 + 3.55069i) q^{84} +12.6826 q^{85} +(-103.836 + 59.9500i) q^{86} +(-26.0198 - 22.8332i) q^{87} -45.7440 q^{88} +(70.2790 - 40.5756i) q^{89} +(-14.9203 + 11.4339i) q^{90} +(-4.88844 + 5.28736i) q^{91} +(89.3554 + 51.5894i) q^{92} +(131.914 + 26.2823i) q^{93} +(107.087 - 185.480i) q^{94} -16.6424i q^{95} +(-279.707 - 245.451i) q^{96} +(37.2466 + 64.5130i) q^{97} +(-162.969 - 94.0901i) q^{98} +(15.2305 - 1.99541i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 52 q - q^{3} - 98 q^{4} - 6 q^{5} + 12 q^{6} - q^{7} - 3 q^{9} - 6 q^{10} - 39 q^{12} + 4 q^{13} - 6 q^{14} - 25 q^{15} + 166 q^{16} + 34 q^{18} + 5 q^{19} + 21 q^{20} - 91 q^{21} + 30 q^{22} - 75 q^{23}+ \cdots + 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.86461i 1.93231i −0.257969 0.966153i \(-0.583053\pi\)
0.257969 0.966153i \(-0.416947\pi\)
\(3\) 1.97875 2.25490i 0.659582 0.751633i
\(4\) −10.9352 −2.73381
\(5\) 0.468040 0.270223i 0.0936081 0.0540446i −0.452465 0.891782i \(-0.649455\pi\)
0.546073 + 0.837737i \(0.316122\pi\)
\(6\) −8.71431 7.64708i −1.45238 1.27451i
\(7\) −0.276958 0.479705i −0.0395654 0.0685293i 0.845565 0.533873i \(-0.179264\pi\)
−0.885130 + 0.465344i \(0.845931\pi\)
\(8\) 26.8020i 3.35025i
\(9\) −1.16913 8.92374i −0.129904 0.991527i
\(10\) −1.04431 1.80879i −0.104431 0.180879i
\(11\) 1.70674i 0.155158i 0.996986 + 0.0775791i \(0.0247190\pi\)
−0.996986 + 0.0775791i \(0.975281\pi\)
\(12\) −21.6380 + 24.6578i −1.80317 + 2.05482i
\(13\) −3.85396 12.4156i −0.296458 0.955046i
\(14\) −1.85387 + 1.07033i −0.132420 + 0.0764524i
\(15\) 0.316807 1.59009i 0.0211204 0.106006i
\(16\) 59.8383 3.73989
\(17\) 20.3230 + 11.7335i 1.19547 + 0.690204i 0.959542 0.281567i \(-0.0908542\pi\)
0.235926 + 0.971771i \(0.424188\pi\)
\(18\) −34.4868 + 4.51825i −1.91593 + 0.251014i
\(19\) 15.3969 26.6681i 0.810361 1.40359i −0.102250 0.994759i \(-0.532604\pi\)
0.912611 0.408828i \(-0.134062\pi\)
\(20\) −5.11813 + 2.95495i −0.255906 + 0.147748i
\(21\) −1.62971 0.324702i −0.0776054 0.0154620i
\(22\) 6.59589 0.299813
\(23\) −8.17133 4.71772i −0.355275 0.205118i 0.311731 0.950170i \(-0.399091\pi\)
−0.667006 + 0.745052i \(0.732425\pi\)
\(24\) 60.4357 + 53.0343i 2.51816 + 2.20976i
\(25\) −12.3540 + 21.3977i −0.494158 + 0.855907i
\(26\) −47.9815 + 14.8941i −1.84544 + 0.572848i
\(27\) −22.4355 15.0215i −0.830946 0.556353i
\(28\) 3.02860 + 5.24568i 0.108164 + 0.187346i
\(29\) 11.5393i 0.397905i −0.980009 0.198953i \(-0.936246\pi\)
0.980009 0.198953i \(-0.0637540\pi\)
\(30\) −6.14507 1.22433i −0.204836 0.0408112i
\(31\) 22.4177 + 38.8286i 0.723152 + 1.25254i 0.959730 + 0.280924i \(0.0906407\pi\)
−0.236578 + 0.971612i \(0.576026\pi\)
\(32\) 124.044i 3.87638i
\(33\) 3.84853 + 3.37721i 0.116622 + 0.102340i
\(34\) 45.3453 78.5403i 1.33368 2.31001i
\(35\) −0.259255 0.149681i −0.00740728 0.00427659i
\(36\) 12.7848 + 97.5831i 0.355132 + 2.71064i
\(37\) −20.2057 34.9973i −0.546099 0.945872i −0.998537 0.0540758i \(-0.982779\pi\)
0.452437 0.891796i \(-0.350555\pi\)
\(38\) −103.062 59.5029i −2.71216 1.56587i
\(39\) −35.6219 15.8770i −0.913382 0.407103i
\(40\) 7.24252 + 12.5444i 0.181063 + 0.313610i
\(41\) 14.3692 + 8.29606i 0.350468 + 0.202343i 0.664891 0.746940i \(-0.268478\pi\)
−0.314423 + 0.949283i \(0.601811\pi\)
\(42\) −1.25485 + 6.29821i −0.0298773 + 0.149957i
\(43\) −15.5125 26.8685i −0.360757 0.624849i 0.627329 0.778755i \(-0.284148\pi\)
−0.988086 + 0.153905i \(0.950815\pi\)
\(44\) 18.6636i 0.424173i
\(45\) −2.95860 3.86074i −0.0657468 0.0857943i
\(46\) −18.2322 + 31.5790i −0.396351 + 0.686501i
\(47\) 47.9945 + 27.7096i 1.02116 + 0.589566i 0.914439 0.404723i \(-0.132632\pi\)
0.106719 + 0.994289i \(0.465965\pi\)
\(48\) 118.405 134.929i 2.46677 2.81103i
\(49\) 24.3466 42.1695i 0.496869 0.860603i
\(50\) 82.6938 + 47.7433i 1.65388 + 0.954865i
\(51\) 66.6717 22.6087i 1.30729 0.443307i
\(52\) 42.1439 + 135.767i 0.810460 + 2.61091i
\(53\) 20.2665i 0.382387i 0.981552 + 0.191194i \(0.0612358\pi\)
−0.981552 + 0.191194i \(0.938764\pi\)
\(54\) −58.0524 + 86.7047i −1.07504 + 1.60564i
\(55\) 0.461201 + 0.798824i 0.00838547 + 0.0145241i
\(56\) 12.8570 7.42301i 0.229590 0.132554i
\(57\) −29.6675 87.4878i −0.520482 1.53487i
\(58\) −44.5947 −0.768875
\(59\) 101.998i 1.72878i 0.502826 + 0.864388i \(0.332294\pi\)
−0.502826 + 0.864388i \(0.667706\pi\)
\(60\) −3.46435 + 17.3880i −0.0577392 + 0.289799i
\(61\) −6.58519 11.4059i −0.107954 0.186982i 0.806987 0.590569i \(-0.201097\pi\)
−0.914941 + 0.403587i \(0.867763\pi\)
\(62\) 150.058 86.6358i 2.42028 1.39735i
\(63\) −3.95696 + 3.03234i −0.0628089 + 0.0481323i
\(64\) −240.029 −3.75045
\(65\) −5.15879 4.76957i −0.0793660 0.0733780i
\(66\) 13.0516 14.8731i 0.197751 0.225350i
\(67\) −5.01287 + 8.68254i −0.0748189 + 0.129590i −0.901008 0.433803i \(-0.857171\pi\)
0.826189 + 0.563394i \(0.190505\pi\)
\(68\) −222.236 128.308i −3.26818 1.88688i
\(69\) −26.8070 + 9.09036i −0.388507 + 0.131744i
\(70\) −0.578458 + 1.00192i −0.00826369 + 0.0143131i
\(71\) 30.2162 + 17.4453i 0.425580 + 0.245709i 0.697462 0.716622i \(-0.254313\pi\)
−0.271882 + 0.962331i \(0.587646\pi\)
\(72\) 239.174 31.3351i 3.32186 0.435210i
\(73\) 93.7942 1.28485 0.642426 0.766348i \(-0.277928\pi\)
0.642426 + 0.766348i \(0.277928\pi\)
\(74\) −135.251 + 78.0871i −1.82771 + 1.05523i
\(75\) 23.8043 + 70.1975i 0.317390 + 0.935967i
\(76\) −168.368 + 291.622i −2.21537 + 3.83714i
\(77\) 0.818732 0.472695i 0.0106329 0.00613890i
\(78\) −61.3585 + 137.665i −0.786647 + 1.76493i
\(79\) −37.3274 + 64.6530i −0.472499 + 0.818393i −0.999505 0.0314692i \(-0.989981\pi\)
0.527005 + 0.849862i \(0.323315\pi\)
\(80\) 28.0067 16.1697i 0.350084 0.202121i
\(81\) −78.2662 + 20.8661i −0.966250 + 0.257606i
\(82\) 32.0610 55.5313i 0.390988 0.677212i
\(83\) 74.9652 + 43.2812i 0.903196 + 0.521460i 0.878236 0.478228i \(-0.158721\pi\)
0.0249601 + 0.999688i \(0.492054\pi\)
\(84\) 17.8213 + 3.55069i 0.212158 + 0.0422701i
\(85\) 12.6826 0.149207
\(86\) −103.836 + 59.9500i −1.20740 + 0.697093i
\(87\) −26.0198 22.8332i −0.299079 0.262451i
\(88\) −45.7440 −0.519818
\(89\) 70.2790 40.5756i 0.789651 0.455905i −0.0501884 0.998740i \(-0.515982\pi\)
0.839840 + 0.542834i \(0.182649\pi\)
\(90\) −14.9203 + 11.4339i −0.165781 + 0.127043i
\(91\) −4.88844 + 5.28736i −0.0537191 + 0.0581028i
\(92\) 89.3554 + 51.5894i 0.971254 + 0.560754i
\(93\) 131.914 + 26.2823i 1.41843 + 0.282605i
\(94\) 107.087 185.480i 1.13922 1.97319i
\(95\) 16.6424i 0.175183i
\(96\) −279.707 245.451i −2.91361 2.55679i
\(97\) 37.2466 + 64.5130i 0.383985 + 0.665082i 0.991628 0.129129i \(-0.0412180\pi\)
−0.607643 + 0.794211i \(0.707885\pi\)
\(98\) −162.969 94.0901i −1.66295 0.960103i
\(99\) 15.2305 1.99541i 0.153844 0.0201557i
\(100\) 135.093 233.989i 1.35093 2.33989i
\(101\) 54.3528i 0.538147i 0.963120 + 0.269073i \(0.0867174\pi\)
−0.963120 + 0.269073i \(0.913283\pi\)
\(102\) −87.3737 257.660i −0.856605 2.52608i
\(103\) −58.9763 102.150i −0.572586 0.991747i −0.996299 0.0859511i \(-0.972607\pi\)
0.423714 0.905796i \(-0.360726\pi\)
\(104\) 332.762 103.294i 3.19964 0.993209i
\(105\) −0.850514 + 0.288413i −0.00810013 + 0.00274679i
\(106\) 78.3223 0.738889
\(107\) −103.584 + 59.8043i −0.968075 + 0.558919i −0.898649 0.438668i \(-0.855450\pi\)
−0.0694265 + 0.997587i \(0.522117\pi\)
\(108\) 245.338 + 164.264i 2.27165 + 1.52096i
\(109\) −13.8158 −0.126750 −0.0633750 0.997990i \(-0.520186\pi\)
−0.0633750 + 0.997990i \(0.520186\pi\)
\(110\) 3.08714 1.78236i 0.0280649 0.0162033i
\(111\) −118.897 23.6889i −1.07115 0.213414i
\(112\) −16.5727 28.7047i −0.147970 0.256292i
\(113\) 74.9047i 0.662873i 0.943477 + 0.331437i \(0.107533\pi\)
−0.943477 + 0.331437i \(0.892467\pi\)
\(114\) −338.107 + 114.653i −2.96585 + 1.00573i
\(115\) −5.09935 −0.0443422
\(116\) 126.184i 1.08780i
\(117\) −106.288 + 48.9072i −0.908442 + 0.418011i
\(118\) 394.182 3.34052
\(119\) 12.9987i 0.109233i
\(120\) 42.6175 + 8.49104i 0.355145 + 0.0707587i
\(121\) 118.087 0.975926
\(122\) −44.0793 + 25.4492i −0.361306 + 0.208600i
\(123\) 47.1397 15.9853i 0.383250 0.129962i
\(124\) −245.143 424.600i −1.97696 3.42419i
\(125\) 26.8645i 0.214916i
\(126\) 11.7188 + 15.2921i 0.0930064 + 0.121366i
\(127\) −22.5361 39.0336i −0.177449 0.307351i 0.763557 0.645741i \(-0.223451\pi\)
−0.941006 + 0.338389i \(0.890118\pi\)
\(128\) 431.442i 3.37064i
\(129\) −91.2812 18.1867i −0.707606 0.140982i
\(130\) −18.4325 + 19.9367i −0.141789 + 0.153359i
\(131\) 18.7361 10.8173i 0.143024 0.0825748i −0.426781 0.904355i \(-0.640352\pi\)
0.569804 + 0.821780i \(0.307019\pi\)
\(132\) −42.0845 36.9305i −0.318822 0.279777i
\(133\) −17.0571 −0.128249
\(134\) 33.5547 + 19.3728i 0.250408 + 0.144573i
\(135\) −14.5599 0.968075i −0.107851 0.00717092i
\(136\) −314.480 + 544.695i −2.31235 + 4.00511i
\(137\) 17.5630 10.1400i 0.128197 0.0740145i −0.434530 0.900657i \(-0.643086\pi\)
0.562727 + 0.826643i \(0.309752\pi\)
\(138\) 35.1307 + 103.599i 0.254570 + 0.750714i
\(139\) −181.018 −1.30228 −0.651142 0.758956i \(-0.725710\pi\)
−0.651142 + 0.758956i \(0.725710\pi\)
\(140\) 2.83501 + 1.63679i 0.0202501 + 0.0116914i
\(141\) 157.451 53.3924i 1.11668 0.378669i
\(142\) 67.4194 116.774i 0.474785 0.822351i
\(143\) 21.1902 6.57771i 0.148183 0.0459980i
\(144\) −69.9591 533.982i −0.485827 3.70820i
\(145\) −3.11817 5.40084i −0.0215047 0.0372471i
\(146\) 362.478i 2.48273i
\(147\) −46.9123 138.342i −0.319131 0.941101i
\(148\) 220.954 + 382.703i 1.49293 + 2.58583i
\(149\) 179.535i 1.20493i −0.798145 0.602466i \(-0.794185\pi\)
0.798145 0.602466i \(-0.205815\pi\)
\(150\) 271.286 91.9943i 1.80857 0.613295i
\(151\) −95.7200 + 165.792i −0.633907 + 1.09796i 0.352838 + 0.935684i \(0.385217\pi\)
−0.986746 + 0.162275i \(0.948117\pi\)
\(152\) 714.759 + 412.666i 4.70236 + 2.71491i
\(153\) 80.9461 195.075i 0.529059 1.27500i
\(154\) −1.82678 3.16408i −0.0118622 0.0205460i
\(155\) 20.9848 + 12.1156i 0.135386 + 0.0781650i
\(156\) 389.534 + 173.619i 2.49701 + 1.11294i
\(157\) −132.762 229.951i −0.845618 1.46465i −0.885083 0.465433i \(-0.845899\pi\)
0.0394645 0.999221i \(-0.487435\pi\)
\(158\) 249.859 + 144.256i 1.58139 + 0.913013i
\(159\) 45.6990 + 40.1023i 0.287415 + 0.252216i
\(160\) −33.5196 58.0576i −0.209497 0.362860i
\(161\) 5.22644i 0.0324623i
\(162\) 80.6394 + 302.469i 0.497774 + 1.86709i
\(163\) −85.3519 + 147.834i −0.523632 + 0.906956i 0.475990 + 0.879451i \(0.342090\pi\)
−0.999622 + 0.0275058i \(0.991244\pi\)
\(164\) −157.130 90.7193i −0.958112 0.553166i
\(165\) 2.71387 + 0.540707i 0.0164477 + 0.00327701i
\(166\) 167.265 289.712i 1.00762 1.74525i
\(167\) −162.448 93.7895i −0.972744 0.561614i −0.0726720 0.997356i \(-0.523153\pi\)
−0.900072 + 0.435742i \(0.856486\pi\)
\(168\) 8.70266 43.6796i 0.0518015 0.259997i
\(169\) −139.294 + 95.6984i −0.824225 + 0.566263i
\(170\) 49.0134i 0.288314i
\(171\) −255.981 106.219i −1.49696 0.621163i
\(172\) 169.633 + 293.813i 0.986240 + 1.70822i
\(173\) −94.6178 + 54.6276i −0.546923 + 0.315766i −0.747880 0.663834i \(-0.768928\pi\)
0.200957 + 0.979600i \(0.435595\pi\)
\(174\) −88.2416 + 100.557i −0.507136 + 0.577912i
\(175\) 13.6861 0.0782063
\(176\) 102.129i 0.580276i
\(177\) 229.995 + 201.828i 1.29940 + 1.14027i
\(178\) −156.809 271.601i −0.880949 1.52585i
\(179\) −0.514219 + 0.296885i −0.00287273 + 0.00165857i −0.501436 0.865195i \(-0.667195\pi\)
0.498563 + 0.866853i \(0.333861\pi\)
\(180\) 32.3530 + 42.2181i 0.179739 + 0.234545i
\(181\) 33.4332 0.184714 0.0923570 0.995726i \(-0.470560\pi\)
0.0923570 + 0.995726i \(0.470560\pi\)
\(182\) 20.4336 + 18.8919i 0.112272 + 0.103802i
\(183\) −38.7495 7.72040i −0.211746 0.0421880i
\(184\) 126.444 219.008i 0.687197 1.19026i
\(185\) −18.9141 10.9201i −0.102239 0.0590275i
\(186\) 101.571 509.795i 0.546080 2.74083i
\(187\) −20.0260 + 34.6860i −0.107091 + 0.185487i
\(188\) −524.830 303.011i −2.79165 1.61176i
\(189\) −0.992201 + 14.9228i −0.00524974 + 0.0789564i
\(190\) −64.3163 −0.338507
\(191\) −48.5590 + 28.0355i −0.254235 + 0.146783i −0.621702 0.783254i \(-0.713559\pi\)
0.367467 + 0.930037i \(0.380225\pi\)
\(192\) −474.956 + 541.240i −2.47373 + 2.81896i
\(193\) 46.7215 80.9240i 0.242080 0.419295i −0.719226 0.694776i \(-0.755504\pi\)
0.961307 + 0.275480i \(0.0888369\pi\)
\(194\) 249.318 143.944i 1.28514 0.741977i
\(195\) −20.9628 + 2.19478i −0.107502 + 0.0112553i
\(196\) −266.236 + 461.133i −1.35834 + 2.35272i
\(197\) −58.7451 + 33.9165i −0.298199 + 0.172165i −0.641633 0.767012i \(-0.721743\pi\)
0.343435 + 0.939177i \(0.388410\pi\)
\(198\) −7.71149 58.8600i −0.0389469 0.297273i
\(199\) −63.5358 + 110.047i −0.319276 + 0.553001i −0.980337 0.197330i \(-0.936773\pi\)
0.661062 + 0.750332i \(0.270106\pi\)
\(200\) −573.500 331.110i −2.86750 1.65555i
\(201\) 9.65906 + 28.4841i 0.0480550 + 0.141712i
\(202\) 210.053 1.03986
\(203\) −5.53544 + 3.19589i −0.0272682 + 0.0157433i
\(204\) −729.071 + 247.231i −3.57388 + 1.21192i
\(205\) 8.96715 0.0437422
\(206\) −394.770 + 227.921i −1.91636 + 1.10641i
\(207\) −32.5463 + 78.4345i −0.157229 + 0.378911i
\(208\) −230.614 742.928i −1.10872 3.57177i
\(209\) 45.5156 + 26.2785i 0.217778 + 0.125734i
\(210\) 1.11460 + 3.28691i 0.00530764 + 0.0156519i
\(211\) −99.6893 + 172.667i −0.472461 + 0.818327i −0.999503 0.0315121i \(-0.989968\pi\)
0.527042 + 0.849839i \(0.323301\pi\)
\(212\) 221.619i 1.04537i
\(213\) 99.1276 33.6146i 0.465388 0.157815i
\(214\) 231.120 + 400.312i 1.08000 + 1.87062i
\(215\) −14.5210 8.38370i −0.0675395 0.0389940i
\(216\) 402.607 601.317i 1.86392 2.78387i
\(217\) 12.4175 21.5078i 0.0572236 0.0991141i
\(218\) 53.3925i 0.244920i
\(219\) 185.595 211.496i 0.847465 0.965737i
\(220\) −5.04334 8.73532i −0.0229243 0.0397060i
\(221\) 67.3541 297.542i 0.304770 1.34634i
\(222\) −91.5484 + 459.491i −0.412380 + 2.06978i
\(223\) −111.973 −0.502122 −0.251061 0.967971i \(-0.580779\pi\)
−0.251061 + 0.967971i \(0.580779\pi\)
\(224\) −59.5045 + 34.3549i −0.265645 + 0.153370i
\(225\) 205.391 + 85.2267i 0.912848 + 0.378785i
\(226\) 289.478 1.28087
\(227\) 43.9655 25.3835i 0.193681 0.111822i −0.400024 0.916505i \(-0.630998\pi\)
0.593704 + 0.804683i \(0.297665\pi\)
\(228\) 324.421 + 956.699i 1.42290 + 4.19605i
\(229\) 12.7484 + 22.0810i 0.0556701 + 0.0964234i 0.892517 0.451013i \(-0.148937\pi\)
−0.836847 + 0.547436i \(0.815604\pi\)
\(230\) 19.7070i 0.0856827i
\(231\) 0.554182 2.78150i 0.00239906 0.0120411i
\(232\) 309.275 1.33308
\(233\) 350.274i 1.50332i −0.659549 0.751661i \(-0.729253\pi\)
0.659549 0.751661i \(-0.270747\pi\)
\(234\) 189.007 + 410.761i 0.807724 + 1.75539i
\(235\) 29.9511 0.127452
\(236\) 1115.37i 4.72614i
\(237\) 71.9245 + 212.101i 0.303479 + 0.894943i
\(238\) −50.2349 −0.211071
\(239\) 37.1471 21.4469i 0.155427 0.0897359i −0.420269 0.907399i \(-0.638064\pi\)
0.575696 + 0.817664i \(0.304731\pi\)
\(240\) 18.9572 95.1481i 0.0789882 0.396450i
\(241\) 80.0937 + 138.726i 0.332339 + 0.575628i 0.982970 0.183766i \(-0.0588288\pi\)
−0.650631 + 0.759394i \(0.725495\pi\)
\(242\) 456.361i 1.88579i
\(243\) −107.818 + 217.771i −0.443696 + 0.896178i
\(244\) 72.0106 + 124.726i 0.295125 + 0.511172i
\(245\) 26.3161i 0.107412i
\(246\) −61.7769 182.177i −0.251126 0.740556i
\(247\) −390.440 88.3833i −1.58073 0.357827i
\(248\) −1040.68 + 600.839i −4.19630 + 2.42274i
\(249\) 245.932 83.3965i 0.987678 0.334926i
\(250\) 103.821 0.415283
\(251\) 118.743 + 68.5561i 0.473078 + 0.273132i 0.717527 0.696530i \(-0.245274\pi\)
−0.244449 + 0.969662i \(0.578607\pi\)
\(252\) 43.2703 33.1593i 0.171707 0.131585i
\(253\) 8.05193 13.9463i 0.0318258 0.0551239i
\(254\) −150.850 + 87.0931i −0.593896 + 0.342886i
\(255\) 25.0957 28.5980i 0.0984144 0.112149i
\(256\) 707.241 2.76266
\(257\) 180.620 + 104.281i 0.702800 + 0.405762i 0.808390 0.588648i \(-0.200340\pi\)
−0.105589 + 0.994410i \(0.533673\pi\)
\(258\) −70.2847 + 352.766i −0.272421 + 1.36731i
\(259\) −11.1922 + 19.3855i −0.0432133 + 0.0748476i
\(260\) 56.4126 + 52.1563i 0.216971 + 0.200601i
\(261\) −102.973 + 13.4909i −0.394534 + 0.0516894i
\(262\) −41.8047 72.4078i −0.159560 0.276366i
\(263\) 351.373i 1.33602i 0.744153 + 0.668009i \(0.232853\pi\)
−0.744153 + 0.668009i \(0.767147\pi\)
\(264\) −90.5158 + 103.148i −0.342863 + 0.390713i
\(265\) 5.47649 + 9.48555i 0.0206660 + 0.0357945i
\(266\) 65.9192i 0.247816i
\(267\) 47.5704 238.761i 0.178166 0.894235i
\(268\) 54.8169 94.9456i 0.204541 0.354275i
\(269\) −119.383 68.9255i −0.443801 0.256229i 0.261407 0.965229i \(-0.415813\pi\)
−0.705209 + 0.709000i \(0.749147\pi\)
\(270\) −3.74123 + 56.2684i −0.0138564 + 0.208401i
\(271\) 125.296 + 217.020i 0.462348 + 0.800811i 0.999077 0.0429439i \(-0.0136737\pi\)
−0.536729 + 0.843755i \(0.680340\pi\)
\(272\) 1216.09 + 702.111i 4.47092 + 2.58129i
\(273\) 2.24948 + 21.4853i 0.00823986 + 0.0787006i
\(274\) −39.1871 67.8741i −0.143019 0.247716i
\(275\) −36.5203 21.0850i −0.132801 0.0766728i
\(276\) 293.140 99.4051i 1.06210 0.360164i
\(277\) 157.907 + 273.503i 0.570061 + 0.987375i 0.996559 + 0.0828864i \(0.0264139\pi\)
−0.426498 + 0.904489i \(0.640253\pi\)
\(278\) 699.563i 2.51641i
\(279\) 320.287 245.446i 1.14798 0.879734i
\(280\) 4.01174 6.94854i 0.0143276 0.0248162i
\(281\) 383.848 + 221.615i 1.36601 + 0.788664i 0.990415 0.138122i \(-0.0441065\pi\)
0.375591 + 0.926786i \(0.377440\pi\)
\(282\) −206.341 608.488i −0.731705 2.15776i
\(283\) 121.823 211.004i 0.430470 0.745596i −0.566444 0.824100i \(-0.691681\pi\)
0.996914 + 0.0785045i \(0.0250145\pi\)
\(284\) −330.421 190.769i −1.16345 0.671721i
\(285\) −37.5268 32.9310i −0.131673 0.115547i
\(286\) −25.4203 81.8919i −0.0888822 0.286335i
\(287\) 9.19063i 0.0320231i
\(288\) −1106.94 + 145.024i −3.84353 + 0.503556i
\(289\) 130.848 + 226.636i 0.452762 + 0.784208i
\(290\) −20.8721 + 12.0505i −0.0719729 + 0.0415536i
\(291\) 219.172 + 43.6675i 0.753167 + 0.150060i
\(292\) −1025.66 −3.51254
\(293\) 122.772i 0.419017i −0.977807 0.209509i \(-0.932814\pi\)
0.977807 0.209509i \(-0.0671864\pi\)
\(294\) −534.638 + 181.298i −1.81850 + 0.616660i
\(295\) 27.5622 + 47.7391i 0.0934310 + 0.161827i
\(296\) 937.996 541.552i 3.16890 1.82957i
\(297\) 25.6379 38.2917i 0.0863227 0.128928i
\(298\) −693.833 −2.32830
\(299\) −27.0813 + 119.634i −0.0905730 + 0.400113i
\(300\) −260.305 767.626i −0.867684 2.55875i
\(301\) −8.59264 + 14.8829i −0.0285470 + 0.0494448i
\(302\) 640.721 + 369.921i 2.12159 + 1.22490i
\(303\) 122.560 + 107.550i 0.404489 + 0.354952i
\(304\) 921.322 1595.78i 3.03067 5.24927i
\(305\) −6.16427 3.55894i −0.0202107 0.0116687i
\(306\) −753.888 312.825i −2.46369 1.02230i
\(307\) 76.1769 0.248133 0.124067 0.992274i \(-0.460406\pi\)
0.124067 + 0.992274i \(0.460406\pi\)
\(308\) −8.95302 + 5.16903i −0.0290682 + 0.0167826i
\(309\) −347.037 69.1432i −1.12310 0.223764i
\(310\) 46.8220 81.0981i 0.151039 0.261607i
\(311\) −477.528 + 275.701i −1.53546 + 0.886498i −0.536364 + 0.843986i \(0.680203\pi\)
−0.999096 + 0.0425120i \(0.986464\pi\)
\(312\) 425.535 954.737i 1.36389 3.06006i
\(313\) 114.005 197.462i 0.364233 0.630870i −0.624420 0.781089i \(-0.714664\pi\)
0.988653 + 0.150219i \(0.0479978\pi\)
\(314\) −888.670 + 513.074i −2.83016 + 1.63399i
\(315\) −1.03261 + 2.48852i −0.00327812 + 0.00790006i
\(316\) 408.184 706.996i 1.29172 2.23733i
\(317\) −235.372 135.892i −0.742499 0.428682i 0.0804783 0.996756i \(-0.474355\pi\)
−0.822977 + 0.568074i \(0.807689\pi\)
\(318\) 154.980 176.609i 0.487358 0.555373i
\(319\) 19.6945 0.0617383
\(320\) −112.343 + 64.8613i −0.351072 + 0.202692i
\(321\) −70.1139 + 351.909i −0.218423 + 1.09629i
\(322\) 20.1982 0.0627272
\(323\) 625.820 361.317i 1.93752 1.11863i
\(324\) 855.859 228.176i 2.64154 0.704246i
\(325\) 313.277 + 70.9159i 0.963928 + 0.218203i
\(326\) 571.321 + 329.852i 1.75252 + 1.01182i
\(327\) −27.3379 + 31.1531i −0.0836020 + 0.0952695i
\(328\) −222.351 + 385.123i −0.677898 + 1.17415i
\(329\) 30.6976i 0.0933057i
\(330\) 2.08962 10.4880i 0.00633219 0.0317819i
\(331\) −162.417 281.314i −0.490685 0.849892i 0.509257 0.860614i \(-0.329920\pi\)
−0.999943 + 0.0107226i \(0.996587\pi\)
\(332\) −819.762 473.290i −2.46916 1.42557i
\(333\) −288.683 + 221.227i −0.866917 + 0.664344i
\(334\) −362.460 + 627.799i −1.08521 + 1.87964i
\(335\) 5.41837i 0.0161743i
\(336\) −97.5194 19.4296i −0.290236 0.0578263i
\(337\) 103.575 + 179.397i 0.307344 + 0.532336i 0.977780 0.209631i \(-0.0672264\pi\)
−0.670436 + 0.741967i \(0.733893\pi\)
\(338\) 369.837 + 538.317i 1.09419 + 1.59265i
\(339\) 168.902 + 148.217i 0.498237 + 0.437219i
\(340\) −138.687 −0.407904
\(341\) −66.2704 + 38.2612i −0.194341 + 0.112203i
\(342\) −410.495 + 989.266i −1.20028 + 2.89259i
\(343\) −54.1138 −0.157766
\(344\) 720.129 415.767i 2.09340 1.20862i
\(345\) −10.0903 + 11.4985i −0.0292473 + 0.0333290i
\(346\) 211.114 + 365.661i 0.610157 + 1.05682i
\(347\) 640.856i 1.84685i −0.383781 0.923424i \(-0.625378\pi\)
0.383781 0.923424i \(-0.374622\pi\)
\(348\) 284.533 + 249.687i 0.817623 + 0.717491i
\(349\) 57.7210 0.165390 0.0826949 0.996575i \(-0.473647\pi\)
0.0826949 + 0.996575i \(0.473647\pi\)
\(350\) 52.8915i 0.151118i
\(351\) −100.036 + 336.443i −0.285001 + 0.958527i
\(352\) 211.711 0.601452
\(353\) 336.066i 0.952027i −0.879438 0.476014i \(-0.842081\pi\)
0.879438 0.476014i \(-0.157919\pi\)
\(354\) 779.985 888.840i 2.20335 2.51085i
\(355\) 18.8565 0.0531170
\(356\) −768.517 + 443.703i −2.15875 + 1.24636i
\(357\) −29.3107 25.7211i −0.0821029 0.0720479i
\(358\) 1.14734 + 1.98726i 0.00320487 + 0.00555100i
\(359\) 445.683i 1.24146i 0.784026 + 0.620728i \(0.213163\pi\)
−0.784026 + 0.620728i \(0.786837\pi\)
\(360\) 103.476 79.2964i 0.287432 0.220268i
\(361\) −293.627 508.576i −0.813371 1.40880i
\(362\) 129.207i 0.356924i
\(363\) 233.664 266.274i 0.643703 0.733538i
\(364\) 53.4562 57.8185i 0.146858 0.158842i
\(365\) 43.8995 25.3454i 0.120273 0.0694394i
\(366\) −29.8364 + 149.752i −0.0815201 + 0.409158i
\(367\) −407.772 −1.11110 −0.555548 0.831484i \(-0.687492\pi\)
−0.555548 + 0.831484i \(0.687492\pi\)
\(368\) −488.959 282.300i −1.32869 0.767121i
\(369\) 57.2323 137.926i 0.155101 0.373783i
\(370\) −42.2019 + 73.0958i −0.114059 + 0.197556i
\(371\) 9.72195 5.61297i 0.0262047 0.0151293i
\(372\) −1442.50 287.403i −3.87770 0.772588i
\(373\) 426.685 1.14393 0.571964 0.820279i \(-0.306182\pi\)
0.571964 + 0.820279i \(0.306182\pi\)
\(374\) 134.048 + 77.3927i 0.358417 + 0.206932i
\(375\) 60.5766 + 53.1579i 0.161538 + 0.141754i
\(376\) −742.672 + 1286.35i −1.97519 + 3.42113i
\(377\) −143.267 + 44.4718i −0.380018 + 0.117962i
\(378\) 57.6707 + 3.83447i 0.152568 + 0.0101441i
\(379\) 18.8743 + 32.6913i 0.0498004 + 0.0862568i 0.889851 0.456251i \(-0.150808\pi\)
−0.840051 + 0.542508i \(0.817475\pi\)
\(380\) 181.988i 0.478916i
\(381\) −132.610 26.4210i −0.348057 0.0693465i
\(382\) 108.346 + 187.662i 0.283630 + 0.491261i
\(383\) 388.387i 1.01406i 0.861927 + 0.507032i \(0.169258\pi\)
−0.861927 + 0.507032i \(0.830742\pi\)
\(384\) 972.858 + 853.714i 2.53348 + 2.22321i
\(385\) 0.255466 0.442481i 0.000663549 0.00114930i
\(386\) −312.740 180.560i −0.810207 0.467773i
\(387\) −221.631 + 169.843i −0.572691 + 0.438870i
\(388\) −407.300 705.464i −1.04974 1.81821i
\(389\) −441.326 254.800i −1.13452 0.655013i −0.189449 0.981891i \(-0.560670\pi\)
−0.945067 + 0.326878i \(0.894003\pi\)
\(390\) 8.48199 + 81.0132i 0.0217487 + 0.207726i
\(391\) −110.710 191.756i −0.283147 0.490425i
\(392\) 1130.23 + 652.537i 2.88323 + 1.66463i
\(393\) 12.6821 63.6527i 0.0322699 0.161966i
\(394\) 131.074 + 227.027i 0.332676 + 0.576211i
\(395\) 40.3470i 0.102144i
\(396\) −166.549 + 21.8203i −0.420579 + 0.0551017i
\(397\) 242.327 419.722i 0.610395 1.05724i −0.380779 0.924666i \(-0.624344\pi\)
0.991174 0.132569i \(-0.0423226\pi\)
\(398\) 425.290 + 245.541i 1.06857 + 0.616938i
\(399\) −33.7517 + 38.4621i −0.0845907 + 0.0963962i
\(400\) −739.240 + 1280.40i −1.84810 + 3.20100i
\(401\) −448.786 259.107i −1.11917 0.646151i −0.177978 0.984034i \(-0.556956\pi\)
−0.941188 + 0.337883i \(0.890289\pi\)
\(402\) 110.080 37.3285i 0.273830 0.0928571i
\(403\) 395.683 427.973i 0.981845 1.06197i
\(404\) 594.361i 1.47119i
\(405\) −30.9933 + 30.9155i −0.0765266 + 0.0763347i
\(406\) 12.3509 + 21.3923i 0.0304208 + 0.0526904i
\(407\) 59.7313 34.4859i 0.146760 0.0847318i
\(408\) 605.957 + 1786.93i 1.48519 + 4.37974i
\(409\) 280.634 0.686148 0.343074 0.939308i \(-0.388532\pi\)
0.343074 + 0.939308i \(0.388532\pi\)
\(410\) 34.6545i 0.0845233i
\(411\) 11.8880 59.6672i 0.0289246 0.145176i
\(412\) 644.919 + 1117.03i 1.56534 + 2.71125i
\(413\) 48.9288 28.2491i 0.118472 0.0683997i
\(414\) 303.119 + 125.779i 0.732171 + 0.303814i
\(415\) 46.7823 0.112729
\(416\) −1540.08 + 478.061i −3.70212 + 1.14918i
\(417\) −358.188 + 408.176i −0.858963 + 0.978840i
\(418\) 101.556 175.900i 0.242957 0.420814i
\(419\) 31.9900 + 18.4694i 0.0763484 + 0.0440798i 0.537688 0.843144i \(-0.319298\pi\)
−0.461340 + 0.887224i \(0.652631\pi\)
\(420\) 9.30057 3.15386i 0.0221442 0.00750920i
\(421\) 129.038 223.501i 0.306504 0.530880i −0.671091 0.741375i \(-0.734174\pi\)
0.977595 + 0.210495i \(0.0675074\pi\)
\(422\) 667.291 + 385.261i 1.58126 + 0.912940i
\(423\) 191.161 460.686i 0.451918 1.08909i
\(424\) −543.183 −1.28109
\(425\) −502.138 + 289.909i −1.18150 + 0.682140i
\(426\) −129.907 383.090i −0.304947 0.899272i
\(427\) −3.64764 + 6.31790i −0.00854248 + 0.0147960i
\(428\) 1132.72 653.974i 2.64653 1.52798i
\(429\) 27.0979 60.7974i 0.0631654 0.141719i
\(430\) −32.3998 + 56.1180i −0.0753483 + 0.130507i
\(431\) 528.929 305.377i 1.22721 0.708532i 0.260768 0.965402i \(-0.416024\pi\)
0.966446 + 0.256869i \(0.0826910\pi\)
\(432\) −1342.51 898.863i −3.10765 2.08070i
\(433\) 263.137 455.767i 0.607707 1.05258i −0.383911 0.923370i \(-0.625423\pi\)
0.991617 0.129209i \(-0.0412437\pi\)
\(434\) −83.1192 47.9889i −0.191519 0.110573i
\(435\) −18.3484 3.65571i −0.0421803 0.00840394i
\(436\) 151.078 0.346510
\(437\) −251.626 + 145.276i −0.575803 + 0.332440i
\(438\) −817.352 717.252i −1.86610 1.63756i
\(439\) 194.833 0.443811 0.221905 0.975068i \(-0.428772\pi\)
0.221905 + 0.975068i \(0.428772\pi\)
\(440\) −21.4101 + 12.3611i −0.0486592 + 0.0280934i
\(441\) −404.774 167.961i −0.917856 0.380863i
\(442\) −1149.88 260.297i −2.60155 0.588908i
\(443\) 363.417 + 209.819i 0.820355 + 0.473632i 0.850539 0.525912i \(-0.176276\pi\)
−0.0301838 + 0.999544i \(0.509609\pi\)
\(444\) 1300.17 + 259.044i 2.92831 + 0.583432i
\(445\) 21.9289 37.9820i 0.0492785 0.0853529i
\(446\) 432.733i 0.970253i
\(447\) −404.833 355.254i −0.905666 0.794751i
\(448\) 66.4778 + 115.143i 0.148388 + 0.257015i
\(449\) −18.0050 10.3952i −0.0401002 0.0231518i 0.479816 0.877369i \(-0.340703\pi\)
−0.519916 + 0.854217i \(0.674037\pi\)
\(450\) 329.368 793.756i 0.731930 1.76390i
\(451\) −14.1592 + 24.5245i −0.0313952 + 0.0543780i
\(452\) 819.100i 1.81217i
\(453\) 184.438 + 543.899i 0.407149 + 1.20066i
\(454\) −98.0974 169.910i −0.216073 0.374250i
\(455\) −0.859219 + 3.79567i −0.00188839 + 0.00834212i
\(456\) 2344.85 795.147i 5.14221 1.74374i
\(457\) −299.179 −0.654658 −0.327329 0.944910i \(-0.606149\pi\)
−0.327329 + 0.944910i \(0.606149\pi\)
\(458\) 85.3344 49.2678i 0.186320 0.107572i
\(459\) −279.702 568.528i −0.609373 1.23862i
\(460\) 55.7626 0.121223
\(461\) −536.782 + 309.911i −1.16439 + 0.672258i −0.952351 0.305004i \(-0.901342\pi\)
−0.212034 + 0.977262i \(0.568009\pi\)
\(462\) −10.7494 2.14170i −0.0232671 0.00463571i
\(463\) 80.9569 + 140.221i 0.174853 + 0.302854i 0.940110 0.340870i \(-0.110722\pi\)
−0.765257 + 0.643724i \(0.777388\pi\)
\(464\) 690.489i 1.48812i
\(465\) 68.8429 23.3449i 0.148049 0.0502042i
\(466\) −1353.67 −2.90488
\(467\) 150.782i 0.322873i −0.986883 0.161437i \(-0.948387\pi\)
0.986883 0.161437i \(-0.0516128\pi\)
\(468\) 1162.28 534.812i 2.48351 1.14276i
\(469\) 5.55341 0.0118410
\(470\) 115.749i 0.246276i
\(471\) −781.218 155.649i −1.65864 0.330465i
\(472\) −2733.74 −5.79182
\(473\) 45.8576 26.4759i 0.0969505 0.0559744i
\(474\) 819.690 277.960i 1.72930 0.586414i
\(475\) 380.424 + 658.914i 0.800894 + 1.38719i
\(476\) 142.144i 0.298621i
\(477\) 180.853 23.6943i 0.379147 0.0496736i
\(478\) −82.8839 143.559i −0.173397 0.300333i
\(479\) 851.339i 1.77733i −0.458561 0.888663i \(-0.651635\pi\)
0.458561 0.888663i \(-0.348365\pi\)
\(480\) −197.241 39.2980i −0.410918 0.0818708i
\(481\) −356.640 + 385.744i −0.741455 + 0.801962i
\(482\) 536.124 309.531i 1.11229 0.642181i
\(483\) 11.7851 + 10.3418i 0.0243998 + 0.0214116i
\(484\) −1291.31 −2.66799
\(485\) 34.8658 + 20.1298i 0.0718882 + 0.0415047i
\(486\) 841.601 + 416.675i 1.73169 + 0.857356i
\(487\) 123.900 214.601i 0.254415 0.440660i −0.710322 0.703877i \(-0.751450\pi\)
0.964736 + 0.263218i \(0.0847838\pi\)
\(488\) 305.700 176.496i 0.626435 0.361672i
\(489\) 164.461 + 484.986i 0.336320 + 0.991791i
\(490\) −101.701 −0.207554
\(491\) −5.01170 2.89351i −0.0102071 0.00589309i 0.494888 0.868957i \(-0.335209\pi\)
−0.505095 + 0.863064i \(0.668543\pi\)
\(492\) −515.484 + 174.803i −1.04773 + 0.355290i
\(493\) 135.395 234.512i 0.274636 0.475683i
\(494\) −341.567 + 1508.90i −0.691431 + 3.05445i
\(495\) 6.58929 5.04957i 0.0133117 0.0102012i
\(496\) 1341.44 + 2323.44i 2.70451 + 4.68435i
\(497\) 19.3265i 0.0388863i
\(498\) −322.295 950.431i −0.647179 1.90850i
\(499\) 15.3764 + 26.6327i 0.0308144 + 0.0533722i 0.881021 0.473076i \(-0.156857\pi\)
−0.850207 + 0.526449i \(0.823523\pi\)
\(500\) 293.769i 0.587538i
\(501\) −532.929 + 180.719i −1.06373 + 0.360716i
\(502\) 264.943 458.894i 0.527774 0.914132i
\(503\) 548.629 + 316.751i 1.09071 + 0.629724i 0.933766 0.357883i \(-0.116501\pi\)
0.156948 + 0.987607i \(0.449835\pi\)
\(504\) −81.2726 106.054i −0.161255 0.210425i
\(505\) 14.6874 + 25.4393i 0.0290840 + 0.0503749i
\(506\) −53.8972 31.1176i −0.106516 0.0614972i
\(507\) −59.8372 + 503.457i −0.118022 + 0.993011i
\(508\) 246.437 + 426.841i 0.485112 + 0.840239i
\(509\) 83.2041 + 48.0379i 0.163466 + 0.0943770i 0.579501 0.814971i \(-0.303247\pi\)
−0.416035 + 0.909348i \(0.636581\pi\)
\(510\) −110.520 96.9850i −0.216706 0.190167i
\(511\) −25.9770 44.9935i −0.0508357 0.0880500i
\(512\) 1007.45i 1.96767i
\(513\) −746.033 + 367.030i −1.45426 + 0.715458i
\(514\) 403.005 698.025i 0.784056 1.35803i
\(515\) −55.2066 31.8735i −0.107197 0.0618904i
\(516\) 998.180 + 198.876i 1.93446 + 0.385419i
\(517\) −47.2931 + 81.9141i −0.0914761 + 0.158441i
\(518\) 74.9175 + 43.2537i 0.144628 + 0.0835013i
\(519\) −64.0448 + 321.448i −0.123400 + 0.619359i
\(520\) 127.834 138.266i 0.245834 0.265896i
\(521\) 4.52094i 0.00867743i 0.999991 + 0.00433872i \(0.00138106\pi\)
−0.999991 + 0.00433872i \(0.998619\pi\)
\(522\) 52.1373 + 397.952i 0.0998798 + 0.762360i
\(523\) 133.527 + 231.275i 0.255309 + 0.442208i 0.964979 0.262326i \(-0.0844895\pi\)
−0.709671 + 0.704534i \(0.751156\pi\)
\(524\) −204.884 + 118.290i −0.390999 + 0.225744i
\(525\) 27.0813 30.8608i 0.0515834 0.0587824i
\(526\) 1357.92 2.58160
\(527\) 1052.15i 1.99649i
\(528\) 230.289 + 202.086i 0.436154 + 0.382739i
\(529\) −219.986 381.027i −0.415853 0.720278i
\(530\) 36.6580 21.1645i 0.0691660 0.0399330i
\(531\) 910.201 119.249i 1.71413 0.224575i
\(532\) 186.523 0.350608
\(533\) 47.6222 210.375i 0.0893475 0.394699i
\(534\) −922.718 183.841i −1.72794 0.344272i
\(535\) −32.3210 + 55.9816i −0.0604131 + 0.104639i
\(536\) −232.709 134.355i −0.434159 0.250662i
\(537\) −0.348064 + 1.74697i −0.000648164 + 0.00325321i
\(538\) −266.371 + 461.367i −0.495112 + 0.857560i
\(539\) 71.9725 + 41.5533i 0.133530 + 0.0770934i
\(540\) 159.216 + 10.5861i 0.294844 + 0.0196039i
\(541\) −392.541 −0.725584 −0.362792 0.931870i \(-0.618176\pi\)
−0.362792 + 0.931870i \(0.618176\pi\)
\(542\) 838.697 484.222i 1.54741 0.893398i
\(543\) 66.1559 75.3886i 0.121834 0.138837i
\(544\) 1455.47 2520.94i 2.67549 4.63408i
\(545\) −6.46633 + 3.73334i −0.0118648 + 0.00685016i
\(546\) 83.0322 8.69338i 0.152074 0.0159219i
\(547\) 468.922 812.196i 0.857261 1.48482i −0.0172707 0.999851i \(-0.505498\pi\)
0.874532 0.484969i \(-0.161169\pi\)
\(548\) −192.055 + 110.883i −0.350465 + 0.202341i
\(549\) −94.0842 + 72.0995i −0.171374 + 0.131329i
\(550\) −81.4854 + 141.137i −0.148155 + 0.256612i
\(551\) −307.731 177.668i −0.558495 0.322447i
\(552\) −243.640 718.480i −0.441376 1.30159i
\(553\) 41.3525 0.0747785
\(554\) 1056.98 610.249i 1.90791 1.10153i
\(555\) −62.0500 + 21.0414i −0.111802 + 0.0379124i
\(556\) 1979.47 3.56019
\(557\) −553.510 + 319.569i −0.993734 + 0.573733i −0.906388 0.422445i \(-0.861172\pi\)
−0.0873459 + 0.996178i \(0.527839\pi\)
\(558\) −948.552 1237.79i −1.69991 2.21825i
\(559\) −273.804 + 296.148i −0.489810 + 0.529781i
\(560\) −15.5134 8.95665i −0.0277024 0.0159940i
\(561\) 38.5871 + 113.791i 0.0687828 + 0.202837i
\(562\) 856.454 1483.42i 1.52394 2.63954i
\(563\) 889.448i 1.57984i 0.613212 + 0.789918i \(0.289877\pi\)
−0.613212 + 0.789918i \(0.710123\pi\)
\(564\) −1721.76 + 583.858i −3.05277 + 1.03521i
\(565\) 20.2410 + 35.0584i 0.0358248 + 0.0620503i
\(566\) −815.447 470.799i −1.44072 0.831800i
\(567\) 31.6860 + 31.7657i 0.0558836 + 0.0560241i
\(568\) −467.569 + 809.854i −0.823185 + 1.42580i
\(569\) 1050.87i 1.84687i 0.383758 + 0.923434i \(0.374630\pi\)
−0.383758 + 0.923434i \(0.625370\pi\)
\(570\) −127.266 + 145.027i −0.223273 + 0.254433i
\(571\) 353.632 + 612.508i 0.619320 + 1.07269i 0.989610 + 0.143777i \(0.0459248\pi\)
−0.370290 + 0.928916i \(0.620742\pi\)
\(572\) −231.720 + 71.9288i −0.405104 + 0.125750i
\(573\) −32.8685 + 164.971i −0.0573622 + 0.287907i
\(574\) −35.5182 −0.0618784
\(575\) 201.897 116.565i 0.351125 0.202722i
\(576\) 280.626 + 2141.95i 0.487198 + 3.71867i
\(577\) 231.351 0.400956 0.200478 0.979698i \(-0.435751\pi\)
0.200478 + 0.979698i \(0.435751\pi\)
\(578\) 875.860 505.678i 1.51533 0.874876i
\(579\) −90.0255 265.480i −0.155484 0.458515i
\(580\) 34.0980 + 59.0594i 0.0587896 + 0.101827i
\(581\) 47.9483i 0.0825271i
\(582\) 168.758 847.013i 0.289962 1.45535i
\(583\) −34.5897 −0.0593305
\(584\) 2513.87i 4.30457i
\(585\) −36.5311 + 51.6120i −0.0624463 + 0.0882256i
\(586\) −474.466 −0.809669
\(587\) 905.686i 1.54291i 0.636286 + 0.771453i \(0.280470\pi\)
−0.636286 + 0.771453i \(0.719530\pi\)
\(588\) 512.997 + 1512.80i 0.872444 + 2.57279i
\(589\) 1380.65 2.34406
\(590\) 184.493 106.517i 0.312700 0.180537i
\(591\) −39.7633 + 199.576i −0.0672814 + 0.337693i
\(592\) −1209.07 2094.18i −2.04235 3.53746i
\(593\) 399.311i 0.673374i −0.941617 0.336687i \(-0.890694\pi\)
0.941617 0.336687i \(-0.109306\pi\)
\(594\) −147.982 99.0804i −0.249129 0.166802i
\(595\) −3.51255 6.08391i −0.00590344 0.0102251i
\(596\) 1963.25i 3.29405i
\(597\) 122.424 + 361.022i 0.205066 + 0.604728i
\(598\) 462.338 + 104.659i 0.773141 + 0.175015i
\(599\) 87.1739 50.3299i 0.145532 0.0840231i −0.425466 0.904975i \(-0.639890\pi\)
0.570998 + 0.820951i \(0.306556\pi\)
\(600\) −1881.43 + 638.001i −3.13572 + 1.06334i
\(601\) −356.765 −0.593619 −0.296809 0.954937i \(-0.595923\pi\)
−0.296809 + 0.954937i \(0.595923\pi\)
\(602\) 57.5166 + 33.2072i 0.0955425 + 0.0551615i
\(603\) 83.3415 + 34.5825i 0.138211 + 0.0573507i
\(604\) 1046.72 1812.97i 1.73298 3.00161i
\(605\) 55.2695 31.9099i 0.0913545 0.0527436i
\(606\) 415.641 473.647i 0.685876 0.781596i
\(607\) −295.176 −0.486287 −0.243143 0.969990i \(-0.578179\pi\)
−0.243143 + 0.969990i \(0.578179\pi\)
\(608\) −3308.02 1909.89i −5.44083 3.14126i
\(609\) −3.74682 + 18.8057i −0.00615241 + 0.0308796i
\(610\) −13.7539 + 23.8225i −0.0225474 + 0.0390533i
\(611\) 159.063 702.672i 0.260332 1.15004i
\(612\) −885.164 + 2133.19i −1.44635 + 3.48560i
\(613\) 364.492 + 631.318i 0.594603 + 1.02988i 0.993603 + 0.112931i \(0.0360240\pi\)
−0.399000 + 0.916951i \(0.630643\pi\)
\(614\) 294.394i 0.479470i
\(615\) 17.7437 20.2200i 0.0288515 0.0328781i
\(616\) 12.6692 + 21.9436i 0.0205668 + 0.0356228i
\(617\) 648.128i 1.05045i −0.850963 0.525225i \(-0.823981\pi\)
0.850963 0.525225i \(-0.176019\pi\)
\(618\) −267.212 + 1341.16i −0.432381 + 2.17017i
\(619\) 351.842 609.409i 0.568404 0.984505i −0.428320 0.903627i \(-0.640894\pi\)
0.996724 0.0808778i \(-0.0257724\pi\)
\(620\) −229.473 132.487i −0.370118 0.213688i
\(621\) 112.461 + 228.591i 0.181097 + 0.368101i
\(622\) 1065.48 + 1845.46i 1.71299 + 2.96698i
\(623\) −38.9286 22.4754i −0.0624857 0.0360762i
\(624\) −2131.56 950.054i −3.41595 1.52252i
\(625\) −301.590 522.368i −0.482543 0.835790i
\(626\) −763.116 440.585i −1.21903 0.703810i
\(627\) 149.319 50.6347i 0.238148 0.0807572i
\(628\) 1451.78 + 2514.56i 2.31176 + 4.00408i
\(629\) 948.330i 1.50768i
\(630\) 9.61716 + 3.99063i 0.0152653 + 0.00633434i
\(631\) −0.945257 + 1.63723i −0.00149803 + 0.00259466i −0.866773 0.498702i \(-0.833810\pi\)
0.865275 + 0.501297i \(0.167144\pi\)
\(632\) −1732.83 1000.45i −2.74182 1.58299i
\(633\) 192.087 + 566.453i 0.303455 + 0.894871i
\(634\) −525.171 + 909.622i −0.828345 + 1.43474i
\(635\) −21.0956 12.1795i −0.0332214 0.0191804i
\(636\) −499.729 438.528i −0.785737 0.689509i
\(637\) −617.391 139.758i −0.969216 0.219400i
\(638\) 76.1117i 0.119297i
\(639\) 120.351 290.037i 0.188342 0.453893i
\(640\) 116.586 + 201.932i 0.182165 + 0.315519i
\(641\) −450.667 + 260.193i −0.703069 + 0.405917i −0.808490 0.588511i \(-0.799715\pi\)
0.105420 + 0.994428i \(0.466381\pi\)
\(642\) 1359.99 + 270.963i 2.11837 + 0.422061i
\(643\) −817.953 −1.27209 −0.636045 0.771652i \(-0.719431\pi\)
−0.636045 + 0.771652i \(0.719431\pi\)
\(644\) 57.1523i 0.0887458i
\(645\) −47.6377 + 16.1542i −0.0738570 + 0.0250452i
\(646\) −1396.35 2418.55i −2.16153 3.74389i
\(647\) −345.890 + 199.700i −0.534606 + 0.308655i −0.742890 0.669414i \(-0.766545\pi\)
0.208284 + 0.978068i \(0.433212\pi\)
\(648\) −559.253 2097.69i −0.863044 3.23718i
\(649\) −174.084 −0.268234
\(650\) 274.063 1210.69i 0.421635 1.86260i
\(651\) −23.9267 70.5586i −0.0367538 0.108385i
\(652\) 933.343 1616.60i 1.43151 2.47944i
\(653\) −444.374 256.560i −0.680512 0.392894i 0.119536 0.992830i \(-0.461859\pi\)
−0.800048 + 0.599936i \(0.795193\pi\)
\(654\) 120.395 + 105.650i 0.184090 + 0.161545i
\(655\) 5.84617 10.1259i 0.00892545 0.0154593i
\(656\) 859.828 + 496.422i 1.31071 + 0.756741i
\(657\) −109.658 836.995i −0.166907 1.27396i
\(658\) −118.634 −0.180295
\(659\) 420.060 242.522i 0.637421 0.368015i −0.146200 0.989255i \(-0.546704\pi\)
0.783620 + 0.621240i \(0.213371\pi\)
\(660\) −29.6767 5.91275i −0.0449648 0.00895872i
\(661\) −276.604 + 479.092i −0.418463 + 0.724798i −0.995785 0.0917178i \(-0.970764\pi\)
0.577322 + 0.816516i \(0.304098\pi\)
\(662\) −1087.17 + 627.678i −1.64225 + 0.948154i
\(663\) −537.650 740.636i −0.810935 1.11710i
\(664\) −1160.02 + 2009.22i −1.74702 + 3.02593i
\(665\) −7.98342 + 4.60923i −0.0120051 + 0.00693117i
\(666\) 854.955 + 1115.65i 1.28372 + 1.67515i
\(667\) −54.4390 + 94.2911i −0.0816177 + 0.141366i
\(668\) 1776.41 + 1025.61i 2.65929 + 1.53534i
\(669\) −221.566 + 252.488i −0.331190 + 0.377411i
\(670\) 20.9399 0.0312536
\(671\) 19.4669 11.2392i 0.0290118 0.0167499i
\(672\) −40.2773 + 202.156i −0.0599365 + 0.300828i
\(673\) 732.210 1.08798 0.543990 0.839092i \(-0.316913\pi\)
0.543990 + 0.839092i \(0.316913\pi\)
\(674\) 693.300 400.277i 1.02864 0.593883i
\(675\) 598.594 294.493i 0.886805 0.436287i
\(676\) 1523.21 1046.48i 2.25327 1.54805i
\(677\) 688.003 + 397.219i 1.01625 + 0.586734i 0.913016 0.407923i \(-0.133747\pi\)
0.103236 + 0.994657i \(0.467080\pi\)
\(678\) 572.802 652.743i 0.844841 0.962747i
\(679\) 20.6314 35.7347i 0.0303851 0.0526285i
\(680\) 339.919i 0.499881i
\(681\) 29.7593 149.365i 0.0436994 0.219332i
\(682\) 147.865 + 256.109i 0.216811 + 0.375527i
\(683\) 906.498 + 523.367i 1.32723 + 0.766277i 0.984870 0.173292i \(-0.0554405\pi\)
0.342360 + 0.939569i \(0.388774\pi\)
\(684\) 2799.21 + 1161.53i 4.09241 + 1.69814i
\(685\) 5.48012 9.49184i 0.00800017 0.0138567i
\(686\) 209.129i 0.304852i
\(687\) 75.0163 + 14.9461i 0.109194 + 0.0217557i
\(688\) −928.245 1607.77i −1.34919 2.33687i
\(689\) 251.621 78.1064i 0.365197 0.113362i
\(690\) 44.4373 + 38.9952i 0.0644019 + 0.0565147i
\(691\) −292.944 −0.423942 −0.211971 0.977276i \(-0.567988\pi\)
−0.211971 + 0.977276i \(0.567988\pi\)
\(692\) 1034.67 597.365i 1.49518 0.863244i
\(693\) −5.17542 6.75351i −0.00746813 0.00974532i
\(694\) −2476.66 −3.56868
\(695\) −84.7235 + 48.9151i −0.121904 + 0.0703815i
\(696\) 611.976 697.383i 0.879276 1.00199i
\(697\) 194.683 + 337.201i 0.279316 + 0.483789i
\(698\) 223.069i 0.319584i
\(699\) −789.833 693.103i −1.12995 0.991564i
\(700\) −149.661 −0.213801
\(701\) 1014.32i 1.44697i 0.690342 + 0.723484i \(0.257460\pi\)
−0.690342 + 0.723484i \(0.742540\pi\)
\(702\) 1300.22 + 386.598i 1.85217 + 0.550710i
\(703\) −1244.42 −1.77015
\(704\) 409.667i 0.581913i
\(705\) 59.2656 67.5367i 0.0840647 0.0957968i
\(706\) −1298.76 −1.83961
\(707\) 26.0733 15.0534i 0.0368788 0.0212920i
\(708\) −2515.04 2207.03i −3.55232 3.11727i
\(709\) 271.431 + 470.132i 0.382836 + 0.663092i 0.991466 0.130362i \(-0.0416140\pi\)
−0.608630 + 0.793454i \(0.708281\pi\)
\(710\) 72.8732i 0.102638i
\(711\) 620.588 + 257.512i 0.872838 + 0.362183i
\(712\) 1087.51 + 1883.62i 1.52740 + 2.64553i
\(713\) 423.042i 0.593327i
\(714\) −99.4021 + 113.275i −0.139219 + 0.158648i
\(715\) 8.14042 8.80472i 0.0113852 0.0123143i
\(716\) 5.62311 3.24650i 0.00785350 0.00453422i
\(717\) 25.1441 126.201i 0.0350685 0.176012i
\(718\) 1722.39 2.39887
\(719\) −1002.72 578.919i −1.39460 0.805173i −0.400780 0.916174i \(-0.631261\pi\)
−0.993820 + 0.111001i \(0.964594\pi\)
\(720\) −177.038 231.020i −0.245886 0.320862i
\(721\) −32.6679 + 56.5824i −0.0453091 + 0.0784777i
\(722\) −1965.45 + 1134.75i −2.72223 + 1.57168i
\(723\) 471.299 + 93.9010i 0.651866 + 0.129877i
\(724\) −365.600 −0.504973
\(725\) 246.913 + 142.555i 0.340570 + 0.196628i
\(726\) −1029.05 903.021i −1.41742 1.24383i
\(727\) 33.2872 57.6552i 0.0457871 0.0793056i −0.842224 0.539128i \(-0.818754\pi\)
0.888011 + 0.459823i \(0.152087\pi\)
\(728\) −141.712 131.020i −0.194659 0.179972i
\(729\) 277.707 + 674.032i 0.380943 + 0.924598i
\(730\) −97.9500 169.654i −0.134178 0.232403i
\(731\) 728.064i 0.995983i
\(732\) 423.735 + 84.4244i 0.578873 + 0.115334i
\(733\) 224.677 + 389.152i 0.306517 + 0.530903i 0.977598 0.210481i \(-0.0675030\pi\)
−0.671081 + 0.741384i \(0.734170\pi\)
\(734\) 1575.88i 2.14698i
\(735\) −59.3400 52.0728i −0.0807347 0.0708473i
\(736\) −585.205 + 1013.60i −0.795115 + 1.37718i
\(737\) −14.8189 8.55567i −0.0201070 0.0116088i
\(738\) −533.031 221.181i −0.722264 0.299703i
\(739\) −32.6253 56.5087i −0.0441480 0.0764665i 0.843107 0.537746i \(-0.180724\pi\)
−0.887255 + 0.461279i \(0.847391\pi\)
\(740\) 206.831 + 119.414i 0.279501 + 0.161370i
\(741\) −971.876 + 705.514i −1.31157 + 0.952111i
\(742\) −21.6920 37.5716i −0.0292344 0.0506355i
\(743\) −961.902 555.355i −1.29462 0.747449i −0.315150 0.949042i \(-0.602055\pi\)
−0.979469 + 0.201593i \(0.935388\pi\)
\(744\) −704.417 + 3535.54i −0.946797 + 4.75207i
\(745\) −48.5145 84.0296i −0.0651201 0.112791i
\(746\) 1648.97i 2.21042i
\(747\) 298.586 719.572i 0.399713 0.963282i
\(748\) 218.989 379.300i 0.292766 0.507085i
\(749\) 57.3768 + 33.1265i 0.0766046 + 0.0442277i
\(750\) 205.435 234.105i 0.273913 0.312140i
\(751\) 222.453 385.301i 0.296210 0.513050i −0.679056 0.734087i \(-0.737611\pi\)
0.975266 + 0.221036i \(0.0709440\pi\)
\(752\) 2871.91 + 1658.10i 3.81903 + 2.20492i
\(753\) 389.548 132.098i 0.517329 0.175428i
\(754\) 171.866 + 553.670i 0.227939 + 0.734311i
\(755\) 103.463i 0.137037i
\(756\) 10.8499 163.184i 0.0143518 0.215852i
\(757\) −482.015 834.875i −0.636744 1.10287i −0.986143 0.165899i \(-0.946947\pi\)
0.349399 0.936974i \(-0.386386\pi\)
\(758\) 126.339 72.9420i 0.166674 0.0962296i
\(759\) −15.5149 45.7526i −0.0204412 0.0602800i
\(760\) 446.048 0.586905
\(761\) 408.347i 0.536593i 0.963336 + 0.268296i \(0.0864606\pi\)
−0.963336 + 0.268296i \(0.913539\pi\)
\(762\) −102.107 + 512.486i −0.133999 + 0.672554i
\(763\) 3.82638 + 6.62748i 0.00501492 + 0.00868609i
\(764\) 531.003 306.575i 0.695031 0.401276i
\(765\) −14.8277 113.176i −0.0193826 0.147943i
\(766\) 1500.96 1.95948
\(767\) 1266.36 393.095i 1.65106 0.512510i
\(768\) 1399.45 1594.76i 1.82220 2.07651i
\(769\) −474.569 + 821.977i −0.617125 + 1.06889i 0.372883 + 0.927878i \(0.378369\pi\)
−0.990008 + 0.141013i \(0.954964\pi\)