Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [117,3,Mod(29,117)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(117, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([1, 2]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("117.29");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 117 = 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 117.k (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.18801909302\) |
Analytic rank: | \(0\) |
Dimension: | \(52\) |
Relative dimension: | \(26\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
29.1 | − | 3.86461i | 1.97875 | − | 2.25490i | −10.9352 | 0.468040 | − | 0.270223i | −8.71431 | − | 7.64708i | −0.276958 | − | 0.479705i | 26.8020i | −1.16913 | − | 8.92374i | −1.04431 | − | 1.80879i | |||||
29.2 | − | 3.53953i | 0.194193 | + | 2.99371i | −8.52830 | −6.00755 | + | 3.46846i | 10.5963 | − | 0.687351i | −2.39062 | − | 4.14067i | 16.0281i | −8.92458 | + | 1.16271i | 12.2767 | + | 21.2639i | |||||
29.3 | − | 3.27217i | −2.67392 | − | 1.36020i | −6.70711 | −3.48512 | + | 2.01214i | −4.45081 | + | 8.74953i | 1.40029 | + | 2.42538i | 8.85812i | 5.29971 | + | 7.27414i | 6.58406 | + | 11.4039i | |||||
29.4 | − | 3.09261i | 1.33417 | + | 2.68700i | −5.56427 | 6.70477 | − | 3.87100i | 8.30987 | − | 4.12608i | 6.32403 | + | 10.9535i | 4.83767i | −5.43998 | + | 7.16984i | −11.9715 | − | 20.7353i | |||||
29.5 | − | 2.75995i | −1.69762 | − | 2.47347i | −3.61733 | 7.95372 | − | 4.59208i | −6.82666 | + | 4.68536i | −2.71987 | − | 4.71096i | − | 1.05616i | −3.23614 | + | 8.39806i | −12.6739 | − | 21.9519i | ||||
29.6 | − | 2.57904i | 2.93962 | + | 0.598857i | −2.65146 | −0.817198 | + | 0.471810i | 1.54448 | − | 7.58141i | −2.52350 | − | 4.37084i | − | 3.47795i | 8.28274 | + | 3.52082i | 1.21682 | + | 2.10759i | ||||
29.7 | − | 2.44466i | −2.12872 | + | 2.11389i | −1.97636 | 2.73246 | − | 1.57759i | 5.16775 | + | 5.20400i | −3.82542 | − | 6.62581i | − | 4.94710i | 0.0628969 | − | 8.99978i | −3.85666 | − | 6.67994i | ||||
29.8 | − | 1.86232i | 2.37269 | − | 1.83585i | 0.531747 | 0.895843 | − | 0.517215i | −3.41894 | − | 4.41872i | 2.55841 | + | 4.43129i | − | 8.43958i | 2.25933 | − | 8.71180i | −0.963222 | − | 1.66835i | ||||
29.9 | − | 1.68712i | −2.70723 | + | 1.29264i | 1.15363 | −3.08450 | + | 1.78084i | 2.18083 | + | 4.56742i | 6.39840 | + | 11.0823i | − | 8.69479i | 5.65818 | − | 6.99893i | 3.00448 | + | 5.20392i | ||||
29.10 | − | 1.67065i | 0.0978207 | − | 2.99840i | 1.20892 | −8.08978 | + | 4.67064i | −5.00930 | − | 0.163425i | −4.17857 | − | 7.23749i | − | 8.70230i | −8.98086 | − | 0.586612i | 7.80302 | + | 13.5152i | ||||
29.11 | − | 0.630376i | 2.39963 | + | 1.80049i | 3.60263 | 1.96357 | − | 1.13367i | 1.13499 | − | 1.51267i | −4.09731 | − | 7.09675i | − | 4.79251i | 2.51645 | + | 8.64103i | −0.714636 | − | 1.23779i | ||||
29.12 | − | 0.487810i | 1.50104 | + | 2.59748i | 3.76204 | −6.04718 | + | 3.49134i | 1.26708 | − | 0.732220i | 3.63606 | + | 6.29784i | − | 3.78640i | −4.49379 | + | 7.79781i | 1.70311 | + | 2.94987i | ||||
29.13 | − | 0.434891i | −0.475458 | − | 2.96208i | 3.81087 | 3.11857 | − | 1.80051i | −1.28818 | + | 0.206772i | 3.94503 | + | 6.83299i | − | 3.39687i | −8.54788 | + | 2.81669i | −0.783024 | − | 1.35624i | ||||
29.14 | − | 0.376029i | −2.92720 | − | 0.656887i | 3.85860 | 0.994641 | − | 0.574256i | −0.247009 | + | 1.10071i | −2.57212 | − | 4.45503i | − | 2.95506i | 8.13700 | + | 3.84568i | −0.215937 | − | 0.374014i | ||||
29.15 | 0.306140i | −0.721810 | + | 2.91187i | 3.90628 | 5.23834 | − | 3.02436i | −0.891441 | − | 0.220975i | 0.307870 | + | 0.533246i | 2.42043i | −7.95798 | − | 4.20363i | 0.925877 | + | 1.60367i | ||||||
29.16 | 1.13140i | −2.34643 | + | 1.86930i | 2.71993 | −7.06649 | + | 4.07984i | −2.11493 | − | 2.65475i | −3.97102 | − | 6.87801i | 7.60294i | 2.01145 | − | 8.77235i | −4.61594 | − | 7.99504i | ||||||
29.17 | 1.15571i | 2.85130 | − | 0.932773i | 2.66432 | −3.81803 | + | 2.20434i | 1.07802 | + | 3.29529i | 2.07846 | + | 3.60000i | 7.70206i | 7.25987 | − | 5.31924i | −2.54759 | − | 4.41256i | ||||||
29.18 | 1.28020i | 1.42433 | − | 2.64032i | 2.36108 | 2.95232 | − | 1.70452i | 3.38014 | + | 1.82343i | −5.94919 | − | 10.3043i | 8.14347i | −4.94255 | − | 7.52139i | 2.18213 | + | 3.77956i | ||||||
29.19 | 1.86111i | −1.65496 | − | 2.50222i | 0.536256 | −4.76252 | + | 2.74964i | 4.65691 | − | 3.08007i | 2.83533 | + | 4.91094i | 8.44249i | −3.52220 | + | 8.28215i | −5.11740 | − | 8.86359i | ||||||
29.20 | 1.89941i | −2.99862 | − | 0.0909164i | 0.392234 | 5.82785 | − | 3.36471i | 0.172688 | − | 5.69562i | 2.17329 | + | 3.76424i | 8.34266i | 8.98347 | + | 0.545248i | 6.39097 | + | 11.0695i | ||||||
See all 52 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
117.k | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 117.3.k.a | ✓ | 52 |
3.b | odd | 2 | 1 | 351.3.k.a | 52 | ||
9.c | even | 3 | 1 | 351.3.u.a | 52 | ||
9.d | odd | 6 | 1 | 117.3.u.a | yes | 52 | |
13.c | even | 3 | 1 | 117.3.u.a | yes | 52 | |
39.i | odd | 6 | 1 | 351.3.u.a | 52 | ||
117.h | even | 3 | 1 | 351.3.k.a | 52 | ||
117.k | odd | 6 | 1 | inner | 117.3.k.a | ✓ | 52 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
117.3.k.a | ✓ | 52 | 1.a | even | 1 | 1 | trivial |
117.3.k.a | ✓ | 52 | 117.k | odd | 6 | 1 | inner |
117.3.u.a | yes | 52 | 9.d | odd | 6 | 1 | |
117.3.u.a | yes | 52 | 13.c | even | 3 | 1 | |
351.3.k.a | 52 | 3.b | odd | 2 | 1 | ||
351.3.k.a | 52 | 117.h | even | 3 | 1 | ||
351.3.u.a | 52 | 9.c | even | 3 | 1 | ||
351.3.u.a | 52 | 39.i | odd | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(117, [\chi])\).