Properties

Label 117.3.k.a
Level $117$
Weight $3$
Character orbit 117.k
Analytic conductor $3.188$
Analytic rank $0$
Dimension $52$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(29,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([1, 2]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.29");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(52\)
Relative dimension: \(26\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 52 q - q^{3} - 98 q^{4} - 6 q^{5} + 12 q^{6} - q^{7} - 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 52 q - q^{3} - 98 q^{4} - 6 q^{5} + 12 q^{6} - q^{7} - 3 q^{9} - 6 q^{10} - 39 q^{12} + 4 q^{13} - 6 q^{14} - 25 q^{15} + 166 q^{16} + 34 q^{18} + 5 q^{19} + 21 q^{20} - 91 q^{21} + 30 q^{22} - 75 q^{23} - 24 q^{24} + 88 q^{25} - 132 q^{26} - 34 q^{27} - 22 q^{28} + 70 q^{30} + 14 q^{31} + 95 q^{33} - 6 q^{34} + 228 q^{35} - 58 q^{36} - 13 q^{37} - 192 q^{38} - 111 q^{39} + 72 q^{40} + 33 q^{41} + 159 q^{42} - 31 q^{43} - 47 q^{45} + 6 q^{46} - 69 q^{47} + 293 q^{48} - 123 q^{49} - 168 q^{50} + 235 q^{51} - 92 q^{52} - 339 q^{54} - 27 q^{55} + 168 q^{56} + 189 q^{57} + 210 q^{58} + 213 q^{60} + 8 q^{61} + 471 q^{62} + 169 q^{63} - 98 q^{64} - 246 q^{65} - 576 q^{66} - 34 q^{67} + 18 q^{68} - 193 q^{69} - 57 q^{70} + 144 q^{71} + 36 q^{72} - 106 q^{73} - 465 q^{74} - 58 q^{75} - 79 q^{76} + 282 q^{77} - 76 q^{78} - 25 q^{79} - 1050 q^{80} - 279 q^{81} + 81 q^{82} + 219 q^{83} + 395 q^{84} - 108 q^{85} - 24 q^{86} - 518 q^{87} + 30 q^{88} + 99 q^{89} + 183 q^{90} + 2 q^{91} + 888 q^{92} + 582 q^{93} + 303 q^{94} - 439 q^{96} + 212 q^{97} - 405 q^{98} + 522 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
29.1 3.86461i 1.97875 2.25490i −10.9352 0.468040 0.270223i −8.71431 7.64708i −0.276958 0.479705i 26.8020i −1.16913 8.92374i −1.04431 1.80879i
29.2 3.53953i 0.194193 + 2.99371i −8.52830 −6.00755 + 3.46846i 10.5963 0.687351i −2.39062 4.14067i 16.0281i −8.92458 + 1.16271i 12.2767 + 21.2639i
29.3 3.27217i −2.67392 1.36020i −6.70711 −3.48512 + 2.01214i −4.45081 + 8.74953i 1.40029 + 2.42538i 8.85812i 5.29971 + 7.27414i 6.58406 + 11.4039i
29.4 3.09261i 1.33417 + 2.68700i −5.56427 6.70477 3.87100i 8.30987 4.12608i 6.32403 + 10.9535i 4.83767i −5.43998 + 7.16984i −11.9715 20.7353i
29.5 2.75995i −1.69762 2.47347i −3.61733 7.95372 4.59208i −6.82666 + 4.68536i −2.71987 4.71096i 1.05616i −3.23614 + 8.39806i −12.6739 21.9519i
29.6 2.57904i 2.93962 + 0.598857i −2.65146 −0.817198 + 0.471810i 1.54448 7.58141i −2.52350 4.37084i 3.47795i 8.28274 + 3.52082i 1.21682 + 2.10759i
29.7 2.44466i −2.12872 + 2.11389i −1.97636 2.73246 1.57759i 5.16775 + 5.20400i −3.82542 6.62581i 4.94710i 0.0628969 8.99978i −3.85666 6.67994i
29.8 1.86232i 2.37269 1.83585i 0.531747 0.895843 0.517215i −3.41894 4.41872i 2.55841 + 4.43129i 8.43958i 2.25933 8.71180i −0.963222 1.66835i
29.9 1.68712i −2.70723 + 1.29264i 1.15363 −3.08450 + 1.78084i 2.18083 + 4.56742i 6.39840 + 11.0823i 8.69479i 5.65818 6.99893i 3.00448 + 5.20392i
29.10 1.67065i 0.0978207 2.99840i 1.20892 −8.08978 + 4.67064i −5.00930 0.163425i −4.17857 7.23749i 8.70230i −8.98086 0.586612i 7.80302 + 13.5152i
29.11 0.630376i 2.39963 + 1.80049i 3.60263 1.96357 1.13367i 1.13499 1.51267i −4.09731 7.09675i 4.79251i 2.51645 + 8.64103i −0.714636 1.23779i
29.12 0.487810i 1.50104 + 2.59748i 3.76204 −6.04718 + 3.49134i 1.26708 0.732220i 3.63606 + 6.29784i 3.78640i −4.49379 + 7.79781i 1.70311 + 2.94987i
29.13 0.434891i −0.475458 2.96208i 3.81087 3.11857 1.80051i −1.28818 + 0.206772i 3.94503 + 6.83299i 3.39687i −8.54788 + 2.81669i −0.783024 1.35624i
29.14 0.376029i −2.92720 0.656887i 3.85860 0.994641 0.574256i −0.247009 + 1.10071i −2.57212 4.45503i 2.95506i 8.13700 + 3.84568i −0.215937 0.374014i
29.15 0.306140i −0.721810 + 2.91187i 3.90628 5.23834 3.02436i −0.891441 0.220975i 0.307870 + 0.533246i 2.42043i −7.95798 4.20363i 0.925877 + 1.60367i
29.16 1.13140i −2.34643 + 1.86930i 2.71993 −7.06649 + 4.07984i −2.11493 2.65475i −3.97102 6.87801i 7.60294i 2.01145 8.77235i −4.61594 7.99504i
29.17 1.15571i 2.85130 0.932773i 2.66432 −3.81803 + 2.20434i 1.07802 + 3.29529i 2.07846 + 3.60000i 7.70206i 7.25987 5.31924i −2.54759 4.41256i
29.18 1.28020i 1.42433 2.64032i 2.36108 2.95232 1.70452i 3.38014 + 1.82343i −5.94919 10.3043i 8.14347i −4.94255 7.52139i 2.18213 + 3.77956i
29.19 1.86111i −1.65496 2.50222i 0.536256 −4.76252 + 2.74964i 4.65691 3.08007i 2.83533 + 4.91094i 8.44249i −3.52220 + 8.28215i −5.11740 8.86359i
29.20 1.89941i −2.99862 0.0909164i 0.392234 5.82785 3.36471i 0.172688 5.69562i 2.17329 + 3.76424i 8.34266i 8.98347 + 0.545248i 6.39097 + 11.0695i
See all 52 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 29.26
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
117.k odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 117.3.k.a 52
3.b odd 2 1 351.3.k.a 52
9.c even 3 1 351.3.u.a 52
9.d odd 6 1 117.3.u.a yes 52
13.c even 3 1 117.3.u.a yes 52
39.i odd 6 1 351.3.u.a 52
117.h even 3 1 351.3.k.a 52
117.k odd 6 1 inner 117.3.k.a 52
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
117.3.k.a 52 1.a even 1 1 trivial
117.3.k.a 52 117.k odd 6 1 inner
117.3.u.a yes 52 9.d odd 6 1
117.3.u.a yes 52 13.c even 3 1
351.3.k.a 52 3.b odd 2 1
351.3.k.a 52 117.h even 3 1
351.3.u.a 52 9.c even 3 1
351.3.u.a 52 39.i odd 6 1

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(117, [\chi])\).