Properties

Label 117.3.j.a
Level $117$
Weight $3$
Character orbit 117.j
Analytic conductor $3.188$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(73,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.73");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{2} + \beta_1 + 1) q^{2} + (2 \beta_{3} + 3 \beta_{2} + 2 \beta_1) q^{4} + ( - 2 \beta_{2} + \beta_1 - 2) q^{5} + ( - \beta_{3} + 3 \beta_{2} - 3) q^{7} + (3 \beta_{3} + 9 \beta_{2} - 9) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + (\beta_{2} + \beta_1 + 1) q^{2} + (2 \beta_{3} + 3 \beta_{2} + 2 \beta_1) q^{4} + ( - 2 \beta_{2} + \beta_1 - 2) q^{5} + ( - \beta_{3} + 3 \beta_{2} - 3) q^{7} + (3 \beta_{3} + 9 \beta_{2} - 9) q^{8} + ( - \beta_{3} + \beta_{2} - \beta_1) q^{10} + ( - 4 \beta_{3} - \beta_{2} + 1) q^{11} + ( - 2 \beta_{3} - 10 \beta_{2} + \cdots + 2) q^{13}+ \cdots + (38 \beta_{3} + 56 \beta_{2} - 56) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 8 q^{5} - 12 q^{7} - 36 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{2} - 8 q^{5} - 12 q^{7} - 36 q^{8} + 4 q^{11} + 8 q^{13} - 4 q^{14} - 84 q^{16} - 16 q^{20} + 88 q^{22} + 88 q^{26} + 4 q^{28} - 40 q^{29} + 40 q^{31} - 20 q^{32} - 108 q^{34} + 68 q^{35} + 40 q^{37} + 84 q^{40} - 32 q^{41} + 172 q^{44} + 132 q^{46} + 4 q^{47} + 128 q^{50} + 80 q^{52} + 80 q^{53} + 64 q^{55} - 140 q^{58} - 56 q^{59} - 296 q^{61} - 56 q^{65} - 84 q^{67} - 444 q^{68} - 32 q^{70} - 284 q^{71} - 100 q^{74} + 80 q^{76} + 64 q^{79} + 88 q^{80} + 52 q^{83} - 144 q^{85} + 24 q^{86} - 200 q^{89} + 156 q^{91} + 456 q^{92} - 452 q^{94} - 68 q^{97} - 224 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{3} ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 5\beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 5\beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(\beta_{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
73.1
−1.58114 1.58114i
1.58114 + 1.58114i
−1.58114 + 1.58114i
1.58114 1.58114i
−0.581139 0.581139i 0 3.32456i −3.58114 3.58114i 0 −4.58114 + 4.58114i −4.25658 + 4.25658i 0 4.16228i
73.2 2.58114 + 2.58114i 0 9.32456i −0.418861 0.418861i 0 −1.41886 + 1.41886i −13.7434 + 13.7434i 0 2.16228i
109.1 −0.581139 + 0.581139i 0 3.32456i −3.58114 + 3.58114i 0 −4.58114 4.58114i −4.25658 4.25658i 0 4.16228i
109.2 2.58114 2.58114i 0 9.32456i −0.418861 + 0.418861i 0 −1.41886 1.41886i −13.7434 13.7434i 0 2.16228i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.d odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 117.3.j.a 4
3.b odd 2 1 13.3.d.a 4
12.b even 2 1 208.3.t.c 4
13.d odd 4 1 inner 117.3.j.a 4
15.d odd 2 1 325.3.j.a 4
15.e even 4 1 325.3.g.a 4
15.e even 4 1 325.3.g.b 4
39.d odd 2 1 169.3.d.d 4
39.f even 4 1 13.3.d.a 4
39.f even 4 1 169.3.d.d 4
39.h odd 6 2 169.3.f.d 8
39.i odd 6 2 169.3.f.f 8
39.k even 12 2 169.3.f.d 8
39.k even 12 2 169.3.f.f 8
156.l odd 4 1 208.3.t.c 4
195.j odd 4 1 325.3.g.a 4
195.n even 4 1 325.3.j.a 4
195.u odd 4 1 325.3.g.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.3.d.a 4 3.b odd 2 1
13.3.d.a 4 39.f even 4 1
117.3.j.a 4 1.a even 1 1 trivial
117.3.j.a 4 13.d odd 4 1 inner
169.3.d.d 4 39.d odd 2 1
169.3.d.d 4 39.f even 4 1
169.3.f.d 8 39.h odd 6 2
169.3.f.d 8 39.k even 12 2
169.3.f.f 8 39.i odd 6 2
169.3.f.f 8 39.k even 12 2
208.3.t.c 4 12.b even 2 1
208.3.t.c 4 156.l odd 4 1
325.3.g.a 4 15.e even 4 1
325.3.g.a 4 195.j odd 4 1
325.3.g.b 4 15.e even 4 1
325.3.g.b 4 195.u odd 4 1
325.3.j.a 4 15.d odd 2 1
325.3.j.a 4 195.n even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 4T_{2}^{3} + 8T_{2}^{2} + 12T_{2} + 9 \) acting on \(S_{3}^{\mathrm{new}}(117, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 4 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 8 T^{3} + \cdots + 9 \) Copy content Toggle raw display
$7$ \( T^{4} + 12 T^{3} + \cdots + 169 \) Copy content Toggle raw display
$11$ \( T^{4} - 4 T^{3} + \cdots + 6084 \) Copy content Toggle raw display
$13$ \( T^{4} - 8 T^{3} + \cdots + 28561 \) Copy content Toggle raw display
$17$ \( T^{4} + 738 T^{2} + 123201 \) Copy content Toggle raw display
$19$ \( T^{4} + 400 \) Copy content Toggle raw display
$23$ \( T^{4} + 828 T^{2} + 54756 \) Copy content Toggle raw display
$29$ \( (T^{2} + 20 T - 150)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} - 40 T^{3} + \cdots + 400 \) Copy content Toggle raw display
$37$ \( T^{4} - 40 T^{3} + \cdots + 42025 \) Copy content Toggle raw display
$41$ \( T^{4} + 32 T^{3} + \cdots + 11664 \) Copy content Toggle raw display
$43$ \( T^{4} + 1062 T^{2} + 123201 \) Copy content Toggle raw display
$47$ \( T^{4} - 4 T^{3} + \cdots + 6985449 \) Copy content Toggle raw display
$53$ \( (T^{2} - 40 T + 150)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 56 T^{3} + \cdots + 12446784 \) Copy content Toggle raw display
$61$ \( (T^{2} + 148 T + 5436)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 84 T^{3} + \cdots + 40170244 \) Copy content Toggle raw display
$71$ \( T^{4} + 284 T^{3} + \cdots + 85322169 \) Copy content Toggle raw display
$73$ \( T^{4} + 4000000 \) Copy content Toggle raw display
$79$ \( (T^{2} - 32 T - 954)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} - 52 T^{3} + \cdots + 2762244 \) Copy content Toggle raw display
$89$ \( T^{4} + 200 T^{3} + \cdots + 2624400 \) Copy content Toggle raw display
$97$ \( T^{4} + 68 T^{3} + \cdots + 449524804 \) Copy content Toggle raw display
show more
show less