Properties

Label 117.3.j
Level $117$
Weight $3$
Character orbit 117.j
Rep. character $\chi_{117}(73,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $20$
Newform subspaces $3$
Sturm bound $42$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.j (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 3 \)
Sturm bound: \(42\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(117, [\chi])\).

Total New Old
Modular forms 64 24 40
Cusp forms 48 20 28
Eisenstein series 16 4 12

Trace form

\( 20 q + 12 q^{5} + 4 q^{7} - 12 q^{8} + 24 q^{11} + 12 q^{14} + 28 q^{16} + 16 q^{19} - 60 q^{20} - 24 q^{22} + 120 q^{26} - 52 q^{28} - 96 q^{29} - 64 q^{31} - 168 q^{32} + 36 q^{34} - 36 q^{35} - 112 q^{37}+ \cdots - 948 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(117, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
117.3.j.a 117.j 13.d $4$ $3.188$ \(\Q(i, \sqrt{10})\) None 13.3.d.a \(4\) \(0\) \(-8\) \(-12\) $\mathrm{SU}(2)[C_{4}]$ \(q+(1+\beta _{1}+\beta _{2})q^{2}+(2\beta _{1}+3\beta _{2}+2\beta _{3})q^{4}+\cdots\)
117.3.j.b 117.j 13.d $8$ $3.188$ 8.0.\(\cdots\).10 None 39.3.g.a \(-4\) \(0\) \(20\) \(8\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{4}q^{2}+(-1-\beta _{1}-\beta _{4}-\beta _{7})q^{4}+\cdots\)
117.3.j.c 117.j 13.d $8$ $3.188$ 8.0.897122304.10 None 117.3.j.c \(0\) \(0\) \(0\) \(8\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{2}q^{2}+(\beta _{3}+\beta _{7})q^{4}-\beta _{1}q^{5}+(1+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(117, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(117, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 2}\)