Defining parameters
Level: | \( N \) | \(=\) | \( 117 = 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 117.j (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(42\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(117, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 64 | 24 | 40 |
Cusp forms | 48 | 20 | 28 |
Eisenstein series | 16 | 4 | 12 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(117, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
117.3.j.a | $4$ | $3.188$ | \(\Q(i, \sqrt{10})\) | None | \(4\) | \(0\) | \(-8\) | \(-12\) | \(q+(1+\beta _{1}+\beta _{2})q^{2}+(2\beta _{1}+3\beta _{2}+2\beta _{3})q^{4}+\cdots\) |
117.3.j.b | $8$ | $3.188$ | 8.0.\(\cdots\).10 | None | \(-4\) | \(0\) | \(20\) | \(8\) | \(q+\beta _{4}q^{2}+(-1-\beta _{1}-\beta _{4}-\beta _{7})q^{4}+\cdots\) |
117.3.j.c | $8$ | $3.188$ | 8.0.897122304.10 | None | \(0\) | \(0\) | \(0\) | \(8\) | \(q+\beta _{2}q^{2}+(\beta _{3}+\beta _{7})q^{4}-\beta _{1}q^{5}+(1+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(117, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(117, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 2}\)