Properties

Label 117.3.c.a.53.8
Level $117$
Weight $3$
Character 117.53
Analytic conductor $3.188$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(53,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.53");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.1574161678336.15
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 20x^{6} + 106x^{4} + 164x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 53.8
Root \(3.55413i\) of defining polynomial
Character \(\chi\) \(=\) 117.53
Dual form 117.3.c.a.53.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.55413i q^{2} -8.63185 q^{4} -0.118383i q^{5} -12.0700 q^{7} -16.4622i q^{8} +0.420750 q^{10} +6.98988i q^{11} -3.60555 q^{13} -42.8983i q^{14} +23.9815 q^{16} +32.3174i q^{17} +14.8936 q^{19} +1.02187i q^{20} -24.8430 q^{22} -14.8116i q^{23} +24.9860 q^{25} -12.8146i q^{26} +104.186 q^{28} +31.8460i q^{29} -32.3426 q^{31} +19.3844i q^{32} -114.860 q^{34} +1.42889i q^{35} -58.6549 q^{37} +52.9340i q^{38} -1.94885 q^{40} +46.4930i q^{41} -0.929781 q^{43} -60.3356i q^{44} +52.6422 q^{46} -2.46229i q^{47} +96.6845 q^{49} +88.8035i q^{50} +31.1226 q^{52} -27.8759i q^{53} +0.827486 q^{55} +198.699i q^{56} -113.185 q^{58} -61.7728i q^{59} +76.9473 q^{61} -114.950i q^{62} +27.0310 q^{64} +0.426837i q^{65} +17.6531 q^{67} -278.959i q^{68} -5.07845 q^{70} +88.6649i q^{71} +0.904326 q^{73} -208.467i q^{74} -128.560 q^{76} -84.3677i q^{77} +79.2802 q^{79} -2.83901i q^{80} -165.242 q^{82} +15.0213i q^{83} +3.82585 q^{85} -3.30456i q^{86} +115.069 q^{88} -16.9997i q^{89} +43.5189 q^{91} +127.851i q^{92} +8.75130 q^{94} -1.76316i q^{95} -8.87928 q^{97} +343.630i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} - 16 q^{7} + 24 q^{16} + 64 q^{19} - 80 q^{22} - 24 q^{25} + 184 q^{28} - 40 q^{31} - 272 q^{34} - 104 q^{37} + 32 q^{40} + 128 q^{43} + 232 q^{46} + 136 q^{49} + 104 q^{52} - 224 q^{55} - 88 q^{58}+ \cdots + 328 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.55413i 1.77707i 0.458813 + 0.888533i \(0.348275\pi\)
−0.458813 + 0.888533i \(0.651725\pi\)
\(3\) 0 0
\(4\) −8.63185 −2.15796
\(5\) − 0.118383i − 0.0236767i −0.999930 0.0118383i \(-0.996232\pi\)
0.999930 0.0118383i \(-0.00376835\pi\)
\(6\) 0 0
\(7\) −12.0700 −1.72428 −0.862142 0.506667i \(-0.830877\pi\)
−0.862142 + 0.506667i \(0.830877\pi\)
\(8\) − 16.4622i − 2.05778i
\(9\) 0 0
\(10\) 0.420750 0.0420750
\(11\) 6.98988i 0.635444i 0.948184 + 0.317722i \(0.102918\pi\)
−0.948184 + 0.317722i \(0.897082\pi\)
\(12\) 0 0
\(13\) −3.60555 −0.277350
\(14\) − 42.8983i − 3.06417i
\(15\) 0 0
\(16\) 23.9815 1.49884
\(17\) 32.3174i 1.90103i 0.310686 + 0.950513i \(0.399441\pi\)
−0.310686 + 0.950513i \(0.600559\pi\)
\(18\) 0 0
\(19\) 14.8936 0.783876 0.391938 0.919992i \(-0.371805\pi\)
0.391938 + 0.919992i \(0.371805\pi\)
\(20\) 1.02187i 0.0510934i
\(21\) 0 0
\(22\) −24.8430 −1.12923
\(23\) − 14.8116i − 0.643981i −0.946743 0.321990i \(-0.895648\pi\)
0.946743 0.321990i \(-0.104352\pi\)
\(24\) 0 0
\(25\) 24.9860 0.999439
\(26\) − 12.8146i − 0.492869i
\(27\) 0 0
\(28\) 104.186 3.72094
\(29\) 31.8460i 1.09814i 0.835778 + 0.549068i \(0.185017\pi\)
−0.835778 + 0.549068i \(0.814983\pi\)
\(30\) 0 0
\(31\) −32.3426 −1.04331 −0.521655 0.853157i \(-0.674685\pi\)
−0.521655 + 0.853157i \(0.674685\pi\)
\(32\) 19.3844i 0.605764i
\(33\) 0 0
\(34\) −114.860 −3.37825
\(35\) 1.42889i 0.0408253i
\(36\) 0 0
\(37\) −58.6549 −1.58527 −0.792633 0.609699i \(-0.791290\pi\)
−0.792633 + 0.609699i \(0.791290\pi\)
\(38\) 52.9340i 1.39300i
\(39\) 0 0
\(40\) −1.94885 −0.0487213
\(41\) 46.4930i 1.13398i 0.823726 + 0.566988i \(0.191891\pi\)
−0.823726 + 0.566988i \(0.808109\pi\)
\(42\) 0 0
\(43\) −0.929781 −0.0216228 −0.0108114 0.999942i \(-0.503441\pi\)
−0.0108114 + 0.999942i \(0.503441\pi\)
\(44\) − 60.3356i − 1.37126i
\(45\) 0 0
\(46\) 52.6422 1.14440
\(47\) − 2.46229i − 0.0523891i −0.999657 0.0261946i \(-0.991661\pi\)
0.999657 0.0261946i \(-0.00833894\pi\)
\(48\) 0 0
\(49\) 96.6845 1.97315
\(50\) 88.8035i 1.77607i
\(51\) 0 0
\(52\) 31.1226 0.598511
\(53\) − 27.8759i − 0.525960i −0.964801 0.262980i \(-0.915295\pi\)
0.964801 0.262980i \(-0.0847053\pi\)
\(54\) 0 0
\(55\) 0.827486 0.0150452
\(56\) 198.699i 3.54819i
\(57\) 0 0
\(58\) −113.185 −1.95146
\(59\) − 61.7728i − 1.04700i −0.852027 0.523498i \(-0.824627\pi\)
0.852027 0.523498i \(-0.175373\pi\)
\(60\) 0 0
\(61\) 76.9473 1.26143 0.630716 0.776014i \(-0.282761\pi\)
0.630716 + 0.776014i \(0.282761\pi\)
\(62\) − 114.950i − 1.85403i
\(63\) 0 0
\(64\) 27.0310 0.422360
\(65\) 0.426837i 0.00656673i
\(66\) 0 0
\(67\) 17.6531 0.263479 0.131740 0.991284i \(-0.457944\pi\)
0.131740 + 0.991284i \(0.457944\pi\)
\(68\) − 278.959i − 4.10234i
\(69\) 0 0
\(70\) −5.07845 −0.0725492
\(71\) 88.6649i 1.24880i 0.781104 + 0.624401i \(0.214657\pi\)
−0.781104 + 0.624401i \(0.785343\pi\)
\(72\) 0 0
\(73\) 0.904326 0.0123880 0.00619402 0.999981i \(-0.498028\pi\)
0.00619402 + 0.999981i \(0.498028\pi\)
\(74\) − 208.467i − 2.81712i
\(75\) 0 0
\(76\) −128.560 −1.69158
\(77\) − 84.3677i − 1.09569i
\(78\) 0 0
\(79\) 79.2802 1.00355 0.501773 0.864999i \(-0.332681\pi\)
0.501773 + 0.864999i \(0.332681\pi\)
\(80\) − 2.83901i − 0.0354876i
\(81\) 0 0
\(82\) −165.242 −2.01515
\(83\) 15.0213i 0.180979i 0.995897 + 0.0904896i \(0.0288432\pi\)
−0.995897 + 0.0904896i \(0.971157\pi\)
\(84\) 0 0
\(85\) 3.82585 0.0450100
\(86\) − 3.30456i − 0.0384252i
\(87\) 0 0
\(88\) 115.069 1.30760
\(89\) − 16.9997i − 0.191008i −0.995429 0.0955038i \(-0.969554\pi\)
0.995429 0.0955038i \(-0.0304462\pi\)
\(90\) 0 0
\(91\) 43.5189 0.478230
\(92\) 127.851i 1.38969i
\(93\) 0 0
\(94\) 8.75130 0.0930989
\(95\) − 1.76316i − 0.0185596i
\(96\) 0 0
\(97\) −8.87928 −0.0915390 −0.0457695 0.998952i \(-0.514574\pi\)
−0.0457695 + 0.998952i \(0.514574\pi\)
\(98\) 343.630i 3.50642i
\(99\) 0 0
\(100\) −215.675 −2.15675
\(101\) 5.23552i 0.0518368i 0.999664 + 0.0259184i \(0.00825101\pi\)
−0.999664 + 0.0259184i \(0.991749\pi\)
\(102\) 0 0
\(103\) −81.5696 −0.791938 −0.395969 0.918264i \(-0.629591\pi\)
−0.395969 + 0.918264i \(0.629591\pi\)
\(104\) 59.3554i 0.570725i
\(105\) 0 0
\(106\) 99.0745 0.934665
\(107\) 16.8385i 0.157369i 0.996900 + 0.0786844i \(0.0250719\pi\)
−0.996900 + 0.0786844i \(0.974928\pi\)
\(108\) 0 0
\(109\) −53.7394 −0.493022 −0.246511 0.969140i \(-0.579284\pi\)
−0.246511 + 0.969140i \(0.579284\pi\)
\(110\) 2.94099i 0.0267363i
\(111\) 0 0
\(112\) −289.456 −2.58443
\(113\) 139.740i 1.23664i 0.785928 + 0.618318i \(0.212186\pi\)
−0.785928 + 0.618318i \(0.787814\pi\)
\(114\) 0 0
\(115\) −1.75344 −0.0152473
\(116\) − 274.890i − 2.36974i
\(117\) 0 0
\(118\) 219.549 1.86058
\(119\) − 390.071i − 3.27791i
\(120\) 0 0
\(121\) 72.1416 0.596211
\(122\) 273.481i 2.24165i
\(123\) 0 0
\(124\) 279.177 2.25142
\(125\) − 5.91751i − 0.0473401i
\(126\) 0 0
\(127\) −158.558 −1.24848 −0.624242 0.781231i \(-0.714592\pi\)
−0.624242 + 0.781231i \(0.714592\pi\)
\(128\) 173.610i 1.35632i
\(129\) 0 0
\(130\) −1.51704 −0.0116695
\(131\) − 83.3075i − 0.635935i −0.948102 0.317967i \(-0.897000\pi\)
0.948102 0.317967i \(-0.103000\pi\)
\(132\) 0 0
\(133\) −179.766 −1.35162
\(134\) 62.7414i 0.468220i
\(135\) 0 0
\(136\) 532.016 3.91189
\(137\) 54.2712i 0.396140i 0.980188 + 0.198070i \(0.0634674\pi\)
−0.980188 + 0.198070i \(0.936533\pi\)
\(138\) 0 0
\(139\) −201.643 −1.45067 −0.725334 0.688397i \(-0.758315\pi\)
−0.725334 + 0.688397i \(0.758315\pi\)
\(140\) − 12.3339i − 0.0880995i
\(141\) 0 0
\(142\) −315.127 −2.21920
\(143\) − 25.2024i − 0.176240i
\(144\) 0 0
\(145\) 3.77003 0.0260002
\(146\) 3.21409i 0.0220143i
\(147\) 0 0
\(148\) 506.300 3.42095
\(149\) 178.662i 1.19908i 0.800346 + 0.599538i \(0.204649\pi\)
−0.800346 + 0.599538i \(0.795351\pi\)
\(150\) 0 0
\(151\) 165.631 1.09689 0.548447 0.836185i \(-0.315219\pi\)
0.548447 + 0.836185i \(0.315219\pi\)
\(152\) − 245.182i − 1.61304i
\(153\) 0 0
\(154\) 299.854 1.94710
\(155\) 3.82883i 0.0247021i
\(156\) 0 0
\(157\) 144.517 0.920492 0.460246 0.887791i \(-0.347761\pi\)
0.460246 + 0.887791i \(0.347761\pi\)
\(158\) 281.772i 1.78337i
\(159\) 0 0
\(160\) 2.29480 0.0143425
\(161\) 178.775i 1.11041i
\(162\) 0 0
\(163\) −92.8520 −0.569644 −0.284822 0.958580i \(-0.591935\pi\)
−0.284822 + 0.958580i \(0.591935\pi\)
\(164\) − 401.321i − 2.44708i
\(165\) 0 0
\(166\) −53.3876 −0.321612
\(167\) − 72.4358i − 0.433747i −0.976200 0.216874i \(-0.930414\pi\)
0.976200 0.216874i \(-0.0695860\pi\)
\(168\) 0 0
\(169\) 13.0000 0.0769231
\(170\) 13.5976i 0.0799857i
\(171\) 0 0
\(172\) 8.02573 0.0466612
\(173\) − 230.759i − 1.33387i −0.745118 0.666933i \(-0.767607\pi\)
0.745118 0.666933i \(-0.232393\pi\)
\(174\) 0 0
\(175\) −301.580 −1.72332
\(176\) 167.628i 0.952430i
\(177\) 0 0
\(178\) 60.4191 0.339433
\(179\) 306.682i 1.71331i 0.515890 + 0.856655i \(0.327461\pi\)
−0.515890 + 0.856655i \(0.672539\pi\)
\(180\) 0 0
\(181\) 126.649 0.699720 0.349860 0.936802i \(-0.386229\pi\)
0.349860 + 0.936802i \(0.386229\pi\)
\(182\) 154.672i 0.849847i
\(183\) 0 0
\(184\) −243.831 −1.32517
\(185\) 6.94376i 0.0375338i
\(186\) 0 0
\(187\) −225.895 −1.20799
\(188\) 21.2541i 0.113054i
\(189\) 0 0
\(190\) 6.26650 0.0329816
\(191\) − 258.683i − 1.35436i −0.735817 0.677181i \(-0.763201\pi\)
0.735817 0.677181i \(-0.236799\pi\)
\(192\) 0 0
\(193\) −172.716 −0.894901 −0.447450 0.894309i \(-0.647668\pi\)
−0.447450 + 0.894309i \(0.647668\pi\)
\(194\) − 31.5581i − 0.162671i
\(195\) 0 0
\(196\) −834.567 −4.25799
\(197\) 349.735i 1.77530i 0.460514 + 0.887652i \(0.347665\pi\)
−0.460514 + 0.887652i \(0.652335\pi\)
\(198\) 0 0
\(199\) 95.0515 0.477646 0.238823 0.971063i \(-0.423238\pi\)
0.238823 + 0.971063i \(0.423238\pi\)
\(200\) − 411.325i − 2.05662i
\(201\) 0 0
\(202\) −18.6077 −0.0921175
\(203\) − 384.380i − 1.89350i
\(204\) 0 0
\(205\) 5.50400 0.0268488
\(206\) − 289.909i − 1.40733i
\(207\) 0 0
\(208\) −86.4664 −0.415704
\(209\) 104.105i 0.498109i
\(210\) 0 0
\(211\) −183.562 −0.869962 −0.434981 0.900440i \(-0.643245\pi\)
−0.434981 + 0.900440i \(0.643245\pi\)
\(212\) 240.620i 1.13500i
\(213\) 0 0
\(214\) −59.8461 −0.279655
\(215\) 0.110071i 0 0.000511956i
\(216\) 0 0
\(217\) 390.375 1.79896
\(218\) − 190.997i − 0.876133i
\(219\) 0 0
\(220\) −7.14273 −0.0324670
\(221\) − 116.522i − 0.527250i
\(222\) 0 0
\(223\) −244.838 −1.09793 −0.548964 0.835846i \(-0.684978\pi\)
−0.548964 + 0.835846i \(0.684978\pi\)
\(224\) − 233.970i − 1.04451i
\(225\) 0 0
\(226\) −496.654 −2.19758
\(227\) 66.2739i 0.291956i 0.989288 + 0.145978i \(0.0466328\pi\)
−0.989288 + 0.145978i \(0.953367\pi\)
\(228\) 0 0
\(229\) 113.691 0.496469 0.248235 0.968700i \(-0.420150\pi\)
0.248235 + 0.968700i \(0.420150\pi\)
\(230\) − 6.23196i − 0.0270955i
\(231\) 0 0
\(232\) 524.255 2.25972
\(233\) 97.0699i 0.416609i 0.978064 + 0.208305i \(0.0667945\pi\)
−0.978064 + 0.208305i \(0.933205\pi\)
\(234\) 0 0
\(235\) −0.291494 −0.00124040
\(236\) 533.214i 2.25938i
\(237\) 0 0
\(238\) 1386.36 5.82506
\(239\) − 169.360i − 0.708617i −0.935129 0.354309i \(-0.884716\pi\)
0.935129 0.354309i \(-0.115284\pi\)
\(240\) 0 0
\(241\) 95.6559 0.396912 0.198456 0.980110i \(-0.436407\pi\)
0.198456 + 0.980110i \(0.436407\pi\)
\(242\) 256.401i 1.05951i
\(243\) 0 0
\(244\) −664.198 −2.72212
\(245\) − 11.4458i − 0.0467177i
\(246\) 0 0
\(247\) −53.6998 −0.217408
\(248\) 532.431i 2.14690i
\(249\) 0 0
\(250\) 21.0316 0.0841264
\(251\) − 160.564i − 0.639696i −0.947469 0.319848i \(-0.896368\pi\)
0.947469 0.319848i \(-0.103632\pi\)
\(252\) 0 0
\(253\) 103.531 0.409213
\(254\) − 563.535i − 2.21864i
\(255\) 0 0
\(256\) −508.907 −1.98792
\(257\) − 179.119i − 0.696963i −0.937316 0.348481i \(-0.886697\pi\)
0.937316 0.348481i \(-0.113303\pi\)
\(258\) 0 0
\(259\) 707.963 2.73345
\(260\) − 3.68440i − 0.0141708i
\(261\) 0 0
\(262\) 296.086 1.13010
\(263\) 249.989i 0.950530i 0.879843 + 0.475265i \(0.157648\pi\)
−0.879843 + 0.475265i \(0.842352\pi\)
\(264\) 0 0
\(265\) −3.30004 −0.0124530
\(266\) − 638.912i − 2.40193i
\(267\) 0 0
\(268\) −152.379 −0.568578
\(269\) 138.899i 0.516354i 0.966098 + 0.258177i \(0.0831218\pi\)
−0.966098 + 0.258177i \(0.916878\pi\)
\(270\) 0 0
\(271\) 185.832 0.685725 0.342863 0.939386i \(-0.388603\pi\)
0.342863 + 0.939386i \(0.388603\pi\)
\(272\) 775.019i 2.84934i
\(273\) 0 0
\(274\) −192.887 −0.703968
\(275\) 174.649i 0.635087i
\(276\) 0 0
\(277\) 259.845 0.938068 0.469034 0.883180i \(-0.344602\pi\)
0.469034 + 0.883180i \(0.344602\pi\)
\(278\) − 716.666i − 2.57793i
\(279\) 0 0
\(280\) 23.5226 0.0840093
\(281\) − 261.217i − 0.929600i −0.885416 0.464800i \(-0.846126\pi\)
0.885416 0.464800i \(-0.153874\pi\)
\(282\) 0 0
\(283\) 442.586 1.56391 0.781953 0.623337i \(-0.214223\pi\)
0.781953 + 0.623337i \(0.214223\pi\)
\(284\) − 765.343i − 2.69487i
\(285\) 0 0
\(286\) 89.5725 0.313191
\(287\) − 561.170i − 1.95530i
\(288\) 0 0
\(289\) −755.416 −2.61390
\(290\) 13.3992i 0.0462041i
\(291\) 0 0
\(292\) −7.80601 −0.0267329
\(293\) 114.871i 0.392053i 0.980599 + 0.196026i \(0.0628038\pi\)
−0.980599 + 0.196026i \(0.937196\pi\)
\(294\) 0 0
\(295\) −7.31287 −0.0247894
\(296\) 965.589i 3.26212i
\(297\) 0 0
\(298\) −634.989 −2.13084
\(299\) 53.4038i 0.178608i
\(300\) 0 0
\(301\) 11.2224 0.0372839
\(302\) 588.675i 1.94925i
\(303\) 0 0
\(304\) 357.172 1.17491
\(305\) − 9.10928i − 0.0298665i
\(306\) 0 0
\(307\) 225.948 0.735988 0.367994 0.929828i \(-0.380045\pi\)
0.367994 + 0.929828i \(0.380045\pi\)
\(308\) 728.250i 2.36445i
\(309\) 0 0
\(310\) −13.6082 −0.0438973
\(311\) 556.462i 1.78927i 0.446801 + 0.894633i \(0.352563\pi\)
−0.446801 + 0.894633i \(0.647437\pi\)
\(312\) 0 0
\(313\) 212.533 0.679018 0.339509 0.940603i \(-0.389739\pi\)
0.339509 + 0.940603i \(0.389739\pi\)
\(314\) 513.633i 1.63577i
\(315\) 0 0
\(316\) −684.335 −2.16562
\(317\) 555.595i 1.75267i 0.481706 + 0.876333i \(0.340017\pi\)
−0.481706 + 0.876333i \(0.659983\pi\)
\(318\) 0 0
\(319\) −222.599 −0.697804
\(320\) − 3.20002i − 0.0100001i
\(321\) 0 0
\(322\) −635.391 −1.97326
\(323\) 481.324i 1.49017i
\(324\) 0 0
\(325\) −90.0883 −0.277195
\(326\) − 330.008i − 1.01230i
\(327\) 0 0
\(328\) 765.378 2.33347
\(329\) 29.7198i 0.0903337i
\(330\) 0 0
\(331\) 545.601 1.64834 0.824171 0.566341i \(-0.191642\pi\)
0.824171 + 0.566341i \(0.191642\pi\)
\(332\) − 129.661i − 0.390546i
\(333\) 0 0
\(334\) 257.446 0.770798
\(335\) − 2.08983i − 0.00623831i
\(336\) 0 0
\(337\) 198.163 0.588022 0.294011 0.955802i \(-0.405010\pi\)
0.294011 + 0.955802i \(0.405010\pi\)
\(338\) 46.2037i 0.136697i
\(339\) 0 0
\(340\) −33.0241 −0.0971298
\(341\) − 226.071i − 0.662965i
\(342\) 0 0
\(343\) −575.552 −1.67799
\(344\) 15.3063i 0.0444949i
\(345\) 0 0
\(346\) 820.147 2.37037
\(347\) − 225.416i − 0.649614i −0.945780 0.324807i \(-0.894701\pi\)
0.945780 0.324807i \(-0.105299\pi\)
\(348\) 0 0
\(349\) 49.5201 0.141891 0.0709457 0.997480i \(-0.477398\pi\)
0.0709457 + 0.997480i \(0.477398\pi\)
\(350\) − 1071.86i − 3.06245i
\(351\) 0 0
\(352\) −135.495 −0.384929
\(353\) − 483.901i − 1.37083i −0.728155 0.685413i \(-0.759622\pi\)
0.728155 0.685413i \(-0.240378\pi\)
\(354\) 0 0
\(355\) 10.4965 0.0295675
\(356\) 146.739i 0.412187i
\(357\) 0 0
\(358\) −1089.99 −3.04466
\(359\) 60.3045i 0.167979i 0.996467 + 0.0839896i \(0.0267662\pi\)
−0.996467 + 0.0839896i \(0.973234\pi\)
\(360\) 0 0
\(361\) −139.179 −0.385538
\(362\) 450.128i 1.24345i
\(363\) 0 0
\(364\) −375.649 −1.03200
\(365\) − 0.107057i 0 0.000293307i
\(366\) 0 0
\(367\) −341.309 −0.929997 −0.464998 0.885311i \(-0.653945\pi\)
−0.464998 + 0.885311i \(0.653945\pi\)
\(368\) − 355.203i − 0.965225i
\(369\) 0 0
\(370\) −24.6790 −0.0667001
\(371\) 336.461i 0.906904i
\(372\) 0 0
\(373\) −26.5501 −0.0711798 −0.0355899 0.999366i \(-0.511331\pi\)
−0.0355899 + 0.999366i \(0.511331\pi\)
\(374\) − 802.860i − 2.14669i
\(375\) 0 0
\(376\) −40.5347 −0.107805
\(377\) − 114.822i − 0.304568i
\(378\) 0 0
\(379\) −272.528 −0.719071 −0.359535 0.933131i \(-0.617065\pi\)
−0.359535 + 0.933131i \(0.617065\pi\)
\(380\) 15.2193i 0.0400509i
\(381\) 0 0
\(382\) 919.394 2.40679
\(383\) 391.268i 1.02159i 0.859703 + 0.510794i \(0.170649\pi\)
−0.859703 + 0.510794i \(0.829351\pi\)
\(384\) 0 0
\(385\) −9.98774 −0.0259422
\(386\) − 613.855i − 1.59030i
\(387\) 0 0
\(388\) 76.6447 0.197538
\(389\) − 402.950i − 1.03586i −0.855422 0.517931i \(-0.826702\pi\)
0.855422 0.517931i \(-0.173298\pi\)
\(390\) 0 0
\(391\) 478.671 1.22422
\(392\) − 1591.64i − 4.06031i
\(393\) 0 0
\(394\) −1243.00 −3.15483
\(395\) − 9.38545i − 0.0237606i
\(396\) 0 0
\(397\) 504.118 1.26982 0.634909 0.772587i \(-0.281038\pi\)
0.634909 + 0.772587i \(0.281038\pi\)
\(398\) 337.826i 0.848808i
\(399\) 0 0
\(400\) 599.201 1.49800
\(401\) − 256.668i − 0.640070i −0.947406 0.320035i \(-0.896305\pi\)
0.947406 0.320035i \(-0.103695\pi\)
\(402\) 0 0
\(403\) 116.613 0.289362
\(404\) − 45.1922i − 0.111862i
\(405\) 0 0
\(406\) 1366.14 3.36487
\(407\) − 409.990i − 1.00735i
\(408\) 0 0
\(409\) −661.177 −1.61657 −0.808285 0.588792i \(-0.799604\pi\)
−0.808285 + 0.588792i \(0.799604\pi\)
\(410\) 19.5619i 0.0477120i
\(411\) 0 0
\(412\) 704.097 1.70897
\(413\) 745.597i 1.80532i
\(414\) 0 0
\(415\) 1.77827 0.00428499
\(416\) − 69.8916i − 0.168009i
\(417\) 0 0
\(418\) −370.002 −0.885173
\(419\) 451.277i 1.07703i 0.842615 + 0.538517i \(0.181015\pi\)
−0.842615 + 0.538517i \(0.818985\pi\)
\(420\) 0 0
\(421\) −98.2467 −0.233365 −0.116683 0.993169i \(-0.537226\pi\)
−0.116683 + 0.993169i \(0.537226\pi\)
\(422\) − 652.403i − 1.54598i
\(423\) 0 0
\(424\) −458.898 −1.08231
\(425\) 807.483i 1.89996i
\(426\) 0 0
\(427\) −928.753 −2.17507
\(428\) − 145.347i − 0.339596i
\(429\) 0 0
\(430\) −0.391205 −0.000909780 0
\(431\) − 555.715i − 1.28936i −0.764451 0.644681i \(-0.776990\pi\)
0.764451 0.644681i \(-0.223010\pi\)
\(432\) 0 0
\(433\) −85.9736 −0.198553 −0.0992767 0.995060i \(-0.531653\pi\)
−0.0992767 + 0.995060i \(0.531653\pi\)
\(434\) 1387.44i 3.19687i
\(435\) 0 0
\(436\) 463.871 1.06392
\(437\) − 220.598i − 0.504801i
\(438\) 0 0
\(439\) 466.105 1.06174 0.530871 0.847452i \(-0.321865\pi\)
0.530871 + 0.847452i \(0.321865\pi\)
\(440\) − 13.6222i − 0.0309596i
\(441\) 0 0
\(442\) 414.135 0.936957
\(443\) 752.196i 1.69796i 0.528426 + 0.848979i \(0.322782\pi\)
−0.528426 + 0.848979i \(0.677218\pi\)
\(444\) 0 0
\(445\) −2.01248 −0.00452242
\(446\) − 870.187i − 1.95109i
\(447\) 0 0
\(448\) −326.264 −0.728268
\(449\) 21.8356i 0.0486316i 0.999704 + 0.0243158i \(0.00774073\pi\)
−0.999704 + 0.0243158i \(0.992259\pi\)
\(450\) 0 0
\(451\) −324.981 −0.720578
\(452\) − 1206.21i − 2.66862i
\(453\) 0 0
\(454\) −235.546 −0.518824
\(455\) − 5.15192i − 0.0113229i
\(456\) 0 0
\(457\) 209.052 0.457445 0.228722 0.973492i \(-0.426545\pi\)
0.228722 + 0.973492i \(0.426545\pi\)
\(458\) 404.075i 0.882259i
\(459\) 0 0
\(460\) 15.1355 0.0329032
\(461\) 657.282i 1.42577i 0.701279 + 0.712887i \(0.252613\pi\)
−0.701279 + 0.712887i \(0.747387\pi\)
\(462\) 0 0
\(463\) −592.238 −1.27913 −0.639566 0.768736i \(-0.720886\pi\)
−0.639566 + 0.768736i \(0.720886\pi\)
\(464\) 763.713i 1.64593i
\(465\) 0 0
\(466\) −344.999 −0.740342
\(467\) 44.2448i 0.0947427i 0.998877 + 0.0473714i \(0.0150844\pi\)
−0.998877 + 0.0473714i \(0.984916\pi\)
\(468\) 0 0
\(469\) −213.073 −0.454313
\(470\) − 1.03601i − 0.00220427i
\(471\) 0 0
\(472\) −1016.92 −2.15448
\(473\) − 6.49906i − 0.0137401i
\(474\) 0 0
\(475\) 372.132 0.783437
\(476\) 3367.03i 7.07360i
\(477\) 0 0
\(478\) 601.926 1.25926
\(479\) − 553.714i − 1.15598i −0.816044 0.577989i \(-0.803837\pi\)
0.816044 0.577989i \(-0.196163\pi\)
\(480\) 0 0
\(481\) 211.483 0.439674
\(482\) 339.974i 0.705339i
\(483\) 0 0
\(484\) −622.715 −1.28660
\(485\) 1.05116i 0.00216734i
\(486\) 0 0
\(487\) 55.1939 0.113335 0.0566673 0.998393i \(-0.481953\pi\)
0.0566673 + 0.998393i \(0.481953\pi\)
\(488\) − 1266.72i − 2.59574i
\(489\) 0 0
\(490\) 40.6800 0.0830205
\(491\) 84.4643i 0.172025i 0.996294 + 0.0860125i \(0.0274125\pi\)
−0.996294 + 0.0860125i \(0.972587\pi\)
\(492\) 0 0
\(493\) −1029.18 −2.08759
\(494\) − 190.856i − 0.386349i
\(495\) 0 0
\(496\) −775.623 −1.56376
\(497\) − 1070.18i − 2.15329i
\(498\) 0 0
\(499\) 548.532 1.09926 0.549631 0.835407i \(-0.314768\pi\)
0.549631 + 0.835407i \(0.314768\pi\)
\(500\) 51.0791i 0.102158i
\(501\) 0 0
\(502\) 570.664 1.13678
\(503\) − 417.804i − 0.830624i −0.909679 0.415312i \(-0.863672\pi\)
0.909679 0.415312i \(-0.136328\pi\)
\(504\) 0 0
\(505\) 0.619798 0.00122732
\(506\) 367.963i 0.727199i
\(507\) 0 0
\(508\) 1368.65 2.69418
\(509\) − 499.112i − 0.980574i −0.871561 0.490287i \(-0.836892\pi\)
0.871561 0.490287i \(-0.163108\pi\)
\(510\) 0 0
\(511\) −10.9152 −0.0213605
\(512\) − 1114.28i − 2.17634i
\(513\) 0 0
\(514\) 636.614 1.23855
\(515\) 9.65648i 0.0187505i
\(516\) 0 0
\(517\) 17.2111 0.0332903
\(518\) 2516.19i 4.85752i
\(519\) 0 0
\(520\) 7.02669 0.0135129
\(521\) − 397.286i − 0.762544i −0.924463 0.381272i \(-0.875486\pi\)
0.924463 0.381272i \(-0.124514\pi\)
\(522\) 0 0
\(523\) 130.826 0.250146 0.125073 0.992148i \(-0.460083\pi\)
0.125073 + 0.992148i \(0.460083\pi\)
\(524\) 719.098i 1.37232i
\(525\) 0 0
\(526\) −888.495 −1.68915
\(527\) − 1045.23i − 1.98336i
\(528\) 0 0
\(529\) 309.618 0.585289
\(530\) − 11.7288i − 0.0221298i
\(531\) 0 0
\(532\) 1551.71 2.91676
\(533\) − 167.633i − 0.314508i
\(534\) 0 0
\(535\) 1.99339 0.00372597
\(536\) − 290.609i − 0.542181i
\(537\) 0 0
\(538\) −493.666 −0.917595
\(539\) 675.813i 1.25383i
\(540\) 0 0
\(541\) 389.269 0.719536 0.359768 0.933042i \(-0.382856\pi\)
0.359768 + 0.933042i \(0.382856\pi\)
\(542\) 660.470i 1.21858i
\(543\) 0 0
\(544\) −626.455 −1.15157
\(545\) 6.36185i 0.0116731i
\(546\) 0 0
\(547\) 1.34870 0.00246563 0.00123281 0.999999i \(-0.499608\pi\)
0.00123281 + 0.999999i \(0.499608\pi\)
\(548\) − 468.461i − 0.854856i
\(549\) 0 0
\(550\) −620.726 −1.12859
\(551\) 474.302i 0.860803i
\(552\) 0 0
\(553\) −956.910 −1.73040
\(554\) 923.523i 1.66701i
\(555\) 0 0
\(556\) 1740.55 3.13049
\(557\) − 302.631i − 0.543324i −0.962393 0.271662i \(-0.912427\pi\)
0.962393 0.271662i \(-0.0875733\pi\)
\(558\) 0 0
\(559\) 3.35237 0.00599709
\(560\) 34.2668i 0.0611907i
\(561\) 0 0
\(562\) 928.401 1.65196
\(563\) 760.848i 1.35142i 0.737169 + 0.675708i \(0.236162\pi\)
−0.737169 + 0.675708i \(0.763838\pi\)
\(564\) 0 0
\(565\) 16.5429 0.0292794
\(566\) 1573.01i 2.77917i
\(567\) 0 0
\(568\) 1459.62 2.56976
\(569\) − 345.629i − 0.607431i −0.952763 0.303716i \(-0.901773\pi\)
0.952763 0.303716i \(-0.0982273\pi\)
\(570\) 0 0
\(571\) 599.127 1.04926 0.524630 0.851330i \(-0.324204\pi\)
0.524630 + 0.851330i \(0.324204\pi\)
\(572\) 217.543i 0.380320i
\(573\) 0 0
\(574\) 1994.47 3.47469
\(575\) − 370.081i − 0.643620i
\(576\) 0 0
\(577\) −215.164 −0.372901 −0.186450 0.982464i \(-0.559698\pi\)
−0.186450 + 0.982464i \(0.559698\pi\)
\(578\) − 2684.85i − 4.64507i
\(579\) 0 0
\(580\) −32.5424 −0.0561075
\(581\) − 181.307i − 0.312059i
\(582\) 0 0
\(583\) 194.849 0.334218
\(584\) − 14.8872i − 0.0254918i
\(585\) 0 0
\(586\) −408.268 −0.696704
\(587\) − 324.539i − 0.552877i −0.961032 0.276439i \(-0.910846\pi\)
0.961032 0.276439i \(-0.0891542\pi\)
\(588\) 0 0
\(589\) −481.699 −0.817826
\(590\) − 25.9909i − 0.0440524i
\(591\) 0 0
\(592\) −1406.63 −2.37606
\(593\) − 849.593i − 1.43270i −0.697740 0.716352i \(-0.745811\pi\)
0.697740 0.716352i \(-0.254189\pi\)
\(594\) 0 0
\(595\) −46.1779 −0.0776099
\(596\) − 1542.19i − 2.58756i
\(597\) 0 0
\(598\) −189.804 −0.317398
\(599\) − 312.421i − 0.521570i −0.965397 0.260785i \(-0.916019\pi\)
0.965397 0.260785i \(-0.0839814\pi\)
\(600\) 0 0
\(601\) 589.233 0.980421 0.490211 0.871604i \(-0.336920\pi\)
0.490211 + 0.871604i \(0.336920\pi\)
\(602\) 39.8860i 0.0662559i
\(603\) 0 0
\(604\) −1429.70 −2.36706
\(605\) − 8.54036i − 0.0141163i
\(606\) 0 0
\(607\) 382.298 0.629816 0.314908 0.949122i \(-0.398026\pi\)
0.314908 + 0.949122i \(0.398026\pi\)
\(608\) 288.705i 0.474844i
\(609\) 0 0
\(610\) 32.3756 0.0530747
\(611\) 8.87790i 0.0145301i
\(612\) 0 0
\(613\) 142.773 0.232908 0.116454 0.993196i \(-0.462847\pi\)
0.116454 + 0.993196i \(0.462847\pi\)
\(614\) 803.050i 1.30790i
\(615\) 0 0
\(616\) −1388.88 −2.25468
\(617\) 507.404i 0.822372i 0.911551 + 0.411186i \(0.134885\pi\)
−0.911551 + 0.411186i \(0.865115\pi\)
\(618\) 0 0
\(619\) 307.551 0.496851 0.248426 0.968651i \(-0.420087\pi\)
0.248426 + 0.968651i \(0.420087\pi\)
\(620\) − 33.0499i − 0.0533062i
\(621\) 0 0
\(622\) −1977.74 −3.17964
\(623\) 205.186i 0.329351i
\(624\) 0 0
\(625\) 623.949 0.998319
\(626\) 755.369i 1.20666i
\(627\) 0 0
\(628\) −1247.45 −1.98639
\(629\) − 1895.57i − 3.01363i
\(630\) 0 0
\(631\) −586.261 −0.929099 −0.464549 0.885547i \(-0.653784\pi\)
−0.464549 + 0.885547i \(0.653784\pi\)
\(632\) − 1305.13i − 2.06507i
\(633\) 0 0
\(634\) −1974.66 −3.11460
\(635\) 18.7706i 0.0295600i
\(636\) 0 0
\(637\) −348.601 −0.547254
\(638\) − 791.148i − 1.24004i
\(639\) 0 0
\(640\) 20.5525 0.0321133
\(641\) 740.100i 1.15460i 0.816531 + 0.577301i \(0.195894\pi\)
−0.816531 + 0.577301i \(0.804106\pi\)
\(642\) 0 0
\(643\) 1044.44 1.62433 0.812164 0.583429i \(-0.198289\pi\)
0.812164 + 0.583429i \(0.198289\pi\)
\(644\) − 1543.16i − 2.39621i
\(645\) 0 0
\(646\) −1710.69 −2.64813
\(647\) 457.314i 0.706822i 0.935468 + 0.353411i \(0.114978\pi\)
−0.935468 + 0.353411i \(0.885022\pi\)
\(648\) 0 0
\(649\) 431.784 0.665307
\(650\) − 320.186i − 0.492593i
\(651\) 0 0
\(652\) 801.485 1.22927
\(653\) − 100.342i − 0.153663i −0.997044 0.0768313i \(-0.975520\pi\)
0.997044 0.0768313i \(-0.0244803\pi\)
\(654\) 0 0
\(655\) −9.86222 −0.0150568
\(656\) 1114.97i 1.69965i
\(657\) 0 0
\(658\) −105.628 −0.160529
\(659\) 679.814i 1.03158i 0.856714 + 0.515792i \(0.172502\pi\)
−0.856714 + 0.515792i \(0.827498\pi\)
\(660\) 0 0
\(661\) −288.219 −0.436035 −0.218018 0.975945i \(-0.569959\pi\)
−0.218018 + 0.975945i \(0.569959\pi\)
\(662\) 1939.14i 2.92921i
\(663\) 0 0
\(664\) 247.283 0.372415
\(665\) 21.2813i 0.0320020i
\(666\) 0 0
\(667\) 471.688 0.707179
\(668\) 625.255i 0.936011i
\(669\) 0 0
\(670\) 7.42754 0.0110859
\(671\) 537.853i 0.801569i
\(672\) 0 0
\(673\) −101.770 −0.151218 −0.0756091 0.997138i \(-0.524090\pi\)
−0.0756091 + 0.997138i \(0.524090\pi\)
\(674\) 704.299i 1.04495i
\(675\) 0 0
\(676\) −112.214 −0.165997
\(677\) − 496.502i − 0.733386i −0.930342 0.366693i \(-0.880490\pi\)
0.930342 0.366693i \(-0.119510\pi\)
\(678\) 0 0
\(679\) 107.173 0.157839
\(680\) − 62.9819i − 0.0926204i
\(681\) 0 0
\(682\) 803.486 1.17813
\(683\) 607.021i 0.888757i 0.895839 + 0.444378i \(0.146575\pi\)
−0.895839 + 0.444378i \(0.853425\pi\)
\(684\) 0 0
\(685\) 6.42481 0.00937929
\(686\) − 2045.59i − 2.98190i
\(687\) 0 0
\(688\) −22.2975 −0.0324092
\(689\) 100.508i 0.145875i
\(690\) 0 0
\(691\) −311.008 −0.450084 −0.225042 0.974349i \(-0.572252\pi\)
−0.225042 + 0.974349i \(0.572252\pi\)
\(692\) 1991.88i 2.87843i
\(693\) 0 0
\(694\) 801.159 1.15441
\(695\) 23.8712i 0.0343470i
\(696\) 0 0
\(697\) −1502.53 −2.15572
\(698\) 176.001i 0.252150i
\(699\) 0 0
\(700\) 2603.20 3.71885
\(701\) − 407.041i − 0.580657i −0.956927 0.290329i \(-0.906235\pi\)
0.956927 0.290329i \(-0.0937646\pi\)
\(702\) 0 0
\(703\) −873.585 −1.24265
\(704\) 188.944i 0.268386i
\(705\) 0 0
\(706\) 1719.85 2.43605
\(707\) − 63.1926i − 0.0893814i
\(708\) 0 0
\(709\) −543.871 −0.767097 −0.383548 0.923521i \(-0.625298\pi\)
−0.383548 + 0.923521i \(0.625298\pi\)
\(710\) 37.3058i 0.0525433i
\(711\) 0 0
\(712\) −279.852 −0.393051
\(713\) 479.044i 0.671872i
\(714\) 0 0
\(715\) −2.98354 −0.00417279
\(716\) − 2647.24i − 3.69726i
\(717\) 0 0
\(718\) −214.330 −0.298510
\(719\) 209.447i 0.291303i 0.989336 + 0.145652i \(0.0465279\pi\)
−0.989336 + 0.145652i \(0.953472\pi\)
\(720\) 0 0
\(721\) 984.544 1.36553
\(722\) − 494.662i − 0.685127i
\(723\) 0 0
\(724\) −1093.22 −1.50997
\(725\) 795.703i 1.09752i
\(726\) 0 0
\(727\) 113.107 0.155581 0.0777905 0.996970i \(-0.475213\pi\)
0.0777905 + 0.996970i \(0.475213\pi\)
\(728\) − 716.418i − 0.984091i
\(729\) 0 0
\(730\) 0.380495 0.000521227 0
\(731\) − 30.0481i − 0.0411055i
\(732\) 0 0
\(733\) −806.994 −1.10095 −0.550473 0.834853i \(-0.685553\pi\)
−0.550473 + 0.834853i \(0.685553\pi\)
\(734\) − 1213.06i − 1.65267i
\(735\) 0 0
\(736\) 287.114 0.390100
\(737\) 123.393i 0.167426i
\(738\) 0 0
\(739\) −105.959 −0.143382 −0.0716909 0.997427i \(-0.522840\pi\)
−0.0716909 + 0.997427i \(0.522840\pi\)
\(740\) − 59.9375i − 0.0809966i
\(741\) 0 0
\(742\) −1195.83 −1.61163
\(743\) 1136.54i 1.52966i 0.644230 + 0.764832i \(0.277178\pi\)
−0.644230 + 0.764832i \(0.722822\pi\)
\(744\) 0 0
\(745\) 21.1506 0.0283901
\(746\) − 94.3625i − 0.126491i
\(747\) 0 0
\(748\) 1949.89 2.60681
\(749\) − 203.240i − 0.271348i
\(750\) 0 0
\(751\) 788.117 1.04942 0.524712 0.851280i \(-0.324173\pi\)
0.524712 + 0.851280i \(0.324173\pi\)
\(752\) − 59.0493i − 0.0785230i
\(753\) 0 0
\(754\) 408.093 0.541238
\(755\) − 19.6080i − 0.0259708i
\(756\) 0 0
\(757\) −118.569 −0.156629 −0.0783147 0.996929i \(-0.524954\pi\)
−0.0783147 + 0.996929i \(0.524954\pi\)
\(758\) − 968.600i − 1.27784i
\(759\) 0 0
\(760\) −29.0255 −0.0381915
\(761\) − 984.782i − 1.29406i −0.762463 0.647031i \(-0.776010\pi\)
0.762463 0.647031i \(-0.223990\pi\)
\(762\) 0 0
\(763\) 648.634 0.850110
\(764\) 2232.91i 2.92266i
\(765\) 0 0
\(766\) −1390.62 −1.81543
\(767\) 222.725i 0.290385i
\(768\) 0 0
\(769\) −556.366 −0.723493 −0.361746 0.932277i \(-0.617819\pi\)
−0.361746 + 0.932277i \(0.617819\pi\)
\(770\) − 35.4977i − 0.0461010i
\(771\) 0 0
\(772\) 1490.86 1.93116
\(773\) − 1295.19i − 1.67554i −0.546026 0.837768i \(-0.683860\pi\)
0.546026 0.837768i \(-0.316140\pi\)
\(774\) 0 0
\(775\) −808.112 −1.04273
\(776\) 146.173i 0.188367i
\(777\) 0 0
\(778\) 1432.14 1.84080
\(779\) 692.450i 0.888896i
\(780\) 0 0
\(781\) −619.757 −0.793543
\(782\) 1701.26i 2.17553i
\(783\) 0 0
\(784\) 2318.64 2.95745
\(785\) − 17.1084i − 0.0217942i
\(786\) 0 0
\(787\) 1549.63 1.96903 0.984517 0.175289i \(-0.0560859\pi\)
0.984517 + 0.175289i \(0.0560859\pi\)
\(788\) − 3018.86i − 3.83104i
\(789\) 0 0
\(790\) 33.3571 0.0422242
\(791\) − 1686.66i − 2.13231i
\(792\) 0 0
\(793\) −277.437 −0.349858
\(794\) 1791.70i 2.25655i
\(795\) 0 0
\(796\) −820.471 −1.03074
\(797\) − 925.776i − 1.16158i −0.814055 0.580788i \(-0.802745\pi\)
0.814055 0.580788i \(-0.197255\pi\)
\(798\) 0 0
\(799\) 79.5748 0.0995930
\(800\) 484.339i 0.605424i
\(801\) 0 0
\(802\) 912.233 1.13745
\(803\) 6.32113i 0.00787190i
\(804\) 0 0
\(805\) 21.1640 0.0262907
\(806\) 414.458i 0.514216i
\(807\) 0 0
\(808\) 86.1883 0.106669
\(809\) 811.708i 1.00335i 0.865057 + 0.501674i \(0.167282\pi\)
−0.865057 + 0.501674i \(0.832718\pi\)
\(810\) 0 0
\(811\) 986.434 1.21632 0.608159 0.793815i \(-0.291908\pi\)
0.608159 + 0.793815i \(0.291908\pi\)
\(812\) 3317.91i 4.08610i
\(813\) 0 0
\(814\) 1457.16 1.79012
\(815\) 10.9921i 0.0134873i
\(816\) 0 0
\(817\) −13.8478 −0.0169496
\(818\) − 2349.91i − 2.87275i
\(819\) 0 0
\(820\) −47.5097 −0.0579387
\(821\) 719.802i 0.876738i 0.898795 + 0.438369i \(0.144444\pi\)
−0.898795 + 0.438369i \(0.855556\pi\)
\(822\) 0 0
\(823\) −1014.90 −1.23317 −0.616584 0.787289i \(-0.711484\pi\)
−0.616584 + 0.787289i \(0.711484\pi\)
\(824\) 1342.82i 1.62963i
\(825\) 0 0
\(826\) −2649.95 −3.20817
\(827\) 1234.39i 1.49261i 0.665601 + 0.746307i \(0.268175\pi\)
−0.665601 + 0.746307i \(0.731825\pi\)
\(828\) 0 0
\(829\) 1261.86 1.52215 0.761075 0.648664i \(-0.224672\pi\)
0.761075 + 0.648664i \(0.224672\pi\)
\(830\) 6.32020i 0.00761470i
\(831\) 0 0
\(832\) −97.4617 −0.117141
\(833\) 3124.60i 3.75102i
\(834\) 0 0
\(835\) −8.57519 −0.0102697
\(836\) − 898.617i − 1.07490i
\(837\) 0 0
\(838\) −1603.90 −1.91396
\(839\) 747.207i 0.890593i 0.895383 + 0.445296i \(0.146902\pi\)
−0.895383 + 0.445296i \(0.853098\pi\)
\(840\) 0 0
\(841\) −173.165 −0.205904
\(842\) − 349.182i − 0.414705i
\(843\) 0 0
\(844\) 1584.48 1.87735
\(845\) − 1.53898i − 0.00182128i
\(846\) 0 0
\(847\) −870.748 −1.02804
\(848\) − 668.504i − 0.788330i
\(849\) 0 0
\(850\) −2869.90 −3.37635
\(851\) 868.770i 1.02088i
\(852\) 0 0
\(853\) −646.185 −0.757544 −0.378772 0.925490i \(-0.623654\pi\)
−0.378772 + 0.925490i \(0.623654\pi\)
\(854\) − 3300.91i − 3.86523i
\(855\) 0 0
\(856\) 277.198 0.323830
\(857\) 1505.51i 1.75672i 0.477997 + 0.878362i \(0.341363\pi\)
−0.477997 + 0.878362i \(0.658637\pi\)
\(858\) 0 0
\(859\) −1669.63 −1.94370 −0.971848 0.235610i \(-0.924291\pi\)
−0.971848 + 0.235610i \(0.924291\pi\)
\(860\) − 0.950113i − 0.00110478i
\(861\) 0 0
\(862\) 1975.09 2.29128
\(863\) 456.548i 0.529024i 0.964382 + 0.264512i \(0.0852109\pi\)
−0.964382 + 0.264512i \(0.914789\pi\)
\(864\) 0 0
\(865\) −27.3180 −0.0315815
\(866\) − 305.562i − 0.352843i
\(867\) 0 0
\(868\) −3369.66 −3.88209
\(869\) 554.159i 0.637697i
\(870\) 0 0
\(871\) −63.6491 −0.0730759
\(872\) 884.670i 1.01453i
\(873\) 0 0
\(874\) 784.035 0.897065
\(875\) 71.4242i 0.0816277i
\(876\) 0 0
\(877\) 1231.17 1.40384 0.701920 0.712256i \(-0.252327\pi\)
0.701920 + 0.712256i \(0.252327\pi\)
\(878\) 1656.60i 1.88679i
\(879\) 0 0
\(880\) 19.8443 0.0225504
\(881\) − 352.384i − 0.399982i −0.979798 0.199991i \(-0.935909\pi\)
0.979798 0.199991i \(-0.0640912\pi\)
\(882\) 0 0
\(883\) −559.440 −0.633568 −0.316784 0.948498i \(-0.602603\pi\)
−0.316784 + 0.948498i \(0.602603\pi\)
\(884\) 1005.80i 1.13779i
\(885\) 0 0
\(886\) −2673.40 −3.01738
\(887\) − 1672.88i − 1.88600i −0.332789 0.943001i \(-0.607990\pi\)
0.332789 0.943001i \(-0.392010\pi\)
\(888\) 0 0
\(889\) 1913.79 2.15274
\(890\) − 7.15261i − 0.00803664i
\(891\) 0 0
\(892\) 2113.41 2.36929
\(893\) − 36.6724i − 0.0410666i
\(894\) 0 0
\(895\) 36.3061 0.0405655
\(896\) − 2095.46i − 2.33869i
\(897\) 0 0
\(898\) −77.6066 −0.0864216
\(899\) − 1029.98i − 1.14570i
\(900\) 0 0
\(901\) 900.876 0.999863
\(902\) − 1155.02i − 1.28051i
\(903\) 0 0
\(904\) 2300.43 2.54472
\(905\) − 14.9932i − 0.0165670i
\(906\) 0 0
\(907\) −1675.43 −1.84722 −0.923610 0.383334i \(-0.874776\pi\)
−0.923610 + 0.383334i \(0.874776\pi\)
\(908\) − 572.067i − 0.630029i
\(909\) 0 0
\(910\) 18.3106 0.0201215
\(911\) − 431.221i − 0.473349i −0.971589 0.236675i \(-0.923942\pi\)
0.971589 0.236675i \(-0.0760575\pi\)
\(912\) 0 0
\(913\) −104.997 −0.115002
\(914\) 742.999i 0.812909i
\(915\) 0 0
\(916\) −981.368 −1.07136
\(917\) 1005.52i 1.09653i
\(918\) 0 0
\(919\) −510.245 −0.555217 −0.277609 0.960694i \(-0.589542\pi\)
−0.277609 + 0.960694i \(0.589542\pi\)
\(920\) 28.8655i 0.0313756i
\(921\) 0 0
\(922\) −2336.07 −2.53369
\(923\) − 319.686i − 0.346355i
\(924\) 0 0
\(925\) −1465.55 −1.58438
\(926\) − 2104.89i − 2.27310i
\(927\) 0 0
\(928\) −617.316 −0.665211
\(929\) − 1555.07i − 1.67392i −0.547267 0.836958i \(-0.684332\pi\)
0.547267 0.836958i \(-0.315668\pi\)
\(930\) 0 0
\(931\) 1439.99 1.54671
\(932\) − 837.893i − 0.899027i
\(933\) 0 0
\(934\) −157.252 −0.168364
\(935\) 26.7422i 0.0286013i
\(936\) 0 0
\(937\) 1006.41 1.07408 0.537040 0.843557i \(-0.319542\pi\)
0.537040 + 0.843557i \(0.319542\pi\)
\(938\) − 757.288i − 0.807343i
\(939\) 0 0
\(940\) 2.51613 0.00267674
\(941\) 130.681i 0.138874i 0.997586 + 0.0694371i \(0.0221203\pi\)
−0.997586 + 0.0694371i \(0.977880\pi\)
\(942\) 0 0
\(943\) 688.634 0.730259
\(944\) − 1481.40i − 1.56928i
\(945\) 0 0
\(946\) 23.0985 0.0244170
\(947\) − 157.837i − 0.166670i −0.996522 0.0833350i \(-0.973443\pi\)
0.996522 0.0833350i \(-0.0265572\pi\)
\(948\) 0 0
\(949\) −3.26059 −0.00343582
\(950\) 1322.61i 1.39222i
\(951\) 0 0
\(952\) −6421.43 −6.74520
\(953\) 15.3048i 0.0160596i 0.999968 + 0.00802979i \(0.00255599\pi\)
−0.999968 + 0.00802979i \(0.997444\pi\)
\(954\) 0 0
\(955\) −30.6238 −0.0320668
\(956\) 1461.89i 1.52917i
\(957\) 0 0
\(958\) 1967.97 2.05425
\(959\) − 655.053i − 0.683058i
\(960\) 0 0
\(961\) 85.0444 0.0884957
\(962\) 751.639i 0.781329i
\(963\) 0 0
\(964\) −825.687 −0.856522
\(965\) 20.4467i 0.0211883i
\(966\) 0 0
\(967\) 980.476 1.01394 0.506968 0.861965i \(-0.330766\pi\)
0.506968 + 0.861965i \(0.330766\pi\)
\(968\) − 1187.61i − 1.22687i
\(969\) 0 0
\(970\) −3.73596 −0.00385150
\(971\) 813.968i 0.838278i 0.907922 + 0.419139i \(0.137668\pi\)
−0.907922 + 0.419139i \(0.862332\pi\)
\(972\) 0 0
\(973\) 2433.83 2.50136
\(974\) 196.166i 0.201403i
\(975\) 0 0
\(976\) 1845.31 1.89069
\(977\) − 1812.54i − 1.85521i −0.373561 0.927606i \(-0.621863\pi\)
0.373561 0.927606i \(-0.378137\pi\)
\(978\) 0 0
\(979\) 118.826 0.121375
\(980\) 98.7988i 0.100815i
\(981\) 0 0
\(982\) −300.197 −0.305700
\(983\) − 384.892i − 0.391548i −0.980649 0.195774i \(-0.937278\pi\)
0.980649 0.195774i \(-0.0627219\pi\)
\(984\) 0 0
\(985\) 41.4028 0.0420333
\(986\) − 3657.84i − 3.70978i
\(987\) 0 0
\(988\) 463.529 0.469159
\(989\) 13.7715i 0.0139247i
\(990\) 0 0
\(991\) 628.480 0.634188 0.317094 0.948394i \(-0.397293\pi\)
0.317094 + 0.948394i \(0.397293\pi\)
\(992\) − 626.943i − 0.631999i
\(993\) 0 0
\(994\) 3803.58 3.82654
\(995\) − 11.2525i − 0.0113091i
\(996\) 0 0
\(997\) −1573.51 −1.57825 −0.789123 0.614236i \(-0.789464\pi\)
−0.789123 + 0.614236i \(0.789464\pi\)
\(998\) 1949.55i 1.95346i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.3.c.a.53.8 yes 8
3.2 odd 2 inner 117.3.c.a.53.1 8
4.3 odd 2 1872.3.f.d.1457.4 8
12.11 even 2 1872.3.f.d.1457.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.3.c.a.53.1 8 3.2 odd 2 inner
117.3.c.a.53.8 yes 8 1.1 even 1 trivial
1872.3.f.d.1457.4 8 4.3 odd 2
1872.3.f.d.1457.5 8 12.11 even 2