Properties

Label 117.3.c.a.53.3
Level $117$
Weight $3$
Character 117.53
Analytic conductor $3.188$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(53,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.53");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.1574161678336.15
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 20x^{6} + 106x^{4} + 164x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 53.3
Root \(-1.65286i\) of defining polynomial
Character \(\chi\) \(=\) 117.53
Dual form 117.3.c.a.53.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.65286i q^{2} +1.26805 q^{4} +2.99060i q^{5} +9.10296 q^{7} -8.70736i q^{8} +4.94305 q^{10} -0.315116i q^{11} +3.60555 q^{13} -15.0459i q^{14} -9.31982 q^{16} -16.4562i q^{17} -23.4478 q^{19} +3.79225i q^{20} -0.520843 q^{22} +13.6020i q^{23} +16.0563 q^{25} -5.95947i q^{26} +11.5430 q^{28} +42.6918i q^{29} -4.47638 q^{31} -19.4251i q^{32} -27.1998 q^{34} +27.2233i q^{35} -23.2480 q^{37} +38.7559i q^{38} +26.0402 q^{40} +24.6140i q^{41} -57.0229 q^{43} -0.399585i q^{44} +22.4821 q^{46} +44.7433i q^{47} +33.8638 q^{49} -26.5388i q^{50} +4.57204 q^{52} +61.8765i q^{53} +0.942388 q^{55} -79.2627i q^{56} +70.5636 q^{58} -90.7335i q^{59} -89.6900 q^{61} +7.39883i q^{62} -69.3862 q^{64} +10.7828i q^{65} +98.0763 q^{67} -20.8674i q^{68} +44.9964 q^{70} -77.6291i q^{71} -140.161 q^{73} +38.4257i q^{74} -29.7330 q^{76} -2.86849i q^{77} +71.5169 q^{79} -27.8719i q^{80} +40.6835 q^{82} -109.269i q^{83} +49.2140 q^{85} +94.2508i q^{86} -2.74383 q^{88} -119.900i q^{89} +32.8212 q^{91} +17.2480i q^{92} +73.9544 q^{94} -70.1229i q^{95} +39.1083 q^{97} -55.9722i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} - 16 q^{7} + 24 q^{16} + 64 q^{19} - 80 q^{22} - 24 q^{25} + 184 q^{28} - 40 q^{31} - 272 q^{34} - 104 q^{37} + 32 q^{40} + 128 q^{43} + 232 q^{46} + 136 q^{49} + 104 q^{52} - 224 q^{55} - 88 q^{58}+ \cdots + 328 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.65286i − 0.826430i −0.910634 0.413215i \(-0.864406\pi\)
0.910634 0.413215i \(-0.135594\pi\)
\(3\) 0 0
\(4\) 1.26805 0.317014
\(5\) 2.99060i 0.598121i 0.954234 + 0.299060i \(0.0966732\pi\)
−0.954234 + 0.299060i \(0.903327\pi\)
\(6\) 0 0
\(7\) 9.10296 1.30042 0.650211 0.759753i \(-0.274680\pi\)
0.650211 + 0.759753i \(0.274680\pi\)
\(8\) − 8.70736i − 1.08842i
\(9\) 0 0
\(10\) 4.94305 0.494305
\(11\) − 0.315116i − 0.0286469i −0.999897 0.0143235i \(-0.995441\pi\)
0.999897 0.0143235i \(-0.00455946\pi\)
\(12\) 0 0
\(13\) 3.60555 0.277350
\(14\) − 15.0459i − 1.07471i
\(15\) 0 0
\(16\) −9.31982 −0.582489
\(17\) − 16.4562i − 0.968012i −0.875065 0.484006i \(-0.839181\pi\)
0.875065 0.484006i \(-0.160819\pi\)
\(18\) 0 0
\(19\) −23.4478 −1.23409 −0.617046 0.786927i \(-0.711671\pi\)
−0.617046 + 0.786927i \(0.711671\pi\)
\(20\) 3.79225i 0.189612i
\(21\) 0 0
\(22\) −0.520843 −0.0236747
\(23\) 13.6020i 0.591390i 0.955282 + 0.295695i \(0.0955512\pi\)
−0.955282 + 0.295695i \(0.904449\pi\)
\(24\) 0 0
\(25\) 16.0563 0.642252
\(26\) − 5.95947i − 0.229210i
\(27\) 0 0
\(28\) 11.5430 0.412252
\(29\) 42.6918i 1.47213i 0.676910 + 0.736066i \(0.263319\pi\)
−0.676910 + 0.736066i \(0.736681\pi\)
\(30\) 0 0
\(31\) −4.47638 −0.144399 −0.0721997 0.997390i \(-0.523002\pi\)
−0.0721997 + 0.997390i \(0.523002\pi\)
\(32\) − 19.4251i − 0.607033i
\(33\) 0 0
\(34\) −27.1998 −0.799994
\(35\) 27.2233i 0.777810i
\(36\) 0 0
\(37\) −23.2480 −0.628324 −0.314162 0.949369i \(-0.601724\pi\)
−0.314162 + 0.949369i \(0.601724\pi\)
\(38\) 38.7559i 1.01989i
\(39\) 0 0
\(40\) 26.0402 0.651006
\(41\) 24.6140i 0.600342i 0.953885 + 0.300171i \(0.0970437\pi\)
−0.953885 + 0.300171i \(0.902956\pi\)
\(42\) 0 0
\(43\) −57.0229 −1.32611 −0.663057 0.748569i \(-0.730741\pi\)
−0.663057 + 0.748569i \(0.730741\pi\)
\(44\) − 0.399585i − 0.00908147i
\(45\) 0 0
\(46\) 22.4821 0.488742
\(47\) 44.7433i 0.951985i 0.879449 + 0.475993i \(0.157911\pi\)
−0.879449 + 0.475993i \(0.842089\pi\)
\(48\) 0 0
\(49\) 33.8638 0.691099
\(50\) − 26.5388i − 0.530776i
\(51\) 0 0
\(52\) 4.57204 0.0879238
\(53\) 61.8765i 1.16748i 0.811940 + 0.583740i \(0.198411\pi\)
−0.811940 + 0.583740i \(0.801589\pi\)
\(54\) 0 0
\(55\) 0.942388 0.0171343
\(56\) − 79.2627i − 1.41541i
\(57\) 0 0
\(58\) 70.5636 1.21661
\(59\) − 90.7335i − 1.53786i −0.639335 0.768928i \(-0.720790\pi\)
0.639335 0.768928i \(-0.279210\pi\)
\(60\) 0 0
\(61\) −89.6900 −1.47033 −0.735164 0.677890i \(-0.762895\pi\)
−0.735164 + 0.677890i \(0.762895\pi\)
\(62\) 7.39883i 0.119336i
\(63\) 0 0
\(64\) −69.3862 −1.08416
\(65\) 10.7828i 0.165889i
\(66\) 0 0
\(67\) 98.0763 1.46383 0.731913 0.681399i \(-0.238628\pi\)
0.731913 + 0.681399i \(0.238628\pi\)
\(68\) − 20.8674i − 0.306873i
\(69\) 0 0
\(70\) 44.9964 0.642805
\(71\) − 77.6291i − 1.09337i −0.837339 0.546684i \(-0.815890\pi\)
0.837339 0.546684i \(-0.184110\pi\)
\(72\) 0 0
\(73\) −140.161 −1.92001 −0.960004 0.279986i \(-0.909670\pi\)
−0.960004 + 0.279986i \(0.909670\pi\)
\(74\) 38.4257i 0.519266i
\(75\) 0 0
\(76\) −29.7330 −0.391224
\(77\) − 2.86849i − 0.0372531i
\(78\) 0 0
\(79\) 71.5169 0.905278 0.452639 0.891694i \(-0.350483\pi\)
0.452639 + 0.891694i \(0.350483\pi\)
\(80\) − 27.8719i − 0.348399i
\(81\) 0 0
\(82\) 40.6835 0.496140
\(83\) − 109.269i − 1.31649i −0.752804 0.658244i \(-0.771299\pi\)
0.752804 0.658244i \(-0.228701\pi\)
\(84\) 0 0
\(85\) 49.2140 0.578988
\(86\) 94.2508i 1.09594i
\(87\) 0 0
\(88\) −2.74383 −0.0311799
\(89\) − 119.900i − 1.34720i −0.739098 0.673598i \(-0.764748\pi\)
0.739098 0.673598i \(-0.235252\pi\)
\(90\) 0 0
\(91\) 32.8212 0.360672
\(92\) 17.2480i 0.187479i
\(93\) 0 0
\(94\) 73.9544 0.786749
\(95\) − 70.1229i − 0.738136i
\(96\) 0 0
\(97\) 39.1083 0.403179 0.201589 0.979470i \(-0.435389\pi\)
0.201589 + 0.979470i \(0.435389\pi\)
\(98\) − 55.9722i − 0.571145i
\(99\) 0 0
\(100\) 20.3603 0.203603
\(101\) 88.0927i 0.872205i 0.899897 + 0.436102i \(0.143641\pi\)
−0.899897 + 0.436102i \(0.856359\pi\)
\(102\) 0 0
\(103\) 31.9825 0.310510 0.155255 0.987874i \(-0.450380\pi\)
0.155255 + 0.987874i \(0.450380\pi\)
\(104\) − 31.3948i − 0.301873i
\(105\) 0 0
\(106\) 102.273 0.964841
\(107\) 161.425i 1.50865i 0.656503 + 0.754324i \(0.272035\pi\)
−0.656503 + 0.754324i \(0.727965\pi\)
\(108\) 0 0
\(109\) −83.7344 −0.768205 −0.384103 0.923290i \(-0.625489\pi\)
−0.384103 + 0.923290i \(0.625489\pi\)
\(110\) − 1.55763i − 0.0141603i
\(111\) 0 0
\(112\) −84.8379 −0.757481
\(113\) 187.622i 1.66037i 0.557487 + 0.830185i \(0.311766\pi\)
−0.557487 + 0.830185i \(0.688234\pi\)
\(114\) 0 0
\(115\) −40.6781 −0.353722
\(116\) 54.1355i 0.466686i
\(117\) 0 0
\(118\) −149.970 −1.27093
\(119\) − 149.800i − 1.25882i
\(120\) 0 0
\(121\) 120.901 0.999179
\(122\) 148.245i 1.21512i
\(123\) 0 0
\(124\) −5.67630 −0.0457766
\(125\) 122.783i 0.982265i
\(126\) 0 0
\(127\) 109.019 0.858419 0.429209 0.903205i \(-0.358792\pi\)
0.429209 + 0.903205i \(0.358792\pi\)
\(128\) 36.9854i 0.288948i
\(129\) 0 0
\(130\) 17.8224 0.137095
\(131\) − 84.9320i − 0.648336i −0.946000 0.324168i \(-0.894916\pi\)
0.946000 0.324168i \(-0.105084\pi\)
\(132\) 0 0
\(133\) −213.444 −1.60484
\(134\) − 162.106i − 1.20975i
\(135\) 0 0
\(136\) −143.290 −1.05360
\(137\) − 104.797i − 0.764943i −0.923967 0.382471i \(-0.875073\pi\)
0.923967 0.382471i \(-0.124927\pi\)
\(138\) 0 0
\(139\) −42.1929 −0.303546 −0.151773 0.988415i \(-0.548498\pi\)
−0.151773 + 0.988415i \(0.548498\pi\)
\(140\) 34.5207i 0.246576i
\(141\) 0 0
\(142\) −128.310 −0.903592
\(143\) − 1.13617i − 0.00794523i
\(144\) 0 0
\(145\) −127.674 −0.880512
\(146\) 231.666i 1.58675i
\(147\) 0 0
\(148\) −29.4797 −0.199187
\(149\) − 90.5070i − 0.607429i −0.952763 0.303715i \(-0.901773\pi\)
0.952763 0.303715i \(-0.0982269\pi\)
\(150\) 0 0
\(151\) −0.358353 −0.00237320 −0.00118660 0.999999i \(-0.500378\pi\)
−0.00118660 + 0.999999i \(0.500378\pi\)
\(152\) 204.168i 1.34321i
\(153\) 0 0
\(154\) −4.74121 −0.0307871
\(155\) − 13.3871i − 0.0863683i
\(156\) 0 0
\(157\) 113.271 0.721473 0.360736 0.932668i \(-0.382525\pi\)
0.360736 + 0.932668i \(0.382525\pi\)
\(158\) − 118.207i − 0.748149i
\(159\) 0 0
\(160\) 58.0927 0.363079
\(161\) 123.818i 0.769057i
\(162\) 0 0
\(163\) 208.478 1.27901 0.639505 0.768787i \(-0.279140\pi\)
0.639505 + 0.768787i \(0.279140\pi\)
\(164\) 31.2119i 0.190316i
\(165\) 0 0
\(166\) −180.606 −1.08799
\(167\) 141.160i 0.845268i 0.906300 + 0.422634i \(0.138894\pi\)
−0.906300 + 0.422634i \(0.861106\pi\)
\(168\) 0 0
\(169\) 13.0000 0.0769231
\(170\) − 81.3438i − 0.478493i
\(171\) 0 0
\(172\) −72.3081 −0.420396
\(173\) − 99.9542i − 0.577770i −0.957364 0.288885i \(-0.906715\pi\)
0.957364 0.288885i \(-0.0932845\pi\)
\(174\) 0 0
\(175\) 146.160 0.835199
\(176\) 2.93683i 0.0166865i
\(177\) 0 0
\(178\) −198.179 −1.11336
\(179\) − 208.837i − 1.16669i −0.812225 0.583345i \(-0.801744\pi\)
0.812225 0.583345i \(-0.198256\pi\)
\(180\) 0 0
\(181\) 159.604 0.881792 0.440896 0.897558i \(-0.354661\pi\)
0.440896 + 0.897558i \(0.354661\pi\)
\(182\) − 54.2488i − 0.298070i
\(183\) 0 0
\(184\) 118.437 0.643680
\(185\) − 69.5255i − 0.375814i
\(186\) 0 0
\(187\) −5.18562 −0.0277306
\(188\) 56.7370i 0.301792i
\(189\) 0 0
\(190\) −115.903 −0.610018
\(191\) − 233.056i − 1.22019i −0.792329 0.610094i \(-0.791132\pi\)
0.792329 0.610094i \(-0.208868\pi\)
\(192\) 0 0
\(193\) 180.834 0.936964 0.468482 0.883473i \(-0.344801\pi\)
0.468482 + 0.883473i \(0.344801\pi\)
\(194\) − 64.6406i − 0.333199i
\(195\) 0 0
\(196\) 42.9412 0.219088
\(197\) 51.4340i 0.261086i 0.991443 + 0.130543i \(0.0416721\pi\)
−0.991443 + 0.130543i \(0.958328\pi\)
\(198\) 0 0
\(199\) 330.096 1.65877 0.829387 0.558674i \(-0.188690\pi\)
0.829387 + 0.558674i \(0.188690\pi\)
\(200\) − 139.808i − 0.699039i
\(201\) 0 0
\(202\) 145.605 0.720816
\(203\) 388.622i 1.91439i
\(204\) 0 0
\(205\) −73.6107 −0.359077
\(206\) − 52.8626i − 0.256615i
\(207\) 0 0
\(208\) −33.6031 −0.161553
\(209\) 7.38877i 0.0353530i
\(210\) 0 0
\(211\) −259.140 −1.22815 −0.614077 0.789246i \(-0.710472\pi\)
−0.614077 + 0.789246i \(0.710472\pi\)
\(212\) 78.4628i 0.370107i
\(213\) 0 0
\(214\) 266.813 1.24679
\(215\) − 170.533i − 0.793176i
\(216\) 0 0
\(217\) −40.7483 −0.187780
\(218\) 138.401i 0.634868i
\(219\) 0 0
\(220\) 1.19500 0.00543181
\(221\) − 59.3337i − 0.268478i
\(222\) 0 0
\(223\) 24.1302 0.108207 0.0541036 0.998535i \(-0.482770\pi\)
0.0541036 + 0.998535i \(0.482770\pi\)
\(224\) − 176.826i − 0.789400i
\(225\) 0 0
\(226\) 310.113 1.37218
\(227\) − 295.237i − 1.30060i −0.759675 0.650302i \(-0.774642\pi\)
0.759675 0.650302i \(-0.225358\pi\)
\(228\) 0 0
\(229\) 84.0045 0.366832 0.183416 0.983035i \(-0.441284\pi\)
0.183416 + 0.983035i \(0.441284\pi\)
\(230\) 67.2352i 0.292327i
\(231\) 0 0
\(232\) 371.733 1.60230
\(233\) 312.060i 1.33931i 0.742671 + 0.669657i \(0.233559\pi\)
−0.742671 + 0.669657i \(0.766441\pi\)
\(234\) 0 0
\(235\) −133.809 −0.569402
\(236\) − 115.055i − 0.487521i
\(237\) 0 0
\(238\) −247.599 −1.04033
\(239\) − 261.249i − 1.09309i −0.837429 0.546546i \(-0.815942\pi\)
0.837429 0.546546i \(-0.184058\pi\)
\(240\) 0 0
\(241\) −346.533 −1.43790 −0.718948 0.695064i \(-0.755376\pi\)
−0.718948 + 0.695064i \(0.755376\pi\)
\(242\) − 199.832i − 0.825752i
\(243\) 0 0
\(244\) −113.732 −0.466114
\(245\) 101.273i 0.413360i
\(246\) 0 0
\(247\) −84.5421 −0.342276
\(248\) 38.9774i 0.157167i
\(249\) 0 0
\(250\) 202.943 0.811773
\(251\) 121.070i 0.482351i 0.970481 + 0.241176i \(0.0775330\pi\)
−0.970481 + 0.241176i \(0.922467\pi\)
\(252\) 0 0
\(253\) 4.28620 0.0169415
\(254\) − 180.193i − 0.709423i
\(255\) 0 0
\(256\) −216.413 −0.845364
\(257\) − 428.208i − 1.66618i −0.553138 0.833089i \(-0.686570\pi\)
0.553138 0.833089i \(-0.313430\pi\)
\(258\) 0 0
\(259\) −211.626 −0.817087
\(260\) 13.6731i 0.0525890i
\(261\) 0 0
\(262\) −140.381 −0.535804
\(263\) − 119.167i − 0.453108i −0.973999 0.226554i \(-0.927254\pi\)
0.973999 0.226554i \(-0.0727459\pi\)
\(264\) 0 0
\(265\) −185.048 −0.698294
\(266\) 352.793i 1.32629i
\(267\) 0 0
\(268\) 124.366 0.464053
\(269\) 229.439i 0.852932i 0.904504 + 0.426466i \(0.140242\pi\)
−0.904504 + 0.426466i \(0.859758\pi\)
\(270\) 0 0
\(271\) −93.1363 −0.343676 −0.171838 0.985125i \(-0.554971\pi\)
−0.171838 + 0.985125i \(0.554971\pi\)
\(272\) 153.369i 0.563856i
\(273\) 0 0
\(274\) −173.215 −0.632171
\(275\) − 5.05960i − 0.0183985i
\(276\) 0 0
\(277\) 88.9120 0.320982 0.160491 0.987037i \(-0.448692\pi\)
0.160491 + 0.987037i \(0.448692\pi\)
\(278\) 69.7389i 0.250859i
\(279\) 0 0
\(280\) 237.043 0.846583
\(281\) 460.348i 1.63825i 0.573615 + 0.819125i \(0.305541\pi\)
−0.573615 + 0.819125i \(0.694459\pi\)
\(282\) 0 0
\(283\) −257.558 −0.910100 −0.455050 0.890466i \(-0.650379\pi\)
−0.455050 + 0.890466i \(0.650379\pi\)
\(284\) − 98.4379i − 0.346612i
\(285\) 0 0
\(286\) −1.87793 −0.00656617
\(287\) 224.060i 0.780698i
\(288\) 0 0
\(289\) 18.1935 0.0629532
\(290\) 211.028i 0.727682i
\(291\) 0 0
\(292\) −177.731 −0.608669
\(293\) 338.179i 1.15419i 0.816675 + 0.577097i \(0.195815\pi\)
−0.816675 + 0.577097i \(0.804185\pi\)
\(294\) 0 0
\(295\) 271.348 0.919823
\(296\) 202.429i 0.683880i
\(297\) 0 0
\(298\) −149.595 −0.501998
\(299\) 49.0426i 0.164022i
\(300\) 0 0
\(301\) −519.077 −1.72451
\(302\) 0.592307i 0.00196128i
\(303\) 0 0
\(304\) 218.529 0.718845
\(305\) − 268.227i − 0.879433i
\(306\) 0 0
\(307\) 290.813 0.947274 0.473637 0.880720i \(-0.342941\pi\)
0.473637 + 0.880720i \(0.342941\pi\)
\(308\) − 3.63740i − 0.0118097i
\(309\) 0 0
\(310\) −22.1270 −0.0713773
\(311\) − 203.983i − 0.655894i −0.944696 0.327947i \(-0.893643\pi\)
0.944696 0.327947i \(-0.106357\pi\)
\(312\) 0 0
\(313\) −68.3636 −0.218414 −0.109207 0.994019i \(-0.534831\pi\)
−0.109207 + 0.994019i \(0.534831\pi\)
\(314\) − 187.222i − 0.596247i
\(315\) 0 0
\(316\) 90.6874 0.286985
\(317\) 225.498i 0.711349i 0.934610 + 0.355675i \(0.115749\pi\)
−0.934610 + 0.355675i \(0.884251\pi\)
\(318\) 0 0
\(319\) 13.4529 0.0421720
\(320\) − 207.507i − 0.648458i
\(321\) 0 0
\(322\) 204.654 0.635571
\(323\) 385.861i 1.19462i
\(324\) 0 0
\(325\) 57.8918 0.178129
\(326\) − 344.586i − 1.05701i
\(327\) 0 0
\(328\) 214.323 0.653423
\(329\) 407.296i 1.23798i
\(330\) 0 0
\(331\) 16.0487 0.0484854 0.0242427 0.999706i \(-0.492283\pi\)
0.0242427 + 0.999706i \(0.492283\pi\)
\(332\) − 138.558i − 0.417345i
\(333\) 0 0
\(334\) 233.317 0.698555
\(335\) 293.307i 0.875544i
\(336\) 0 0
\(337\) −22.7096 −0.0673875 −0.0336937 0.999432i \(-0.510727\pi\)
−0.0336937 + 0.999432i \(0.510727\pi\)
\(338\) − 21.4872i − 0.0635715i
\(339\) 0 0
\(340\) 62.4060 0.183547
\(341\) 1.41058i 0.00413660i
\(342\) 0 0
\(343\) −137.784 −0.401702
\(344\) 496.518i 1.44337i
\(345\) 0 0
\(346\) −165.210 −0.477486
\(347\) − 337.189i − 0.971726i −0.874035 0.485863i \(-0.838505\pi\)
0.874035 0.485863i \(-0.161495\pi\)
\(348\) 0 0
\(349\) −130.123 −0.372846 −0.186423 0.982470i \(-0.559689\pi\)
−0.186423 + 0.982470i \(0.559689\pi\)
\(350\) − 241.582i − 0.690233i
\(351\) 0 0
\(352\) −6.12115 −0.0173896
\(353\) 573.635i 1.62503i 0.582941 + 0.812515i \(0.301902\pi\)
−0.582941 + 0.812515i \(0.698098\pi\)
\(354\) 0 0
\(355\) 232.158 0.653966
\(356\) − 152.040i − 0.427079i
\(357\) 0 0
\(358\) −345.179 −0.964187
\(359\) − 681.535i − 1.89843i −0.314635 0.949213i \(-0.601882\pi\)
0.314635 0.949213i \(-0.398118\pi\)
\(360\) 0 0
\(361\) 188.797 0.522984
\(362\) − 263.804i − 0.728739i
\(363\) 0 0
\(364\) 41.6190 0.114338
\(365\) − 419.165i − 1.14840i
\(366\) 0 0
\(367\) −576.535 −1.57094 −0.785471 0.618899i \(-0.787579\pi\)
−0.785471 + 0.618899i \(0.787579\pi\)
\(368\) − 126.768i − 0.344478i
\(369\) 0 0
\(370\) −114.916 −0.310584
\(371\) 563.259i 1.51822i
\(372\) 0 0
\(373\) 370.680 0.993780 0.496890 0.867814i \(-0.334475\pi\)
0.496890 + 0.867814i \(0.334475\pi\)
\(374\) 8.57109i 0.0229174i
\(375\) 0 0
\(376\) 389.596 1.03616
\(377\) 153.927i 0.408296i
\(378\) 0 0
\(379\) 115.121 0.303748 0.151874 0.988400i \(-0.451469\pi\)
0.151874 + 0.988400i \(0.451469\pi\)
\(380\) − 88.9197i − 0.233999i
\(381\) 0 0
\(382\) −385.209 −1.00840
\(383\) − 138.743i − 0.362252i −0.983460 0.181126i \(-0.942026\pi\)
0.983460 0.181126i \(-0.0579742\pi\)
\(384\) 0 0
\(385\) 8.57851 0.0222819
\(386\) − 298.893i − 0.774335i
\(387\) 0 0
\(388\) 49.5915 0.127813
\(389\) − 716.370i − 1.84157i −0.390074 0.920783i \(-0.627551\pi\)
0.390074 0.920783i \(-0.372449\pi\)
\(390\) 0 0
\(391\) 223.837 0.572472
\(392\) − 294.864i − 0.752205i
\(393\) 0 0
\(394\) 85.0132 0.215770
\(395\) 213.879i 0.541465i
\(396\) 0 0
\(397\) −158.652 −0.399627 −0.199814 0.979834i \(-0.564034\pi\)
−0.199814 + 0.979834i \(0.564034\pi\)
\(398\) − 545.603i − 1.37086i
\(399\) 0 0
\(400\) −149.642 −0.374104
\(401\) − 37.1460i − 0.0926335i −0.998927 0.0463167i \(-0.985252\pi\)
0.998927 0.0463167i \(-0.0147484\pi\)
\(402\) 0 0
\(403\) −16.1398 −0.0400492
\(404\) 111.706i 0.276501i
\(405\) 0 0
\(406\) 642.337 1.58211
\(407\) 7.32582i 0.0179996i
\(408\) 0 0
\(409\) 62.0756 0.151774 0.0758870 0.997116i \(-0.475821\pi\)
0.0758870 + 0.997116i \(0.475821\pi\)
\(410\) 121.668i 0.296752i
\(411\) 0 0
\(412\) 40.5556 0.0984359
\(413\) − 825.943i − 1.99986i
\(414\) 0 0
\(415\) 326.779 0.787419
\(416\) − 70.0381i − 0.168361i
\(417\) 0 0
\(418\) 12.2126 0.0292167
\(419\) 250.937i 0.598894i 0.954113 + 0.299447i \(0.0968022\pi\)
−0.954113 + 0.299447i \(0.903198\pi\)
\(420\) 0 0
\(421\) 24.4538 0.0580851 0.0290426 0.999578i \(-0.490754\pi\)
0.0290426 + 0.999578i \(0.490754\pi\)
\(422\) 428.323i 1.01498i
\(423\) 0 0
\(424\) 538.781 1.27071
\(425\) − 264.226i − 0.621707i
\(426\) 0 0
\(427\) −816.444 −1.91205
\(428\) 204.696i 0.478262i
\(429\) 0 0
\(430\) −281.867 −0.655504
\(431\) 346.662i 0.804320i 0.915569 + 0.402160i \(0.131740\pi\)
−0.915569 + 0.402160i \(0.868260\pi\)
\(432\) 0 0
\(433\) −554.932 −1.28160 −0.640799 0.767709i \(-0.721397\pi\)
−0.640799 + 0.767709i \(0.721397\pi\)
\(434\) 67.3512i 0.155187i
\(435\) 0 0
\(436\) −106.180 −0.243532
\(437\) − 318.936i − 0.729830i
\(438\) 0 0
\(439\) 774.134 1.76340 0.881701 0.471808i \(-0.156399\pi\)
0.881701 + 0.471808i \(0.156399\pi\)
\(440\) − 8.20570i − 0.0186493i
\(441\) 0 0
\(442\) −98.0702 −0.221878
\(443\) 397.919i 0.898237i 0.893472 + 0.449119i \(0.148262\pi\)
−0.893472 + 0.449119i \(0.851738\pi\)
\(444\) 0 0
\(445\) 358.575 0.805785
\(446\) − 39.8838i − 0.0894256i
\(447\) 0 0
\(448\) −631.620 −1.40987
\(449\) − 170.800i − 0.380401i −0.981745 0.190201i \(-0.939086\pi\)
0.981745 0.190201i \(-0.0609138\pi\)
\(450\) 0 0
\(451\) 7.75627 0.0171979
\(452\) 237.915i 0.526360i
\(453\) 0 0
\(454\) −487.986 −1.07486
\(455\) 98.1551i 0.215726i
\(456\) 0 0
\(457\) 366.489 0.801946 0.400973 0.916090i \(-0.368672\pi\)
0.400973 + 0.916090i \(0.368672\pi\)
\(458\) − 138.848i − 0.303161i
\(459\) 0 0
\(460\) −51.5820 −0.112135
\(461\) 57.6898i 0.125141i 0.998041 + 0.0625703i \(0.0199298\pi\)
−0.998041 + 0.0625703i \(0.980070\pi\)
\(462\) 0 0
\(463\) 331.654 0.716315 0.358157 0.933661i \(-0.383405\pi\)
0.358157 + 0.933661i \(0.383405\pi\)
\(464\) − 397.880i − 0.857500i
\(465\) 0 0
\(466\) 515.792 1.10685
\(467\) 144.500i 0.309422i 0.987960 + 0.154711i \(0.0494447\pi\)
−0.987960 + 0.154711i \(0.950555\pi\)
\(468\) 0 0
\(469\) 892.784 1.90359
\(470\) 221.168i 0.470571i
\(471\) 0 0
\(472\) −790.049 −1.67383
\(473\) 17.9688i 0.0379891i
\(474\) 0 0
\(475\) −376.484 −0.792598
\(476\) − 189.955i − 0.399064i
\(477\) 0 0
\(478\) −431.808 −0.903365
\(479\) − 92.6210i − 0.193363i −0.995315 0.0966817i \(-0.969177\pi\)
0.995315 0.0966817i \(-0.0308229\pi\)
\(480\) 0 0
\(481\) −83.8219 −0.174266
\(482\) 572.770i 1.18832i
\(483\) 0 0
\(484\) 153.309 0.316753
\(485\) 116.957i 0.241149i
\(486\) 0 0
\(487\) 264.219 0.542543 0.271272 0.962503i \(-0.412556\pi\)
0.271272 + 0.962503i \(0.412556\pi\)
\(488\) 780.962i 1.60033i
\(489\) 0 0
\(490\) 167.391 0.341613
\(491\) 812.120i 1.65401i 0.562192 + 0.827007i \(0.309958\pi\)
−0.562192 + 0.827007i \(0.690042\pi\)
\(492\) 0 0
\(493\) 702.545 1.42504
\(494\) 139.736i 0.282867i
\(495\) 0 0
\(496\) 41.7191 0.0841110
\(497\) − 706.654i − 1.42184i
\(498\) 0 0
\(499\) 64.0030 0.128263 0.0641313 0.997941i \(-0.479572\pi\)
0.0641313 + 0.997941i \(0.479572\pi\)
\(500\) 155.696i 0.311391i
\(501\) 0 0
\(502\) 200.112 0.398629
\(503\) − 207.435i − 0.412396i −0.978510 0.206198i \(-0.933891\pi\)
0.978510 0.206198i \(-0.0661091\pi\)
\(504\) 0 0
\(505\) −263.450 −0.521684
\(506\) − 7.08449i − 0.0140010i
\(507\) 0 0
\(508\) 138.242 0.272131
\(509\) 673.967i 1.32410i 0.749460 + 0.662050i \(0.230313\pi\)
−0.749460 + 0.662050i \(0.769687\pi\)
\(510\) 0 0
\(511\) −1275.88 −2.49682
\(512\) 505.642i 0.987582i
\(513\) 0 0
\(514\) −707.768 −1.37698
\(515\) 95.6470i 0.185722i
\(516\) 0 0
\(517\) 14.0993 0.0272715
\(518\) 349.787i 0.675265i
\(519\) 0 0
\(520\) 93.8894 0.180557
\(521\) 518.723i 0.995630i 0.867283 + 0.497815i \(0.165864\pi\)
−0.867283 + 0.497815i \(0.834136\pi\)
\(522\) 0 0
\(523\) 153.321 0.293157 0.146579 0.989199i \(-0.453174\pi\)
0.146579 + 0.989199i \(0.453174\pi\)
\(524\) − 107.698i − 0.205531i
\(525\) 0 0
\(526\) −196.967 −0.374462
\(527\) 73.6642i 0.139780i
\(528\) 0 0
\(529\) 343.987 0.650258
\(530\) 305.858i 0.577091i
\(531\) 0 0
\(532\) −270.659 −0.508757
\(533\) 88.7470i 0.166505i
\(534\) 0 0
\(535\) −482.759 −0.902353
\(536\) − 853.985i − 1.59326i
\(537\) 0 0
\(538\) 379.230 0.704888
\(539\) − 10.6710i − 0.0197979i
\(540\) 0 0
\(541\) −818.301 −1.51257 −0.756286 0.654241i \(-0.772988\pi\)
−0.756286 + 0.654241i \(0.772988\pi\)
\(542\) 153.941i 0.284024i
\(543\) 0 0
\(544\) −319.663 −0.587615
\(545\) − 250.416i − 0.459479i
\(546\) 0 0
\(547\) −982.786 −1.79668 −0.898342 0.439297i \(-0.855227\pi\)
−0.898342 + 0.439297i \(0.855227\pi\)
\(548\) − 132.888i − 0.242497i
\(549\) 0 0
\(550\) −8.36281 −0.0152051
\(551\) − 1001.03i − 1.81675i
\(552\) 0 0
\(553\) 651.016 1.17724
\(554\) − 146.959i − 0.265269i
\(555\) 0 0
\(556\) −53.5029 −0.0962282
\(557\) − 696.090i − 1.24971i −0.780740 0.624856i \(-0.785158\pi\)
0.780740 0.624856i \(-0.214842\pi\)
\(558\) 0 0
\(559\) −205.599 −0.367798
\(560\) − 253.717i − 0.453065i
\(561\) 0 0
\(562\) 760.891 1.35390
\(563\) 153.937i 0.273423i 0.990611 + 0.136712i \(0.0436534\pi\)
−0.990611 + 0.136712i \(0.956347\pi\)
\(564\) 0 0
\(565\) −561.103 −0.993102
\(566\) 425.708i 0.752134i
\(567\) 0 0
\(568\) −675.944 −1.19004
\(569\) − 488.224i − 0.858039i −0.903295 0.429020i \(-0.858859\pi\)
0.903295 0.429020i \(-0.141141\pi\)
\(570\) 0 0
\(571\) 684.984 1.19962 0.599811 0.800142i \(-0.295242\pi\)
0.599811 + 0.800142i \(0.295242\pi\)
\(572\) − 1.44072i − 0.00251875i
\(573\) 0 0
\(574\) 370.340 0.645192
\(575\) 218.397i 0.379821i
\(576\) 0 0
\(577\) −13.8816 −0.0240582 −0.0120291 0.999928i \(-0.503829\pi\)
−0.0120291 + 0.999928i \(0.503829\pi\)
\(578\) − 30.0713i − 0.0520264i
\(579\) 0 0
\(580\) −161.898 −0.279134
\(581\) − 994.667i − 1.71199i
\(582\) 0 0
\(583\) 19.4983 0.0334447
\(584\) 1220.43i 2.08977i
\(585\) 0 0
\(586\) 558.963 0.953861
\(587\) 782.701i 1.33339i 0.745330 + 0.666696i \(0.232292\pi\)
−0.745330 + 0.666696i \(0.767708\pi\)
\(588\) 0 0
\(589\) 104.961 0.178202
\(590\) − 448.500i − 0.760170i
\(591\) 0 0
\(592\) 216.667 0.365992
\(593\) − 916.503i − 1.54554i −0.634688 0.772768i \(-0.718872\pi\)
0.634688 0.772768i \(-0.281128\pi\)
\(594\) 0 0
\(595\) 447.993 0.752929
\(596\) − 114.768i − 0.192563i
\(597\) 0 0
\(598\) 81.0605 0.135553
\(599\) − 49.3571i − 0.0823991i −0.999151 0.0411995i \(-0.986882\pi\)
0.999151 0.0411995i \(-0.0131179\pi\)
\(600\) 0 0
\(601\) −60.0406 −0.0999011 −0.0499506 0.998752i \(-0.515906\pi\)
−0.0499506 + 0.998752i \(0.515906\pi\)
\(602\) 857.961i 1.42518i
\(603\) 0 0
\(604\) −0.454411 −0.000752336 0
\(605\) 361.566i 0.597630i
\(606\) 0 0
\(607\) 500.297 0.824213 0.412107 0.911136i \(-0.364793\pi\)
0.412107 + 0.911136i \(0.364793\pi\)
\(608\) 455.474i 0.749135i
\(609\) 0 0
\(610\) −443.342 −0.726790
\(611\) 161.324i 0.264033i
\(612\) 0 0
\(613\) 137.391 0.224129 0.112064 0.993701i \(-0.464254\pi\)
0.112064 + 0.993701i \(0.464254\pi\)
\(614\) − 480.673i − 0.782856i
\(615\) 0 0
\(616\) −24.9770 −0.0405470
\(617\) − 470.896i − 0.763203i −0.924327 0.381602i \(-0.875373\pi\)
0.924327 0.381602i \(-0.124627\pi\)
\(618\) 0 0
\(619\) 1.90176 0.00307230 0.00153615 0.999999i \(-0.499511\pi\)
0.00153615 + 0.999999i \(0.499511\pi\)
\(620\) − 16.9755i − 0.0273799i
\(621\) 0 0
\(622\) −337.155 −0.542050
\(623\) − 1091.45i − 1.75192i
\(624\) 0 0
\(625\) 34.2118 0.0547389
\(626\) 112.995i 0.180504i
\(627\) 0 0
\(628\) 143.634 0.228717
\(629\) 382.574i 0.608225i
\(630\) 0 0
\(631\) 83.6165 0.132514 0.0662571 0.997803i \(-0.478894\pi\)
0.0662571 + 0.997803i \(0.478894\pi\)
\(632\) − 622.723i − 0.985322i
\(633\) 0 0
\(634\) 372.716 0.587880
\(635\) 326.033i 0.513438i
\(636\) 0 0
\(637\) 122.098 0.191676
\(638\) − 22.2357i − 0.0348522i
\(639\) 0 0
\(640\) −110.609 −0.172826
\(641\) − 77.2534i − 0.120520i −0.998183 0.0602601i \(-0.980807\pi\)
0.998183 0.0602601i \(-0.0191930\pi\)
\(642\) 0 0
\(643\) −56.2948 −0.0875502 −0.0437751 0.999041i \(-0.513939\pi\)
−0.0437751 + 0.999041i \(0.513939\pi\)
\(644\) 157.008i 0.243801i
\(645\) 0 0
\(646\) 637.774 0.987266
\(647\) − 1064.84i − 1.64581i −0.568182 0.822903i \(-0.692353\pi\)
0.568182 0.822903i \(-0.307647\pi\)
\(648\) 0 0
\(649\) −28.5916 −0.0440548
\(650\) − 95.6870i − 0.147211i
\(651\) 0 0
\(652\) 264.362 0.405463
\(653\) 845.231i 1.29438i 0.762328 + 0.647191i \(0.224056\pi\)
−0.762328 + 0.647191i \(0.775944\pi\)
\(654\) 0 0
\(655\) 253.998 0.387783
\(656\) − 229.398i − 0.349692i
\(657\) 0 0
\(658\) 673.204 1.02311
\(659\) 471.835i 0.715987i 0.933724 + 0.357994i \(0.116539\pi\)
−0.933724 + 0.357994i \(0.883461\pi\)
\(660\) 0 0
\(661\) 612.351 0.926400 0.463200 0.886254i \(-0.346701\pi\)
0.463200 + 0.886254i \(0.346701\pi\)
\(662\) − 26.5262i − 0.0400697i
\(663\) 0 0
\(664\) −951.440 −1.43289
\(665\) − 638.326i − 0.959889i
\(666\) 0 0
\(667\) −580.692 −0.870603
\(668\) 178.998i 0.267962i
\(669\) 0 0
\(670\) 484.796 0.723576
\(671\) 28.2628i 0.0421204i
\(672\) 0 0
\(673\) 1126.87 1.67440 0.837198 0.546900i \(-0.184192\pi\)
0.837198 + 0.546900i \(0.184192\pi\)
\(674\) 37.5358i 0.0556910i
\(675\) 0 0
\(676\) 16.4847 0.0243857
\(677\) − 851.800i − 1.25820i −0.777326 0.629099i \(-0.783424\pi\)
0.777326 0.629099i \(-0.216576\pi\)
\(678\) 0 0
\(679\) 356.001 0.524302
\(680\) − 428.524i − 0.630182i
\(681\) 0 0
\(682\) 2.33149 0.00341861
\(683\) − 473.707i − 0.693568i −0.937945 0.346784i \(-0.887274\pi\)
0.937945 0.346784i \(-0.112726\pi\)
\(684\) 0 0
\(685\) 313.407 0.457528
\(686\) 227.737i 0.331979i
\(687\) 0 0
\(688\) 531.443 0.772446
\(689\) 223.099i 0.323801i
\(690\) 0 0
\(691\) −881.925 −1.27630 −0.638151 0.769911i \(-0.720301\pi\)
−0.638151 + 0.769911i \(0.720301\pi\)
\(692\) − 126.747i − 0.183161i
\(693\) 0 0
\(694\) −557.326 −0.803063
\(695\) − 126.182i − 0.181557i
\(696\) 0 0
\(697\) 405.053 0.581138
\(698\) 215.075i 0.308131i
\(699\) 0 0
\(700\) 185.339 0.264769
\(701\) 24.6220i 0.0351240i 0.999846 + 0.0175620i \(0.00559045\pi\)
−0.999846 + 0.0175620i \(0.994410\pi\)
\(702\) 0 0
\(703\) 545.113 0.775410
\(704\) 21.8647i 0.0310578i
\(705\) 0 0
\(706\) 948.139 1.34297
\(707\) 801.904i 1.13423i
\(708\) 0 0
\(709\) −1123.21 −1.58422 −0.792109 0.610379i \(-0.791017\pi\)
−0.792109 + 0.610379i \(0.791017\pi\)
\(710\) − 383.724i − 0.540457i
\(711\) 0 0
\(712\) −1044.02 −1.46631
\(713\) − 60.8876i − 0.0853963i
\(714\) 0 0
\(715\) 3.39783 0.00475221
\(716\) − 264.817i − 0.369856i
\(717\) 0 0
\(718\) −1126.48 −1.56892
\(719\) 213.798i 0.297354i 0.988886 + 0.148677i \(0.0475015\pi\)
−0.988886 + 0.148677i \(0.952499\pi\)
\(720\) 0 0
\(721\) 291.135 0.403794
\(722\) − 312.055i − 0.432210i
\(723\) 0 0
\(724\) 202.387 0.279540
\(725\) 685.472i 0.945479i
\(726\) 0 0
\(727\) −585.224 −0.804985 −0.402492 0.915423i \(-0.631856\pi\)
−0.402492 + 0.915423i \(0.631856\pi\)
\(728\) − 285.786i − 0.392563i
\(729\) 0 0
\(730\) −692.821 −0.949069
\(731\) 938.380i 1.28369i
\(732\) 0 0
\(733\) 37.3209 0.0509153 0.0254577 0.999676i \(-0.491896\pi\)
0.0254577 + 0.999676i \(0.491896\pi\)
\(734\) 952.932i 1.29827i
\(735\) 0 0
\(736\) 264.219 0.358993
\(737\) − 30.9054i − 0.0419341i
\(738\) 0 0
\(739\) −698.106 −0.944663 −0.472331 0.881421i \(-0.656587\pi\)
−0.472331 + 0.881421i \(0.656587\pi\)
\(740\) − 88.1622i − 0.119138i
\(741\) 0 0
\(742\) 930.988 1.25470
\(743\) 166.716i 0.224382i 0.993687 + 0.112191i \(0.0357869\pi\)
−0.993687 + 0.112191i \(0.964213\pi\)
\(744\) 0 0
\(745\) 270.670 0.363316
\(746\) − 612.682i − 0.821289i
\(747\) 0 0
\(748\) −6.57564 −0.00879097
\(749\) 1469.45i 1.96188i
\(750\) 0 0
\(751\) −935.532 −1.24571 −0.622857 0.782335i \(-0.714028\pi\)
−0.622857 + 0.782335i \(0.714028\pi\)
\(752\) − 417.000i − 0.554521i
\(753\) 0 0
\(754\) 254.421 0.337428
\(755\) − 1.07169i − 0.00141946i
\(756\) 0 0
\(757\) −256.749 −0.339167 −0.169583 0.985516i \(-0.554242\pi\)
−0.169583 + 0.985516i \(0.554242\pi\)
\(758\) − 190.278i − 0.251026i
\(759\) 0 0
\(760\) −610.585 −0.803402
\(761\) − 159.934i − 0.210162i −0.994464 0.105081i \(-0.966490\pi\)
0.994464 0.105081i \(-0.0335103\pi\)
\(762\) 0 0
\(763\) −762.230 −0.998991
\(764\) − 295.528i − 0.386816i
\(765\) 0 0
\(766\) −229.322 −0.299376
\(767\) − 327.144i − 0.426524i
\(768\) 0 0
\(769\) −632.916 −0.823038 −0.411519 0.911401i \(-0.635002\pi\)
−0.411519 + 0.911401i \(0.635002\pi\)
\(770\) − 14.1791i − 0.0184144i
\(771\) 0 0
\(772\) 229.307 0.297030
\(773\) 629.049i 0.813776i 0.913478 + 0.406888i \(0.133386\pi\)
−0.913478 + 0.406888i \(0.866614\pi\)
\(774\) 0 0
\(775\) −71.8741 −0.0927407
\(776\) − 340.530i − 0.438827i
\(777\) 0 0
\(778\) −1184.06 −1.52193
\(779\) − 577.143i − 0.740877i
\(780\) 0 0
\(781\) −24.4622 −0.0313216
\(782\) − 369.971i − 0.473108i
\(783\) 0 0
\(784\) −315.605 −0.402557
\(785\) 338.749i 0.431528i
\(786\) 0 0
\(787\) 565.537 0.718598 0.359299 0.933222i \(-0.383016\pi\)
0.359299 + 0.933222i \(0.383016\pi\)
\(788\) 65.2211i 0.0827679i
\(789\) 0 0
\(790\) 353.512 0.447483
\(791\) 1707.91i 2.15918i
\(792\) 0 0
\(793\) −323.382 −0.407795
\(794\) 262.230i 0.330264i
\(795\) 0 0
\(796\) 418.580 0.525854
\(797\) − 181.462i − 0.227681i −0.993499 0.113840i \(-0.963685\pi\)
0.993499 0.113840i \(-0.0363153\pi\)
\(798\) 0 0
\(799\) 736.305 0.921533
\(800\) − 311.895i − 0.389868i
\(801\) 0 0
\(802\) −61.3972 −0.0765551
\(803\) 44.1669i 0.0550023i
\(804\) 0 0
\(805\) −370.291 −0.459989
\(806\) 26.6769i 0.0330978i
\(807\) 0 0
\(808\) 767.054 0.949325
\(809\) 680.471i 0.841127i 0.907263 + 0.420563i \(0.138168\pi\)
−0.907263 + 0.420563i \(0.861832\pi\)
\(810\) 0 0
\(811\) −821.125 −1.01249 −0.506243 0.862391i \(-0.668966\pi\)
−0.506243 + 0.862391i \(0.668966\pi\)
\(812\) 492.794i 0.606889i
\(813\) 0 0
\(814\) 12.1086 0.0148754
\(815\) 623.476i 0.765002i
\(816\) 0 0
\(817\) 1337.06 1.63655
\(818\) − 102.602i − 0.125431i
\(819\) 0 0
\(820\) −93.3424 −0.113832
\(821\) − 245.999i − 0.299633i −0.988714 0.149816i \(-0.952132\pi\)
0.988714 0.149816i \(-0.0478683\pi\)
\(822\) 0 0
\(823\) 1453.51 1.76611 0.883057 0.469266i \(-0.155481\pi\)
0.883057 + 0.469266i \(0.155481\pi\)
\(824\) − 278.483i − 0.337965i
\(825\) 0 0
\(826\) −1365.17 −1.65275
\(827\) 255.461i 0.308900i 0.988001 + 0.154450i \(0.0493606\pi\)
−0.988001 + 0.154450i \(0.950639\pi\)
\(828\) 0 0
\(829\) −1367.99 −1.65017 −0.825087 0.565006i \(-0.808874\pi\)
−0.825087 + 0.565006i \(0.808874\pi\)
\(830\) − 540.120i − 0.650747i
\(831\) 0 0
\(832\) −250.175 −0.300692
\(833\) − 557.270i − 0.668992i
\(834\) 0 0
\(835\) −422.153 −0.505572
\(836\) 9.36936i 0.0112074i
\(837\) 0 0
\(838\) 414.763 0.494944
\(839\) 208.071i 0.247999i 0.992282 + 0.123999i \(0.0395721\pi\)
−0.992282 + 0.123999i \(0.960428\pi\)
\(840\) 0 0
\(841\) −981.590 −1.16717
\(842\) − 40.4188i − 0.0480033i
\(843\) 0 0
\(844\) −328.604 −0.389342
\(845\) 38.8778i 0.0460093i
\(846\) 0 0
\(847\) 1100.55 1.29936
\(848\) − 576.678i − 0.680044i
\(849\) 0 0
\(850\) −436.728 −0.513797
\(851\) − 316.218i − 0.371585i
\(852\) 0 0
\(853\) −487.480 −0.571488 −0.285744 0.958306i \(-0.592241\pi\)
−0.285744 + 0.958306i \(0.592241\pi\)
\(854\) 1349.47i 1.58017i
\(855\) 0 0
\(856\) 1405.59 1.64204
\(857\) 1221.14i 1.42490i 0.701721 + 0.712451i \(0.252415\pi\)
−0.701721 + 0.712451i \(0.747585\pi\)
\(858\) 0 0
\(859\) −650.258 −0.756995 −0.378497 0.925602i \(-0.623559\pi\)
−0.378497 + 0.925602i \(0.623559\pi\)
\(860\) − 216.245i − 0.251448i
\(861\) 0 0
\(862\) 572.984 0.664714
\(863\) 330.661i 0.383153i 0.981478 + 0.191576i \(0.0613600\pi\)
−0.981478 + 0.191576i \(0.938640\pi\)
\(864\) 0 0
\(865\) 298.923 0.345576
\(866\) 917.224i 1.05915i
\(867\) 0 0
\(868\) −51.6711 −0.0595289
\(869\) − 22.5361i − 0.0259334i
\(870\) 0 0
\(871\) 353.619 0.405992
\(872\) 729.105i 0.836130i
\(873\) 0 0
\(874\) −527.156 −0.603153
\(875\) 1117.69i 1.27736i
\(876\) 0 0
\(877\) 1424.99 1.62485 0.812425 0.583066i \(-0.198147\pi\)
0.812425 + 0.583066i \(0.198147\pi\)
\(878\) − 1279.53i − 1.45733i
\(879\) 0 0
\(880\) −8.78288 −0.00998055
\(881\) − 1120.04i − 1.27133i −0.771965 0.635665i \(-0.780726\pi\)
0.771965 0.635665i \(-0.219274\pi\)
\(882\) 0 0
\(883\) 20.7974 0.0235532 0.0117766 0.999931i \(-0.496251\pi\)
0.0117766 + 0.999931i \(0.496251\pi\)
\(884\) − 75.2383i − 0.0851112i
\(885\) 0 0
\(886\) 657.705 0.742330
\(887\) − 495.824i − 0.558990i −0.960147 0.279495i \(-0.909833\pi\)
0.960147 0.279495i \(-0.0901670\pi\)
\(888\) 0 0
\(889\) 992.397 1.11631
\(890\) − 592.673i − 0.665925i
\(891\) 0 0
\(892\) 30.5984 0.0343031
\(893\) − 1049.13i − 1.17484i
\(894\) 0 0
\(895\) 624.550 0.697821
\(896\) 336.676i 0.375755i
\(897\) 0 0
\(898\) −282.309 −0.314375
\(899\) − 191.105i − 0.212575i
\(900\) 0 0
\(901\) 1018.25 1.13014
\(902\) − 12.8200i − 0.0142129i
\(903\) 0 0
\(904\) 1633.69 1.80718
\(905\) 477.313i 0.527418i
\(906\) 0 0
\(907\) 109.081 0.120266 0.0601331 0.998190i \(-0.480847\pi\)
0.0601331 + 0.998190i \(0.480847\pi\)
\(908\) − 374.377i − 0.412309i
\(909\) 0 0
\(910\) 162.237 0.178282
\(911\) 263.944i 0.289730i 0.989451 + 0.144865i \(0.0462748\pi\)
−0.989451 + 0.144865i \(0.953725\pi\)
\(912\) 0 0
\(913\) −34.4323 −0.0377133
\(914\) − 605.755i − 0.662752i
\(915\) 0 0
\(916\) 106.522 0.116291
\(917\) − 773.132i − 0.843111i
\(918\) 0 0
\(919\) −1474.65 −1.60462 −0.802312 0.596905i \(-0.796397\pi\)
−0.802312 + 0.596905i \(0.796397\pi\)
\(920\) 354.199i 0.384998i
\(921\) 0 0
\(922\) 95.3532 0.103420
\(923\) − 279.896i − 0.303246i
\(924\) 0 0
\(925\) −373.277 −0.403542
\(926\) − 548.177i − 0.591984i
\(927\) 0 0
\(928\) 829.291 0.893633
\(929\) − 451.122i − 0.485600i −0.970076 0.242800i \(-0.921934\pi\)
0.970076 0.242800i \(-0.0780659\pi\)
\(930\) 0 0
\(931\) −794.031 −0.852880
\(932\) 395.709i 0.424581i
\(933\) 0 0
\(934\) 238.839 0.255716
\(935\) − 15.5081i − 0.0165862i
\(936\) 0 0
\(937\) −1070.93 −1.14293 −0.571465 0.820626i \(-0.693625\pi\)
−0.571465 + 0.820626i \(0.693625\pi\)
\(938\) − 1475.65i − 1.57318i
\(939\) 0 0
\(940\) −169.678 −0.180508
\(941\) − 944.024i − 1.00321i −0.865096 0.501607i \(-0.832742\pi\)
0.865096 0.501607i \(-0.167258\pi\)
\(942\) 0 0
\(943\) −334.799 −0.355036
\(944\) 845.620i 0.895784i
\(945\) 0 0
\(946\) 29.7000 0.0313953
\(947\) 388.622i 0.410372i 0.978723 + 0.205186i \(0.0657799\pi\)
−0.978723 + 0.205186i \(0.934220\pi\)
\(948\) 0 0
\(949\) −505.356 −0.532514
\(950\) 622.275i 0.655027i
\(951\) 0 0
\(952\) −1304.36 −1.37013
\(953\) − 927.318i − 0.973052i −0.873666 0.486526i \(-0.838264\pi\)
0.873666 0.486526i \(-0.161736\pi\)
\(954\) 0 0
\(955\) 696.978 0.729819
\(956\) − 331.278i − 0.346525i
\(957\) 0 0
\(958\) −153.090 −0.159801
\(959\) − 953.964i − 0.994748i
\(960\) 0 0
\(961\) −940.962 −0.979149
\(962\) 138.546i 0.144018i
\(963\) 0 0
\(964\) −439.423 −0.455833
\(965\) 540.803i 0.560418i
\(966\) 0 0
\(967\) 256.120 0.264860 0.132430 0.991192i \(-0.457722\pi\)
0.132430 + 0.991192i \(0.457722\pi\)
\(968\) − 1052.73i − 1.08753i
\(969\) 0 0
\(970\) 193.314 0.199293
\(971\) 805.661i 0.829722i 0.909885 + 0.414861i \(0.136170\pi\)
−0.909885 + 0.414861i \(0.863830\pi\)
\(972\) 0 0
\(973\) −384.080 −0.394738
\(974\) − 436.716i − 0.448374i
\(975\) 0 0
\(976\) 835.894 0.856449
\(977\) − 755.926i − 0.773722i −0.922138 0.386861i \(-0.873559\pi\)
0.922138 0.386861i \(-0.126441\pi\)
\(978\) 0 0
\(979\) −37.7826 −0.0385930
\(980\) 128.420i 0.131041i
\(981\) 0 0
\(982\) 1342.32 1.36693
\(983\) 728.405i 0.741002i 0.928832 + 0.370501i \(0.120814\pi\)
−0.928832 + 0.370501i \(0.879186\pi\)
\(984\) 0 0
\(985\) −153.819 −0.156161
\(986\) − 1161.21i − 1.17770i
\(987\) 0 0
\(988\) −107.204 −0.108506
\(989\) − 775.623i − 0.784250i
\(990\) 0 0
\(991\) 1238.28 1.24953 0.624763 0.780814i \(-0.285196\pi\)
0.624763 + 0.780814i \(0.285196\pi\)
\(992\) 86.9540i 0.0876552i
\(993\) 0 0
\(994\) −1168.00 −1.17505
\(995\) 987.187i 0.992147i
\(996\) 0 0
\(997\) 1564.68 1.56939 0.784694 0.619883i \(-0.212820\pi\)
0.784694 + 0.619883i \(0.212820\pi\)
\(998\) − 105.788i − 0.106000i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.3.c.a.53.3 8
3.2 odd 2 inner 117.3.c.a.53.6 yes 8
4.3 odd 2 1872.3.f.d.1457.6 8
12.11 even 2 1872.3.f.d.1457.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.3.c.a.53.3 8 1.1 even 1 trivial
117.3.c.a.53.6 yes 8 3.2 odd 2 inner
1872.3.f.d.1457.3 8 12.11 even 2
1872.3.f.d.1457.6 8 4.3 odd 2