Properties

Label 117.3.c.a.53.2
Level $117$
Weight $3$
Character 117.53
Analytic conductor $3.188$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(53,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.53");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.1574161678336.15
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 20x^{6} + 106x^{4} + 164x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 53.2
Root \(-2.13992i\) of defining polynomial
Character \(\chi\) \(=\) 117.53
Dual form 117.3.c.a.53.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.13992i q^{2} -0.579250 q^{4} -3.56642i q^{5} +0.858882 q^{7} -7.32013i q^{8} -7.63185 q^{10} -7.84626i q^{11} -3.60555 q^{13} -1.83794i q^{14} -17.9815 q^{16} +5.04921i q^{17} +8.31746 q^{19} +2.06585i q^{20} -16.7904 q^{22} +19.3527i q^{23} +12.2806 q^{25} +7.71558i q^{26} -0.497507 q^{28} +2.17368i q^{29} +7.92040 q^{31} +9.19837i q^{32} +10.8049 q^{34} -3.06314i q^{35} +68.7104 q^{37} -17.7987i q^{38} -26.1067 q^{40} +72.7172i q^{41} +76.1964 q^{43} +4.54494i q^{44} +41.4133 q^{46} -62.8508i q^{47} -48.2623 q^{49} -26.2795i q^{50} +2.08852 q^{52} +53.9288i q^{53} -27.9831 q^{55} -6.28712i q^{56} +4.65149 q^{58} +53.4683i q^{59} -32.8363 q^{61} -16.9490i q^{62} -52.2421 q^{64} +12.8589i q^{65} -87.0307 q^{67} -2.92475i q^{68} -6.55486 q^{70} +9.99222i q^{71} -39.5822 q^{73} -147.035i q^{74} -4.81789 q^{76} -6.73901i q^{77} -88.1246 q^{79} +64.1295i q^{80} +155.609 q^{82} -24.3629i q^{83} +18.0076 q^{85} -163.054i q^{86} -57.4356 q^{88} -40.5038i q^{89} -3.09674 q^{91} -11.2101i q^{92} -134.496 q^{94} -29.6636i q^{95} +170.201 q^{97} +103.277i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} - 16 q^{7} + 24 q^{16} + 64 q^{19} - 80 q^{22} - 24 q^{25} + 184 q^{28} - 40 q^{31} - 272 q^{34} - 104 q^{37} + 32 q^{40} + 128 q^{43} + 232 q^{46} + 136 q^{49} + 104 q^{52} - 224 q^{55} - 88 q^{58}+ \cdots + 328 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.13992i − 1.06996i −0.844865 0.534980i \(-0.820319\pi\)
0.844865 0.534980i \(-0.179681\pi\)
\(3\) 0 0
\(4\) −0.579250 −0.144812
\(5\) − 3.56642i − 0.713285i −0.934241 0.356642i \(-0.883922\pi\)
0.934241 0.356642i \(-0.116078\pi\)
\(6\) 0 0
\(7\) 0.858882 0.122697 0.0613487 0.998116i \(-0.480460\pi\)
0.0613487 + 0.998116i \(0.480460\pi\)
\(8\) − 7.32013i − 0.915016i
\(9\) 0 0
\(10\) −7.63185 −0.763185
\(11\) − 7.84626i − 0.713296i −0.934239 0.356648i \(-0.883920\pi\)
0.934239 0.356648i \(-0.116080\pi\)
\(12\) 0 0
\(13\) −3.60555 −0.277350
\(14\) − 1.83794i − 0.131281i
\(15\) 0 0
\(16\) −17.9815 −1.12384
\(17\) 5.04921i 0.297012i 0.988911 + 0.148506i \(0.0474465\pi\)
−0.988911 + 0.148506i \(0.952554\pi\)
\(18\) 0 0
\(19\) 8.31746 0.437761 0.218880 0.975752i \(-0.429760\pi\)
0.218880 + 0.975752i \(0.429760\pi\)
\(20\) 2.06585i 0.103293i
\(21\) 0 0
\(22\) −16.7904 −0.763198
\(23\) 19.3527i 0.841424i 0.907194 + 0.420712i \(0.138220\pi\)
−0.907194 + 0.420712i \(0.861780\pi\)
\(24\) 0 0
\(25\) 12.2806 0.491225
\(26\) 7.71558i 0.296753i
\(27\) 0 0
\(28\) −0.497507 −0.0177681
\(29\) 2.17368i 0.0749544i 0.999297 + 0.0374772i \(0.0119322\pi\)
−0.999297 + 0.0374772i \(0.988068\pi\)
\(30\) 0 0
\(31\) 7.92040 0.255497 0.127748 0.991807i \(-0.459225\pi\)
0.127748 + 0.991807i \(0.459225\pi\)
\(32\) 9.19837i 0.287449i
\(33\) 0 0
\(34\) 10.8049 0.317791
\(35\) − 3.06314i − 0.0875182i
\(36\) 0 0
\(37\) 68.7104 1.85704 0.928519 0.371286i \(-0.121083\pi\)
0.928519 + 0.371286i \(0.121083\pi\)
\(38\) − 17.7987i − 0.468386i
\(39\) 0 0
\(40\) −26.1067 −0.652667
\(41\) 72.7172i 1.77359i 0.462162 + 0.886796i \(0.347074\pi\)
−0.462162 + 0.886796i \(0.652926\pi\)
\(42\) 0 0
\(43\) 76.1964 1.77201 0.886005 0.463676i \(-0.153470\pi\)
0.886005 + 0.463676i \(0.153470\pi\)
\(44\) 4.54494i 0.103294i
\(45\) 0 0
\(46\) 41.4133 0.900289
\(47\) − 62.8508i − 1.33725i −0.743599 0.668626i \(-0.766883\pi\)
0.743599 0.668626i \(-0.233117\pi\)
\(48\) 0 0
\(49\) −48.2623 −0.984945
\(50\) − 26.2795i − 0.525591i
\(51\) 0 0
\(52\) 2.08852 0.0401638
\(53\) 53.9288i 1.01752i 0.860907 + 0.508762i \(0.169897\pi\)
−0.860907 + 0.508762i \(0.830103\pi\)
\(54\) 0 0
\(55\) −27.9831 −0.508783
\(56\) − 6.28712i − 0.112270i
\(57\) 0 0
\(58\) 4.65149 0.0801981
\(59\) 53.4683i 0.906242i 0.891449 + 0.453121i \(0.149689\pi\)
−0.891449 + 0.453121i \(0.850311\pi\)
\(60\) 0 0
\(61\) −32.8363 −0.538300 −0.269150 0.963098i \(-0.586743\pi\)
−0.269150 + 0.963098i \(0.586743\pi\)
\(62\) − 16.9490i − 0.273371i
\(63\) 0 0
\(64\) −52.2421 −0.816283
\(65\) 12.8589i 0.197830i
\(66\) 0 0
\(67\) −87.0307 −1.29897 −0.649483 0.760376i \(-0.725015\pi\)
−0.649483 + 0.760376i \(0.725015\pi\)
\(68\) − 2.92475i − 0.0430111i
\(69\) 0 0
\(70\) −6.55486 −0.0936409
\(71\) 9.99222i 0.140735i 0.997521 + 0.0703677i \(0.0224173\pi\)
−0.997521 + 0.0703677i \(0.977583\pi\)
\(72\) 0 0
\(73\) −39.5822 −0.542222 −0.271111 0.962548i \(-0.587391\pi\)
−0.271111 + 0.962548i \(0.587391\pi\)
\(74\) − 147.035i − 1.98695i
\(75\) 0 0
\(76\) −4.81789 −0.0633932
\(77\) − 6.73901i − 0.0875196i
\(78\) 0 0
\(79\) −88.1246 −1.11550 −0.557750 0.830009i \(-0.688335\pi\)
−0.557750 + 0.830009i \(0.688335\pi\)
\(80\) 64.1295i 0.801619i
\(81\) 0 0
\(82\) 155.609 1.89767
\(83\) − 24.3629i − 0.293529i −0.989171 0.146765i \(-0.953114\pi\)
0.989171 0.146765i \(-0.0468860\pi\)
\(84\) 0 0
\(85\) 18.0076 0.211854
\(86\) − 163.054i − 1.89598i
\(87\) 0 0
\(88\) −57.4356 −0.652677
\(89\) − 40.5038i − 0.455098i −0.973767 0.227549i \(-0.926929\pi\)
0.973767 0.227549i \(-0.0730713\pi\)
\(90\) 0 0
\(91\) −3.09674 −0.0340301
\(92\) − 11.2101i − 0.121849i
\(93\) 0 0
\(94\) −134.496 −1.43080
\(95\) − 29.6636i − 0.312248i
\(96\) 0 0
\(97\) 170.201 1.75465 0.877327 0.479893i \(-0.159325\pi\)
0.877327 + 0.479893i \(0.159325\pi\)
\(98\) 103.277i 1.05385i
\(99\) 0 0
\(100\) −7.11355 −0.0711355
\(101\) 102.920i 1.01901i 0.860467 + 0.509506i \(0.170172\pi\)
−0.860467 + 0.509506i \(0.829828\pi\)
\(102\) 0 0
\(103\) −101.075 −0.981307 −0.490654 0.871355i \(-0.663242\pi\)
−0.490654 + 0.871355i \(0.663242\pi\)
\(104\) 26.3931i 0.253780i
\(105\) 0 0
\(106\) 115.403 1.08871
\(107\) − 200.168i − 1.87073i −0.353690 0.935363i \(-0.615073\pi\)
0.353690 0.935363i \(-0.384927\pi\)
\(108\) 0 0
\(109\) 29.7394 0.272839 0.136419 0.990651i \(-0.456441\pi\)
0.136419 + 0.990651i \(0.456441\pi\)
\(110\) 59.8815i 0.544377i
\(111\) 0 0
\(112\) −15.4440 −0.137893
\(113\) − 35.8897i − 0.317608i −0.987310 0.158804i \(-0.949236\pi\)
0.987310 0.158804i \(-0.0507638\pi\)
\(114\) 0 0
\(115\) 69.0201 0.600174
\(116\) − 1.25910i − 0.0108543i
\(117\) 0 0
\(118\) 114.418 0.969642
\(119\) 4.33668i 0.0364426i
\(120\) 0 0
\(121\) 59.4362 0.491208
\(122\) 70.2670i 0.575959i
\(123\) 0 0
\(124\) −4.58789 −0.0369991
\(125\) − 132.958i − 1.06367i
\(126\) 0 0
\(127\) 22.4466 0.176745 0.0883723 0.996088i \(-0.471833\pi\)
0.0883723 + 0.996088i \(0.471833\pi\)
\(128\) 148.587i 1.16084i
\(129\) 0 0
\(130\) 27.5170 0.211670
\(131\) 42.5938i 0.325144i 0.986697 + 0.162572i \(0.0519789\pi\)
−0.986697 + 0.162572i \(0.948021\pi\)
\(132\) 0 0
\(133\) 7.14371 0.0537121
\(134\) 186.239i 1.38984i
\(135\) 0 0
\(136\) 36.9608 0.271771
\(137\) 169.512i 1.23732i 0.785660 + 0.618658i \(0.212323\pi\)
−0.785660 + 0.618658i \(0.787677\pi\)
\(138\) 0 0
\(139\) −198.690 −1.42943 −0.714713 0.699418i \(-0.753443\pi\)
−0.714713 + 0.699418i \(0.753443\pi\)
\(140\) 1.77432i 0.0126737i
\(141\) 0 0
\(142\) 21.3825 0.150581
\(143\) 28.2901i 0.197833i
\(144\) 0 0
\(145\) 7.75225 0.0534638
\(146\) 84.7027i 0.580155i
\(147\) 0 0
\(148\) −39.8005 −0.268922
\(149\) 42.7329i 0.286798i 0.989665 + 0.143399i \(0.0458033\pi\)
−0.989665 + 0.143399i \(0.954197\pi\)
\(150\) 0 0
\(151\) −173.831 −1.15120 −0.575600 0.817731i \(-0.695231\pi\)
−0.575600 + 0.817731i \(0.695231\pi\)
\(152\) − 60.8848i − 0.400558i
\(153\) 0 0
\(154\) −14.4209 −0.0936424
\(155\) − 28.2475i − 0.182242i
\(156\) 0 0
\(157\) 64.4382 0.410434 0.205217 0.978716i \(-0.434210\pi\)
0.205217 + 0.978716i \(0.434210\pi\)
\(158\) 188.579i 1.19354i
\(159\) 0 0
\(160\) 32.8053 0.205033
\(161\) 16.6217i 0.103241i
\(162\) 0 0
\(163\) 152.796 0.937402 0.468701 0.883357i \(-0.344722\pi\)
0.468701 + 0.883357i \(0.344722\pi\)
\(164\) − 42.1215i − 0.256838i
\(165\) 0 0
\(166\) −52.1347 −0.314064
\(167\) − 158.953i − 0.951814i −0.879496 0.475907i \(-0.842120\pi\)
0.879496 0.475907i \(-0.157880\pi\)
\(168\) 0 0
\(169\) 13.0000 0.0769231
\(170\) − 38.5348i − 0.226675i
\(171\) 0 0
\(172\) −44.1368 −0.256609
\(173\) 259.562i 1.50036i 0.661236 + 0.750178i \(0.270032\pi\)
−0.661236 + 0.750178i \(0.729968\pi\)
\(174\) 0 0
\(175\) 10.5476 0.0602721
\(176\) 141.087i 0.801632i
\(177\) 0 0
\(178\) −86.6747 −0.486937
\(179\) − 290.623i − 1.62359i −0.583941 0.811796i \(-0.698490\pi\)
0.583941 0.811796i \(-0.301510\pi\)
\(180\) 0 0
\(181\) 50.4172 0.278548 0.139274 0.990254i \(-0.455523\pi\)
0.139274 + 0.990254i \(0.455523\pi\)
\(182\) 6.62678i 0.0364109i
\(183\) 0 0
\(184\) 141.664 0.769916
\(185\) − 245.050i − 1.32460i
\(186\) 0 0
\(187\) 39.6174 0.211858
\(188\) 36.4063i 0.193651i
\(189\) 0 0
\(190\) −63.4776 −0.334093
\(191\) − 193.582i − 1.01352i −0.862087 0.506760i \(-0.830843\pi\)
0.862087 0.506760i \(-0.169157\pi\)
\(192\) 0 0
\(193\) −123.506 −0.639928 −0.319964 0.947430i \(-0.603671\pi\)
−0.319964 + 0.947430i \(0.603671\pi\)
\(194\) − 364.217i − 1.87741i
\(195\) 0 0
\(196\) 27.9559 0.142632
\(197\) − 132.645i − 0.673327i −0.941625 0.336664i \(-0.890701\pi\)
0.941625 0.336664i \(-0.109299\pi\)
\(198\) 0 0
\(199\) −294.873 −1.48178 −0.740888 0.671629i \(-0.765595\pi\)
−0.740888 + 0.671629i \(0.765595\pi\)
\(200\) − 89.8958i − 0.449479i
\(201\) 0 0
\(202\) 220.241 1.09030
\(203\) 1.86693i 0.00919671i
\(204\) 0 0
\(205\) 259.340 1.26508
\(206\) 216.291i 1.04996i
\(207\) 0 0
\(208\) 64.8331 0.311698
\(209\) − 65.2609i − 0.312253i
\(210\) 0 0
\(211\) 138.095 0.654479 0.327240 0.944941i \(-0.393882\pi\)
0.327240 + 0.944941i \(0.393882\pi\)
\(212\) − 31.2383i − 0.147350i
\(213\) 0 0
\(214\) −428.342 −2.00160
\(215\) − 271.749i − 1.26395i
\(216\) 0 0
\(217\) 6.80269 0.0313488
\(218\) − 63.6399i − 0.291926i
\(219\) 0 0
\(220\) 16.2092 0.0736782
\(221\) − 18.2052i − 0.0823764i
\(222\) 0 0
\(223\) 198.949 0.892148 0.446074 0.894996i \(-0.352822\pi\)
0.446074 + 0.894996i \(0.352822\pi\)
\(224\) 7.90032i 0.0352693i
\(225\) 0 0
\(226\) −76.8011 −0.339828
\(227\) 307.416i 1.35426i 0.735865 + 0.677128i \(0.236776\pi\)
−0.735865 + 0.677128i \(0.763224\pi\)
\(228\) 0 0
\(229\) −421.180 −1.83921 −0.919607 0.392839i \(-0.871493\pi\)
−0.919607 + 0.392839i \(0.871493\pi\)
\(230\) − 147.697i − 0.642162i
\(231\) 0 0
\(232\) 15.9116 0.0685844
\(233\) 207.599i 0.890981i 0.895287 + 0.445491i \(0.146971\pi\)
−0.895287 + 0.445491i \(0.853029\pi\)
\(234\) 0 0
\(235\) −224.153 −0.953841
\(236\) − 30.9715i − 0.131235i
\(237\) 0 0
\(238\) 9.28013 0.0389921
\(239\) − 117.639i − 0.492213i −0.969243 0.246107i \(-0.920849\pi\)
0.969243 0.246107i \(-0.0791514\pi\)
\(240\) 0 0
\(241\) −38.9561 −0.161644 −0.0808218 0.996729i \(-0.525754\pi\)
−0.0808218 + 0.996729i \(0.525754\pi\)
\(242\) − 127.189i − 0.525573i
\(243\) 0 0
\(244\) 19.0204 0.0779525
\(245\) 172.124i 0.702546i
\(246\) 0 0
\(247\) −29.9890 −0.121413
\(248\) − 57.9784i − 0.233784i
\(249\) 0 0
\(250\) −284.520 −1.13808
\(251\) 352.849i 1.40577i 0.711302 + 0.702887i \(0.248106\pi\)
−0.711302 + 0.702887i \(0.751894\pi\)
\(252\) 0 0
\(253\) 151.847 0.600184
\(254\) − 48.0338i − 0.189109i
\(255\) 0 0
\(256\) 108.996 0.425767
\(257\) 281.021i 1.09347i 0.837306 + 0.546734i \(0.184129\pi\)
−0.837306 + 0.546734i \(0.815871\pi\)
\(258\) 0 0
\(259\) 59.0141 0.227854
\(260\) − 7.44853i − 0.0286482i
\(261\) 0 0
\(262\) 91.1473 0.347890
\(263\) − 234.575i − 0.891919i −0.895053 0.445959i \(-0.852863\pi\)
0.895053 0.445959i \(-0.147137\pi\)
\(264\) 0 0
\(265\) 192.333 0.725784
\(266\) − 15.2870i − 0.0574698i
\(267\) 0 0
\(268\) 50.4125 0.188107
\(269\) 249.428i 0.927241i 0.886034 + 0.463621i \(0.153450\pi\)
−0.886034 + 0.463621i \(0.846550\pi\)
\(270\) 0 0
\(271\) −410.732 −1.51561 −0.757807 0.652478i \(-0.773729\pi\)
−0.757807 + 0.652478i \(0.773729\pi\)
\(272\) − 90.7922i − 0.333795i
\(273\) 0 0
\(274\) 362.742 1.32388
\(275\) − 96.3570i − 0.350389i
\(276\) 0 0
\(277\) −339.001 −1.22383 −0.611914 0.790924i \(-0.709600\pi\)
−0.611914 + 0.790924i \(0.709600\pi\)
\(278\) 425.181i 1.52943i
\(279\) 0 0
\(280\) −22.4225 −0.0800805
\(281\) 308.915i 1.09934i 0.835381 + 0.549672i \(0.185247\pi\)
−0.835381 + 0.549672i \(0.814753\pi\)
\(282\) 0 0
\(283\) 303.991 1.07417 0.537087 0.843527i \(-0.319525\pi\)
0.537087 + 0.843527i \(0.319525\pi\)
\(284\) − 5.78799i − 0.0203803i
\(285\) 0 0
\(286\) 60.5385 0.211673
\(287\) 62.4555i 0.217615i
\(288\) 0 0
\(289\) 263.505 0.911784
\(290\) − 16.5892i − 0.0572041i
\(291\) 0 0
\(292\) 22.9280 0.0785205
\(293\) 188.736i 0.644150i 0.946714 + 0.322075i \(0.104380\pi\)
−0.946714 + 0.322075i \(0.895620\pi\)
\(294\) 0 0
\(295\) 190.691 0.646409
\(296\) − 502.969i − 1.69922i
\(297\) 0 0
\(298\) 91.4450 0.306862
\(299\) − 69.7773i − 0.233369i
\(300\) 0 0
\(301\) 65.4437 0.217421
\(302\) 371.985i 1.23174i
\(303\) 0 0
\(304\) −149.560 −0.491974
\(305\) 117.108i 0.383961i
\(306\) 0 0
\(307\) −71.1039 −0.231609 −0.115804 0.993272i \(-0.536945\pi\)
−0.115804 + 0.993272i \(0.536945\pi\)
\(308\) 3.90357i 0.0126739i
\(309\) 0 0
\(310\) −60.4474 −0.194991
\(311\) 404.873i 1.30184i 0.759146 + 0.650921i \(0.225617\pi\)
−0.759146 + 0.650921i \(0.774383\pi\)
\(312\) 0 0
\(313\) 161.711 0.516649 0.258325 0.966058i \(-0.416830\pi\)
0.258325 + 0.966058i \(0.416830\pi\)
\(314\) − 137.893i − 0.439148i
\(315\) 0 0
\(316\) 51.0462 0.161538
\(317\) − 380.854i − 1.20143i −0.799463 0.600715i \(-0.794883\pi\)
0.799463 0.600715i \(-0.205117\pi\)
\(318\) 0 0
\(319\) 17.0552 0.0534647
\(320\) 186.317i 0.582242i
\(321\) 0 0
\(322\) 35.5691 0.110463
\(323\) 41.9966i 0.130020i
\(324\) 0 0
\(325\) −44.2784 −0.136241
\(326\) − 326.972i − 1.00298i
\(327\) 0 0
\(328\) 532.299 1.62286
\(329\) − 53.9814i − 0.164077i
\(330\) 0 0
\(331\) 412.554 1.24639 0.623193 0.782068i \(-0.285835\pi\)
0.623193 + 0.782068i \(0.285835\pi\)
\(332\) 14.1122i 0.0425067i
\(333\) 0 0
\(334\) −340.146 −1.01840
\(335\) 310.388i 0.926533i
\(336\) 0 0
\(337\) 42.5700 0.126320 0.0631602 0.998003i \(-0.479882\pi\)
0.0631602 + 0.998003i \(0.479882\pi\)
\(338\) − 27.8189i − 0.0823045i
\(339\) 0 0
\(340\) −10.4309 −0.0306791
\(341\) − 62.1455i − 0.182245i
\(342\) 0 0
\(343\) −83.5369 −0.243548
\(344\) − 557.767i − 1.62142i
\(345\) 0 0
\(346\) 555.441 1.60532
\(347\) 257.692i 0.742629i 0.928507 + 0.371314i \(0.121093\pi\)
−0.928507 + 0.371314i \(0.878907\pi\)
\(348\) 0 0
\(349\) 198.002 0.567341 0.283671 0.958922i \(-0.408448\pi\)
0.283671 + 0.958922i \(0.408448\pi\)
\(350\) − 22.5710i − 0.0644886i
\(351\) 0 0
\(352\) 72.1728 0.205036
\(353\) − 226.372i − 0.641279i −0.947201 0.320640i \(-0.896102\pi\)
0.947201 0.320640i \(-0.103898\pi\)
\(354\) 0 0
\(355\) 35.6365 0.100384
\(356\) 23.4618i 0.0659039i
\(357\) 0 0
\(358\) −621.909 −1.73718
\(359\) − 112.701i − 0.313929i −0.987604 0.156965i \(-0.949829\pi\)
0.987604 0.156965i \(-0.0501709\pi\)
\(360\) 0 0
\(361\) −291.820 −0.808365
\(362\) − 107.889i − 0.298035i
\(363\) 0 0
\(364\) 1.79379 0.00492799
\(365\) 141.167i 0.386758i
\(366\) 0 0
\(367\) −107.425 −0.292710 −0.146355 0.989232i \(-0.546754\pi\)
−0.146355 + 0.989232i \(0.546754\pi\)
\(368\) − 347.991i − 0.945627i
\(369\) 0 0
\(370\) −524.387 −1.41726
\(371\) 46.3185i 0.124848i
\(372\) 0 0
\(373\) 325.706 0.873206 0.436603 0.899654i \(-0.356182\pi\)
0.436603 + 0.899654i \(0.356182\pi\)
\(374\) − 84.7780i − 0.226679i
\(375\) 0 0
\(376\) −460.076 −1.22361
\(377\) − 7.83730i − 0.0207886i
\(378\) 0 0
\(379\) −245.105 −0.646716 −0.323358 0.946277i \(-0.604812\pi\)
−0.323358 + 0.946277i \(0.604812\pi\)
\(380\) 17.1826i 0.0452174i
\(381\) 0 0
\(382\) −414.250 −1.08442
\(383\) − 306.030i − 0.799034i −0.916726 0.399517i \(-0.869178\pi\)
0.916726 0.399517i \(-0.130822\pi\)
\(384\) 0 0
\(385\) −24.0342 −0.0624264
\(386\) 264.293i 0.684697i
\(387\) 0 0
\(388\) −98.5892 −0.254096
\(389\) − 269.837i − 0.693668i −0.937926 0.346834i \(-0.887257\pi\)
0.937926 0.346834i \(-0.112743\pi\)
\(390\) 0 0
\(391\) −97.7161 −0.249913
\(392\) 353.286i 0.901240i
\(393\) 0 0
\(394\) −283.850 −0.720433
\(395\) 314.289i 0.795670i
\(396\) 0 0
\(397\) −333.218 −0.839339 −0.419670 0.907677i \(-0.637854\pi\)
−0.419670 + 0.907677i \(0.637854\pi\)
\(398\) 631.005i 1.58544i
\(399\) 0 0
\(400\) −220.824 −0.552059
\(401\) − 64.1145i − 0.159886i −0.996799 0.0799432i \(-0.974526\pi\)
0.996799 0.0799432i \(-0.0254739\pi\)
\(402\) 0 0
\(403\) −28.5574 −0.0708621
\(404\) − 59.6166i − 0.147566i
\(405\) 0 0
\(406\) 3.99508 0.00984010
\(407\) − 539.119i − 1.32462i
\(408\) 0 0
\(409\) −43.8559 −0.107227 −0.0536135 0.998562i \(-0.517074\pi\)
−0.0536135 + 0.998562i \(0.517074\pi\)
\(410\) − 554.967i − 1.35358i
\(411\) 0 0
\(412\) 58.5475 0.142106
\(413\) 45.9229i 0.111194i
\(414\) 0 0
\(415\) −86.8885 −0.209370
\(416\) − 33.1652i − 0.0797240i
\(417\) 0 0
\(418\) −139.653 −0.334098
\(419\) 92.1735i 0.219984i 0.993932 + 0.109992i \(0.0350826\pi\)
−0.993932 + 0.109992i \(0.964917\pi\)
\(420\) 0 0
\(421\) 582.913 1.38459 0.692296 0.721614i \(-0.256599\pi\)
0.692296 + 0.721614i \(0.256599\pi\)
\(422\) − 295.512i − 0.700266i
\(423\) 0 0
\(424\) 394.766 0.931051
\(425\) 62.0075i 0.145900i
\(426\) 0 0
\(427\) −28.2025 −0.0660480
\(428\) 115.947i 0.270904i
\(429\) 0 0
\(430\) −581.520 −1.35237
\(431\) − 624.264i − 1.44841i −0.689585 0.724205i \(-0.742207\pi\)
0.689585 0.724205i \(-0.257793\pi\)
\(432\) 0 0
\(433\) 211.885 0.489341 0.244670 0.969606i \(-0.421320\pi\)
0.244670 + 0.969606i \(0.421320\pi\)
\(434\) − 14.5572i − 0.0335419i
\(435\) 0 0
\(436\) −17.2266 −0.0395105
\(437\) 160.966i 0.368342i
\(438\) 0 0
\(439\) 263.984 0.601331 0.300665 0.953730i \(-0.402791\pi\)
0.300665 + 0.953730i \(0.402791\pi\)
\(440\) 204.840i 0.465545i
\(441\) 0 0
\(442\) −38.9576 −0.0881394
\(443\) 189.371i 0.427474i 0.976891 + 0.213737i \(0.0685635\pi\)
−0.976891 + 0.213737i \(0.931437\pi\)
\(444\) 0 0
\(445\) −144.454 −0.324615
\(446\) − 425.735i − 0.954562i
\(447\) 0 0
\(448\) −44.8698 −0.100156
\(449\) − 802.379i − 1.78704i −0.449027 0.893518i \(-0.648229\pi\)
0.449027 0.893518i \(-0.351771\pi\)
\(450\) 0 0
\(451\) 570.558 1.26510
\(452\) 20.7891i 0.0459936i
\(453\) 0 0
\(454\) 657.846 1.44900
\(455\) 11.0443i 0.0242732i
\(456\) 0 0
\(457\) −709.974 −1.55355 −0.776777 0.629776i \(-0.783147\pi\)
−0.776777 + 0.629776i \(0.783147\pi\)
\(458\) 901.291i 1.96788i
\(459\) 0 0
\(460\) −39.9799 −0.0869127
\(461\) 118.909i 0.257937i 0.991649 + 0.128968i \(0.0411666\pi\)
−0.991649 + 0.128968i \(0.958833\pi\)
\(462\) 0 0
\(463\) 407.849 0.880884 0.440442 0.897781i \(-0.354822\pi\)
0.440442 + 0.897781i \(0.354822\pi\)
\(464\) − 39.0859i − 0.0842369i
\(465\) 0 0
\(466\) 444.244 0.953313
\(467\) 856.028i 1.83304i 0.399994 + 0.916518i \(0.369012\pi\)
−0.399994 + 0.916518i \(0.630988\pi\)
\(468\) 0 0
\(469\) −74.7491 −0.159380
\(470\) 479.668i 1.02057i
\(471\) 0 0
\(472\) 391.395 0.829226
\(473\) − 597.857i − 1.26397i
\(474\) 0 0
\(475\) 102.144 0.215039
\(476\) − 2.51202i − 0.00527735i
\(477\) 0 0
\(478\) −251.738 −0.526648
\(479\) − 845.092i − 1.76428i −0.470983 0.882142i \(-0.656101\pi\)
0.470983 0.882142i \(-0.343899\pi\)
\(480\) 0 0
\(481\) −247.739 −0.515049
\(482\) 83.3628i 0.172952i
\(483\) 0 0
\(484\) −34.4284 −0.0711331
\(485\) − 607.010i − 1.25157i
\(486\) 0 0
\(487\) 247.650 0.508523 0.254261 0.967136i \(-0.418168\pi\)
0.254261 + 0.967136i \(0.418168\pi\)
\(488\) 240.366i 0.492553i
\(489\) 0 0
\(490\) 368.331 0.751696
\(491\) 835.638i 1.70191i 0.525238 + 0.850955i \(0.323976\pi\)
−0.525238 + 0.850955i \(0.676024\pi\)
\(492\) 0 0
\(493\) −10.9754 −0.0222624
\(494\) 64.1740i 0.129907i
\(495\) 0 0
\(496\) −142.421 −0.287138
\(497\) 8.58214i 0.0172679i
\(498\) 0 0
\(499\) 45.5119 0.0912061 0.0456031 0.998960i \(-0.485479\pi\)
0.0456031 + 0.998960i \(0.485479\pi\)
\(500\) 77.0162i 0.154032i
\(501\) 0 0
\(502\) 755.068 1.50412
\(503\) 565.557i 1.12437i 0.827012 + 0.562184i \(0.190039\pi\)
−0.827012 + 0.562184i \(0.809961\pi\)
\(504\) 0 0
\(505\) 367.057 0.726846
\(506\) − 324.939i − 0.642173i
\(507\) 0 0
\(508\) −13.0022 −0.0255948
\(509\) − 414.808i − 0.814946i −0.913217 0.407473i \(-0.866410\pi\)
0.913217 0.407473i \(-0.133590\pi\)
\(510\) 0 0
\(511\) −33.9964 −0.0665292
\(512\) 361.106i 0.705286i
\(513\) 0 0
\(514\) 601.363 1.16997
\(515\) 360.475i 0.699951i
\(516\) 0 0
\(517\) −493.144 −0.953857
\(518\) − 126.285i − 0.243794i
\(519\) 0 0
\(520\) 94.1289 0.181017
\(521\) 760.000i 1.45873i 0.684123 + 0.729367i \(0.260185\pi\)
−0.684123 + 0.729367i \(0.739815\pi\)
\(522\) 0 0
\(523\) −115.493 −0.220827 −0.110414 0.993886i \(-0.535218\pi\)
−0.110414 + 0.993886i \(0.535218\pi\)
\(524\) − 24.6725i − 0.0470849i
\(525\) 0 0
\(526\) −501.971 −0.954317
\(527\) 39.9918i 0.0758857i
\(528\) 0 0
\(529\) 154.471 0.292006
\(530\) − 411.577i − 0.776560i
\(531\) 0 0
\(532\) −4.13800 −0.00777819
\(533\) − 262.186i − 0.491906i
\(534\) 0 0
\(535\) −713.882 −1.33436
\(536\) 637.076i 1.18857i
\(537\) 0 0
\(538\) 533.755 0.992110
\(539\) 378.679i 0.702558i
\(540\) 0 0
\(541\) 34.3309 0.0634582 0.0317291 0.999497i \(-0.489899\pi\)
0.0317291 + 0.999497i \(0.489899\pi\)
\(542\) 878.932i 1.62165i
\(543\) 0 0
\(544\) −46.4445 −0.0853759
\(545\) − 106.063i − 0.194612i
\(546\) 0 0
\(547\) −565.016 −1.03294 −0.516468 0.856307i \(-0.672753\pi\)
−0.516468 + 0.856307i \(0.672753\pi\)
\(548\) − 98.1900i − 0.179179i
\(549\) 0 0
\(550\) −206.196 −0.374902
\(551\) 18.0795i 0.0328121i
\(552\) 0 0
\(553\) −75.6886 −0.136869
\(554\) 725.433i 1.30945i
\(555\) 0 0
\(556\) 115.091 0.206999
\(557\) − 371.688i − 0.667303i −0.942696 0.333652i \(-0.891719\pi\)
0.942696 0.333652i \(-0.108281\pi\)
\(558\) 0 0
\(559\) −274.730 −0.491467
\(560\) 55.0797i 0.0983566i
\(561\) 0 0
\(562\) 661.054 1.17625
\(563\) − 331.462i − 0.588742i −0.955691 0.294371i \(-0.904890\pi\)
0.955691 0.294371i \(-0.0951101\pi\)
\(564\) 0 0
\(565\) −127.998 −0.226545
\(566\) − 650.517i − 1.14932i
\(567\) 0 0
\(568\) 73.1443 0.128775
\(569\) 915.855i 1.60959i 0.593555 + 0.804794i \(0.297724\pi\)
−0.593555 + 0.804794i \(0.702276\pi\)
\(570\) 0 0
\(571\) 291.517 0.510537 0.255269 0.966870i \(-0.417836\pi\)
0.255269 + 0.966870i \(0.417836\pi\)
\(572\) − 16.3870i − 0.0286487i
\(573\) 0 0
\(574\) 133.650 0.232839
\(575\) 237.664i 0.413328i
\(576\) 0 0
\(577\) −736.436 −1.27632 −0.638159 0.769904i \(-0.720304\pi\)
−0.638159 + 0.769904i \(0.720304\pi\)
\(578\) − 563.880i − 0.975571i
\(579\) 0 0
\(580\) −4.49049 −0.00774223
\(581\) − 20.9249i − 0.0360153i
\(582\) 0 0
\(583\) 423.139 0.725796
\(584\) 289.747i 0.496142i
\(585\) 0 0
\(586\) 403.880 0.689215
\(587\) 446.404i 0.760484i 0.924887 + 0.380242i \(0.124159\pi\)
−0.924887 + 0.380242i \(0.875841\pi\)
\(588\) 0 0
\(589\) 65.8776 0.111847
\(590\) − 408.062i − 0.691631i
\(591\) 0 0
\(592\) −1235.51 −2.08702
\(593\) − 1116.11i − 1.88214i −0.338217 0.941068i \(-0.609824\pi\)
0.338217 0.941068i \(-0.390176\pi\)
\(594\) 0 0
\(595\) 15.4664 0.0259940
\(596\) − 24.7531i − 0.0415320i
\(597\) 0 0
\(598\) −149.318 −0.249695
\(599\) − 702.968i − 1.17357i −0.809743 0.586785i \(-0.800393\pi\)
0.809743 0.586785i \(-0.199607\pi\)
\(600\) 0 0
\(601\) −968.678 −1.61178 −0.805888 0.592067i \(-0.798312\pi\)
−0.805888 + 0.592067i \(0.798312\pi\)
\(602\) − 140.044i − 0.232632i
\(603\) 0 0
\(604\) 100.692 0.166708
\(605\) − 211.975i − 0.350371i
\(606\) 0 0
\(607\) −943.964 −1.55513 −0.777565 0.628803i \(-0.783545\pi\)
−0.777565 + 0.628803i \(0.783545\pi\)
\(608\) 76.5071i 0.125834i
\(609\) 0 0
\(610\) 250.602 0.410823
\(611\) 226.612i 0.370887i
\(612\) 0 0
\(613\) −415.139 −0.677226 −0.338613 0.940926i \(-0.609958\pi\)
−0.338613 + 0.940926i \(0.609958\pi\)
\(614\) 152.157i 0.247812i
\(615\) 0 0
\(616\) −49.3304 −0.0800818
\(617\) − 318.708i − 0.516544i −0.966072 0.258272i \(-0.916847\pi\)
0.966072 0.258272i \(-0.0831531\pi\)
\(618\) 0 0
\(619\) 931.448 1.50476 0.752381 0.658728i \(-0.228905\pi\)
0.752381 + 0.658728i \(0.228905\pi\)
\(620\) 16.3624i 0.0263909i
\(621\) 0 0
\(622\) 866.395 1.39292
\(623\) − 34.7879i − 0.0558394i
\(624\) 0 0
\(625\) −167.170 −0.267473
\(626\) − 346.049i − 0.552794i
\(627\) 0 0
\(628\) −37.3258 −0.0594360
\(629\) 346.933i 0.551563i
\(630\) 0 0
\(631\) −363.382 −0.575883 −0.287942 0.957648i \(-0.592971\pi\)
−0.287942 + 0.957648i \(0.592971\pi\)
\(632\) 645.083i 1.02070i
\(633\) 0 0
\(634\) −814.995 −1.28548
\(635\) − 80.0539i − 0.126069i
\(636\) 0 0
\(637\) 174.012 0.273175
\(638\) − 36.4968i − 0.0572050i
\(639\) 0 0
\(640\) 529.925 0.828008
\(641\) − 509.363i − 0.794638i −0.917680 0.397319i \(-0.869941\pi\)
0.917680 0.397319i \(-0.130059\pi\)
\(642\) 0 0
\(643\) 442.556 0.688268 0.344134 0.938921i \(-0.388173\pi\)
0.344134 + 0.938921i \(0.388173\pi\)
\(644\) − 9.62813i − 0.0149505i
\(645\) 0 0
\(646\) 89.8693 0.139116
\(647\) − 1044.65i − 1.61461i −0.590136 0.807304i \(-0.700926\pi\)
0.590136 0.807304i \(-0.299074\pi\)
\(648\) 0 0
\(649\) 419.526 0.646419
\(650\) 94.7522i 0.145773i
\(651\) 0 0
\(652\) −88.5073 −0.135747
\(653\) − 417.370i − 0.639158i −0.947560 0.319579i \(-0.896459\pi\)
0.947560 0.319579i \(-0.103541\pi\)
\(654\) 0 0
\(655\) 151.908 0.231920
\(656\) − 1307.56i − 1.99324i
\(657\) 0 0
\(658\) −115.516 −0.175556
\(659\) 164.313i 0.249337i 0.992198 + 0.124669i \(0.0397868\pi\)
−0.992198 + 0.124669i \(0.960213\pi\)
\(660\) 0 0
\(661\) −797.369 −1.20631 −0.603153 0.797625i \(-0.706089\pi\)
−0.603153 + 0.797625i \(0.706089\pi\)
\(662\) − 882.831i − 1.33358i
\(663\) 0 0
\(664\) −178.340 −0.268584
\(665\) − 25.4775i − 0.0383120i
\(666\) 0 0
\(667\) −42.0666 −0.0630684
\(668\) 92.0734i 0.137834i
\(669\) 0 0
\(670\) 664.206 0.991352
\(671\) 257.642i 0.383967i
\(672\) 0 0
\(673\) 566.237 0.841363 0.420682 0.907208i \(-0.361791\pi\)
0.420682 + 0.907208i \(0.361791\pi\)
\(674\) − 91.0963i − 0.135158i
\(675\) 0 0
\(676\) −7.53025 −0.0111394
\(677\) − 793.541i − 1.17214i −0.810259 0.586072i \(-0.800674\pi\)
0.810259 0.586072i \(-0.199326\pi\)
\(678\) 0 0
\(679\) 146.183 0.215291
\(680\) − 131.818i − 0.193850i
\(681\) 0 0
\(682\) −132.986 −0.194995
\(683\) − 358.976i − 0.525586i −0.964852 0.262793i \(-0.915356\pi\)
0.964852 0.262793i \(-0.0846437\pi\)
\(684\) 0 0
\(685\) 604.553 0.882558
\(686\) 178.762i 0.260586i
\(687\) 0 0
\(688\) −1370.12 −1.99146
\(689\) − 194.443i − 0.282211i
\(690\) 0 0
\(691\) 1048.54 1.51742 0.758712 0.651426i \(-0.225829\pi\)
0.758712 + 0.651426i \(0.225829\pi\)
\(692\) − 150.351i − 0.217270i
\(693\) 0 0
\(694\) 551.440 0.794582
\(695\) 708.613i 1.01959i
\(696\) 0 0
\(697\) −367.165 −0.526778
\(698\) − 423.708i − 0.607032i
\(699\) 0 0
\(700\) −6.10970 −0.00872815
\(701\) 954.340i 1.36140i 0.732563 + 0.680699i \(0.238324\pi\)
−0.732563 + 0.680699i \(0.761676\pi\)
\(702\) 0 0
\(703\) 571.496 0.812938
\(704\) 409.905i 0.582252i
\(705\) 0 0
\(706\) −484.417 −0.686142
\(707\) 88.3964i 0.125030i
\(708\) 0 0
\(709\) −675.395 −0.952603 −0.476301 0.879282i \(-0.658023\pi\)
−0.476301 + 0.879282i \(0.658023\pi\)
\(710\) − 76.2591i − 0.107407i
\(711\) 0 0
\(712\) −296.493 −0.416422
\(713\) 153.282i 0.214981i
\(714\) 0 0
\(715\) 100.894 0.141111
\(716\) 168.343i 0.235116i
\(717\) 0 0
\(718\) −241.170 −0.335892
\(719\) 624.734i 0.868893i 0.900698 + 0.434447i \(0.143056\pi\)
−0.900698 + 0.434447i \(0.856944\pi\)
\(720\) 0 0
\(721\) −86.8112 −0.120404
\(722\) 624.471i 0.864918i
\(723\) 0 0
\(724\) −29.2041 −0.0403372
\(725\) 26.6941i 0.0368195i
\(726\) 0 0
\(727\) 474.492 0.652672 0.326336 0.945254i \(-0.394186\pi\)
0.326336 + 0.945254i \(0.394186\pi\)
\(728\) 22.6685i 0.0311381i
\(729\) 0 0
\(730\) 302.086 0.413816
\(731\) 384.732i 0.526309i
\(732\) 0 0
\(733\) −924.471 −1.26122 −0.630608 0.776102i \(-0.717194\pi\)
−0.630608 + 0.776102i \(0.717194\pi\)
\(734\) 229.880i 0.313188i
\(735\) 0 0
\(736\) −178.014 −0.241866
\(737\) 682.866i 0.926548i
\(738\) 0 0
\(739\) −911.308 −1.23316 −0.616582 0.787291i \(-0.711483\pi\)
−0.616582 + 0.787291i \(0.711483\pi\)
\(740\) 141.945i 0.191818i
\(741\) 0 0
\(742\) 99.1177 0.133582
\(743\) − 577.651i − 0.777458i −0.921352 0.388729i \(-0.872914\pi\)
0.921352 0.388729i \(-0.127086\pi\)
\(744\) 0 0
\(745\) 152.404 0.204569
\(746\) − 696.983i − 0.934294i
\(747\) 0 0
\(748\) −22.9484 −0.0306797
\(749\) − 171.920i − 0.229533i
\(750\) 0 0
\(751\) −6.67335 −0.00888595 −0.00444297 0.999990i \(-0.501414\pi\)
−0.00444297 + 0.999990i \(0.501414\pi\)
\(752\) 1130.15i 1.50286i
\(753\) 0 0
\(754\) −16.7712 −0.0222430
\(755\) 619.955i 0.821133i
\(756\) 0 0
\(757\) 746.101 0.985602 0.492801 0.870142i \(-0.335973\pi\)
0.492801 + 0.870142i \(0.335973\pi\)
\(758\) 524.506i 0.691960i
\(759\) 0 0
\(760\) −217.141 −0.285712
\(761\) 631.409i 0.829710i 0.909888 + 0.414855i \(0.136168\pi\)
−0.909888 + 0.414855i \(0.863832\pi\)
\(762\) 0 0
\(763\) 25.5427 0.0334766
\(764\) 112.132i 0.146770i
\(765\) 0 0
\(766\) −654.880 −0.854934
\(767\) − 192.783i − 0.251346i
\(768\) 0 0
\(769\) −464.923 −0.604581 −0.302290 0.953216i \(-0.597751\pi\)
−0.302290 + 0.953216i \(0.597751\pi\)
\(770\) 51.4311i 0.0667937i
\(771\) 0 0
\(772\) 71.5410 0.0926696
\(773\) 384.272i 0.497118i 0.968617 + 0.248559i \(0.0799570\pi\)
−0.968617 + 0.248559i \(0.920043\pi\)
\(774\) 0 0
\(775\) 97.2676 0.125507
\(776\) − 1245.90i − 1.60554i
\(777\) 0 0
\(778\) −577.429 −0.742197
\(779\) 604.823i 0.776409i
\(780\) 0 0
\(781\) 78.4015 0.100386
\(782\) 209.104i 0.267397i
\(783\) 0 0
\(784\) 867.827 1.10692
\(785\) − 229.814i − 0.292757i
\(786\) 0 0
\(787\) 1040.08 1.32158 0.660788 0.750572i \(-0.270222\pi\)
0.660788 + 0.750572i \(0.270222\pi\)
\(788\) 76.8349i 0.0975062i
\(789\) 0 0
\(790\) 672.554 0.851334
\(791\) − 30.8250i − 0.0389697i
\(792\) 0 0
\(793\) 118.393 0.149298
\(794\) 713.059i 0.898059i
\(795\) 0 0
\(796\) 170.805 0.214580
\(797\) 773.072i 0.969977i 0.874520 + 0.484989i \(0.161176\pi\)
−0.874520 + 0.484989i \(0.838824\pi\)
\(798\) 0 0
\(799\) 317.347 0.397180
\(800\) 112.962i 0.141202i
\(801\) 0 0
\(802\) −137.200 −0.171072
\(803\) 310.572i 0.386765i
\(804\) 0 0
\(805\) 59.2801 0.0736399
\(806\) 61.1106i 0.0758195i
\(807\) 0 0
\(808\) 753.390 0.932413
\(809\) − 527.404i − 0.651921i −0.945383 0.325961i \(-0.894312\pi\)
0.945383 0.325961i \(-0.105688\pi\)
\(810\) 0 0
\(811\) 147.398 0.181749 0.0908744 0.995862i \(-0.471034\pi\)
0.0908744 + 0.995862i \(0.471034\pi\)
\(812\) − 1.08142i − 0.00133180i
\(813\) 0 0
\(814\) −1153.67 −1.41729
\(815\) − 544.937i − 0.668634i
\(816\) 0 0
\(817\) 633.760 0.775716
\(818\) 93.8480i 0.114729i
\(819\) 0 0
\(820\) −150.223 −0.183199
\(821\) − 267.199i − 0.325455i −0.986671 0.162728i \(-0.947971\pi\)
0.986671 0.162728i \(-0.0520292\pi\)
\(822\) 0 0
\(823\) 124.455 0.151221 0.0756104 0.997137i \(-0.475909\pi\)
0.0756104 + 0.997137i \(0.475909\pi\)
\(824\) 739.879i 0.897912i
\(825\) 0 0
\(826\) 98.2714 0.118973
\(827\) − 16.6224i − 0.0200996i −0.999949 0.0100498i \(-0.996801\pi\)
0.999949 0.0100498i \(-0.00319901\pi\)
\(828\) 0 0
\(829\) 1497.36 1.80622 0.903111 0.429407i \(-0.141278\pi\)
0.903111 + 0.429407i \(0.141278\pi\)
\(830\) 185.934i 0.224017i
\(831\) 0 0
\(832\) 188.362 0.226396
\(833\) − 243.687i − 0.292541i
\(834\) 0 0
\(835\) −566.893 −0.678914
\(836\) 37.8024i 0.0452182i
\(837\) 0 0
\(838\) 197.244 0.235374
\(839\) 729.144i 0.869063i 0.900657 + 0.434531i \(0.143086\pi\)
−0.900657 + 0.434531i \(0.856914\pi\)
\(840\) 0 0
\(841\) 836.275 0.994382
\(842\) − 1247.39i − 1.48146i
\(843\) 0 0
\(844\) −79.9916 −0.0947768
\(845\) − 46.3635i − 0.0548680i
\(846\) 0 0
\(847\) 51.0487 0.0602700
\(848\) − 969.719i − 1.14354i
\(849\) 0 0
\(850\) 132.691 0.156107
\(851\) 1329.73i 1.56255i
\(852\) 0 0
\(853\) −1268.25 −1.48681 −0.743404 0.668843i \(-0.766790\pi\)
−0.743404 + 0.668843i \(0.766790\pi\)
\(854\) 60.3510i 0.0706687i
\(855\) 0 0
\(856\) −1465.25 −1.71174
\(857\) − 1423.69i − 1.66125i −0.556832 0.830625i \(-0.687983\pi\)
0.556832 0.830625i \(-0.312017\pi\)
\(858\) 0 0
\(859\) 1167.83 1.35953 0.679764 0.733431i \(-0.262082\pi\)
0.679764 + 0.733431i \(0.262082\pi\)
\(860\) 157.410i 0.183035i
\(861\) 0 0
\(862\) −1335.87 −1.54974
\(863\) 1234.26i 1.43020i 0.699023 + 0.715100i \(0.253619\pi\)
−0.699023 + 0.715100i \(0.746381\pi\)
\(864\) 0 0
\(865\) 925.707 1.07018
\(866\) − 453.416i − 0.523574i
\(867\) 0 0
\(868\) −3.94046 −0.00453970
\(869\) 691.448i 0.795683i
\(870\) 0 0
\(871\) 313.794 0.360268
\(872\) − 217.696i − 0.249652i
\(873\) 0 0
\(874\) 344.453 0.394111
\(875\) − 114.196i − 0.130509i
\(876\) 0 0
\(877\) −147.934 −0.168682 −0.0843409 0.996437i \(-0.526878\pi\)
−0.0843409 + 0.996437i \(0.526878\pi\)
\(878\) − 564.904i − 0.643399i
\(879\) 0 0
\(880\) 503.177 0.571792
\(881\) − 274.630i − 0.311726i −0.987779 0.155863i \(-0.950184\pi\)
0.987779 0.155863i \(-0.0498158\pi\)
\(882\) 0 0
\(883\) 976.907 1.10635 0.553175 0.833065i \(-0.313416\pi\)
0.553175 + 0.833065i \(0.313416\pi\)
\(884\) 10.5454i 0.0119291i
\(885\) 0 0
\(886\) 405.238 0.457379
\(887\) − 1288.92i − 1.45312i −0.687103 0.726560i \(-0.741118\pi\)
0.687103 0.726560i \(-0.258882\pi\)
\(888\) 0 0
\(889\) 19.2789 0.0216861
\(890\) 309.119i 0.347324i
\(891\) 0 0
\(892\) −115.241 −0.129194
\(893\) − 522.759i − 0.585396i
\(894\) 0 0
\(895\) −1036.48 −1.15808
\(896\) 127.619i 0.142432i
\(897\) 0 0
\(898\) −1717.03 −1.91206
\(899\) 17.2164i 0.0191506i
\(900\) 0 0
\(901\) −272.298 −0.302217
\(902\) − 1220.95i − 1.35360i
\(903\) 0 0
\(904\) −262.717 −0.290616
\(905\) − 179.809i − 0.198684i
\(906\) 0 0
\(907\) 1174.03 1.29441 0.647204 0.762317i \(-0.275938\pi\)
0.647204 + 0.762317i \(0.275938\pi\)
\(908\) − 178.071i − 0.196113i
\(909\) 0 0
\(910\) 23.6339 0.0259713
\(911\) − 1592.11i − 1.74765i −0.486241 0.873825i \(-0.661632\pi\)
0.486241 0.873825i \(-0.338368\pi\)
\(912\) 0 0
\(913\) −191.158 −0.209373
\(914\) 1519.29i 1.66224i
\(915\) 0 0
\(916\) 243.969 0.266341
\(917\) 36.5831i 0.0398943i
\(918\) 0 0
\(919\) −1715.09 −1.86625 −0.933127 0.359546i \(-0.882931\pi\)
−0.933127 + 0.359546i \(0.882931\pi\)
\(920\) − 505.235i − 0.549169i
\(921\) 0 0
\(922\) 254.455 0.275982
\(923\) − 36.0275i − 0.0390330i
\(924\) 0 0
\(925\) 843.807 0.912223
\(926\) − 872.764i − 0.942510i
\(927\) 0 0
\(928\) −19.9943 −0.0215456
\(929\) 385.239i 0.414681i 0.978269 + 0.207340i \(0.0664808\pi\)
−0.978269 + 0.207340i \(0.933519\pi\)
\(930\) 0 0
\(931\) −401.420 −0.431171
\(932\) − 120.251i − 0.129025i
\(933\) 0 0
\(934\) 1831.83 1.96127
\(935\) − 141.292i − 0.151115i
\(936\) 0 0
\(937\) 1212.65 1.29419 0.647093 0.762411i \(-0.275985\pi\)
0.647093 + 0.762411i \(0.275985\pi\)
\(938\) 159.957i 0.170530i
\(939\) 0 0
\(940\) 129.840 0.138128
\(941\) 219.219i 0.232964i 0.993193 + 0.116482i \(0.0371617\pi\)
−0.993193 + 0.116482i \(0.962838\pi\)
\(942\) 0 0
\(943\) −1407.28 −1.49234
\(944\) − 961.438i − 1.01847i
\(945\) 0 0
\(946\) −1279.36 −1.35239
\(947\) 55.5968i 0.0587084i 0.999569 + 0.0293542i \(0.00934507\pi\)
−0.999569 + 0.0293542i \(0.990655\pi\)
\(948\) 0 0
\(949\) 142.716 0.150385
\(950\) − 218.579i − 0.230083i
\(951\) 0 0
\(952\) 31.7450 0.0333456
\(953\) 599.958i 0.629546i 0.949167 + 0.314773i \(0.101928\pi\)
−0.949167 + 0.314773i \(0.898072\pi\)
\(954\) 0 0
\(955\) −690.396 −0.722928
\(956\) 68.1424i 0.0712786i
\(957\) 0 0
\(958\) −1808.43 −1.88771
\(959\) 145.591i 0.151816i
\(960\) 0 0
\(961\) −898.267 −0.934721
\(962\) 530.141i 0.551082i
\(963\) 0 0
\(964\) 22.5653 0.0234080
\(965\) 440.475i 0.456451i
\(966\) 0 0
\(967\) −988.565 −1.02230 −0.511150 0.859491i \(-0.670781\pi\)
−0.511150 + 0.859491i \(0.670781\pi\)
\(968\) − 435.081i − 0.449463i
\(969\) 0 0
\(970\) −1298.95 −1.33913
\(971\) − 940.431i − 0.968518i −0.874925 0.484259i \(-0.839089\pi\)
0.874925 0.484259i \(-0.160911\pi\)
\(972\) 0 0
\(973\) −170.651 −0.175387
\(974\) − 529.952i − 0.544098i
\(975\) 0 0
\(976\) 590.445 0.604964
\(977\) 317.445i 0.324918i 0.986715 + 0.162459i \(0.0519426\pi\)
−0.986715 + 0.162459i \(0.948057\pi\)
\(978\) 0 0
\(979\) −317.803 −0.324620
\(980\) − 99.7027i − 0.101737i
\(981\) 0 0
\(982\) 1788.20 1.82097
\(983\) − 461.726i − 0.469711i −0.972030 0.234856i \(-0.924538\pi\)
0.972030 0.234856i \(-0.0754617\pi\)
\(984\) 0 0
\(985\) −473.070 −0.480274
\(986\) 23.4864i 0.0238198i
\(987\) 0 0
\(988\) 17.3711 0.0175821
\(989\) 1474.61i 1.49101i
\(990\) 0 0
\(991\) −858.657 −0.866455 −0.433228 0.901285i \(-0.642625\pi\)
−0.433228 + 0.901285i \(0.642625\pi\)
\(992\) 72.8548i 0.0734424i
\(993\) 0 0
\(994\) 18.3651 0.0184759
\(995\) 1051.64i 1.05693i
\(996\) 0 0
\(997\) −933.420 −0.936229 −0.468114 0.883668i \(-0.655066\pi\)
−0.468114 + 0.883668i \(0.655066\pi\)
\(998\) − 97.3917i − 0.0975868i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.3.c.a.53.2 8
3.2 odd 2 inner 117.3.c.a.53.7 yes 8
4.3 odd 2 1872.3.f.d.1457.2 8
12.11 even 2 1872.3.f.d.1457.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.3.c.a.53.2 8 1.1 even 1 trivial
117.3.c.a.53.7 yes 8 3.2 odd 2 inner
1872.3.f.d.1457.2 8 4.3 odd 2
1872.3.f.d.1457.7 8 12.11 even 2