Properties

Label 117.3.c.a
Level $117$
Weight $3$
Character orbit 117.c
Analytic conductor $3.188$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(53,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.53");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.1574161678336.15
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 20x^{6} + 106x^{4} + 164x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{3} + \beta_{2} - 1) q^{4} + ( - \beta_{7} - \beta_{6} + \cdots + \beta_1) q^{5}+ \cdots + (\beta_{7} - \beta_{6} + \cdots - 2 \beta_1) q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_1 q^{2} + (\beta_{3} + \beta_{2} - 1) q^{4} + ( - \beta_{7} - \beta_{6} + \cdots + \beta_1) q^{5}+ \cdots + ( - 18 \beta_{7} + 18 \beta_{6} + \cdots + 59 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{4} - 16 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 8 q^{4} - 16 q^{7} + 24 q^{16} + 64 q^{19} - 80 q^{22} - 24 q^{25} + 184 q^{28} - 40 q^{31} - 272 q^{34} - 104 q^{37} + 32 q^{40} + 128 q^{43} + 232 q^{46} + 136 q^{49} + 104 q^{52} - 224 q^{55} - 88 q^{58} - 112 q^{61} - 72 q^{64} + 184 q^{67} + 40 q^{70} - 472 q^{73} - 72 q^{76} + 80 q^{79} + 48 q^{82} + 520 q^{85} + 144 q^{88} + 104 q^{91} - 128 q^{94} + 328 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 20x^{6} + 106x^{4} + 164x^{2} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{6} + 16\nu^{4} + 47\nu^{2} + 16 ) / 10 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{6} - 16\nu^{4} - 37\nu^{2} + 34 ) / 10 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{7} - 16\nu^{5} - 37\nu^{3} + 64\nu ) / 10 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 2\nu^{6} + 37\nu^{4} + 154\nu^{2} + 97 ) / 10 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{7} + 21\nu^{5} + 117\nu^{3} + 161\nu ) / 10 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 2\nu^{7} + 37\nu^{5} + 164\nu^{3} + 197\nu ) / 10 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta_{2} - 5 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{7} - \beta_{6} + \beta_{4} - 10\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( 2\beta_{5} - 12\beta_{3} - 16\beta_{2} + 47 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -16\beta_{7} + 18\beta_{6} - 14\beta_{4} + 115\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -32\beta_{5} + 145\beta_{3} + 219\beta_{2} - 533 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 219\beta_{7} - 251\beta_{6} + 177\beta_{4} - 1406\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
53.1
3.55413i
2.13992i
1.65286i
0.238646i
0.238646i
1.65286i
2.13992i
3.55413i
3.55413i 0 −8.63185 0.118383i 0 −12.0700 16.4622i 0 0.420750
53.2 2.13992i 0 −0.579250 3.56642i 0 0.858882 7.32013i 0 −7.63185
53.3 1.65286i 0 1.26805 2.99060i 0 9.10296 8.70736i 0 4.94305
53.4 0.238646i 0 3.94305 9.50384i 0 −5.89186 1.89558i 0 2.26805
53.5 0.238646i 0 3.94305 9.50384i 0 −5.89186 1.89558i 0 2.26805
53.6 1.65286i 0 1.26805 2.99060i 0 9.10296 8.70736i 0 4.94305
53.7 2.13992i 0 −0.579250 3.56642i 0 0.858882 7.32013i 0 −7.63185
53.8 3.55413i 0 −8.63185 0.118383i 0 −12.0700 16.4622i 0 0.420750
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 53.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 117.3.c.a 8
3.b odd 2 1 inner 117.3.c.a 8
4.b odd 2 1 1872.3.f.d 8
12.b even 2 1 1872.3.f.d 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
117.3.c.a 8 1.a even 1 1 trivial
117.3.c.a 8 3.b odd 2 1 inner
1872.3.f.d 8 4.b odd 2 1
1872.3.f.d 8 12.b even 2 1

Hecke kernels

This newform subspace is the entire newspace \(S_{3}^{\mathrm{new}}(117, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + 20 T^{6} + \cdots + 9 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} + 112 T^{6} + \cdots + 144 \) Copy content Toggle raw display
$7$ \( (T^{4} + 8 T^{3} + \cdots + 556)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} + 192 T^{6} + \cdots + 24336 \) Copy content Toggle raw display
$13$ \( (T^{2} - 13)^{4} \) Copy content Toggle raw display
$17$ \( T^{8} + \cdots + 2850278544 \) Copy content Toggle raw display
$19$ \( (T^{4} - 32 T^{3} + \cdots - 93636)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} + 784 T^{6} + \cdots + 77158656 \) Copy content Toggle raw display
$29$ \( T^{8} + \cdots + 5576504976 \) Copy content Toggle raw display
$31$ \( (T^{4} + 20 T^{3} + \cdots + 10204)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 52 T^{3} + \cdots - 3636032)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} + \cdots + 6043750227216 \) Copy content Toggle raw display
$43$ \( (T^{4} - 64 T^{3} + \cdots + 184848)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + \cdots + 125511484176 \) Copy content Toggle raw display
$53$ \( T^{8} + \cdots + 19225523934864 \) Copy content Toggle raw display
$59$ \( T^{8} + \cdots + 101008530090000 \) Copy content Toggle raw display
$61$ \( (T^{4} + 56 T^{3} + \cdots - 2361584)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} - 92 T^{3} + \cdots - 9538292)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} + \cdots + 40397566504464 \) Copy content Toggle raw display
$73$ \( (T^{4} + 236 T^{3} + \cdots - 286784)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} - 40 T^{3} + \cdots + 11328448)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + \cdots + 18793993721616 \) Copy content Toggle raw display
$89$ \( T^{8} + \cdots + 28996544904336 \) Copy content Toggle raw display
$97$ \( (T^{4} - 164 T^{3} + \cdots + 2153152)^{2} \) Copy content Toggle raw display
show more
show less