Properties

Label 117.3.bd.a.37.1
Level $117$
Weight $3$
Character 117.37
Analytic conductor $3.188$
Analytic rank $0$
Dimension $4$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(19,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.bd (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{12}]$

Embedding invariants

Embedding label 37.1
Root \(-0.866025 - 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 117.37
Dual form 117.3.bd.a.19.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(3.46410 + 2.00000i) q^{4} +(1.42820 + 5.33013i) q^{7} +(12.9904 - 0.500000i) q^{13} +(8.00000 + 13.8564i) q^{16} +(-1.16987 + 0.313467i) q^{19} -25.0000i q^{25} +(-5.71281 + 21.3205i) q^{28} +(-36.8109 - 36.8109i) q^{31} +(-65.0788 - 17.4378i) q^{37} +(-19.5000 - 11.2583i) q^{43} +(16.0648 - 9.27499i) q^{49} +(46.0000 + 24.2487i) q^{52} +(56.2917 - 97.5000i) q^{61} +64.0000i q^{64} +(-22.0289 + 82.2128i) q^{67} +(-56.7776 + 56.7776i) q^{73} +(-4.67949 - 1.25387i) q^{76} +157.617 q^{79} +(21.2180 + 68.5263i) q^{91} +(180.495 - 48.3634i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 22 q^{7} + 32 q^{16} - 22 q^{19} + 88 q^{28} - 26 q^{31} - 146 q^{37} - 78 q^{43} + 234 q^{49} + 184 q^{52} - 244 q^{67} - 286 q^{73} - 88 q^{76} + 362 q^{91} + 334 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(3\) 0 0
\(4\) 3.46410 + 2.00000i 0.866025 + 0.500000i
\(5\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(6\) 0 0
\(7\) 1.42820 + 5.33013i 0.204029 + 0.761447i 0.989743 + 0.142857i \(0.0456289\pi\)
−0.785714 + 0.618590i \(0.787704\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(12\) 0 0
\(13\) 12.9904 0.500000i 0.999260 0.0384615i
\(14\) 0 0
\(15\) 0 0
\(16\) 8.00000 + 13.8564i 0.500000 + 0.866025i
\(17\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(18\) 0 0
\(19\) −1.16987 + 0.313467i −0.0615723 + 0.0164982i −0.289474 0.957186i \(-0.593480\pi\)
0.227901 + 0.973684i \(0.426814\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(24\) 0 0
\(25\) 25.0000i 1.00000i
\(26\) 0 0
\(27\) 0 0
\(28\) −5.71281 + 21.3205i −0.204029 + 0.761447i
\(29\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(30\) 0 0
\(31\) −36.8109 36.8109i −1.18745 1.18745i −0.977771 0.209677i \(-0.932759\pi\)
−0.209677 0.977771i \(-0.567241\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −65.0788 17.4378i −1.75889 0.471292i −0.772401 0.635135i \(-0.780944\pi\)
−0.986486 + 0.163843i \(0.947611\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(42\) 0 0
\(43\) −19.5000 11.2583i −0.453488 0.261822i 0.255814 0.966726i \(-0.417657\pi\)
−0.709302 + 0.704904i \(0.750990\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(48\) 0 0
\(49\) 16.0648 9.27499i 0.327852 0.189286i
\(50\) 0 0
\(51\) 0 0
\(52\) 46.0000 + 24.2487i 0.884615 + 0.466321i
\(53\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(60\) 0 0
\(61\) 56.2917 97.5000i 0.922814 1.59836i 0.127774 0.991803i \(-0.459217\pi\)
0.795040 0.606557i \(-0.207450\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 64.0000i 1.00000i
\(65\) 0 0
\(66\) 0 0
\(67\) −22.0289 + 82.2128i −0.328789 + 1.22706i 0.581659 + 0.813433i \(0.302404\pi\)
−0.910448 + 0.413624i \(0.864263\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(72\) 0 0
\(73\) −56.7776 + 56.7776i −0.777775 + 0.777775i −0.979452 0.201677i \(-0.935361\pi\)
0.201677 + 0.979452i \(0.435361\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) −4.67949 1.25387i −0.0615723 0.0164982i
\(77\) 0 0
\(78\) 0 0
\(79\) 157.617 1.99515 0.997574 0.0696203i \(-0.0221788\pi\)
0.997574 + 0.0696203i \(0.0221788\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(90\) 0 0
\(91\) 21.2180 + 68.5263i 0.233164 + 0.753036i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 180.495 48.3634i 1.86077 0.498592i 0.860825 0.508902i \(-0.169948\pi\)
0.999947 + 0.0103093i \(0.00328160\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 50.0000 86.6025i 0.500000 0.866025i
\(101\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(102\) 0 0
\(103\) 202.650i 1.96748i 0.179612 + 0.983738i \(0.442516\pi\)
−0.179612 + 0.983738i \(0.557484\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(108\) 0 0
\(109\) −153.772 153.772i −1.41076 1.41076i −0.754793 0.655963i \(-0.772263\pi\)
−0.655963 0.754793i \(-0.727737\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −62.4308 + 62.4308i −0.557418 + 0.557418i
\(113\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −104.789 60.5000i −0.866025 0.500000i
\(122\) 0 0
\(123\) 0 0
\(124\) −53.8949 201.138i −0.434636 1.62208i
\(125\) 0 0
\(126\) 0 0
\(127\) −219.104 + 126.500i −1.72523 + 0.996063i −0.818292 + 0.574803i \(0.805079\pi\)
−0.906940 + 0.421260i \(0.861588\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) −3.34163 5.78788i −0.0251251 0.0435179i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(138\) 0 0
\(139\) 114.500 198.320i 0.823741 1.42676i −0.0791367 0.996864i \(-0.525216\pi\)
0.902878 0.429898i \(-0.141450\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −190.564 190.564i −1.28760 1.28760i
\(149\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(150\) 0 0
\(151\) −191.497 + 191.497i −1.26819 + 1.26819i −0.321175 + 0.947020i \(0.604078\pi\)
−0.947020 + 0.321175i \(0.895922\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 193.000 1.22930 0.614650 0.788800i \(-0.289297\pi\)
0.614650 + 0.788800i \(0.289297\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 30.9468 + 115.495i 0.189857 + 0.708557i 0.993538 + 0.113497i \(0.0362052\pi\)
−0.803681 + 0.595060i \(0.797128\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(168\) 0 0
\(169\) 168.500 12.9904i 0.997041 0.0768662i
\(170\) 0 0
\(171\) 0 0
\(172\) −45.0333 78.0000i −0.261822 0.453488i
\(173\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(174\) 0 0
\(175\) 133.253 35.7051i 0.761447 0.204029i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(180\) 0 0
\(181\) 180.133i 0.995212i 0.867403 + 0.497606i \(0.165787\pi\)
−0.867403 + 0.497606i \(0.834213\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(192\) 0 0
\(193\) −147.213 39.4456i −0.762761 0.204381i −0.143590 0.989637i \(-0.545865\pi\)
−0.619171 + 0.785256i \(0.712531\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 74.1999 0.378571
\(197\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(198\) 0 0
\(199\) 94.3968 + 54.5000i 0.474356 + 0.273869i 0.718061 0.695980i \(-0.245030\pi\)
−0.243706 + 0.969849i \(0.578363\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 110.851 + 176.000i 0.532939 + 0.846154i
\(209\) 0 0
\(210\) 0 0
\(211\) 168.875 + 292.500i 0.800355 + 1.38626i 0.919382 + 0.393365i \(0.128689\pi\)
−0.119027 + 0.992891i \(0.537978\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 143.633 248.780i 0.661905 1.14645i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −115.112 + 429.604i −0.516198 + 1.92648i −0.186099 + 0.982531i \(0.559584\pi\)
−0.330099 + 0.943946i \(0.607082\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(228\) 0 0
\(229\) 215.631 215.631i 0.941619 0.941619i −0.0567686 0.998387i \(-0.518080\pi\)
0.998387 + 0.0567686i \(0.0180797\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(240\) 0 0
\(241\) 18.6635 + 69.6532i 0.0774420 + 0.289017i 0.993776 0.111397i \(-0.0355327\pi\)
−0.916334 + 0.400415i \(0.868866\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 390.000 225.167i 1.59836 0.922814i
\(245\) 0 0
\(246\) 0 0
\(247\) −15.0404 + 4.65699i −0.0608922 + 0.0188542i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −128.000 + 221.703i −0.500000 + 0.866025i
\(257\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(258\) 0 0
\(259\) 371.783i 1.43546i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −240.736 + 240.736i −0.898268 + 0.898268i
\(269\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(270\) 0 0
\(271\) −512.987 137.454i −1.89294 0.507212i −0.998155 0.0607176i \(-0.980661\pi\)
−0.894786 0.446494i \(-0.852672\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −468.000 270.200i −1.68953 0.975451i −0.954874 0.297012i \(-0.904010\pi\)
−0.734657 0.678439i \(-0.762657\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(282\) 0 0
\(283\) −51.0955 + 29.5000i −0.180549 + 0.104240i −0.587551 0.809187i \(-0.699908\pi\)
0.407001 + 0.913428i \(0.366574\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −144.500 250.281i −0.500000 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) −310.238 + 83.1281i −1.06246 + 0.284685i
\(293\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 32.1584 120.017i 0.106838 0.398726i
\(302\) 0 0
\(303\) 0 0
\(304\) −13.7025 13.7025i −0.0450740 0.0450740i
\(305\) 0 0
\(306\) 0 0
\(307\) 335.811 335.811i 1.09385 1.09385i 0.0987325 0.995114i \(-0.468521\pi\)
0.995114 0.0987325i \(-0.0314788\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) −427.817 −1.36683 −0.683413 0.730032i \(-0.739505\pi\)
−0.683413 + 0.730032i \(0.739505\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 546.000 + 315.233i 1.72785 + 0.997574i
\(317\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −12.5000 324.760i −0.0384615 0.999260i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −199.187 + 53.3719i −0.601772 + 0.161244i −0.546828 0.837245i \(-0.684165\pi\)
−0.0549442 + 0.998489i \(0.517498\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 167.000i 0.495549i −0.968818 0.247774i \(-0.920301\pi\)
0.968818 0.247774i \(-0.0796992\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 263.575 + 263.575i 0.768440 + 0.768440i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(348\) 0 0
\(349\) 347.129 + 93.0129i 0.994638 + 0.266513i 0.719198 0.694805i \(-0.244510\pi\)
0.275441 + 0.961318i \(0.411176\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(360\) 0 0
\(361\) −311.365 + 179.767i −0.862506 + 0.497968i
\(362\) 0 0
\(363\) 0 0
\(364\) −63.5514 + 279.818i −0.174592 + 0.768731i
\(365\) 0 0
\(366\) 0 0
\(367\) 113.500 + 196.588i 0.309264 + 0.535661i 0.978202 0.207657i \(-0.0665839\pi\)
−0.668937 + 0.743319i \(0.733251\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −236.425 + 409.500i −0.633847 + 1.09786i 0.352911 + 0.935657i \(0.385192\pi\)
−0.986758 + 0.162198i \(0.948142\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 193.920 723.721i 0.511664 1.90955i 0.109499 0.993987i \(-0.465075\pi\)
0.402165 0.915567i \(-0.368258\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 721.979 + 193.454i 1.86077 + 0.498592i
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 152.420 + 568.838i 0.383929 + 1.43284i 0.839848 + 0.542821i \(0.182644\pi\)
−0.455919 + 0.890021i \(0.650689\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 346.410 200.000i 0.866025 0.500000i
\(401\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(402\) 0 0
\(403\) −496.593 459.782i −1.23224 1.14090i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 647.772 173.570i 1.58379 0.424376i 0.643696 0.765281i \(-0.277400\pi\)
0.940098 + 0.340905i \(0.110733\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −405.300 + 702.000i −0.983738 + 1.70388i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(420\) 0 0
\(421\) 586.044 + 586.044i 1.39203 + 1.39203i 0.820770 + 0.571259i \(0.193545\pi\)
0.571259 + 0.820770i \(0.306455\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 600.083 + 160.792i 1.40535 + 0.376562i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(432\) 0 0
\(433\) 310.903 + 179.500i 0.718021 + 0.414550i 0.814024 0.580831i \(-0.197272\pi\)
−0.0960028 + 0.995381i \(0.530606\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −225.138 840.228i −0.516373 1.92713i
\(437\) 0 0
\(438\) 0 0
\(439\) −448.500 + 258.942i −1.02164 + 0.589844i −0.914579 0.404408i \(-0.867478\pi\)
−0.107062 + 0.994252i \(0.534144\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −341.128 + 91.4050i −0.761447 + 0.204029i
\(449\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 49.3954 184.346i 0.108086 0.403383i −0.890591 0.454805i \(-0.849709\pi\)
0.998677 + 0.0514223i \(0.0163755\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(462\) 0 0
\(463\) 424.261 424.261i 0.916330 0.916330i −0.0804300 0.996760i \(-0.525629\pi\)
0.996760 + 0.0804300i \(0.0256293\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) −469.666 −1.00142
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 7.83666 + 29.2468i 0.0164982 + 0.0615723i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(480\) 0 0
\(481\) −854.118 193.985i −1.77571 0.403294i
\(482\) 0 0
\(483\) 0 0
\(484\) −242.000 419.156i −0.500000 0.866025i
\(485\) 0 0
\(486\) 0 0
\(487\) −761.163 + 203.953i −1.56296 + 0.418795i −0.933600 0.358316i \(-0.883351\pi\)
−0.629363 + 0.777111i \(0.716684\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 215.580 804.554i 0.434636 1.62208i
\(497\) 0 0
\(498\) 0 0
\(499\) 511.831 + 511.831i 1.02571 + 1.02571i 0.999661 + 0.0260521i \(0.00829358\pi\)
0.0260521 + 0.999661i \(0.491706\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) −1012.00 −1.99213
\(509\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(510\) 0 0
\(511\) −383.722 221.542i −0.750923 0.433545i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) −491.000 850.437i −0.938815 1.62607i −0.767686 0.640826i \(-0.778592\pi\)
−0.171128 0.985249i \(-0.554741\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −264.500 + 458.127i −0.500000 + 0.866025i
\(530\) 0 0
\(531\) 0 0
\(532\) 26.7331i 0.0502501i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 28.4392 28.4392i 0.0525678 0.0525678i −0.680334 0.732902i \(-0.738165\pi\)
0.732902 + 0.680334i \(0.238165\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 587.000 1.07313 0.536563 0.843860i \(-0.319722\pi\)
0.536563 + 0.843860i \(0.319722\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 225.109 + 840.117i 0.407068 + 1.51920i
\(554\) 0 0
\(555\) 0 0
\(556\) 793.279 458.000i 1.42676 0.823741i
\(557\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(558\) 0 0
\(559\) −258.942 136.500i −0.463223 0.244186i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(570\) 0 0
\(571\) 886.000i 1.55166i −0.630940 0.775832i \(-0.717330\pi\)
0.630940 0.775832i \(-0.282670\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 799.697 + 799.697i 1.38596 + 1.38596i 0.833622 + 0.552335i \(0.186263\pi\)
0.552335 + 0.833622i \(0.313737\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(588\) 0 0
\(589\) 54.6030 + 31.5251i 0.0927047 + 0.0535231i
\(590\) 0 0
\(591\) 0 0
\(592\) −279.005 1041.26i −0.471292 1.75889i
\(593\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 540.400 + 936.000i 0.899168 + 1.55740i 0.828560 + 0.559900i \(0.189161\pi\)
0.0706077 + 0.997504i \(0.477506\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −1046.36 + 280.372i −1.73239 + 0.464192i
\(605\) 0 0
\(606\) 0 0
\(607\) −407.000 + 704.945i −0.670511 + 1.16136i 0.307249 + 0.951629i \(0.400592\pi\)
−0.977759 + 0.209729i \(0.932742\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −196.671 + 733.987i −0.320834 + 1.19737i 0.597600 + 0.801794i \(0.296121\pi\)
−0.918434 + 0.395574i \(0.870546\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(618\) 0 0
\(619\) 872.006 872.006i 1.40873 1.40873i 0.642174 0.766559i \(-0.278033\pi\)
0.766559 0.642174i \(-0.221967\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −625.000 −1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 668.572 + 386.000i 1.06460 + 0.614650i
\(629\) 0 0
\(630\) 0 0
\(631\) 221.586 + 826.972i 0.351167 + 1.31057i 0.885240 + 0.465135i \(0.153994\pi\)
−0.534073 + 0.845438i \(0.679339\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 204.050 128.518i 0.320329 0.201755i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(642\) 0 0
\(643\) 1242.04 332.803i 1.93163 0.517579i 0.961897 0.273411i \(-0.0881518\pi\)
0.969733 0.244168i \(-0.0785148\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −123.787 + 461.979i −0.189857 + 0.708557i
\(653\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(660\) 0 0
\(661\) −215.262 57.6793i −0.325661 0.0872607i 0.0922844 0.995733i \(-0.470583\pi\)
−0.417946 + 0.908472i \(0.637250\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 565.500 326.492i 0.840267 0.485129i −0.0170877 0.999854i \(-0.505439\pi\)
0.857355 + 0.514725i \(0.172106\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 609.682 + 292.000i 0.901896 + 0.431953i
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 515.567 + 892.988i 0.759303 + 1.31515i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 360.267i 0.523643i
\(689\) 0 0
\(690\) 0 0
\(691\) 301.654 1125.79i 0.436547 1.62922i −0.300790 0.953690i \(-0.597250\pi\)
0.737337 0.675525i \(-0.236083\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 533.013 + 142.820i 0.761447 + 0.204029i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 81.6001 0.116074
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 304.972 + 1138.17i 0.430143 + 1.60532i 0.752428 + 0.658674i \(0.228882\pi\)
−0.322285 + 0.946643i \(0.604451\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(720\) 0 0
\(721\) −1080.15 + 289.425i −1.49813 + 0.401422i
\(722\) 0 0
\(723\) 0 0
\(724\) −360.267 + 624.000i −0.497606 + 0.861878i
\(725\) 0 0
\(726\) 0 0
\(727\) 947.000i 1.30261i −0.758815 0.651307i \(-0.774221\pi\)
0.758815 0.651307i \(-0.225779\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −896.428 896.428i −1.22296 1.22296i −0.966576 0.256381i \(-0.917470\pi\)
−0.256381 0.966576i \(-0.582530\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −1402.49 375.795i −1.89782 0.508519i −0.997277 0.0737483i \(-0.976504\pi\)
−0.900541 0.434771i \(-0.856829\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −780.000 + 450.333i −1.03862 + 0.599645i −0.919441 0.393229i \(-0.871358\pi\)
−0.119174 + 0.992873i \(0.538025\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −630.466 1092.00i −0.832849 1.44254i −0.895770 0.444518i \(-0.853375\pi\)
0.0629213 0.998018i \(-0.479958\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(762\) 0 0
\(763\) 600.008 1039.24i 0.786380 1.36205i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −260.454 + 972.029i −0.338692 + 1.26402i 0.561118 + 0.827736i \(0.310371\pi\)
−0.899811 + 0.436281i \(0.856295\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −431.069 431.069i −0.558380 0.558380i
\(773\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(774\) 0 0
\(775\) −920.272 + 920.272i −1.18745 + 1.18745i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 257.036 + 148.400i 0.327852 + 0.189286i
\(785\) 0 0
\(786\) 0 0
\(787\) −403.495 1505.86i −0.512700 1.91342i −0.389454 0.921046i \(-0.627336\pi\)
−0.123246 0.992376i \(-0.539331\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 682.500 1294.71i 0.860656 1.63267i
\(794\) 0 0
\(795\) 0 0
\(796\) 218.000 + 377.587i 0.273869 + 0.474356i
\(797\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0