Properties

Label 117.3.bd.a
Level $117$
Weight $3$
Character orbit 117.bd
Analytic conductor $3.188$
Analytic rank $0$
Dimension $4$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,3,Mod(19,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 5]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.bd (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.18801909302\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{12}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 4 \zeta_{12} q^{4} + (3 \zeta_{12}^{3} + 5 \zeta_{12}^{2} + \cdots - 8) q^{7} +O(q^{10}) \) Copy content Toggle raw display \( q - 4 \zeta_{12} q^{4} + (3 \zeta_{12}^{3} + 5 \zeta_{12}^{2} + \cdots - 8) q^{7} + \cdots + (55 \zeta_{12}^{3} - 57 \zeta_{12}^{2} + \cdots + 112) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 22 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 22 q^{7} + 32 q^{16} - 22 q^{19} + 88 q^{28} - 26 q^{31} - 146 q^{37} - 78 q^{43} + 234 q^{49} + 184 q^{52} - 244 q^{67} - 286 q^{73} - 88 q^{76} + 362 q^{91} + 334 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(\zeta_{12}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
−0.866025 + 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
0 0 3.46410 2.00000i 0 0 1.42820 5.33013i 0 0 0
28.1 0 0 −3.46410 2.00000i 0 0 −12.4282 + 3.33013i 0 0 0
37.1 0 0 3.46410 + 2.00000i 0 0 1.42820 + 5.33013i 0 0 0
46.1 0 0 −3.46410 + 2.00000i 0 0 −12.4282 3.33013i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
13.f odd 12 1 inner
39.k even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 117.3.bd.a 4
3.b odd 2 1 CM 117.3.bd.a 4
13.f odd 12 1 inner 117.3.bd.a 4
39.k even 12 1 inner 117.3.bd.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
117.3.bd.a 4 1.a even 1 1 trivial
117.3.bd.a 4 3.b odd 2 1 CM
117.3.bd.a 4 13.f odd 12 1 inner
117.3.bd.a 4 39.k even 12 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} \) acting on \(S_{3}^{\mathrm{new}}(117, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 22 T^{3} + \cdots + 5041 \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} - 337 T^{2} + 28561 \) Copy content Toggle raw display
$17$ \( T^{4} \) Copy content Toggle raw display
$19$ \( T^{4} + 22 T^{3} + \cdots + 2116 \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( T^{4} + 26 T^{3} + \cdots + 3073009 \) Copy content Toggle raw display
$37$ \( T^{4} + 146 T^{3} + \cdots + 4251844 \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + 39 T + 507)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( T^{4} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} + 12675 T^{2} + 160655625 \) Copy content Toggle raw display
$67$ \( T^{4} + 244 T^{3} + \cdots + 77598481 \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + 286 T^{3} + \cdots + 95863681 \) Copy content Toggle raw display
$79$ \( (T^{2} - 24843)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} - 334 T^{3} + \cdots + 94926049 \) Copy content Toggle raw display
show more
show less