Defining parameters
Level: | \( N \) | \(=\) | \( 117 = 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 117.bd (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(42\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(117, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 128 | 52 | 76 |
Cusp forms | 96 | 44 | 52 |
Eisenstein series | 32 | 8 | 24 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(117, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
117.3.bd.a | $4$ | $3.188$ | \(\Q(\zeta_{12})\) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(-22\) | \(q-4\zeta_{12}q^{4}+(-8-8\zeta_{12}+5\zeta_{12}^{2}+\cdots)q^{7}+\cdots\) |
117.3.bd.b | $4$ | $3.188$ | \(\Q(\zeta_{12})\) | None | \(2\) | \(0\) | \(14\) | \(16\) | \(q+(1-\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}+(-1-2\zeta_{12}+\cdots)q^{4}+\cdots\) |
117.3.bd.c | $8$ | $3.188$ | 8.0.\(\cdots\).10 | None | \(2\) | \(0\) | \(-16\) | \(14\) | \(q+(1+\beta _{2}-\beta _{3}+\beta _{4})q^{2}+(2-\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\) |
117.3.bd.d | $12$ | $3.188$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(2\) | \(0\) | \(-4\) | \(-32\) | \(q+(\beta _{1}+\beta _{2})q^{2}+(-2-3\beta _{5}-\beta _{6}-\beta _{11})q^{4}+\cdots\) |
117.3.bd.e | $16$ | $3.188$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(4\) | \(q+\beta _{12}q^{2}+(-1+2\beta _{1}+\beta _{2}-3\beta _{3}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(117, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(117, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 2}\)