Properties

Label 117.3.bd
Level $117$
Weight $3$
Character orbit 117.bd
Rep. character $\chi_{117}(19,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $44$
Newform subspaces $5$
Sturm bound $42$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 117.bd (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 5 \)
Sturm bound: \(42\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(117, [\chi])\).

Total New Old
Modular forms 128 52 76
Cusp forms 96 44 52
Eisenstein series 32 8 24

Trace form

\( 44 q + 6 q^{2} - 6 q^{4} - 6 q^{5} - 20 q^{7} + 54 q^{8} - 12 q^{11} + 6 q^{13} - 24 q^{14} + 46 q^{16} + 22 q^{19} + 114 q^{20} + 108 q^{22} + 30 q^{23} - 144 q^{26} - 148 q^{28} - 66 q^{29} - 112 q^{31}+ \cdots + 894 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(117, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
117.3.bd.a 117.bd 13.f $4$ $3.188$ \(\Q(\zeta_{12})\) \(\Q(\sqrt{-3}) \) 117.3.bd.a \(0\) \(0\) \(0\) \(-22\) $\mathrm{U}(1)[D_{12}]$ \(q-4\zeta_{12}q^{4}+(-8-8\zeta_{12}+5\zeta_{12}^{2}+\cdots)q^{7}+\cdots\)
117.3.bd.b 117.bd 13.f $4$ $3.188$ \(\Q(\zeta_{12})\) None 13.3.f.a \(2\) \(0\) \(14\) \(16\) $\mathrm{SU}(2)[C_{12}]$ \(q+(1-\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}+(-1-2\zeta_{12}+\cdots)q^{4}+\cdots\)
117.3.bd.c 117.bd 13.f $8$ $3.188$ 8.0.\(\cdots\).10 None 39.3.l.a \(2\) \(0\) \(-16\) \(14\) $\mathrm{SU}(2)[C_{12}]$ \(q+(1+\beta _{2}-\beta _{3}+\beta _{4})q^{2}+(2-\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots\)
117.3.bd.d 117.bd 13.f $12$ $3.188$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 39.3.l.b \(2\) \(0\) \(-4\) \(-32\) $\mathrm{SU}(2)[C_{12}]$ \(q+(\beta _{1}+\beta _{2})q^{2}+(-2-3\beta _{5}-\beta _{6}-\beta _{11})q^{4}+\cdots\)
117.3.bd.e 117.bd 13.f $16$ $3.188$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 117.3.bd.e \(0\) \(0\) \(0\) \(4\) $\mathrm{SU}(2)[C_{12}]$ \(q+\beta _{12}q^{2}+(-1+2\beta _{1}+\beta _{2}-3\beta _{3}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(117, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(117, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 2}\)