Properties

Label 117.3.bd
Level 117117
Weight 33
Character orbit 117.bd
Rep. character χ117(19,)\chi_{117}(19,\cdot)
Character field Q(ζ12)\Q(\zeta_{12})
Dimension 4444
Newform subspaces 55
Sturm bound 4242
Trace bound 22

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 117=3213 117 = 3^{2} \cdot 13
Weight: k k == 3 3
Character orbit: [χ][\chi] == 117.bd (of order 1212 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 13 13
Character field: Q(ζ12)\Q(\zeta_{12})
Newform subspaces: 5 5
Sturm bound: 4242
Trace bound: 22
Distinguishing TpT_p: 22

Dimensions

The following table gives the dimensions of various subspaces of M3(117,[χ])M_{3}(117, [\chi]).

Total New Old
Modular forms 128 52 76
Cusp forms 96 44 52
Eisenstein series 32 8 24

Trace form

44q+6q26q46q520q7+54q812q11+6q1324q14+46q16+22q19+114q20+108q22+30q23144q26148q2866q29112q31++894q98+O(q100) 44 q + 6 q^{2} - 6 q^{4} - 6 q^{5} - 20 q^{7} + 54 q^{8} - 12 q^{11} + 6 q^{13} - 24 q^{14} + 46 q^{16} + 22 q^{19} + 114 q^{20} + 108 q^{22} + 30 q^{23} - 144 q^{26} - 148 q^{28} - 66 q^{29} - 112 q^{31}+ \cdots + 894 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S3new(117,[χ])S_{3}^{\mathrm{new}}(117, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
117.3.bd.a 117.bd 13.f 44 3.1883.188 Q(ζ12)\Q(\zeta_{12}) Q(3)\Q(\sqrt{-3}) 117.3.bd.a 00 00 00 22-22 U(1)[D12]\mathrm{U}(1)[D_{12}] q4ζ12q4+(88ζ12+5ζ122+)q7+q-4\zeta_{12}q^{4}+(-8-8\zeta_{12}+5\zeta_{12}^{2}+\cdots)q^{7}+\cdots
117.3.bd.b 117.bd 13.f 44 3.1883.188 Q(ζ12)\Q(\zeta_{12}) None 13.3.f.a 22 00 1414 1616 SU(2)[C12]\mathrm{SU}(2)[C_{12}] q+(1ζ122+ζ123)q2+(12ζ12+)q4+q+(1-\zeta_{12}^{2}+\zeta_{12}^{3})q^{2}+(-1-2\zeta_{12}+\cdots)q^{4}+\cdots
117.3.bd.c 117.bd 13.f 88 3.1883.188 8.0.\cdots.10 None 39.3.l.a 22 00 16-16 1414 SU(2)[C12]\mathrm{SU}(2)[C_{12}] q+(1+β2β3+β4)q2+(2β1+β2+)q4+q+(1+\beta _{2}-\beta _{3}+\beta _{4})q^{2}+(2-\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots
117.3.bd.d 117.bd 13.f 1212 3.1883.188 Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots) None 39.3.l.b 22 00 4-4 32-32 SU(2)[C12]\mathrm{SU}(2)[C_{12}] q+(β1+β2)q2+(23β5β6β11)q4+q+(\beta _{1}+\beta _{2})q^{2}+(-2-3\beta _{5}-\beta _{6}-\beta _{11})q^{4}+\cdots
117.3.bd.e 117.bd 13.f 1616 3.1883.188 Q[x]/(x16+)\mathbb{Q}[x]/(x^{16} + \cdots) None 117.3.bd.e 00 00 00 44 SU(2)[C12]\mathrm{SU}(2)[C_{12}] q+β12q2+(1+2β1+β23β3+)q4+q+\beta _{12}q^{2}+(-1+2\beta _{1}+\beta _{2}-3\beta _{3}+\cdots)q^{4}+\cdots

Decomposition of S3old(117,[χ])S_{3}^{\mathrm{old}}(117, [\chi]) into lower level spaces

S3old(117,[χ]) S_{3}^{\mathrm{old}}(117, [\chi]) \simeq S3new(13,[χ])S_{3}^{\mathrm{new}}(13, [\chi])3^{\oplus 3}\oplusS3new(39,[χ])S_{3}^{\mathrm{new}}(39, [\chi])2^{\oplus 2}