Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [117,2,Mod(43,117)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(117, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([4, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("117.43");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 117 = 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 117.r (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(0.934249703649\) |
Analytic rank: | \(0\) |
Dimension: | \(22\) |
Relative dimension: | \(11\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
43.1 | −2.24331 | + | 1.29518i | −0.749892 | − | 1.56130i | 2.35496 | − | 4.07892i | −1.18696 | + | 0.685292i | 3.70440 | + | 2.53124i | 3.70457i | 7.01967i | −1.87532 | + | 2.34162i | 1.77515 | − | 3.07465i | ||||
43.2 | −2.00627 | + | 1.15832i | 1.71454 | − | 0.245682i | 1.68341 | − | 2.91575i | 1.09505 | − | 0.632228i | −3.15524 | + | 2.47889i | − | 4.17527i | 3.16642i | 2.87928 | − | 0.842464i | −1.46464 | + | 2.53684i | |||
43.3 | −1.21740 | + | 0.702869i | 0.712485 | + | 1.57872i | −0.0119503 | + | 0.0206986i | 2.61504 | − | 1.50979i | −1.97702 | − | 1.42116i | 3.19463i | − | 2.84507i | −1.98473 | + | 2.24963i | −2.12237 | + | 3.67605i | |||
43.4 | −0.916018 | + | 0.528863i | −1.42564 | − | 0.983643i | −0.440607 | + | 0.763154i | 2.71101 | − | 1.56520i | 1.82612 | + | 0.147067i | − | 0.906314i | − | 3.04754i | 1.06489 | + | 2.80464i | −1.65555 | + | 2.86750i | ||
43.5 | −0.838455 | + | 0.484082i | 1.72848 | − | 0.111177i | −0.531329 | + | 0.920289i | −3.54737 | + | 2.04808i | −1.39543 | + | 0.929943i | 3.54220i | − | 2.96516i | 2.97528 | − | 0.384334i | 1.98287 | − | 3.43444i | |||
43.6 | 0.339230 | − | 0.195855i | 1.10027 | − | 1.33768i | −0.923282 | + | 1.59917i | 1.60580 | − | 0.927107i | 0.111254 | − | 0.669277i | 0.0822579i | 1.50674i | −0.578797 | − | 2.94364i | 0.363157 | − | 0.629006i | ||||
43.7 | 0.495326 | − | 0.285977i | −1.06025 | + | 1.36962i | −0.836435 | + | 1.44875i | −0.796103 | + | 0.459630i | −0.133491 | + | 0.981617i | 1.93281i | 2.10071i | −0.751725 | − | 2.90429i | −0.262887 | + | 0.455333i | ||||
43.8 | 0.677814 | − | 0.391336i | 1.22535 | + | 1.22414i | −0.693712 | + | 1.20154i | −0.0536139 | + | 0.0309540i | 1.30961 | + | 0.350219i | − | 3.75567i | 2.65124i | 0.00294547 | + | 3.00000i | −0.0242268 | + | 0.0419621i | |||
43.9 | 1.67544 | − | 0.967314i | −1.73126 | + | 0.0524448i | 0.871392 | − | 1.50930i | 2.26677 | − | 1.30872i | −2.84988 | + | 1.76254i | − | 2.32894i | 0.497616i | 2.99450 | − | 0.181591i | 2.53189 | − | 4.38536i | |||
43.10 | 1.73739 | − | 1.00309i | −0.305519 | − | 1.70489i | 1.01236 | − | 1.75346i | −0.778411 | + | 0.449416i | −2.24096 | − | 2.65561i | 2.43501i | − | 0.0495935i | −2.81332 | + | 1.04175i | −0.901605 | + | 1.56163i | |||
43.11 | 2.29626 | − | 1.32574i | −0.208561 | + | 1.71945i | 2.51519 | − | 4.35644i | −2.43120 | + | 1.40366i | 1.80064 | + | 4.22479i | − | 0.261179i | − | 8.03502i | −2.91300 | − | 0.717221i | −3.72178 | + | 6.44631i | ||
49.1 | −2.24331 | − | 1.29518i | −0.749892 | + | 1.56130i | 2.35496 | + | 4.07892i | −1.18696 | − | 0.685292i | 3.70440 | − | 2.53124i | − | 3.70457i | − | 7.01967i | −1.87532 | − | 2.34162i | 1.77515 | + | 3.07465i | ||
49.2 | −2.00627 | − | 1.15832i | 1.71454 | + | 0.245682i | 1.68341 | + | 2.91575i | 1.09505 | + | 0.632228i | −3.15524 | − | 2.47889i | 4.17527i | − | 3.16642i | 2.87928 | + | 0.842464i | −1.46464 | − | 2.53684i | |||
49.3 | −1.21740 | − | 0.702869i | 0.712485 | − | 1.57872i | −0.0119503 | − | 0.0206986i | 2.61504 | + | 1.50979i | −1.97702 | + | 1.42116i | − | 3.19463i | 2.84507i | −1.98473 | − | 2.24963i | −2.12237 | − | 3.67605i | |||
49.4 | −0.916018 | − | 0.528863i | −1.42564 | + | 0.983643i | −0.440607 | − | 0.763154i | 2.71101 | + | 1.56520i | 1.82612 | − | 0.147067i | 0.906314i | 3.04754i | 1.06489 | − | 2.80464i | −1.65555 | − | 2.86750i | ||||
49.5 | −0.838455 | − | 0.484082i | 1.72848 | + | 0.111177i | −0.531329 | − | 0.920289i | −3.54737 | − | 2.04808i | −1.39543 | − | 0.929943i | − | 3.54220i | 2.96516i | 2.97528 | + | 0.384334i | 1.98287 | + | 3.43444i | |||
49.6 | 0.339230 | + | 0.195855i | 1.10027 | + | 1.33768i | −0.923282 | − | 1.59917i | 1.60580 | + | 0.927107i | 0.111254 | + | 0.669277i | − | 0.0822579i | − | 1.50674i | −0.578797 | + | 2.94364i | 0.363157 | + | 0.629006i | ||
49.7 | 0.495326 | + | 0.285977i | −1.06025 | − | 1.36962i | −0.836435 | − | 1.44875i | −0.796103 | − | 0.459630i | −0.133491 | − | 0.981617i | − | 1.93281i | − | 2.10071i | −0.751725 | + | 2.90429i | −0.262887 | − | 0.455333i | ||
49.8 | 0.677814 | + | 0.391336i | 1.22535 | − | 1.22414i | −0.693712 | − | 1.20154i | −0.0536139 | − | 0.0309540i | 1.30961 | − | 0.350219i | 3.75567i | − | 2.65124i | 0.00294547 | − | 3.00000i | −0.0242268 | − | 0.0419621i | |||
49.9 | 1.67544 | + | 0.967314i | −1.73126 | − | 0.0524448i | 0.871392 | + | 1.50930i | 2.26677 | + | 1.30872i | −2.84988 | − | 1.76254i | 2.32894i | − | 0.497616i | 2.99450 | + | 0.181591i | 2.53189 | + | 4.38536i | |||
See all 22 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
117.r | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 117.2.r.b | yes | 22 |
3.b | odd | 2 | 1 | 351.2.r.b | 22 | ||
9.c | even | 3 | 1 | 117.2.l.b | ✓ | 22 | |
9.d | odd | 6 | 1 | 351.2.l.b | 22 | ||
13.e | even | 6 | 1 | 117.2.l.b | ✓ | 22 | |
39.h | odd | 6 | 1 | 351.2.l.b | 22 | ||
117.m | odd | 6 | 1 | 351.2.r.b | 22 | ||
117.r | even | 6 | 1 | inner | 117.2.r.b | yes | 22 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
117.2.l.b | ✓ | 22 | 9.c | even | 3 | 1 | |
117.2.l.b | ✓ | 22 | 13.e | even | 6 | 1 | |
117.2.r.b | yes | 22 | 1.a | even | 1 | 1 | trivial |
117.2.r.b | yes | 22 | 117.r | even | 6 | 1 | inner |
351.2.l.b | 22 | 9.d | odd | 6 | 1 | ||
351.2.l.b | 22 | 39.h | odd | 6 | 1 | ||
351.2.r.b | 22 | 3.b | odd | 2 | 1 | ||
351.2.r.b | 22 | 117.m | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{22} - 16 T_{2}^{20} + 168 T_{2}^{18} - 1012 T_{2}^{16} + 4402 T_{2}^{14} - 11910 T_{2}^{12} + \cdots + 243 \) acting on \(S_{2}^{\mathrm{new}}(117, [\chi])\).