Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [117,2,Mod(4,117)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(117, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([2, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("117.4");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 117 = 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 117.l (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(0.934249703649\) |
Analytic rank: | \(0\) |
Dimension: | \(22\) |
Relative dimension: | \(11\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4.1 | − | 2.59035i | 1.72707 | − | 0.131225i | −4.70993 | 1.18696 | + | 0.685292i | −0.339918 | − | 4.47373i | −3.20825 | − | 1.85228i | 7.01967i | 2.96556 | − | 0.453269i | 1.77515 | − | 3.07465i | |||||
4.2 | − | 2.31664i | −0.644502 | − | 1.60767i | −3.36682 | −1.09505 | − | 0.632228i | −3.72440 | + | 1.49308i | 3.61589 | + | 2.08764i | 3.16642i | −2.16923 | + | 2.07230i | −1.46464 | + | 2.53684i | |||||
4.3 | − | 1.40574i | −1.72346 | + | 0.172331i | 0.0239006 | −2.61504 | − | 1.50979i | 0.242252 | + | 2.42273i | −2.76663 | − | 1.59731i | − | 2.84507i | 2.94060 | − | 0.594010i | −2.12237 | + | 3.67605i | ||||
4.4 | − | 1.05773i | 1.56468 | + | 0.742818i | 0.881215 | −2.71101 | − | 1.56520i | 0.785698 | − | 1.65500i | 0.784891 | + | 0.453157i | − | 3.04754i | 1.89644 | + | 2.32454i | −1.65555 | + | 2.86750i | ||||
4.5 | − | 0.968164i | −0.767957 | − | 1.55250i | 1.06266 | 3.54737 | + | 2.04808i | −1.50307 | + | 0.743509i | −3.06763 | − | 1.77110i | − | 2.96516i | −1.82048 | + | 2.38450i | 1.98287 | − | 3.43444i | ||||
4.6 | 0.391710i | 0.608332 | − | 1.62171i | 1.84656 | −1.60580 | − | 0.927107i | 0.635238 | + | 0.238289i | −0.0712374 | − | 0.0411289i | 1.50674i | −2.25987 | − | 1.97307i | 0.363157 | − | 0.629006i | ||||||
4.7 | 0.571953i | −0.656000 | + | 1.60302i | 1.67287 | 0.796103 | + | 0.459630i | −0.916851 | − | 0.375201i | −1.67386 | − | 0.966405i | 2.10071i | −2.13933 | − | 2.10316i | −0.262887 | + | 0.455333i | ||||||
4.8 | 0.782672i | −1.67281 | − | 0.449109i | 1.38742 | 0.0536139 | + | 0.0309540i | 0.351505 | − | 1.30926i | 3.25250 | + | 1.87783i | 2.65124i | 2.59660 | + | 1.50255i | −0.0242268 | + | 0.0419621i | ||||||
4.9 | 1.93463i | 0.820210 | + | 1.52553i | −1.74278 | −2.26677 | − | 1.30872i | −2.95134 | + | 1.58680i | 2.01692 | + | 1.16447i | 0.497616i | −1.65451 | + | 2.50252i | 2.53189 | − | 4.38536i | ||||||
4.10 | 2.00617i | 1.62924 | − | 0.587859i | −2.02472 | 0.778411 | + | 0.449416i | 1.17935 | + | 3.26853i | −2.10878 | − | 1.21751i | − | 0.0495935i | 2.30884 | − | 1.91553i | −0.901605 | + | 1.56163i | |||||
4.11 | 2.65149i | −1.38481 | + | 1.04034i | −5.03038 | 2.43120 | + | 1.40366i | −2.75846 | − | 3.67179i | 0.226187 | + | 0.130589i | − | 8.03502i | 0.835370 | − | 2.88135i | −3.72178 | + | 6.44631i | |||||
88.1 | − | 2.65149i | −1.38481 | − | 1.04034i | −5.03038 | 2.43120 | − | 1.40366i | −2.75846 | + | 3.67179i | 0.226187 | − | 0.130589i | 8.03502i | 0.835370 | + | 2.88135i | −3.72178 | − | 6.44631i | |||||
88.2 | − | 2.00617i | 1.62924 | + | 0.587859i | −2.02472 | 0.778411 | − | 0.449416i | 1.17935 | − | 3.26853i | −2.10878 | + | 1.21751i | 0.0495935i | 2.30884 | + | 1.91553i | −0.901605 | − | 1.56163i | |||||
88.3 | − | 1.93463i | 0.820210 | − | 1.52553i | −1.74278 | −2.26677 | + | 1.30872i | −2.95134 | − | 1.58680i | 2.01692 | − | 1.16447i | − | 0.497616i | −1.65451 | − | 2.50252i | 2.53189 | + | 4.38536i | ||||
88.4 | − | 0.782672i | −1.67281 | + | 0.449109i | 1.38742 | 0.0536139 | − | 0.0309540i | 0.351505 | + | 1.30926i | 3.25250 | − | 1.87783i | − | 2.65124i | 2.59660 | − | 1.50255i | −0.0242268 | − | 0.0419621i | ||||
88.5 | − | 0.571953i | −0.656000 | − | 1.60302i | 1.67287 | 0.796103 | − | 0.459630i | −0.916851 | + | 0.375201i | −1.67386 | + | 0.966405i | − | 2.10071i | −2.13933 | + | 2.10316i | −0.262887 | − | 0.455333i | ||||
88.6 | − | 0.391710i | 0.608332 | + | 1.62171i | 1.84656 | −1.60580 | + | 0.927107i | 0.635238 | − | 0.238289i | −0.0712374 | + | 0.0411289i | − | 1.50674i | −2.25987 | + | 1.97307i | 0.363157 | + | 0.629006i | ||||
88.7 | 0.968164i | −0.767957 | + | 1.55250i | 1.06266 | 3.54737 | − | 2.04808i | −1.50307 | − | 0.743509i | −3.06763 | + | 1.77110i | 2.96516i | −1.82048 | − | 2.38450i | 1.98287 | + | 3.43444i | ||||||
88.8 | 1.05773i | 1.56468 | − | 0.742818i | 0.881215 | −2.71101 | + | 1.56520i | 0.785698 | + | 1.65500i | 0.784891 | − | 0.453157i | 3.04754i | 1.89644 | − | 2.32454i | −1.65555 | − | 2.86750i | ||||||
88.9 | 1.40574i | −1.72346 | − | 0.172331i | 0.0239006 | −2.61504 | + | 1.50979i | 0.242252 | − | 2.42273i | −2.76663 | + | 1.59731i | 2.84507i | 2.94060 | + | 0.594010i | −2.12237 | − | 3.67605i | ||||||
See all 22 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
117.l | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 117.2.l.b | ✓ | 22 |
3.b | odd | 2 | 1 | 351.2.l.b | 22 | ||
9.c | even | 3 | 1 | 117.2.r.b | yes | 22 | |
9.d | odd | 6 | 1 | 351.2.r.b | 22 | ||
13.e | even | 6 | 1 | 117.2.r.b | yes | 22 | |
39.h | odd | 6 | 1 | 351.2.r.b | 22 | ||
117.l | even | 6 | 1 | inner | 117.2.l.b | ✓ | 22 |
117.v | odd | 6 | 1 | 351.2.l.b | 22 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
117.2.l.b | ✓ | 22 | 1.a | even | 1 | 1 | trivial |
117.2.l.b | ✓ | 22 | 117.l | even | 6 | 1 | inner |
117.2.r.b | yes | 22 | 9.c | even | 3 | 1 | |
117.2.r.b | yes | 22 | 13.e | even | 6 | 1 | |
351.2.l.b | 22 | 3.b | odd | 2 | 1 | ||
351.2.l.b | 22 | 117.v | odd | 6 | 1 | ||
351.2.r.b | 22 | 9.d | odd | 6 | 1 | ||
351.2.r.b | 22 | 39.h | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{22} + 32 T_{2}^{20} + 432 T_{2}^{18} + 3212 T_{2}^{16} + 14428 T_{2}^{14} + 40524 T_{2}^{12} + \cdots + 243 \) acting on \(S_{2}^{\mathrm{new}}(117, [\chi])\).